
AudioSegment Documentation

Author

Feb 02, 2019

Contents:

1 algorithms package 1
1.1 Submodules . 1
1.2 algorithms.asa module . 1
1.3 algorithms.eventdetection module . 1
1.4 algorithms.filters module . 1
1.5 algorithms.util module . 2
1.6 Module contents . 2

2 audiosegment module 3

3 Indices and tables 15

Python Module Index 17

i

ii

CHAPTER 1

algorithms package

1.1 Submodules

1.2 algorithms.asa module

This module extracts out a bunch of the Auditory Scene Analysis (ASA) logic, which has grown to be a little unwieldy
in the AudioSegment class.

algorithms.asa.visualize(spect, frequencies, title=”)

algorithms.asa.visualize_fronts(onsets, offsets, spect, frequencies)

algorithms.asa.visualize_peaks_and_valleys(peaks, valleys, spect, frequencies)

algorithms.asa.visualize_segmentation_mask(segmentation, spect, frequencies,
mode=’new’)

algorithms.asa.visualize_time_domain(seg, title=”)

1.3 algorithms.eventdetection module

This module contains a bunch of functions that are integral to the auditory event detection algorithm used by Au-
dioSegment. We refactored them to here because they aren’t really useful on their own, and they take up brainspace
by being in the AudioSegment class.

1.4 algorithms.filters module

Convenience functions for using Numpy/Scipy filters in the audio domain.

algorithms.filters.bandpass_filter(data, low, high, fs, order=5)
Does a bandpass filter over the given data.

1

AudioSegment Documentation

Parameters

• data – The data (numpy array) to be filtered.

• low – The low cutoff in Hz.

• high – The high cutoff in Hz.

• fs – The sample rate (in Hz) of the data.

• order – The order of the filter. The higher the order, the tighter the roll-off.

Returns Filtered data (numpy array).

algorithms.filters.lowpass_filter(data, cutoff, fs, order=5)
Does a lowpass filter over the given data.

Parameters

• data – The data (numpy array) to be filtered.

• cutoff – The high cutoff in Hz.

• fs – The sample rate in Hz of the data.

• order – The order of the filter. The higher the order, the tighter the roll-off.

Returns Filtered data (numpy array).

1.5 algorithms.util module

Utility module for miscellaneous stuff

algorithms.util.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Python 3.4 does not have math.isclose, so we need to steal it and add it here.

1.6 Module contents

2 Chapter 1. algorithms package

CHAPTER 2

audiosegment module

This module simply exposes a wrapper of a pydub.AudioSegment object.

class audiosegment.AudioSegment(pydubseg, name)
Bases: object

This class is a wrapper for a pydub.AudioSegment that provides additional methods.

auditory_scene_analysis(debug=False, debugplot=False)
Algorithm based on paper: Auditory Segmentation Based on Onset and Offset Analysis, by Hu and Wang,
2007.

Returns a list of AudioSegments, each of which is all the sound during this AudioSegment’s duration from
a particular source. That is, if there are several overlapping sounds in this AudioSegment, this method will
return one AudioSegment object for each of those sounds. At least, that’s the idea.

Current version is very much in alpha, and while it shows promise, will require quite a bit more tuning
before it can really claim to work.

Parameters

• debug – If True will print out debug outputs along the way. Useful if you want to see
why it is taking so long.

• debugplot – If True will use Matplotlib to plot the resulting spectrogram masks in Mel
frequency scale.

Returns List of AudioSegment objects, each of which is from a particular sound source.

detect_event(model, ms_per_input, transition_matrix, model_stats, event_length_s,
start_as_yes=False, prob_raw_yes=0.5)

A list of tuples of the form [(‘n’, AudioSegment), (‘y’, AudioSegment), etc.] is returned, where tuples
of the form (‘n’, AudioSegment) are the segments of sound where the event was not detected, while (‘y’,
AudioSegment) tuples were the segments of sound where the event was detected.

Example usage
import audiosegment
import keras

(continues on next page)

3

AudioSegment Documentation

(continued from previous page)

import keras.models
import numpy as np
import sys

class Model:
def __init__(self, modelpath):

self.model = keras.models.load_model(modelpath)

def predict(self, seg):
_bins, fft_vals = seg.fft()
fft_vals = np.abs(fft_vals) / len(fft_vals)
predicted_np_form = self.model.predict(np.array([fft_vals]), batch_

→˓size=1)
prediction_as_int = int(round(predicted_np_form[0][0]))
return prediction_as_int

modelpath = sys.argv[1]
wavpath = sys.argv[2]
model = Model(modelpath)
seg = audiosegment.from_file(wavpath).resample(sample_rate_Hz=32000, sample_
→˓width=2, channels=1)
pyes_to_no = 0.3 # The probability of one 30 ms sample being an event, and
→˓the next one not
pno_to_yes = 0.2 # The probability of one 30 ms sample not being an event,
→˓and the next one yes
ptrue_pos_rate = 0.8 # The true positive rate (probability of a predicted
→˓yes being right)
pfalse_neg_rate = 0.3 # The false negative rate (probability of a predicted
→˓no being wrong)
raw_prob = 0.7 # The raw probability of seeing the event in any random 30 ms
→˓slice of this file
events = seg.detect_event(model, ms_per_input=30, transition_matrix=[pyes_to_
→˓no, pno_to_yes],

model_stats=[ptrue_pos_rate, pfalse_neg_rate],
→˓event_length_s=0.25,

prob_raw_yes=raw_prob)
nos = [event[1] for event in events if event[0] == 'n']
yeses = [event[1] for event in events if event[0] == 'y']
if len(nos) > 1:

notdetected = nos[0].reduce(nos[1:])
notdetected.export("notdetected.wav", format="WAV")

if len(yeses) > 1:
detected = yeses[0].reduce(yeses[1:])
detected.export("detected.wav", format="WAV")

Parameters

• model – The model. The model must have a predict() function which takes an AudioSeg-
ment of ms_per_input number of ms and which outputs 1 if the audio event is detected
in that input, and 0 if not. Make sure to resample the AudioSegment to the right values
before calling this function on it.

• ms_per_input – The number of ms of AudioSegment to be fed into the model at a
time. If this does not come out even, the last AudioSegment will be zero-padded.

• transition_matrix – An iterable of the form: [p(yes->no), p(no->yes)]. That is, the
probability of moving from a ‘yes’ state to a ‘no’ state and the probability of vice versa.

4 Chapter 2. audiosegment module

AudioSegment Documentation

• model_stats – An iterable of the form: [p(reality=1|output=1), p(reality=1|output=0)].
That is, the probability of the ground truth really being a 1, given that the model output a
1, and the probability of the ground truth being a 1, given that the model output a 0.

• event_length_s – The typical duration of the event you are looking for in seconds
(can be a float).

• start_as_yes – If True, the first ms_per_input will be in the ‘y’ category. Otherwise
it will be in the ‘n’ category.

• prob_raw_yes – The raw probability of finding the event in any given ms_per_input
vector.

Returns A list of tuples of the form [(‘n’, AudioSegment), (‘y’, AudioSegment), etc.], where
over the course of the list, the AudioSegment in tuple 3 picks up where the one in tuple 2 left
off.

Raises ValueError if ms_per_input is negative or larger than the number of ms in this AudioSeg-
ment; if transition_matrix or model_stats do not have a __len__ attribute or are not length 2;
if the values in transition_matrix or model_stats are not in the closed interval [0.0, 1.0].

detect_voice(prob_detect_voice=0.5)
Returns self as a list of tuples: [(‘v’, voiced segment), (‘u’, unvoiced segment), (etc.)]

The overall order of the AudioSegment is preserved.

Parameters prob_detect_voice – The raw probability that any random 20ms window of
the audio file contains voice.

Returns The described list.

dice(seconds, zero_pad=False)
Cuts the AudioSegment into seconds segments (at most). So for example, if seconds=10, this will return a
list of AudioSegments, in order, where each one is at most 10 seconds long. If zero_pad is True, the last
item AudioSegment object will be zero padded to result in seconds seconds.

Parameters

• seconds – The length of each segment in seconds. Can be either a float/int, in which
case self.duration_seconds / seconds are made, each of seconds length, or a list-like can
be given, in which case the given list must sum to self.duration_seconds and each segment
is specified by the list - e.g. the 9th AudioSegment in the returned list will be seconds[8]
seconds long.

• zero_pad – Whether to zero_pad the final segment if necessary. Ignored if seconds is a
list-like.

Returns A list of AudioSegments, each of which is the appropriate number of seconds long.

Raises ValueError if a list-like is given for seconds and the list’s durations do not sum to
self.duration_seconds.

fft(start_s=None, duration_s=None, start_sample=None, num_samples=None, zero_pad=False)
Transforms the indicated slice of the AudioSegment into the frequency domain and returns the bins and
the values.

If neither start_s or start_sample is specified, the first sample of the slice will be the first sample of the
AudioSegment.

If neither duration_s or num_samples is specified, the slice will be from the specified start to the end of
the segment.

5

AudioSegment Documentation

Example for plotting the FFT using this function
import matplotlib.pyplot as plt
import numpy as np

seg = audiosegment.from_file("furelise.wav")
Just take the first 3 seconds
hist_bins, hist_vals = seg[1:3000].fft()
hist_vals_real_normed = np.abs(hist_vals) / len(hist_vals)
plt.plot(hist_bins / 1000, hist_vals_real_normed)
plt.xlabel("kHz")
plt.ylabel("dB")
plt.show()

Parameters

• start_s – The start time in seconds. If this is specified, you cannot specify start_sample.

• duration_s – The duration of the slice in seconds. If this is specified, you cannot
specify num_samples.

• start_sample – The zero-based index of the first sample to include in the slice. If this
is specified, you cannot specify start_s.

• num_samples – The number of samples to include in the slice. If this is specified, you
cannot specify duration_s.

• zero_pad – If True and the combination of start and duration result in running off the
end of the AudioSegment, the end is zero padded to prevent this.

Returns np.ndarray of frequencies, np.ndarray of amount of each frequency

6 Chapter 2. audiosegment module

AudioSegment Documentation

Raises ValueError If start_s and start_sample are both specified and/or if both duration_s and
num_samples are specified.

filter_bank(lower_bound_hz=50, upper_bound_hz=8000.0, nfilters=128, mode=’mel’)
Returns a numpy array of shape (nfilters, nsamples), where each row of data is the result of bandpass
filtering the audiosegment around a particular frequency. The frequencies are spaced from lower_bound_hz
to upper_bound_hz and are returned with the np array. The particular spacing of the frequencies depends
on mode, which can be either: ‘linear’, ‘mel’, or ‘log’.

Note: This method is an approximation of a gammatone filterbank until I get around to writing an actual
gammatone filterbank function.

Example usage
import audiosegment
import matplotlib.pyplot as plt
import numpy as np

def visualize(spect, frequencies, title=""):
Visualize the result of calling seg.filter_bank() for any number of

→˓filters
i = 0
for freq, (index, row) in zip(frequencies[::-1], enumerate(spect[::-1,

→˓:])):
plt.subplot(spect.shape[0], 1, index + 1)
if i == 0:

plt.title(title)
i += 1

plt.ylabel("{0:.0f}".format(freq))
plt.plot(row)

plt.show()

seg = audiosegment.from_file("some_audio.wav").resample(sample_rate_Hz=24000,
→˓sample_width=2, channels=1)
spec, frequencies = seg.filter_bank(nfilters=5)
visualize(spec, frequencies)

7

AudioSegment Documentation

Parameters

• lower_bound_hz – The lower bound of the frequencies to use in the bandpass filters.

• upper_bound_hz – The upper bound of the frequencies to use in the bandpass filters.

• nfilters – The number of filters to apply. This will determine which frequencies are
used as well, as they are interpolated between lower_bound_hz and upper_bound_hz based
on mode.

• mode – The way the frequencies are spaced. Options are: linear, in which case the fre-
quencies are linearly interpolated between lower_bound_hz and upper_bound_hz, mel, in
which case the mel frequencies are used, or log, in which case they are log-10 spaced.

Returns A numpy array of the form (nfilters, nsamples), where each row is the audiosegment,
bandpass-filtered around a particular frequency, and the list of frequencies. I.e., returns (spec,
freqs).

filter_silence(duration_s=1, threshold_percentage=1, console_output=False)
Returns a copy of this AudioSegment, but whose silence has been removed.

Note: This method requires that you have the program ‘sox’ installed.

Warning: This method uses the program ‘sox’ to perform the task. While this is very fast for a single
function call, the IO may add up for large numbers of AudioSegment objects.

Parameters

• duration_s – The number of seconds of “silence” that must be present in a row to be
stripped.

• threshold_percentage – Silence is defined as any samples whose absolute value is
below threshold_percentage * max(abs(samples in this segment)).

8 Chapter 2. audiosegment module

AudioSegment Documentation

• console_output – If True, will pipe all sox output to the console.

Returns A copy of this AudioSegment, but whose silence has been removed.

generate_frames(frame_duration_ms, zero_pad=True)
Yields self’s data in chunks of frame_duration_ms.

This function adapted from pywebrtc’s example [https://github.com/wiseman/py-webrtcvad/blob/master/
example.py].

Parameters

• frame_duration_ms – The length of each frame in ms.

• zero_pad – Whether or not to zero pad the end of the AudioSegment object to get all
the audio data out as frames. If not, there may be a part at the end of the Segment that is
cut off (the part will be <= frame_duration_ms in length).

Returns A Frame object with properties ‘bytes (the data)’, ‘timestamp (start time)’, and ‘dura-
tion’.

generate_frames_as_segments(frame_duration_ms, zero_pad=True)
Does the same thing as generate_frames, but yields tuples of (AudioSegment, timestamp) instead of
Frames.

normalize_spl_by_average(db)
Normalize the values in the AudioSegment so that its spl property gives db.

Note: This method is currently broken - it returns an AudioSegment whose values are much smaller
than reasonable, yet which yield an SPL value that equals the given db. Such an AudioSegment will not
be serializable as a WAV file, which will also break any method that relies on SOX. I may remove this
method in the future, since the SPL of an AudioSegment is pretty questionable to begin with.

Parameters db – The decibels to normalize average to.

Returns A new AudioSegment object whose values are changed so that their average is db.

Raises ValueError if there are no samples in this AudioSegment.

reduce(others)
Reduces others into this one by concatenating all the others onto this one and returning the result. Does
not modify self, instead, makes a copy and returns that.

Parameters others – The other AudioSegment objects to append to this one.

Returns The concatenated result.

resample(sample_rate_Hz=None, sample_width=None, channels=None, console_output=False)
Returns a new AudioSegment whose data is the same as this one, but which has been resampled to the
specified characteristics. Any parameter left None will be unchanged.

Note: This method requires that you have the program ‘sox’ installed.

Warning: This method uses the program ‘sox’ to perform the task. While this is very fast for a single
function call, the IO may add up for large numbers of AudioSegment objects.

9

https://github.com/wiseman/py-webrtcvad/blob/master/example.py
https://github.com/wiseman/py-webrtcvad/blob/master/example.py

AudioSegment Documentation

Parameters

• sample_rate_Hz – The new sample rate in Hz.

• sample_width – The new sample width in bytes, so sample_width=2 would correspond
to 16 bit (2 byte) width.

• channels – The new number of channels.

• console_output – Will print the output of sox to the console if True.

Returns The newly sampled AudioSegment.

serialize()
Serializes into a bytestring.

Returns An object of type Bytes.

spectrogram(start_s=None, duration_s=None, start_sample=None, num_samples=None, win-
dow_length_s=None, window_length_samples=None, overlap=0.5)

Does a series of FFTs from start_s or start_sample for duration_s or num_samples. Effectively, transforms
a slice of the AudioSegment into the frequency domain across different time bins.

Example for plotting a spectrogram using this function
import audiosegment
import matplotlib.pyplot as plt

#...
seg = audiosegment.from_file("somebodytalking.wav")
freqs, times, amplitudes = seg.spectrogram(window_length_s=0.03, overlap=0.5)
amplitudes = 10 * np.log10(amplitudes + 1e-9)

Plot
plt.pcolormesh(times, freqs, amplitudes)
plt.xlabel("Time in Seconds")
plt.ylabel("Frequency in Hz")
plt.show()

10 Chapter 2. audiosegment module

AudioSegment Documentation

Parameters

• start_s – The start time. Starts at the beginning if neither this nor start_sample is
specified.

• duration_s – The duration of the spectrogram in seconds. Goes to the end if neither
this nor num_samples is specified.

• start_sample – The index of the first sample to use. Starts at the beginning if neither
this nor start_s is specified.

• num_samples – The number of samples in the spectrogram. Goes to the end if neither
this nor duration_s is specified.

• window_length_s – The length of each FFT in seconds. If the total number of samples
in the spectrogram is not a multiple of the window length in samples, the last window will
be zero-padded.

• window_length_samples – The length of each FFT in number of samples. If the
total number of samples in the spectrogram is not a multiple of the window length in
samples, the last window will be zero-padded.

• overlap – The fraction of each window to overlap.

Returns Three np.ndarrays: The frequency values in Hz (the y-axis in a spectrogram), the time
values starting at start time and then increasing by duration_s each step (the x-axis in a
spectrogram), and the dB of each time/frequency bin as a 2D array of shape [len(frequency
values), len(duration)].

Raises ValueError – If start_s and start_sample are both specified, if duration_s and
num_samples are both specified, if the first window’s duration plus start time lead to run-

11

AudioSegment Documentation

ning off the end of the AudioSegment, or if window_length_s and window_length_samples
are either both specified or if they are both not specified.

spl
Sound Pressure Level - defined as 20 * log10(p/p0), where p is the RMS of the sound wave in Pascals and
p0 is 20 micro Pascals.

Since we would need to know calibration information about the microphone used to record the sound in
order to transform the PCM values of this audiosegment into Pascals, we can’t really give an accurate SPL
measurement.

However, we can give a reasonable guess that can certainly be used to compare two sounds taken from the
same microphone set up.

Be wary about using this to compare sounds taken under different recording conditions however, except as
a simple approximation.

Returns a scalar float representing the dB SPL of this audiosegment.

to_numpy_array()
Convenience function for np.array(self.get_array_of_samples()) while keeping the appropriate dtype.

zero_extend(duration_s=None, num_samples=None)
Adds a number of zeros (digital silence) to the AudioSegment (returning a new one).

Parameters

• duration_s – The number of seconds of zeros to add. If this is specified, num_samples
must be None.

• num_samples – The number of zeros to add. If this is specified, duration_s must be
None.

Returns A new AudioSegment object that has been zero extended.

Raises ValueError if duration_s and num_samples are both specified.

audiosegment.deprecated(func)
Deprecator decorator.

audiosegment.deserialize(bstr)
Attempts to deserialize a bytestring into an audiosegment.

Parameters bstr – The bytestring serialized via an audiosegment’s serialize() method.

Returns An AudioSegment object deserialized from bstr.

audiosegment.empty()
Creates a zero-duration AudioSegment object.

Returns An empty AudioSegment object.

audiosegment.from_file(path)
Returns an AudioSegment object from the given file based on its file extension. If the extension is wrong, this
will throw some sort of error.

Parameters path – The path to the file, including the file extension.

Returns An AudioSegment instance from the file.

audiosegment.from_mono_audiosegments(*args)
Creates a multi-channel AudioSegment out of multiple mono AudioSegments (two or more). Each mono Au-
dioSegment passed in should be exactly the same number of samples.

Returns An AudioSegment of multiple channels formed from the given mono AudioSegments.

12 Chapter 2. audiosegment module

AudioSegment Documentation

audiosegment.from_numpy_array(nparr, framerate)
Returns an AudioSegment created from the given numpy array.

The numpy array must have shape = (num_samples, num_channels).

Parameters nparr – The numpy array to create an AudioSegment from.

Returns An AudioSegment created from the given array.

audiosegment.silent(duration=1000, frame_rate=11025)
Creates an AudioSegment object of the specified duration/frame_rate filled with digital silence.

Parameters

• duration – The duration of the returned object in ms.

• frame_rate – The samples per second of the returned object.

Returns AudioSegment object filled with pure digital silence.

13

AudioSegment Documentation

14 Chapter 2. audiosegment module

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

AudioSegment Documentation

16 Chapter 3. Indices and tables

Python Module Index

a
algorithms, 2
algorithms.asa, 1
algorithms.eventdetection, 1
algorithms.filters, 1
algorithms.util, 2
audiosegment, 3

17

AudioSegment Documentation

18 Python Module Index

Index

A
algorithms (module), 2
algorithms.asa (module), 1
algorithms.eventdetection (module), 1
algorithms.filters (module), 1
algorithms.util (module), 2
AudioSegment (class in audiosegment), 3
audiosegment (module), 3
auditory_scene_analysis() (audiosegment.AudioSegment

method), 3

B
bandpass_filter() (in module algorithms.filters), 1

D
deprecated() (in module audiosegment), 12
deserialize() (in module audiosegment), 12
detect_event() (audiosegment.AudioSegment method), 3
detect_voice() (audiosegment.AudioSegment method), 5
dice() (audiosegment.AudioSegment method), 5

E
empty() (in module audiosegment), 12

F
fft() (audiosegment.AudioSegment method), 5
filter_bank() (audiosegment.AudioSegment method), 7
filter_silence() (audiosegment.AudioSegment method), 8
from_file() (in module audiosegment), 12
from_mono_audiosegments() (in module audiosegment),

12
from_numpy_array() (in module audiosegment), 12

G
generate_frames() (audiosegment.AudioSegment

method), 9
generate_frames_as_segments() (audioseg-

ment.AudioSegment method), 9

I
isclose() (in module algorithms.util), 2

L
lowpass_filter() (in module algorithms.filters), 2

N
normalize_spl_by_average() (audioseg-

ment.AudioSegment method), 9

R
reduce() (audiosegment.AudioSegment method), 9
resample() (audiosegment.AudioSegment method), 9

S
serialize() (audiosegment.AudioSegment method), 10
silent() (in module audiosegment), 13
spectrogram() (audiosegment.AudioSegment method), 10
spl (audiosegment.AudioSegment attribute), 12

T
to_numpy_array() (audiosegment.AudioSegment

method), 12

V
visualize() (in module algorithms.asa), 1
visualize_fronts() (in module algorithms.asa), 1
visualize_peaks_and_valleys() (in module algo-

rithms.asa), 1
visualize_segmentation_mask() (in module algo-

rithms.asa), 1
visualize_time_domain() (in module algorithms.asa), 1

Z
zero_extend() (audiosegment.AudioSegment method), 12

19

	algorithms package
	Submodules
	algorithms.asa module
	algorithms.eventdetection module
	algorithms.filters module
	algorithms.util module
	Module contents

	audiosegment module
	Indices and tables
	Python Module Index

