

Welcome to AudioSegment’s documentation!

Contents:

	algorithms package
	Submodules

	algorithms.asa module

	algorithms.eventdetection module

	algorithms.filters module

	algorithms.util module

	Module contents

	audiosegment module

Indices and tables

	Index

	Module Index

	Search Page

algorithms package

Submodules

algorithms.asa module

This module extracts out a bunch of the Auditory Scene Analysis (ASA)
logic, which has grown to be a little unwieldy in the AudioSegment class.

	
algorithms.asa.visualize(spect, frequencies, title='')

	

	
algorithms.asa.visualize_fronts(onsets, offsets, spect, frequencies)

	

	
algorithms.asa.visualize_peaks_and_valleys(peaks, valleys, spect, frequencies)

	

	
algorithms.asa.visualize_segmentation_mask(segmentation, spect, frequencies, mode='new')

	

	
algorithms.asa.visualize_time_domain(seg, title='')

	

algorithms.eventdetection module

This module contains a bunch of functions that are integral to the
auditory event detection algorithm used by AudioSegment. We refactored
them to here because they aren’t really useful on their own, and they
take up brainspace by being in the AudioSegment class.

algorithms.filters module

Convenience functions for using Numpy/Scipy filters in the audio domain.

	
algorithms.filters.bandpass_filter(data, low, high, fs, order=5)

	Does a bandpass filter over the given data.

	Parameters

	
	data – The data (numpy array) to be filtered.

	low – The low cutoff in Hz.

	high – The high cutoff in Hz.

	fs – The sample rate (in Hz) of the data.

	order – The order of the filter. The higher the order, the tighter the roll-off.

	Returns

	Filtered data (numpy array).

	
algorithms.filters.lowpass_filter(data, cutoff, fs, order=5)

	Does a lowpass filter over the given data.

	Parameters

	
	data – The data (numpy array) to be filtered.

	cutoff – The high cutoff in Hz.

	fs – The sample rate in Hz of the data.

	order – The order of the filter. The higher the order, the tighter the roll-off.

	Returns

	Filtered data (numpy array).

algorithms.util module

Utility module for miscellaneous stuff

	
algorithms.util.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)

	Python 3.4 does not have math.isclose, so we need to steal it and add it here.

Module contents

audiosegment module

This module simply exposes a wrapper of a pydub.AudioSegment object.

	
class audiosegment.AudioSegment(pydubseg, name)

	Bases: object

This class is a wrapper for a pydub.AudioSegment that provides additional methods.

	
auditory_scene_analysis(debug=False, debugplot=False)

	Algorithm based on paper: Auditory Segmentation Based on Onset and Offset Analysis,
by Hu and Wang, 2007.

Returns a list of AudioSegments, each of which is all the sound during this AudioSegment’s duration from
a particular source. That is, if there are several overlapping sounds in this AudioSegment, this
method will return one AudioSegment object for each of those sounds. At least, that’s the idea.

Current version is very much in alpha, and while it shows promise, will require quite a bit more
tuning before it can really claim to work.

	Parameters

	
	debug – If True will print out debug outputs along the way. Useful if you want to see why it is
taking so long.

	debugplot – If True will use Matplotlib to plot the resulting spectrogram masks in Mel frequency scale.

	Returns

	List of AudioSegment objects, each of which is from a particular sound source.

	
detect_event(model, ms_per_input, transition_matrix, model_stats, event_length_s, start_as_yes=False, prob_raw_yes=0.5)

	A list of tuples of the form [(‘n’, AudioSegment), (‘y’, AudioSegment), etc.] is returned, where tuples
of the form (‘n’, AudioSegment) are the segments of sound where the event was not detected,
while (‘y’, AudioSegment) tuples were the segments of sound where the event was detected.

Example usage
import audiosegment
import keras
import keras.models
import numpy as np
import sys

class Model:
 def __init__(self, modelpath):
 self.model = keras.models.load_model(modelpath)

 def predict(self, seg):
 _bins, fft_vals = seg.fft()
 fft_vals = np.abs(fft_vals) / len(fft_vals)
 predicted_np_form = self.model.predict(np.array([fft_vals]), batch_size=1)
 prediction_as_int = int(round(predicted_np_form[0][0]))
 return prediction_as_int

modelpath = sys.argv[1]
wavpath = sys.argv[2]
model = Model(modelpath)
seg = audiosegment.from_file(wavpath).resample(sample_rate_Hz=32000, sample_width=2, channels=1)
pyes_to_no = 0.3 # The probability of one 30 ms sample being an event, and the next one not
pno_to_yes = 0.2 # The probability of one 30 ms sample not being an event, and the next one yes
ptrue_pos_rate = 0.8 # The true positive rate (probability of a predicted yes being right)
pfalse_neg_rate = 0.3 # The false negative rate (probability of a predicted no being wrong)
raw_prob = 0.7 # The raw probability of seeing the event in any random 30 ms slice of this file
events = seg.detect_event(model, ms_per_input=30, transition_matrix=[pyes_to_no, pno_to_yes],
 model_stats=[ptrue_pos_rate, pfalse_neg_rate], event_length_s=0.25,
 prob_raw_yes=raw_prob)
nos = [event[1] for event in events if event[0] == 'n']
yeses = [event[1] for event in events if event[0] == 'y']
if len(nos) > 1:
 notdetected = nos[0].reduce(nos[1:])
 notdetected.export("notdetected.wav", format="WAV")
if len(yeses) > 1:
 detected = yeses[0].reduce(yeses[1:])
 detected.export("detected.wav", format="WAV")

	Parameters

	
	model – The model. The model must have a predict() function which takes an AudioSegment
of ms_per_input number of ms and which outputs 1 if the audio event is detected
in that input, and 0 if not. Make sure to resample the AudioSegment to the right
values before calling this function on it.

	ms_per_input – The number of ms of AudioSegment to be fed into the model at a time. If this does not
come out even, the last AudioSegment will be zero-padded.

	transition_matrix – An iterable of the form: [p(yes->no), p(no->yes)]. That is, the probability of moving
from a ‘yes’ state to a ‘no’ state and the probability of vice versa.

	model_stats – An iterable of the form: [p(reality=1|output=1), p(reality=1|output=0)]. That is,
the probability of the ground truth really being a 1, given that the model output a 1,
and the probability of the ground truth being a 1, given that the model output a 0.

	event_length_s – The typical duration of the event you are looking for in seconds (can be a float).

	start_as_yes – If True, the first ms_per_input will be in the ‘y’ category. Otherwise it will be
in the ‘n’ category.

	prob_raw_yes – The raw probability of finding the event in any given ms_per_input vector.

	Returns

	A list of tuples of the form [(‘n’, AudioSegment), (‘y’, AudioSegment), etc.],
where over the course of the list, the AudioSegment in tuple 3 picks up
where the one in tuple 2 left off.

	Raises

	ValueError if ms_per_input is negative or larger than the number of ms in this
AudioSegment; if transition_matrix or model_stats do not have a __len__ attribute
or are not length 2; if the values in transition_matrix or model_stats are not
in the closed interval [0.0, 1.0].

	
detect_voice(prob_detect_voice=0.5)

	Returns self as a list of tuples:
[(‘v’, voiced segment), (‘u’, unvoiced segment), (etc.)]

The overall order of the AudioSegment is preserved.

	Parameters

	prob_detect_voice – The raw probability that any random 20ms window of the audio file
contains voice.

	Returns

	The described list.

	
dice(seconds, zero_pad=False)

	Cuts the AudioSegment into seconds segments (at most). So for example, if seconds=10,
this will return a list of AudioSegments, in order, where each one is at most 10 seconds
long. If zero_pad is True, the last item AudioSegment object will be zero padded to result
in seconds seconds.

	Parameters

	
	seconds – The length of each segment in seconds. Can be either a float/int, in which case
self.duration_seconds / seconds are made, each of seconds length, or a
list-like can be given, in which case the given list must sum to
self.duration_seconds and each segment is specified by the list - e.g.
the 9th AudioSegment in the returned list will be seconds[8] seconds long.

	zero_pad – Whether to zero_pad the final segment if necessary. Ignored if seconds is
a list-like.

	Returns

	A list of AudioSegments, each of which is the appropriate number of seconds long.

	Raises

	ValueError if a list-like is given for seconds and the list’s durations do not sum
to self.duration_seconds.

	
fft(start_s=None, duration_s=None, start_sample=None, num_samples=None, zero_pad=False)

	Transforms the indicated slice of the AudioSegment into the frequency domain and returns the bins
and the values.

If neither start_s or start_sample is specified, the first sample of the slice will be the first sample
of the AudioSegment.

If neither duration_s or num_samples is specified, the slice will be from the specified start
to the end of the segment.

Example for plotting the FFT using this function
import matplotlib.pyplot as plt
import numpy as np

seg = audiosegment.from_file("furelise.wav")
Just take the first 3 seconds
hist_bins, hist_vals = seg[1:3000].fft()
hist_vals_real_normed = np.abs(hist_vals) / len(hist_vals)
plt.plot(hist_bins / 1000, hist_vals_real_normed)
plt.xlabel("kHz")
plt.ylabel("dB")
plt.show()

[image: _images/fft.png]

	Parameters

	
	start_s – The start time in seconds. If this is specified, you cannot specify start_sample.

	duration_s – The duration of the slice in seconds. If this is specified, you cannot specify num_samples.

	start_sample – The zero-based index of the first sample to include in the slice.
If this is specified, you cannot specify start_s.

	num_samples – The number of samples to include in the slice. If this is specified, you cannot
specify duration_s.

	zero_pad – If True and the combination of start and duration result in running off the end of
the AudioSegment, the end is zero padded to prevent this.

	Returns

	np.ndarray of frequencies, np.ndarray of amount of each frequency

	Raises

	ValueError If start_s and start_sample are both specified and/or if both duration_s and
num_samples are specified.

	
filter_bank(lower_bound_hz=50, upper_bound_hz=8000.0, nfilters=128, mode='mel')

	Returns a numpy array of shape (nfilters, nsamples), where each
row of data is the result of bandpass filtering the audiosegment
around a particular frequency. The frequencies are
spaced from lower_bound_hz to upper_bound_hz and are returned with
the np array. The particular spacing of the frequencies depends on mode,
which can be either: ‘linear’, ‘mel’, or ‘log’.

Note

This method is an approximation of a gammatone filterbank
until I get around to writing an actual gammatone filterbank
function.

Example usage
import audiosegment
import matplotlib.pyplot as plt
import numpy as np

def visualize(spect, frequencies, title=""):
 # Visualize the result of calling seg.filter_bank() for any number of filters
 i = 0
 for freq, (index, row) in zip(frequencies[::-1], enumerate(spect[::-1, :])):
 plt.subplot(spect.shape[0], 1, index + 1)
 if i == 0:
 plt.title(title)
 i += 1
 plt.ylabel("{0:.0f}".format(freq))
 plt.plot(row)
 plt.show()

seg = audiosegment.from_file("some_audio.wav").resample(sample_rate_Hz=24000, sample_width=2, channels=1)
spec, frequencies = seg.filter_bank(nfilters=5)
visualize(spec, frequencies)

[image: _images/filter_bank.png]

	Parameters

	
	lower_bound_hz – The lower bound of the frequencies to use in the bandpass filters.

	upper_bound_hz – The upper bound of the frequencies to use in the bandpass filters.

	nfilters – The number of filters to apply. This will determine which frequencies
are used as well, as they are interpolated between
lower_bound_hz and upper_bound_hz based on mode.

	mode – The way the frequencies are spaced. Options are: linear, in which case
the frequencies are linearly interpolated between lower_bound_hz and
upper_bound_hz, mel, in which case the mel frequencies are used,
or log, in which case they are log-10 spaced.

	Returns

	A numpy array of the form (nfilters, nsamples), where each row is the
audiosegment, bandpass-filtered around a particular frequency,
and the list of frequencies. I.e., returns (spec, freqs).

	
filter_silence(duration_s=1, threshold_percentage=1, console_output=False)

	Returns a copy of this AudioSegment, but whose silence has been removed.

Note

This method requires that you have the program ‘sox’ installed.

Warning

This method uses the program ‘sox’ to perform the task. While this is very fast for a single
function call, the IO may add up for large numbers of AudioSegment objects.

	Parameters

	
	duration_s – The number of seconds of “silence” that must be present in a row to
be stripped.

	threshold_percentage – Silence is defined as any samples whose absolute value is below
threshold_percentage * max(abs(samples in this segment)).

	console_output – If True, will pipe all sox output to the console.

	Returns

	A copy of this AudioSegment, but whose silence has been removed.

	
generate_frames(frame_duration_ms, zero_pad=True)

	Yields self’s data in chunks of frame_duration_ms.

This function adapted from pywebrtc’s example [https://github.com/wiseman/py-webrtcvad/blob/master/example.py].

	Parameters

	
	frame_duration_ms – The length of each frame in ms.

	zero_pad – Whether or not to zero pad the end of the AudioSegment object to get all
the audio data out as frames. If not, there may be a part at the end
of the Segment that is cut off (the part will be <= frame_duration_ms in length).

	Returns

	A Frame object with properties ‘bytes (the data)’, ‘timestamp (start time)’, and ‘duration’.

	
generate_frames_as_segments(frame_duration_ms, zero_pad=True)

	Does the same thing as generate_frames, but yields tuples of (AudioSegment, timestamp) instead of Frames.

	
normalize_spl_by_average(db)

	Normalize the values in the AudioSegment so that its spl property
gives db.

Note

This method is currently broken - it returns an AudioSegment whose
values are much smaller than reasonable, yet which yield an SPL value
that equals the given db. Such an AudioSegment will not be serializable
as a WAV file, which will also break any method that relies on SOX.
I may remove this method in the future, since the SPL of an AudioSegment is
pretty questionable to begin with.

	Parameters

	db – The decibels to normalize average to.

	Returns

	A new AudioSegment object whose values are changed so that their
average is db.

	Raises

	ValueError if there are no samples in this AudioSegment.

	
reduce(others)

	Reduces others into this one by concatenating all the others onto this one and
returning the result. Does not modify self, instead, makes a copy and returns that.

	Parameters

	others – The other AudioSegment objects to append to this one.

	Returns

	The concatenated result.

	
resample(sample_rate_Hz=None, sample_width=None, channels=None, console_output=False)

	Returns a new AudioSegment whose data is the same as this one, but which has been resampled to the
specified characteristics. Any parameter left None will be unchanged.

Note

This method requires that you have the program ‘sox’ installed.

Warning

This method uses the program ‘sox’ to perform the task. While this is very fast for a single
function call, the IO may add up for large numbers of AudioSegment objects.

	Parameters

	
	sample_rate_Hz – The new sample rate in Hz.

	sample_width – The new sample width in bytes, so sample_width=2 would correspond to 16 bit (2 byte) width.

	channels – The new number of channels.

	console_output – Will print the output of sox to the console if True.

	Returns

	The newly sampled AudioSegment.

	
serialize()

	Serializes into a bytestring.

	Returns

	An object of type Bytes.

	
spectrogram(start_s=None, duration_s=None, start_sample=None, num_samples=None, window_length_s=None, window_length_samples=None, overlap=0.5)

	Does a series of FFTs from start_s or start_sample for duration_s or num_samples.
Effectively, transforms a slice of the AudioSegment into the frequency domain across different
time bins.

Example for plotting a spectrogram using this function
import audiosegment
import matplotlib.pyplot as plt

#...
seg = audiosegment.from_file("somebodytalking.wav")
freqs, times, amplitudes = seg.spectrogram(window_length_s=0.03, overlap=0.5)
amplitudes = 10 * np.log10(amplitudes + 1e-9)

Plot
plt.pcolormesh(times, freqs, amplitudes)
plt.xlabel("Time in Seconds")
plt.ylabel("Frequency in Hz")
plt.show()

[image: _images/spectrogram.png]

	Parameters

	
	start_s – The start time. Starts at the beginning if neither this nor start_sample is specified.

	duration_s – The duration of the spectrogram in seconds. Goes to the end if neither this nor
num_samples is specified.

	start_sample – The index of the first sample to use. Starts at the beginning if neither this nor
start_s is specified.

	num_samples – The number of samples in the spectrogram. Goes to the end if neither this nor
duration_s is specified.

	window_length_s – The length of each FFT in seconds. If the total number of samples in the spectrogram
is not a multiple of the window length in samples, the last window will be zero-padded.

	window_length_samples – The length of each FFT in number of samples. If the total number of samples in the
spectrogram is not a multiple of the window length in samples, the last window will
be zero-padded.

	overlap – The fraction of each window to overlap.

	Returns

	Three np.ndarrays: The frequency values in Hz (the y-axis in a spectrogram), the time values starting
at start time and then increasing by duration_s each step (the x-axis in a spectrogram), and
the dB of each time/frequency bin as a 2D array of shape [len(frequency values), len(duration)].

	Raises

	ValueError – If start_s and start_sample are both specified, if duration_s and num_samples are both
specified, if the first window’s duration plus start time lead to running off the end
of the AudioSegment, or if window_length_s and window_length_samples are either
both specified or if they are both not specified.

	
spl

	Sound Pressure Level - defined as 20 * log10(p/p0),
where p is the RMS of the sound wave in Pascals and p0 is
20 micro Pascals.

Since we would need to know calibration information about the
microphone used to record the sound in order to transform
the PCM values of this audiosegment into Pascals, we can’t really
give an accurate SPL measurement.

However, we can give a reasonable guess that can certainly be used
to compare two sounds taken from the same microphone set up.

Be wary about using this to compare sounds taken under different recording
conditions however, except as a simple approximation.

Returns a scalar float representing the dB SPL of this audiosegment.

	
to_numpy_array()

	Convenience function for np.array(self.get_array_of_samples()) while
keeping the appropriate dtype.

	
zero_extend(duration_s=None, num_samples=None)

	Adds a number of zeros (digital silence) to the AudioSegment (returning a new one).

	Parameters

	
	duration_s – The number of seconds of zeros to add. If this is specified, num_samples must be None.

	num_samples – The number of zeros to add. If this is specified, duration_s must be None.

	Returns

	A new AudioSegment object that has been zero extended.

	Raises

	ValueError if duration_s and num_samples are both specified.

	
audiosegment.deprecated(func)

	Deprecator decorator.

	
audiosegment.deserialize(bstr)

	Attempts to deserialize a bytestring into an audiosegment.

	Parameters

	bstr – The bytestring serialized via an audiosegment’s serialize() method.

	Returns

	An AudioSegment object deserialized from bstr.

	
audiosegment.empty()

	Creates a zero-duration AudioSegment object.

	Returns

	An empty AudioSegment object.

	
audiosegment.from_file(path)

	Returns an AudioSegment object from the given file based on its file extension.
If the extension is wrong, this will throw some sort of error.

	Parameters

	path – The path to the file, including the file extension.

	Returns

	An AudioSegment instance from the file.

	
audiosegment.from_mono_audiosegments(*args)

	Creates a multi-channel AudioSegment out of multiple mono AudioSegments (two or more). Each mono
AudioSegment passed in should be exactly the same number of samples.

	Returns

	An AudioSegment of multiple channels formed from the given mono AudioSegments.

	
audiosegment.from_numpy_array(nparr, framerate)

	Returns an AudioSegment created from the given numpy array.

The numpy array must have shape = (num_samples, num_channels).

	Parameters

	nparr – The numpy array to create an AudioSegment from.

	Returns

	An AudioSegment created from the given array.

	
audiosegment.silent(duration=1000, frame_rate=11025)

	Creates an AudioSegment object of the specified duration/frame_rate filled with digital silence.

	Parameters

	
	duration – The duration of the returned object in ms.

	frame_rate – The samples per second of the returned object.

	Returns

	AudioSegment object filled with pure digital silence.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 algorithms	

 	
 	
 algorithms.asa	

 	
 	
 algorithms.eventdetection	

 	
 	
 algorithms.filters	

 	
 	
 algorithms.util	

 	
 	
 audiosegment	

Index

 A
 | B
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | R
 | S
 | T
 | V
 | Z

A

 	
 	algorithms (module)

 	algorithms.asa (module)

 	algorithms.eventdetection (module)

 	algorithms.filters (module)

 	
 	algorithms.util (module)

 	AudioSegment (class in audiosegment)

 	audiosegment (module)

 	auditory_scene_analysis() (audiosegment.AudioSegment method)

B

 	
 	bandpass_filter() (in module algorithms.filters)

D

 	
 	deprecated() (in module audiosegment)

 	deserialize() (in module audiosegment)

 	
 	detect_event() (audiosegment.AudioSegment method)

 	detect_voice() (audiosegment.AudioSegment method)

 	dice() (audiosegment.AudioSegment method)

E

 	
 	empty() (in module audiosegment)

F

 	
 	fft() (audiosegment.AudioSegment method)

 	filter_bank() (audiosegment.AudioSegment method)

 	filter_silence() (audiosegment.AudioSegment method)

 	
 	from_file() (in module audiosegment)

 	from_mono_audiosegments() (in module audiosegment)

 	from_numpy_array() (in module audiosegment)

G

 	
 	generate_frames() (audiosegment.AudioSegment method)

 	
 	generate_frames_as_segments() (audiosegment.AudioSegment method)

I

 	
 	isclose() (in module algorithms.util)

L

 	
 	lowpass_filter() (in module algorithms.filters)

N

 	
 	normalize_spl_by_average() (audiosegment.AudioSegment method)

R

 	
 	reduce() (audiosegment.AudioSegment method)

 	
 	resample() (audiosegment.AudioSegment method)

S

 	
 	serialize() (audiosegment.AudioSegment method)

 	silent() (in module audiosegment)

 	
 	spectrogram() (audiosegment.AudioSegment method)

 	spl (audiosegment.AudioSegment attribute)

T

 	
 	to_numpy_array() (audiosegment.AudioSegment method)

V

 	
 	visualize() (in module algorithms.asa)

 	visualize_fronts() (in module algorithms.asa)

 	
 	visualize_peaks_and_valleys() (in module algorithms.asa)

 	visualize_segmentation_mask() (in module algorithms.asa)

 	visualize_time_domain() (in module algorithms.asa)

Z

 	
 	zero_extend() (audiosegment.AudioSegment method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to AudioSegment’s documentation!

 		
 algorithms package

 		
 Submodules

 		
 algorithms.asa module

 		
 algorithms.eventdetection module

 		
 algorithms.filters module

 		
 algorithms.util module

 		
 Module contents

 		
 audiosegment module

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/spectrogram.png

_static/ajax-loader.gif

_images/fft.png
dB

100

80

60

20

10

12

14

16

_images/filter_bank.png
Amp @ 632 Hz

Amp @ 2249 Hz
°

100

-100

Amp @ 8000 Hz
°

2500

~2500

10000

~10000

075

050

025

Amp @ 178 Hz

0.00

075

050

025

Amp @ 50 Hz

0.00

0.0 0.2 0.4 ..." H 0.6 0.8
0.0 0.2 0.4 0.6 0.8
1e306 0.0 0.2 0.4 0.6 0.8
le306 0 20000 40000 60000 80000 100000
o 20000 40000 60000 80000 100000

