

Welcome to audiomate’s documentation!

Audiomate is a library for easy access to audio datasets. It provides the datastructures for accessing/loading different datasets in a generic way.
This should ease the use of audio datasets for example for machine learning tasks.

[image: _images/idea.png]

Notes

	Installation

	Changelog

Documentation

	Corpus Structure
	Corpus

	Track

	Utterance

	Issuer

	LabelList

	Label

	FeatureContainer

	Corpus Formats

	Add Dataset/Format
	Corpus Downloader

	Corpus Reader

	Corpus Writer

	Data Mapping
	Issuer

	Labels

	Indirectly Supported Corpora

	Logging
	Enable Logging

	Create log messages in audiomate

Package Reference

	audiomate.tracks
	Track

	FileTrack

	ContainerTrack

	Utterance

	audiomate.annotations
	Label

	LabelList

	Relabeling

	Exceptions

	audiomate.issuers
	Issuer

	Speaker

	Artist

	audiomate.containers
	Container

	FeatureContainer

	AudioContainer

	audiomate.corpus
	CorpusView

	Corpus

	audiomate.corpus.io
	Base Classes

	Implementations

	audiomate.corpus.subset
	Subview

	Filter

	Splitter

	SubsetGenerator

	Utils

	audiomate.corpus.validation
	Base

	Combination

	Label-List

	Track

	audiomate.corpus.conversion
	Audio File Conversion

	audiomate.processing
	Processor

	Pipeline

	Implementations

	audiomate.encoding
	Encoder

	Frame-Based

	Utterance-Based

	audiomate.feeding
	Datasets

	Iterator

	Partitioning

	audiomate.formats
	Audacity Labels

	CTM Files

	TRN Files

	audiomate.utils
	Audio

	Audioread

	JSON File

	Naming

	Text

	Text File

	Units

	Misc

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install the latest stable version:

pip install audiomate

Install the latest development version:

pip install git+https://github.com/ynop/audiomate.git

Dependencies

sox

For parts of the functionality (e.g. audio format conversion) sox [http://sox.sourceforge.net] is used. In order to use it, you have to install sox.

macos
brew install sox

with support for specific formats
brew install sox --with-lame --with-flac --with-libvorbis

linux
apt-get install sox

anaconda for macOS/windows/linux:
conda install -c conda-forge sox

Changelog

Next Version

v6.0.0

Breaking Changes

	Drop support of Python 3.5 because a required dependency (llvmlite) does not support it anymore.

New Features

	Setup consistent way for logging. (Logging)

	Added downloader (audiomate.corpus.io.CommonVoiceDownloader) for the Common Voice Corpora [https://voice.mozilla.org/de/datasets].

	Add existence checks for reader (audiomate.corpus.io.CorpusReader) to see if folder exists.

	Add existence checks and a option for forcing redownload for downloader (audiomate.corpus.io.CorpusDownloader).

v5.2.0

New Features

	Added reader (audiomate.corpus.io.LibriSpeechReader) and
downloader (audiomate.corpus.io.LibriSpeechDownloader) for the
LibriSpeech Dataset [https://www.openslr.org/12/].

v5.1.0

New Features

	Added Downloader for SWC Corpus ((audiomate.corpus.io.SWCDownloader).

	Updated SWC-Reader (audiomate.corpus.io.SWCReader) with an own implementation,
so no manual preprocessing is needed anymore.

	Added conversion class (audiomate.corpus.conversion.WavAudioFileConverter) to convert
all files (or files that do not meet the requirements) of a corpus.

	Added writer (audiomate.corpus.io.NvidiaJasperWriter) for
NVIDIA Jasper [https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper].

	Create a consistent way to define invalid utterances of a dataset.
Invalid utterance ids are defined in a json-file (e.g. audiomate/corpus/io/data/tuda/invalid_utterances.json).
Those are loaded automatically in the base-reader and can be accessed in the concrete implementation.

v5.0.0

Breaking Changes

	Changed audiomate.corpus.validation.InvalidItemsResult to use it not only for Utterances, but also for Tracks for example.

	Refactoring and addition of splitting functions in the audiomate.corpus.subset.Splitter.

New Features

	Added audiomate.corpus.validation.TrackReadValidator to check for corrupt audio tracks/files.

	Added reader (audiomate.corpus.io.FluentSpeechReader) for the
Fluent Speech Commands Dataset [http://www.fluent.ai/research/fluent-speech-commands/].

	Added functions to check for contained tracks and issuers (audiomate.corpus.CorpusView.contains_track(), audiomate.corpus.CorpusView.contains_issuer()).

	Multiple options for controlling the behavior of the audiomate.corpus.io.KaldiWriter.

	Added writer (audiomate.corpus.io.Wav2LetterWriter) for the
wav2letter engine [https://github.com/facebookresearch/wav2letter/].

	Added module with functions to read/write sclite trn files (audiomate.formats.trn).

Fixes

	Improved performance of Tuda-Reader (audiomate.corpus.io.TudaReader).

	Added wrapper for the `audioread.audio_open` function (audiomate.utils.audioread) to cache available
backends. This speeds up audioopen operations a lot.

	Performance improvements, especially for importing utterances, merging, subviews.

v4.0.1

Fixes

	Fix audiomate.corpus.io.CommonVoiceReader to use correct file-extension of the audio files.

v4.0.0

Breaking Changes

	For utterances and labels -1 was used for representing that the end is the same as the end of the parent utterance/track.
In order to prevent -1 checks in different methods/places float('inf') is now used.
This makes it easier to implement stuff like label overlapping.

	audiomate.annotations.LabelList is now backed by an interval-tree instead of a simple list. Therefore the labels have no fixed order anymore. The interval-tree provides functionality for operations like merging, splitting, finding overlaps with much lower code complexity.

	Removed module audiomate.annotations.label_cleaning, since those methods are available on audiomate.annotations.LabelList directly.

New Features

	Added reader (audiomate.corpus.io.RouenReader) and
downloader (audiomate.corpus.io.RouenDownloader) for the
LITIS Rouen Audio scene dataset [https://sites.google.com/site/alainrakotomamonjy/home/audio-scene].

	Added downloader (audiomate.corpus.io.AEDDownloader) for the
Acoustic Event Dataset [https://data.vision.ee.ethz.ch/cvl/ae_dataset/].

	[#69 [https://github.com/ynop/audiomate/issues/69]] Method to get labels within range: audiomate.annotations.LabelList.labels_in_range().

	[#68 [https://github.com/ynop/audiomate/issues/68]] Add convenience method to create Label-List with list of label values: audiomate.annotations.LabelList.with_label_values().

	[#61 [https://github.com/ynop/audiomate/issues/61]] Added function to split utterances of a corpus into multiple utterances with a maximal duration:
audiomate.corpus.CorpusView.split_utterances_to_max_time().

	Add functions to check for overlap between labels: audiomate.annotations.Label.do_overlap() and
audiomate.annotations.Label.overlap_duration().

	Add function to merge equal labels that overlap within a label-list:
audiomate.annotations.LabelList.merge_overlapping_labels().

	Added reader (audiomate.corpus.io.AudioMNISTReader) and
downloader (audiomate.corpus.io.AudioMNISTDownloader) for the
AudioMNIST dataset [https://github.com/soerenab/AudioMNIST].

Fixes

	[#76 [https://github.com/ynop/audiomate/issues/76]][#77 [https://github.com/ynop/audiomate/issues/77]][#78 [https://github.com/ynop/audiomate/issues/78]] Multiple fixes on KaldiWriter

v3.0.0

Breaking Changes

	Moved label-encoding to its own module (audiomate.encoding).
It now provides the processing of full corpora and store it in containers.

	Moved audiomate.feeding.PartitioningFeatureIterator to the audiomate.feeding module.

	Added audiomate.containers.AudioContainer to store audio tracks
in a single file. All container classes are now in a separate module
audiomate.containers.

	Corpus now contains Tracks not Files anymore. This makes it possible to
different kinds of audio sources. Audio from a file is now included using
audiomate.tracks.FileTrack. New is the
audiomate.tracks.ContainerTrack, which reads data stored in
a container.

	The audiomate.corpus.io.DefaultReader and the
audiomate.corpus.io.DefaultWriter now load and store tracks,
that are stored in a container.

	All functionality regarding labels was moved to its own module
audiomate.annotations.

	The class audiomate.tracks.Utterance was moved to the tracks module.

New Features

	Introducing the audiomate.feeding module. It provides different tools for accessing container data.
Via a audiomate.feeding.Dataset data can be accessed by indices.
With a audiomate.feeding.DataIterator one can easily iterate over data, such as frames.

	Added processing steps for computing Onset-Strength (audiomate.processing.pipeline.OnsetStrength))
and Tempogram (audiomate.processing.pipeline.Tempogram)).

	Introduced audiomate.corpus.validation module, that is used to validate a corpus.

	Added reader (audiomate.corpus.io.SWCReader) for the
SWC corpus [https://audiomate.readthedocs.io/en/latest/documentation/indirect_support.html].
But it only works for the prepared corpus.

	Added function (audiomate.corpus.utils.label_cleaning.merge_consecutive_labels_with_same_values())
for merging consecutive labels with the same value

	Added downloader (audiomate.corpus.io.GtzanDownloader) for the
GTZAN Music/Speech [https://marsyasweb.appspot.com/download/data_sets/].

	Added audiomate.corpus.assets.Label.tokenized() to get a list of tokens from a label.
It basically splits the value and trims whitespace.

	Added methods on audiomate.corpus.CorpusView, audiomate.corpus.assets.Utterance
and audiomate.corpus.assets.LabelList to get a set of occurring tokens.

	Added audiomate.encoding.TokenOrdinalEncoder to encode labels of an utterance
by mapping every token of the label to a number.

	Create container base class (audiomate.corpus.assets.Container), that can be used to store arbitrary data
per utterance. The audiomate.corpus.assets.FeatureContainer is now an extension of the container,
that provides functionality especially for features.

	Added functions to split utterances and label-lists into multiple parts.
(audiomate.corpus.assets.Utterance.split(), audiomate.corpus.assets.LabelList.split())

	Added audiomate.processing.pipeline.AddContext to add context to frames,
using previous and subsequent frames.

	Added reader (audiomate.corpus.io.MailabsReader) and
downloader (audiomate.corpus.io.MailabsDownloader) for the
M-AILABS Speech Dataset [http://www.m-ailabs.bayern/en/the-mailabs-speech-dataset/].

Fixes

	[#58 [https://github.com/ynop/audiomate/issues/58]] Keep track of number of samples per frame and between frames.
Now the correct values will be stored in a Feature-Container, if the processor implements it correctly.

	[#72 [https://github.com/ynop/audiomate/issues/72]] Fix bug, when reading samples from utterance,
using a specific duration, while the utterance end is not defined.

v2.0.0

Breaking Changes

	Update various readers to use the correct label-list identifiers as defined
in Data Mapping.

New Features

	Added downloader (audiomate.corpus.io.TatoebaDownloader) and
reader (audiomate.corpus.io.TatoebaReader) for the
Tatoeba platform [https://tatoeba.org/].

	Added downloader (audiomate.corpus.io.CommonVoiceDownloader) and
reader (audiomate.corpus.io.CommonVoiceReader) for the
Common Voice Corpus [https://voice.mozilla.org/].

	Added processing steps audiomate.processing.pipeline.AvgPool and
audiomate.processing.pipeline.VarPool for computing average and variance over
a given number of sequential frames.

	Added downloader (audiomate.corpus.io.MusanDownloader) for the
Musan Corpus [http://www.openslr.org/17/].

	Added constants for common label-list identifiers/keys in audiomate.corpus.

v1.0.0

Breaking Changes

	The (pre)processing module has moved to audiomate.processing. It now supports online processing in chunks.
For this purpose a pipeline step can require context.
The pipeline automatically buffers data, until enough frames are ready.

New Features

	Added downloader (audiomate.corpus.io.FreeSpokenDigitDownloader) and
reader (audiomate.corpus.io.FreeSpokenDigitReader) for the
Free-Spoken-Digit-Dataset [https://github.com/Jakobovski/free-spoken-digit-dataset].

v0.1.0

Initial release

Corpus Structure

To represent any corpus/dataset in a generic way, a structure
is needed that can represent the data of any audio dataset as good as possible.
The basic structure consists of the following components.

[image: ../_images/basic_structure.png]

Corpus

The Corpus is the main object that represents a dataset/corpus.

Track

A track is an abstract representation of an audio signal.
There are currently two implementations.
One that reads the audio signal from a file
and one that read the audio signal from a HDF5 container.

Utterance

An utterance represents a segment of a track.
It is used to divide a track into independent segments.
A track can have one or more utterances.
The utterances are basically the samples in terms of machine learning.

Issuer

The issuer is defined as the person/thing/… who generate/produced the utterance (e.g. The speaker who read a given utterance).

An issuer can be further distinguished into different types.
The current implementation provides classes for speaker (for spoken audio content)
and for artists (for musical content).

LabelList

The label-list is a container for holding all labels of a given type for one utterance.
For example there is a label-list containing the textual transcription of recorded speech.
Another possible type of label-list could hold all labels classifying the audio type (music, speech, noise) of every part of a radio broadcast recording.

Label

The label is defining any kind of annotation for a part of or the whole utterance.

FeatureContainer

A feature-container is a container holding the feature matrices of a given type (e.g. mfcc) for all utterances.
A corpus can contain multiple feature-containers.

Corpus Formats

A corpus format defines how a corpus is saved on disk. For the use with this library some formats were specifically developed:

	Default audiomate.corpus.io.DefaultReader / audiomate.corpus.io.DefaultWriter

	Broadcast audiomate.corpus.io.BroadcastReader

Furthermore there exist downloaders, readers and writers for other formats or specific datasets.
For a list of available downloaders, readers and writers check Implementations.

Default Format

This describes, how a corpus with the default format is saved on disk. Every corpus is a folder with a bunch of files.

files.txt

This file contains a list of every audio file in the corpus. Every file is identified by a unique id.
Every line in the file contains the mapping from file-id to the file-path for a single file. The filepath is the path to the audio file relative to the corpus folder.

<recording-id> <wav-file-path>

Example:

2014-03-17-09-45-16_Kinect-Beam train/2014-03-17-09-45-16_Kinect-Beam.wav
2014-03-17-09-45-16_Realtek train/2014-03-17-09-45-16_Realtek.wav
2014-03-17-09-45-16_Yamaha train/2014-03-17-09-45-16_Yamaha.wav
2014-03-17-10-26-07_Realtek train/2014-03-17-10-26-07_Realtek.wav

utterances.txt

This file contains all utterances in the corpus. An utterance is a part of a file (A file can contain one or more utterances).
Every line in this file defines a single utterance, which consists of utterance-id, file-id, start and end. Start and end are measured in seconds within the file.
If end is -1 it is considered to be the end of the file (If the utterance is the full length of the file, start and end are 0/-1).

<utterance-id> <recording-id> <start> <end>

Example:

1_hello 2014-03-17-09-45-16_Kinect-Beam
1_hello_sam 2014-03-17-09-45-16_Realtek 0 -1
2_this_is 2014-03-17-09-45-16_Yamaha 0 5
3_goto 2014-03-17-09-45-16_Yamaha 5 -1

utt_issuers.txt

This file contains the mapping from utterance to issuers, which gives the information who/what is the origin of a given utterance (e.g. the speaker).
Every line contains one mapping from utterance-id to issuer-id.

<utterance-id> <issuer-id>

Example:

1_hello marc
1_hello_sam marc
2_this_is sam
3_goto jenny

issuers.json

This file contains additional information about the issuers.
Depending on the type of the issuer (Issuer, Speaker, Artist which are defined via type parameter) different parameters can be set.

	Issuer:

	
	info: An arbitrary info dictionary.

	Speaker:

	
	gender (MALE/FEMALE): The gender of a speaker

	age_group (child, youth, adult, senior): The age group of a speaker

	native_language (language code ISO 639-3): The language natively spoken

	Artist:

	
	name: The name of the artist/band/group

{
 "speaker-1": {
 "info": {},
 "type": "speaker",
 "gender": "MALE",
 "age_group": "ADULT",
 "native_language": "deu"
 },
 "speaker-2": {
 "info": {},
 "type": "artist",
 "name": "Ohooo"
 },
 "speaker-3": {
 "info": {
 "region": "zh"
 }
 }
}

labels_[x].txt

There can be multiple label-lists in a corpus (e.g. text-transcription, raw-text-transcription - with punctuation, audio classification type, …).
Every label-list is saved in a separate file with the prefix labels_.
A single file contains labels of a specific type for all utterances. A label-list of an utterance can contain one or more labels (e.g. in a text segmentation every word could be a label).
A label optionally can have a start and end time (in seconds within the utterance). For labels without start/end defined 0/-1 is set.
Every line in the file defines one label. The labels are stored in order per utterance (e.g. 1. word, 2. word, 3. word, …).
Optionally addtional meta-information can be stored per label. This has to be a json string in square brackets.

<utterance-id> <start> <end> <label-value> [<label-meta>]

Example:

1_hello 0 -1 hi
1_hello 0 -1 this
1_hello 0 -1 is
1_hello_sam 0 -1 hello
1_hello_sam 0 -1 sam
2_this_is 0 -1 this
2_this_is 0 -1 is [{"prio": 3}]
2_this_is 0 -1 me [{"stress": true}]
3_goto 0 -1 go
3_goto 0 -1 to
3_goto 0 -1 the
3_goto 0 -1 mall

features.txt

Contains a list of stored features. A corpus can have different feature containers. Every container contains the features of all utterances of a given type (e.g. MFCC features).
A feature container is a h5py file which contains a dataset per utterance. Every line contains one container of features.

<feature-name> <relative-path>

Example:

mfcc mfcc_features
fbank fbank_features

audio.txt

Contains a list of tracks that are stored in audio-containers.
Every entry consists of a track-id, the relative path to the container and
a key that identifies the track in the audio-container.

<track-id> <audio-container-path> <audio-container-key>

Example:

track-1 ../audio.hdf5 track-1
track-2 ../audio.hdf5 track-2x

Broadcast Format

The broadcast format is basically the same as Default Format, except it uses another format to store labels.
This format is meant for data where not many utterances are given, but with a lot of labels. So instead to have all labels per label-list in one file,
a label-file per utterance is used.

labels.txt

This files defines where to find the effective label files. It stores the label-file path per utterance. Additionaly a label-list-id can be given, if there are multiple label-lists per utterance.

<utt-id> <label-file-path> <label-list-idx>

Example:

utt-1 files/a/labels.txt
utt-2 files/b/music.txt music
utt-2 files/b/jingles.txt jingles
utt-3 files/c/trailers.txt

[label-file].txt

The label files reference by the labels.txt are in the following format. It contains the start and end in seconds.
The values are Tab-separated.
Optionally additional meta-information can be stored per label.
This has to be a json string in square brackets with a space separated after the label-value.

<start> <end> <value> [<label-meta>]

Example:

0 40 hallo
40.5 100 velo
102.4 109.2 auto [{"lang": "de", "type": 2}]

Add Dataset/Format

In this section it is described how to a downloader, reader or writer for a new dataset or another corpus format.
The implementation is pretty straight-forward. For examples checkout some of the existing implementations at
audiomate.corpus.io.

Important

	Use the same name (type() method) for downloader/reader/writer.

	Import your components in audiomate.corpus.io.__init___. So all components are available from the io module.

	Checkout Data Mapping on what and how to add info/data when reading a corpus.

Corpus Downloader

If we aim to load some specific dataset/corpus, a downloader can be implemented,
if it is possible to automate the whole download process. First we create a new class that inherits from
audiomate.corpus.io.CorpusDownloader. There we have to implement two methods.
The type method just has to return a string with the name of the new dataset/format.
The _download method will do the heavy work of download all the files to the path target_path.

from audiomate.corpus.io import base

class MyDownloader(base.CorpusDownloader):

 @classmethod
 def type(cls):
 return 'MyDataset'

 def _download(self, target_path):
 # Download the data to target_path

In the module audiomate.corpus.io.downloader, common base classes for downloaders are implemented. This is useful since for a lot of corpora the way of downloading is similar.

	audiomate.corpus.io.ArchiveDownloader: For corpora based on a single archive.

Corpus Reader

The reader is the one component that is mostly used. Either for a specific dataset/corpus or a custom format,
a reader is most likely to be required. First we create a new class that inherits from
audiomate.corpus.io.CorpusReader. There we have to implement three methods.
The type method just has to return a string with the name of the new dataset/format.
The _check_for_missing_files method can be used to check if the given path is a valid input.
For example if the format/dataset requires some specific meta-files it can be check here if they are available.
Finally in the _load method the actual loading is done and the loaded corpus is returned.

from audiomate.corpus.io import base

class MyReader(base.CorpusReader):

 @classmethod
 def type(cls):
 return 'MyDataset'

 def _check_for_missing_files(self, path):
 # Check the path for missing files that are required to read with this reader.
 # Return a list of missing files
 return []

 def _load(self, path):
 # Create a new corpus
 corpus = audiomate.Corpus(path=path)

 # Create files ...
 corpus.new_file(file_path, file_idx)

 # Issuers ...
 issuer = assets.Speaker(issuer_idx)
 corpus.import_issuers(issuer)

 # Utterances with labels ...
 utterance = corpus.new_utterance(file_idx, file_idx, issuer_idx)
 utterance.set_label_list(annotations.LabelList(idx='transcription', labels=[
 annotations.Label(str(digit))
]))

 return corpus

For some datasets there are files/utterances that are not valid.
(This can be due to a corrupt file, invalid transcription, …)
For this case a json-file audiomate/corpus/io/data/[reader-type]/invalid_utterances.json can be created
that contains a list with ids of invalid utterances.
The ids correspond to id of the utterance, if it would be loaded anyway.

Testing

For testing a reader the tests.corpus.io.reader_test.CorpusReaderTest can be used.
It provides base test methods for checking the correctness/existence of the basic components (tracks, utterances, labels, …).

from tests.corpus.io import reader_test as rt

class TestMyReader(rt.CorpusReaderTest):

 #
 # Define via EXPECTED_* variables, what components are expected to be loaded
 #
 EXPECTED_NUMBER_OF_TRACKS = 3
 EXPECTED_TRACKS = [
 rt.ExpFileTrack('file-id', '/path/to/file'),
]

 #
 # Override the load method, that loads the sample-corpus.
 #
 def load(self):
 return MyReader().load('/path/to/sample/corpus')

For testing any custom functionality specific test-methods can be added as well.

Corpus Writer

A writer is only useful for custom formats. For a specific dataset a writer is most likely not needed.
First we create a new class that inherits from audiomate.corpus.io.CorpusWriter.
There we have to implement two methods.
The type method just has to return a string with the name of the new dataset/format.
The _save method does the serialization of the given corpus to the given path.

from audiomate.corpus.io import base

class DefaultWriter(base.CorpusWriter):

 @classmethod
 def type(cls):
 return 'MyDataset'

 def _save(self, corpus, path):
 # Do the serialization

Data Mapping

Since we want to have a consistent abstraction of different formats and datasets,
it is important that all data and information is mapped correctly into the python classes.

Issuer

The issuer holds information about the source of the audio content.
Depending on the audio content different attributes are important.
Therefore different types of issuers can be used.

	Speech

	For audio content that mainly contains spoken content the audiomate.issuers.Speaker has to be used.
This is most common for datasets regarding speech recognition/synthesis etc.

	Music

	For audio content that contains music, the audiomate.issuers.Artist has to be used.

Labels

In the corpus data structures an utterance can have multiple label-lists. In order to access a label-list a key is used.

utterance = ...
label_list = utterance.label_lists['word-transcription']

The used key should be consistent for all datasets. Therefore the identifiers/keys should be selected from below
if possible. For these predefined keys, constants are defined in audiomate.corpus.

general

	domain

	A high-level category for a given audio excerpt. Should be one of the following values:

	speech

	music

	noise

speech

	word-transcript

	Non-aligned transcription of speech.

	word-transcript-raw

	Non-aligned transcription of speech. Used for unprocessed transcriptions (e.g. containing punctuation, …).

	word-transcript-aligned

	Aligned transcription of speech. The begin and end of the words is defined.
Every word is a single label in the label-list.

	phone-transcript

	Non-aligned transcription of phones.

	phone-transcript-aligned

	Aligned transcription of phones. Begin and end of phones is defined.

music

	genre

	The genre of the music.

noise

	sound-class

	Labels defining any sound-event, acoustic-scene, environmental noise, …
e.g. siren, dog_bark, train, car, snoring …

This list isn’t complete. Please open an issue for any additional domains/classes that maybe needed.

Indirectly Supported Corpora

Some corpora are hard to integrate directly, e.g. due to necessary preprocessing steps.

Logging

Logging in audiomate is done using the standard Python logging facilities.

Enable Logging

By default, only messages of severity Warning or higher are printed to sys.stderr.
Audiomate provides detailed information about progress of long-running tasks with messages of severity Info.
To enable logging of messages of lower severity, configure Python’s logging system as follows:

import logging

logging.basicConfig(
 level=logging.DEBUG,
 format='%(asctime)-15s %(name)s %(message)s'
)

For further information check the python logging documentation [https://docs.python.org/3/howto/logging.html].

Create log messages in audiomate

Logging in audiomate is done with a single logger.
The logger is available in audiomate.logutil.

from audiomate import logutil

logger = logutil.getLogger()

def some_functionality():
 logger.debug('message')

Since audiomate has a lot of long-running tasks,
a special function for logging the progress of a loop can be used.
It basically is a wrapper around an iterable to check and log the progress.
In order to keep the logs as small as possible,
progress is logged in steps of 5 minutes.

from audiomate import logutil

logger = logutil.getLogger()

for utterance in logger.progress(
 corpus.utterances.values(),
 total=corpus.num_utterances,
 description='Process utterances'):

 # Do something with the utterance,
 # that takes up some time.

audiomate.tracks

This module contains the different implementations of a track.
A track is an abstract representation of an audio signal.

A concrete implementation provides the functionalty
for reading the audio samples from a specific source.

Track

	
class audiomate.tracks.Track(idx)

	Track is the abstract base class for an audio track.

	Parameters

	idx (str) – A identifier to uniquely identify a track.

	
duration

	Return the duration in seconds.

	
num_channels

	Return the number of channels.

	
num_samples

	Return the total number of samples.

	
read_frames(frame_size, hop_size, offset=0, duration=None, buffer_size=5760000)

	Generator that reads and returns the samples of the track in frames.

	Parameters

	
	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	offset (float) – The time in seconds, from where to start
reading the samples (rel. to the track start).

	duration (float) – The length of the samples to read in seconds.

	Returns

	A generator yielding a tuple for every frame.
The first item is the frame,
the second the sampling-rate and
the third a boolean indicating if it is the last frame.

	Return type

	Generator

	
read_samples(sr=None, offset=0, duration=None)

	Return the samples of the track.

	Parameters

	
	sr (int) – If None, uses the native sampling-rate,
otherwise resamples to the given sampling rate.

	offset (float) – The time in seconds, from where to start
reading the samples (rel. to the track start).

	duration (float) – The length of the samples to read in seconds.

	Returns

	A numpy array containing the samples
as a floating point (numpy.float32) time series.

	Return type

	np.ndarray

	
sampling_rate

	Return the sampling rate.

FileTrack

	
class audiomate.tracks.FileTrack(idx, path)

	A track that is stored in a file.

	Parameters

	
	idx (str) – A identifier to uniquely identify a track.

	path (str) – The path to the file.

	
duration

	Return the duration in seconds.

	
num_channels

	Return the number of channels.

	
num_samples

	Return the total number of samples.

	
read_frames(frame_size, hop_size, offset=0, duration=None, buffer_size=5760000)

	Generator that reads and returns the samples of the track in frames.

	Parameters

	
	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	offset (float) – The time in seconds, from where to start
reading the samples (rel. to the track start).

	duration (float) – The length of the samples to read in seconds.

	Returns

	A generator yielding a tuple for every frame.
The first item is the frame,
the second the sampling-rate and
the third a boolean indicating if it is the last frame.

	Return type

	Generator

	
read_samples(sr=None, offset=0, duration=None)

	Return the samples from the file.
Uses librosa for loading
(see http://librosa.github.io/librosa/generated/librosa.core.load.html).

	Parameters

	
	sr (int) – If None, uses the sampling rate given by the file,
otherwise resamples to the given sampling rate.

	offset (float) – The time in seconds, from where to start reading
the samples (rel. to the file start).

	duration (float) – The length of the samples to read in seconds.

	Returns

	A numpy array containing the samples as a
floating point (numpy.float32) time series.

	Return type

	np.ndarray

	
sampling_rate

	Return the sampling rate.

ContainerTrack

	
class audiomate.tracks.ContainerTrack(idx, container, key=None)

	A track that is stored in a audiomate.containers.AudioContainer.

	Parameters

	
	idx (str) – A identifier to uniquely identify a track.

	container (AudioContainer) – The audio container with the samples.

	key (str) – The key of the samples in the container.
If None, it is assumed it’s the same
as idx.

	
duration

	Return the duration in seconds.

	
num_channels

	Return the number of channels.

	
num_samples

	Return the total number of samples.

	
read_frames(frame_size, hop_size, offset=0, duration=None, buffer_size=None)

	Generator that reads and returns the samples of the track in frames.

	Parameters

	
	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	offset (float) – The time in seconds, from where to start
reading the samples (rel. to the track start).

	duration (float) – The length of the samples to read in seconds.

	Returns

	A generator yielding a tuple for every frame.
The first item is the frame,
the second the sampling-rate and
the third a boolean indicating if it is the last frame.

	Return type

	Generator

	
read_samples(sr=None, offset=0, duration=None)

	Return the samples from the track in the container.
Uses librosa for resampling, if needed.

	Parameters

	
	sr (int) – If None, uses the sampling rate given by the file,
otherwise resamples to the given sampling rate.

	offset (float) – The time in seconds, from where to start reading
the samples (rel. to the file start).

	duration (float) – The length of the samples to read in seconds.

	Returns

	A numpy array containing the samples as a
floating point (numpy.float32) time series.

	Return type

	np.ndarray

	
sampling_rate

	Return the sampling rate.

Utterance

	
class audiomate.tracks.Utterance(idx, track, issuer=None, start=0, end=inf, label_lists=None)

	An utterance defines a sample of audio.
It is part of a track or can span over the whole track.

	Parameters

	
	idx (str) – A unique identifier for the utterance within a dataset.

	track (Track) – The track this utterance is belonging to.

	issuer (Issuer) – The issuer this utterance was created from.

	start (float) – The start of the utterance
within the audio track in seconds. (default 0)

	end (float) – The end of the utterance within the audio track in seconds.
inf indicates that the utterance ends
at the end of the track. (default inf)

	label_lists (LabelList, list) – A single or multiple label-lists.

	Variables

	label_lists (dict) – A dictionary containing label-lists
with the label-list-idx as key.

	
all_label_values(label_list_ids=None)

	Return a set of all label-values occurring in this utterance.

	Parameters

	label_list_ids (list) – If not None, only label-values from
label-lists with an id contained in this list
are considered.

	Returns

	A set of distinct label-values.

	Return type

	set

	
all_tokens(delimiter=' ', label_list_ids=None)

	Return a list of all tokens occurring in
one of the labels in the label-lists.

	Parameters

	
	delimiter (str) – The delimiter used to split labels into tokens
(see audiomate.annotations.Label.tokenized()).

	label_list_ids (list) – If not None, only labels from label-lists with
an idx contained in this list are considered.

	Returns

	A set of distinct tokens.

	Return type

	set

	
duration

	Return the absolute duration in seconds.

	
end_abs

	Return the absolute end of the utterance relative to the signal.

	
label_count(label_list_ids=None)

	Return a dictionary containing the number of times,
every label-value in this utterance is occurring.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this list
are considered.

	Returns

	
	A dictionary containing the number of occurrences

	with the label-value as key.

	Return type

	dict

	
label_total_duration(label_list_ids=None)

	Return a dictionary containing the number of seconds,
every label-value is occurring in this utterance.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this
list are considered.

	Returns

	
	A dictionary containing the number of seconds

	with the label-value as key.

	Return type

	dict

	
num_samples(sr=None)

	Return the number of samples.

	Parameters

	sr (int) – Calculate the number of samples with the given
sampling-rate. If None use the native sampling-rate.

	Returns

	Number of samples

	Return type

	int

	
read_samples(sr=None, offset=0, duration=None)

	Read the samples of the utterance.

	Parameters

	
	sr (int) – If None uses the sampling rate given by the track,
otherwise resamples to the given sampling rate.

	offset (float) – Offset in seconds to read samples from.

	duration (float) – If not None read only this
number of seconds in maximum.

	Returns

	
	A numpy array containing the samples

	as a floating point (numpy.float32) time series.

	Return type

	np.ndarray

	
sampling_rate

	Return the sampling rate.

	
set_label_list(label_lists)

	Set the given label-list for this utterance.
If the label-list-idx is not set, default is used.
If there is already a label-list with the given idx,
it will be overriden.

	Parameters

	label_list (LabelList, list) – A single or multi. label-lists to add.

	
split(cutting_points, track_relative=False, overlap=0.0)

	Split the utterance into x parts (sub-utterances) and
return them as new utterances. x is defined by cutting_points
(x = len(cutting_points) + 1).

By default cutting-points are relative to the start of the utterance.
For example if an utterance starts at 50s, a cutting-point
of 10.0 will split the utterance at 60s relative to the track.

	Parameters

	
	cutting_points (list) – List of floats defining the times
in seconds where to split the utterance.

	track_relative (bool) – If True, cutting-points are relative
to the start of the track. Otherwise they
are relative to the start of the utterance.

	overlap (float) – Amount of overlap in seconds. This amount is
subtracted from a start-cutting-point,
and added to a end-cutting-point.

	Returns

	List of Utterance’s.

	Return type

	list

Example

>>> utt = Utterance('utt-1', 'file-x', start=0.0, end=30.0)
>>> sub_utts = utt.split([10.0, 20.0])
>>> len(sub_utts)
3
>>> sub_utts[0].start
0.0
>>> sub_utts[0].end
10.0

audiomate.annotations

This module contains classes to describe
the content of an audio-segment.

Label

	
class audiomate.annotations.Label(value, start=0, end=inf, meta=None)

	Represents a label that describes some part of an utterance.

	Parameters

	
	value (str) – The text of the label.

	start (float) – Start of the label within the utterance in seconds.
(default: 0)

	end (float) – End of the label within the utterance in seconds.
(default: inf) (inf defines the end of the utterance)

	meta (dict) – A dictionary containing additional information
for the label.

	Variables

	label_list (LabelList) – The label-list this label is belonging to.

	
do_overlap(other_label, adjacent=True)

	Determine whether other_label overlaps with this label.
If adjacent==True, adjacent labels are also considered as overlapping.

	Parameters

	
	other_label (Label) – Another label.

	adjacent (bool) – If True, adjacent labels are
considered as overlapping.

	Returns

	True if the two labels overlap, False otherwise.

	Return type

	bool

	
duration

	Return the duration of the label in seconds.

	
end_abs

	Return the absolute end of the label in seconds relative to the signal.
If the label isn’t linked to any utterance via label-list,
it is assumed self.end is relative to the start of the signal,
hence self.end == self.end_abs.

	
length

	Return the length of the label (Number of characters).

	
overlap_duration(other_label)

	Return the duration of the overlapping part between this label
and other_label.

	Parameters

	other_label (Label) – Another label to check.

	Returns

	The duration of overlap in seconds.

	Return type

	float

Example

>>> label_a = Label('a', 3.4, 5.6)
>>> label_b = Label('b', 4.8, 6.2)
>>> label_a.overlap_duration(label_b)
0.8

	
read_samples(sr=None)

	Read the samples of the utterance.

	Parameters

	sr (int) – If None uses the sampling rate given by the track,
otherwise resamples to the given sampling rate.

	Returns

	A numpy array containing the samples as a
floating point (numpy.float32) time series.

	Return type

	np.ndarray

	
start_abs

	Return the absolute start of the label in seconds relative to
the signal. If the label isn’t linked to any utterance via label-list,
it is assumed self.start is relative to the start of the signal,
hence self.start == self.start_abs.

	
tokenized(delimiter=' ')

	Return a list with tokens from the value of the label.
Tokens are extracted by splitting the string using delimiter and
then trimming any whitespace before and after splitted strings.

	Parameters

	delimiter (str) – The delimiter used to split into tokens.
(default: space)

	Returns

	A list of tokens in the order they occur in the label.

	Return type

	list

Examples

>>> label = Label('as is oh')
>>> label.tokenized()
['as', 'is', 'oh']

Using a different delimiter (whitespace is trimmed anyway):

>>> label = Label('oh hi, as, is ')
>>> label.tokenized(delimiter=',')
['oh hi', 'as', 'is']

LabelList

	
class audiomate.annotations.LabelList(idx='default', labels=None)

	Represents a list of labels which describe an utterance.
An utterance can have multiple label-lists.

	Parameters

	
	idx (str) – An unique identifier for the label-list
within a corpus for one utterance.

	labels (list) – The list containing the
audiomate.annotations.Label.

	Variables

	
	utterance (Utterance) – The utterance this label-list is belonging to.

	label_tree (IntervalTree) – The interval-tree storing the labels.

Example

>>> label_list = LabelList(idx='transcription', labels=[
>>> Label('this', 0, 2),
>>> Label('is', 2, 4),
>>> Label('timmy', 4, 8)
>>>])

	
add(label)

	Add a label to the end of the list.

	Parameters

	label (Label) – The label to add.

	
addl(value, start=0.0, end=inf)

	Shortcut for add(Label(value, start, end)).

	
all_tokens(delimiter=' ')

	Return a list of all tokens occurring in the label-list.

	Parameters

	delimiter (str) – The delimiter used to split labels into tokens.
See audiomate.annotations.Label.tokenized()

	Returns

	A set of distinct tokens.

	Return type

	set

	
apply(fn)

	Apply the given function fn to every label in this label list.
fn is a function of one argument that receives the current label
which can then be edited in place.

	Parameters

	fn (func) – Function to apply to every label

Example

>>> ll = LabelList(labels=[
... Label('a_label', 1.0, 2.0),
... Label('another_label', 2.0, 3.0)
...])
>>> def shift_labels(label):
... label.start += 1.0
... label.end += 1.0
...
>>> ll.apply(shift_labels)
>>> ll.labels
[Label(a_label, 2.0, 3.0), Label(another_label, 3.0, 4.0)]

	
classmethod create_single(value, idx='default')

	Create a label-list with a single label
containing the given value.

	
end

	Return end of the lastly ending label (upper bound).

	
join(delimiter=' ', overlap_threshold=0.1)

	Return a string with all labels concatenated together.
The order of the labels is defined by the start of the label.
If the overlapping between two labels is greater than
overlap_threshold, an Exception is thrown.

	Parameters

	
	delimiter (str) – A string to join two consecutive labels.

	overlap_threshold (float) – Maximum overlap between two
consecutive labels.

	Returns

	A string with all labels concatenated together.

	Return type

	str

Example

>>> ll = LabelList(idx='some', labels=[
>>> Label('a', start=0, end=4),
>>> Label('b', start=3.95, end=6.0),
>>> Label('c', start=7.0, end=10.2),
>>> Label('d', start=10.3, end=14.0)
>>>])
>>> ll.join(' - ')
'a - b - c - d'

	
label_count()

	Return for each label the number of occurrences within the list.

	Returns

	A dictionary containing for every label-value (key)
the number of occurrences (value).

	Return type

	dict

Example

>>> ll = LabelList(labels=[
>>> Label('a', 3.2, 4.5),
>>> Label('b', 5.1, 8.9),
>>> Label('a', 7.2, 10.5),
>>> Label('b', 10.5, 14),
>>> Label('a', 15, 18)
>>>])
>>> ll.label_count()
{'a': 3 'b': 2}

	
label_total_duration()

	Return for each distinct label value the total duration of
all occurrences.

	Returns

	
	A dictionary containing for every label-value (key)

	the total duration in seconds (value).

	Return type

	dict

Example

>>> ll = LabelList(labels=[
>>> Label('a', 3, 5),
>>> Label('b', 5, 8),
>>> Label('a', 8, 10),
>>> Label('b', 10, 14),
>>> Label('a', 15, 18.5)
>>>])
>>> ll.label_total_duration()
{'a': 7.5 'b': 7.0}

	
label_values()

	Return a list of all occuring label values.

	Returns

	Lexicographically sorted list (str) of label values.

	Return type

	list

Example

>>> ll = LabelList(labels=[
>>> Label('a', 3.2, 4.5),
>>> Label('b', 5.1, 8.9),
>>> Label('c', 7.2, 10.5),
>>> Label('d', 10.5, 14),
>>> Label('d', 15, 18)
>>>])
>>> ll.label_values()
['a', 'b', 'c', 'd']

	
labels

	Return list of labels.

	
labels_in_range(start, end, fully_included=False)

	Return a list of labels, that are within the given range.
Also labels that only overlap are included.

	Parameters

	
	start (float) – Start-time in seconds.

	end (float) – End-time in seconds.

	fully_included (bool) – If True, only labels fully included
in the range are returned. Otherwise
also overlapping ones are returned.
(default False)

	Returns

	List of labels in the range.

	Return type

	list

Example

>>> ll = LabelList(labels=[
>>> Label('a', 3.2, 4.5),
>>> Label('b', 5.1, 8.9),
>>> Label('c', 7.2, 10.5),
>>> Label('d', 10.5, 14)
>>>])
>>> ll.labels_in_range(6.2, 10.1)
[Label('b', 5.1, 8.9), Label('c', 7.2, 10.5)]

	
merge_overlaps(threshold=0.0)

	Merge overlapping labels with the same value.
Two labels are considered overlapping,
if l2.start - l1.end < threshold.

	Parameters

	threshold (float) – Maximal distance between two labels
to be considered as overlapping.
(default: 0.0)

Example

>>> ll = LabelList(labels=[
... Label('a_label', 1.0, 2.0),
... Label('a_label', 1.5, 2.7),
... Label('b_label', 1.0, 2.0),
...])
>>> ll.merge_overlapping_labels()
>>> ll.labels
[
 Label('a_label', 1.0, 2.7),
 Label('b_label', 1.0, 2.0),
]

	
ranges(yield_ranges_without_labels=False, include_labels=None)

	Generate all ranges of the label-list. A range is defined
as a part of the label-list for which the same labels are defined.

	Parameters

	
	yield_ranges_without_labels (bool) – If True also yields ranges for
which no labels are defined.

	include_labels (list) – If not empty, only the label values in
the list will be considered.

	Returns

	A generator which yields one range
(tuple start/end/list-of-labels) at a time.

	Return type

	generator

Example

>>> ll = LabelList(labels=[
>>> Label('a', 3.2, 4.5),
>>> Label('b', 5.1, 8.9),
>>> Label('c', 7.2, 10.5),
>>> Label('d', 10.5, 14)
>>>])
>>> ranges = ll.ranges()
>>> next(ranges)
(3.2, 4.5, [< audiomate.annotations.Label at 0x1090527c8 >])
>>> next(ranges)
(4.5, 5.1, [])
>>> next(ranges)
(5.1, 7.2, [< audiomate.annotations.label.Label at 0x1090484c8 >])

	
separated()

	Create a separate Label-List for every distinct label-value.

	Returns

	
	A dictionary with distinct label-values as keys. Every value

	is a LabelList containing only labels with the same value.

	Return type

	dict

Example

>>> ll = LabelList(idx='some', labels=[
>>> Label('a', start=0, end=4),
>>> Label('b', start=3.95, end=6.0),
>>> Label('a', start=7.0, end=10.2),
>>> Label('b', start=10.3, end=14.0)
>>>])
>>> s = ll.separate()
>>> s['a'].labels
[Label('a', start=0, end=4), Label('a', start=7.0, end=10.2)]
>>> s['b'].labels
[Label('b', start=3.95, end=6.0), Label('b', start=10.3, end=14.0)]

	
split(cutting_points, shift_times=False, overlap=0.0)

	Split the label-list into x parts and return them as new label-lists.
x is defined by the number of cutting-points
(x == len(cutting_points) + 1).

The result is a list of label-lists corresponding to each part.
Label-list 0 contains labels between 0 and cutting_points[0].
Label-list 1 contains labels between cutting_points[0] and
cutting_points[1]. And so on.

	Parameters

	
	cutting_points (list) – List of floats defining the points in seconds,
where the label-list is splitted.

	shift_times (bool) – If True, start and end-time are shifted in
splitted label-lists. So the start is relative
to the cutting point and not to the beginning
of the original label-list.

	overlap (float) – Amount of overlap in seconds. This amount is
subtracted from a start-cutting-point, and added
to a end-cutting-point.

	Returns

	A list of of: class: audiomate.annotations.LabelList.

	Return type

	list

Example

>>> ll = LabelList(labels=[
>>> Label('a', 0, 5),
>>> Label('b', 5, 10),
>>> Label('c', 11, 15),
>>>])
>>>
>>> res = ll.split([4.1, 8.9, 12.0])
>>> len(res)
4
>>> res[0].labels
[Label('a', 0.0, 4.1)]
>>> res[1].labels
[
 Label('a', 4.1, 5.0),
 Label('b', 5.0, 8.9)
]
>>> res[2].labels
[
 Label('b', 8.9, 10.0),
 Label('c', 11.0, 12.0)
]
>>> res[3].labels
[Label('c', 12.0, 15.0)]

If shift_times = True, the times are adjusted to be relative
to the cutting-points for every label-list but the first.

>>> ll = LabelList(labels=[
>>> Label('a', 0, 5),
>>> Label('b', 5, 10),
>>>])
>>>
>>> res = ll.split([4.6])
>>> len(res)
4
>>> res[0].labels
[Label('a', 0.0, 4.6)]
>>> res[1].labels
[
 Label('a', 0.0, 0.4),
 Label('b', 0.4, 5.4)
]

	
start

	Return start of the earliest starting label (lower bound).

	
tokenized(delimiter=' ', overlap_threshold=0.1)

	Return a ordered list of tokens based on all labels.
Joins all token from all labels (label.tokenized()`).
If the overlapping between two labels is greater than
overlap_threshold, an Exception is thrown.

	Parameters

	
	delimiter (str) – The delimiter used to split labels into tokens.
(default: space)

	overlap_threshold (float) – Maximum overlap between two
consecutive labels.

	Returns

	
	A list containing tokens of all labels ordered according

	to the label order.

	Return type

	str

Example

>>> ll = LabelList(idx='some', labels=[
>>> Label('a d q', start=0, end=4),
>>> Label('b', start=3.95, end=6.0),
>>> Label('c a', start=7.0, end=10.2),
>>> Label('f g', start=10.3, end=14.0)
>>>])
>>> ll.tokenized(delimiter=' ', overlap_threshold=0.1)
['a', 'd', 'q', 'b', 'c', 'a', 'f', 'g']

	
total_length

	Return the cumulative length of all labels
(Number of characters).

	
update(labels)

	Add a list of labels to the end of the list.

	Parameters

	labels (list) – Labels to add.

	
classmethod with_label_values(values, idx='default')

	Create a new label-list containing labels with the given values.
All labels will have default start/end values of 0 and inf.

	Parameters

	
	values (list) – List of values(str) that should be created and
appended to the label-list.

	idx (str) – The idx of the label-list.

	Returns

	New label-list.

	Return type

	(LabelList)

Example

>>> ll = LabelList.with_label_values(['a', 'x', 'z'], idx='letters')
>>> ll.idx
'letters'
>>> ll.labels
[
 Label('a', 0, inf),
 Label('x', 0, inf),
 Label('z', 0, inf),
]

Relabeling

	
exception audiomate.annotations.relabeling.UnmappedLabelsException(message)

	

	
audiomate.annotations.relabeling.find_missing_projections(label_list, projections)

	Finds all combinations of labels in label_list that are not covered by an entry in the dictionary of
projections. Returns a list containing tuples of uncovered label combinations or en empty list if there are none.
All uncovered label combinations are naturally sorted.

Each entry in the dictionary of projections represents a single projection that maps a combination of labels (key)
to a single new label (value). The combination of labels to be mapped is a tuple of naturally sorted labels that
apply to one or more segments simultaneously. By defining a special wildcard projection using (‘**’,) is is not
required to specify a projection for every single combination of labels.

	Parameters

	
	label_list (audiomate.annotations.LabelList) – The label list to relabel

	projections (dict) – A dictionary that maps tuples of label combinations to string
labels.

	Returns

	List of combinations of labels that are not covered by any projection

	Return type

	List

Example

>>> ll = annotations.LabelList(labels=[
... annotations.Label('b', 3.2, 4.5),
... annotations.Label('a', 4.0, 4.9),
... annotations.Label('c', 4.2, 5.1)
...])
>>> find_missing_projections(ll, {('b',): 'new_label'})
[('a', 'b'), ('a', 'b', 'c'), ('a', 'c'), ('c',)]

	
audiomate.annotations.relabeling.load_projections(projections_file)

	Loads projections defined in the given projections_file.

The projections_file is expected to be in the following format:

old_label_1 | new_label_1
old_label_1 old_label_2 | new_label_2
old_label_3 |

You can define one projection per line. Each projection starts with a list of one or multiple
old labels (separated by a single whitespace) that are separated from the new label by a pipe
(|). In the code above, the segment labeled with old_label_1 will be labeled with
new_label_1 after applying the projection. Segments that are labeled with old_label_1
and old_label_2 concurrently are relabeled to new_label_2. All segments labeled with
old_label_3 are dropped. Combinations of multiple labels are automatically sorted in natural
order.

	Parameters

	projections_file (str) – Path to the file with projections

	Returns

	Dictionary where the keys are tuples of labels to project to the key’s value

	Return type

	dict

Example

>>> load_projections('/path/to/projections.txt')
{('b',): 'foo', ('a', 'b'): 'a_b', ('a',): 'bar'}

	
audiomate.annotations.relabeling.relabel(label_list, projections)

	Relabel an entire LabelList using user-defined projections.
Labels can be renamed, removed or overlapping labels can be flattened to a single label per segment.

Each entry in the dictionary of projections represents a single projection that maps a combination of labels (key)
to a single new label (value). The combination of labels to be mapped is a tuple of naturally sorted labels that
apply to one or more segments simultaneously. By defining a special wildcard projection using (‘**’,) is is not
required to specify a projection for every single combination of labels.

This method raises a UnmappedLabelsException if a projection for one
or more combinations of labels is not defined.

	Parameters

	
	label_list (audiomate.annotations.LabelList) – The label list to relabel

	projections (dict) – A dictionary that maps tuples of label combinations to string
labels.

	Returns

	New label list with remapped labels

	Return type

	audiomate.annotations.LabelList

	Raises

	UnmappedLabelsException – If a projection for one or more combinations of labels is not defined.

Example

>>> projections = {
... ('a',): 'a',
... ('b',): 'b',
... ('c',): 'c',
... ('a', 'b',): 'a_b',
... ('a', 'b', 'c',): 'a_b_c',
... ('**',): 'b_c',
... }
>>> label_list = annotations.LabelList(labels=[
... annotations.Label('a', 3.2, 4.5),
... annotations.Label('b', 4.0, 4.9),
... annotations.Label('c', 4.2, 5.1)
...])
>>> ll = relabel(label_list, projections)
>>> [l.value for l in ll]
['a', 'a_b', 'a_b_c', 'b_c', 'c']

Exceptions

	
exception audiomate.annotations.relabeling.UnmappedLabelsException(message)

	

audiomate.issuers

This module contains classes to represent issuers fo audio samples.
An issuer represents the person/machine/thing, that is creator of an audio
segment.

Issuer

	
class audiomate.issuers.Issuer(idx, info=None)

	The issuer represents a person, object or something that produced an
utterance. Technically the issuer can be used to group utterances
that came from the same source.

	Parameters

	
	idx (str) – An unique identifier for this issuer within a dataset.

	info (dict) – Any additional info for this issuer as dict.

	Variables

	Issuer.utterances (list) – List of utterances that this issuer owns.

Speaker

	
class audiomate.issuers.Speaker(idx, gender=<Gender.UNKNOWN: 'unknown'>, age_group=<AgeGroup.UNKNOWN: 'unknown'>, native_language=None, info=None)

	The speaker is the person who spoke in a utterance.

	Parameters

	
	idx (str) – An unique identifier for this speaker within a dataset.

	info (dict) – Any additional info for this speaker as dict.

	age_group (AgeGroup) – The age-group of the speaker (child, adult, …)

	native_language (str) – The native language of the speaker. (ISO 639-3)

	Variables

	Issuer.utterances (list) – List of utterances that this issuer owns.

Artist

	
class audiomate.issuers.Artist(idx, name, info=None)

	The artist is the person/group who have produced a musical segment
in a utterance.

	Parameters

	
	idx (str) – An unique identifier for this speaker within a dataset.

	name (str) – The name of the artist/band/…

	info (dict) – Any additional info for this speaker as dict.

	Variables

	Issuer.utterances (list) – List of utterances that this issuer owns.

audiomate.containers

This module contains the different implementations of containers.
A container is normally used to store data of a specific type
for all instances of a corpus (e.g. mfcc-features of all utterances).

All container implementations are based on
audiomate.containers.Container, which provides the basic
functionality to access a HDF5-file using h5py.

Container

	
class audiomate.containers.Container(path, mode='a')

	A container is a wrapper around a HDF5 file.
In a container is used to store array-like data.
Every array is associated with some idx/key.
Every array (a dataset in h5py-terms) may have additional attributes.

	Parameters

	
	path (str) – Path where the HDF5 file is stored.
If the file doesn’t exist, one is created.

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).

Example

>>> ct = Container('/path/to/hdf5file')
>>> with ct:
>>> ct.set('utt-1', np.array([1,2,3,4]))
>>> data = ct.get('utt-1')
array([1, 2, 3, 4])

	
append(key, data)

	Append the given data to the data that already exists
in the container for the given key.
Only data with equal dimensions (except the first) are allowed,
since they are concatenated/stacked along the first dimension.

	Parameters

	
	key (str) – Key to store data for.

	data (numpy.ndarray) – Array-like data.
Has to have the same dimension as
the existing data after the first dimension.

Note

The container has to be opened in advance.
For appending to existing data the HDF5-Dataset has to be chunked,
so it is not allowed to first add data via set.

	
close()

	Close the container file if its open.

	
get(key, mem_map=True)

	Read and return the data stored for the given key.

	Parameters

	
	key (str) – The key to read the data from.

	mem_map (bool) – If True returns the data as
memory-mapped array, otherwise a copy is returned.

Note

The container has to be opened in advance.

	Returns

	The stored data.

	Return type

	numpy.ndarray

	
is_open()

	Return True, if container is already open.
False otherwise.

	
keys()

	Return a list of keys for which an array is stored in the container.

	Returns

	List of identifiers available in the container.

	Return type

	list

Note

The container has to be opened in advance.

	
open(mode=None)

	Open the container file.

	Parameters

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).
If None, uses self.mode.

	
open_if_needed(mode=None)

	Convenience context-manager for the use with with.
Opens the container if not already done.
Only closes the container if it was opened within this context.

	Parameters

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).
If None, uses self.mode.

	
raise_error_if_not_open()

	Check if container is opened, raise error if not.

	
remove(key)

	Remove the data stored for the given key.

	Parameters

	key (str) – Key of the data to remove.

Note

The container has to be opened in advance.

	
set(key, data)

	Set the given data to the container with the given key.
Any existing data for the given key is discarded/overwritten.

	Parameters

	
	key (str) – A key to store the data for.

	data (numpy.ndarray) – Array-like data.

Note

The container has to be opened in advance.

FeatureContainer

	
class audiomate.containers.FeatureContainer(path, mode='a')

	The FeatureContainer is a container for storing features
extracted from audio data. Features are array-like data,
where every feature represents the properties of a given segment of audio.

	Parameters

	
	path (str) – Path to where the HDF5 file is stored.
If the file doesn’t exist, one is created.

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).

Example

>>> fc = FeatureContainer('/path/to/hdf5file')
>>> with fc:
>>> fc.set('utt-1', np.array([1,2,3,4]))
>>> data = fc.get('utt-1')
array([1, 2, 3, 4])

	
append(key, data)

	Append the given data to the data that already exists
in the container for the given key.
Only data with equal dimensions (except the first) are allowed,
since they are concatenated/stacked along the first dimension.

	Parameters

	
	key (str) – Key to store data for.

	data (numpy.ndarray) – Array-like data.
Has to have the same dimension as
the existing data after the first dimension.

Note

The container has to be opened in advance.
For appending to existing data the HDF5-Dataset has to be chunked,
so it is not allowed to first add data via set.

	
close()

	Close the container file if its open.

	
frame_size

	The number of samples used per frame.

	
get(key, mem_map=True)

	Read and return the data stored for the given key.

	Parameters

	
	key (str) – The key to read the data from.

	mem_map (bool) – If True returns the data as
memory-mapped array, otherwise a copy is returned.

Note

The container has to be opened in advance.

	Returns

	The stored data.

	Return type

	numpy.ndarray

	
hop_size

	The number of samples between two frames.

	
is_open()

	Return True, if container is already open.
False otherwise.

	
keys()

	Return a list of keys for which an array is stored in the container.

	Returns

	List of identifiers available in the container.

	Return type

	list

Note

The container has to be opened in advance.

	
open(mode=None)

	Open the container file.

	Parameters

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).
If None, uses self.mode.

	
open_if_needed(mode=None)

	Convenience context-manager for the use with with.
Opens the container if not already done.
Only closes the container if it was opened within this context.

	Parameters

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).
If None, uses self.mode.

	
raise_error_if_not_open()

	Check if container is opened, raise error if not.

	
remove(key)

	Remove the data stored for the given key.

	Parameters

	key (str) – Key of the data to remove.

Note

The container has to be opened in advance.

	
sampling_rate

	The sampling-rate of the signal these frames are based on.

	
set(key, data)

	Set the given data to the container with the given key.
Any existing data for the given key is discarded/overwritten.

	Parameters

	
	key (str) – A key to store the data for.

	data (numpy.ndarray) – Array-like data.

Note

The container has to be opened in advance.

	
stats()

	Return statistics calculated overall features in the container.

Note

The feature container has to be opened in advance.

	Returns

	Statistics overall data points of all features.

	Return type

	DataStats

	
stats_per_key()

	Return statistics calculated for each key in the container.

Note

The feature container has to be opened in advance.

	Returns

	A dictionary containing a DataStats object for each key.

	Return type

	dict

AudioContainer

	
class audiomate.containers.AudioContainer(path, mode='a')

	Container to store raw audio samples.

Notes

The samples are stored as 16-Bit Integers.
But all methods expect or return the samples as 32-Bit Floats,
in the range of -1.0 to 1.0.

	
append(key, samples, sampling_rate)

	Append the given samples to the data that already exists
in the container for the given key.

	Parameters

	
	key (str) – A key to store the data for.

	samples (numpy.ndarray) – 1-D array of audio samples (int-16).

	sampling_rate (int) – The sampling-rate of the audio samples.

Note

The container has to be opened in advance.
For appending to existing data the HDF5-Dataset has to be chunked,
so it is not allowed to first add data via set.

	
close()

	Close the container file if its open.

	
get(key, mem_map=True)

	Return the samples for the given key and the sampling-rate.

	Parameters

	
	key (str) – The key to read the data from.

	mem_map (bool) – If True returns the data as
memory-mapped array, otherwise a copy is returned.

Note

The container has to be opened in advance.

	Returns

	
	A tuple containing the samples as numpy array

	with np.float32 [-1.0,1.0] and the sampling-rate.

	Return type

	tuple

	
is_open()

	Return True, if container is already open.
False otherwise.

	
keys()

	Return a list of keys for which an array is stored in the container.

	Returns

	List of identifiers available in the container.

	Return type

	list

Note

The container has to be opened in advance.

	
open(mode=None)

	Open the container file.

	Parameters

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).
If None, uses self.mode.

	
open_if_needed(mode=None)

	Convenience context-manager for the use with with.
Opens the container if not already done.
Only closes the container if it was opened within this context.

	Parameters

	mode (str) – Either ‘r’ for read-only, ‘w’ for truncate and write or
‘a’ for append. (default: ‘a’).
If None, uses self.mode.

	
raise_error_if_not_open()

	Check if container is opened, raise error if not.

	
remove(key)

	Remove the data stored for the given key.

	Parameters

	key (str) – Key of the data to remove.

Note

The container has to be opened in advance.

	
set(key, samples, sampling_rate)

	Set the samples and sampling-rate for the given key.
Existing data will be overwritten.
The samples have to have np.float32 datatype and values in
the range of -1.0 and 1.0.

	Parameters

	
	key (str) – A key to store the data for.

	samples (numpy.ndarray) – 1-D array of audio samples (np.float32).

	sampling_rate (int) – The sampling-rate of the audio samples.

Note

The container has to be opened in advance.

audiomate.corpus

This module contains all parts needed for using a corpus. Aside the main corpus class
audiomate.Corpus, there are different loaders in the audiomate.corpus.io.

CorpusView

	
class audiomate.corpus.CorpusView

	This class defines the basic interface of a corpus. It is not meant to be
instantiated directly. It only describes the methods for accessing data
of the corpus.

Notes

All paths to files should be held as absolute paths in memory.

	
all_label_values(label_list_ids=None)

	Return a set of all label-values occurring in this corpus.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this list are
considered.

	Returns

	A set of distinct label-values.

	Return type

	set

	
all_tokens(delimiter=' ', label_list_ids=None)

	Return a list of all tokens occurring in one of the labels
in the corpus.

	Parameters

	
	delimiter (str) – The delimiter used to split labels into tokens.
(see audiomate.annotations.Label.tokenized())

	label_list_ids (list) – If not None, only labels from label-lists
with an idx contained in this list are
considered.

	Returns

	A set of distinct tokens.

	Return type

	set

	
contains_issuer(issuer)

	Return True if the given issuer is in the corpus already,
False otherwise.

	
contains_track(track)

	Return True if the given track is in the corpus already,
False otherwise.

	
feature_containers

	Return the feature-containers in the corpus.

	Returns

	
	A dictionary containing

	audiomate.container.FeatureContainer objects
with the feature-idx as key.

	Return type

	dict

	
issuers

	Return the issuers in the corpus.

	Returns

	
	A dictionary containing audiomate.issuers.Issuer

	objects with the issuer-idx as key.

	Return type

	dict

	
label_count(label_list_ids=None)

	Return a dictionary containing the number of times,
every label-value in this corpus is occurring.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this list are
considered.

	Returns

	
	A dictionary containing the number of occurrences with the

	label-value as key.

	Return type

	dict

	
label_durations(label_list_ids=None)

	Return a dictionary containing the total duration,
every label-value in this corpus is occurring.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this list are
considered.

	Returns

	
	A dictionary containing the total duration with

	the label-value as key.

	Return type

	dict

	
name

	Return the name of the dataset
(Equals basename of the path, if not None).

	
num_feature_containers

	Return the number of feature-containers in the corpus.

	
num_issuers

	Return the number of issuers in the corpus.

	
num_subviews

	Return the number of subviews in the corpus.

	
num_tracks

	Return number of tracks.

	
num_utterances

	Return number of utterances.

	
split_utterances_to_max_time(max_time=60.0, overlap=0.0)

	Create a new corpus, where all the utterances are of given maximal
duration. Utterance longer than max_time are split up into
multiple utterances.

Warning

Subviews and FeatureContainers are not added to the newly
create corpus.

	Parameters

	
	max_time (float) – Maximal duration for target utterances in seconds.

	overlap (float) – Amount of overlap in seconds. The overlap is
measured from the center of the splitting.
(The actual overlap of two segments is 2 * overlap)

	Returns

	A new corpus instance.

	Return type

	Corpus

	
stats()

	Return statistics calculated overall samples of all utterances
in the corpus.

	Returns

	
	A DataStats object containing statistics overall

	samples in the corpus.

	Return type

	DataStats

	
stats_per_utterance()

	Return statistics calculated for all samples of each utterance
in the corpus.

	Returns

	A dictionary containing a DataStats object for each utt.

	Return type

	dict

	
subviews

	Return the subviews of the corpus.

	Returns

	
	A dictionary containing audiomate.corpus.Subview

	objects with the subview-idx as key.

	Return type

	dict

	
total_duration

	Return the total amount of audio summed over all utterances
in the corpus in seconds.

	
tracks

	Return the tracks in the corpus.

	Returns

	
	A dictionary containing audiomate.track.Track

	objects with the track-idx as key.

	Return type

	dict

	
utterances

	Return the utterances in the corpus.

	Returns

	
	A dictionary containing

	audiomate.corpus.assets.Utterance objects with the
utterance-idx as key.

	Return type

	dict

Corpus

	
class audiomate.corpus.Corpus(path=None)

	The Corpus class represents a single corpus. It extends
audiomate.corpus.CorpusView with the functionality for loading
and saving. Furthermore it provides the functionality for adding/modifying
assets of the corpus like tracks and utterances.

	Parameters

	path (str) – Path where the corpus is stored. (Optional)

	
feature_containers

	Return the feature-containers in the corpus.

	Returns

	
	A dictionary containing

	audiomate.container.FeatureContainer objects
with the feature-idx as key.

	Return type

	dict

	
classmethod from_corpus(corpus)

	Create a new modifiable corpus from any other CorpusView. This for
example can be used to create a independent modifiable corpus
from a subview.

	Parameters

	corpus (CorpusView) – The corpus to create a copy from.

	Returns

	A new corpus with the same data as the given one.

	Return type

	Corpus

	
import_issuers(new_issuers)

	Add the given issuers/issuer to the corpus. If any of the given
issuer-ids already exists, a suffix is appended so it is unique.

	Parameters

	issuers (list) – Either a list of or a
single audiomate.issuers.Issuer.

	Returns

	
	A dictionary containing idx mappings

	(old-issuer-idx/issuer-instance). If a issuer is imported,
whose id already exists this mapping can be used to check
the new id.

	Return type

	dict

	
import_subview(idx, subview)

	Add the given subview to the corpus.

	Parameters

	
	idx (str) – An idx that is unique in the corpus for identifying
the subview. If already a subview exists with the given
id it will be overridden.

	subview (Subview) – The subview to add.

	
import_tracks(import_tracks)

	Add the given tracks/track to the corpus.
If any of the given track-ids already exists,
a suffix is appended so it is unique.

	Parameters

	import_tracks (list) – Either a list of or a
single audiomate.tracks.Track.

	Returns

	
	A dictionary containing track-idx mappings

	(old-track-idx/track-instance). If a track is imported,
whose idx already exists this mapping can be used to check
the new id.

	Return type

	dict

	
import_utterances(utterances)

	Add the given utterances/utterance to the corpus. If any of the given
utterance-ids already exists, a suffix is appended so it is unique.

	Parameters

	utterances (list) – Either a list of or a
single audiomate.tracks.Utterance.

	Returns

	
	A dictionary containing idx mappings

	(old-utterance-idx/utterance-instance). If a utterance is
imported, whose id already exists this mapping can be used to
check the new id.

	Return type

	dict

	
issuers

	Return the issuers in the corpus.

	Returns

	
	A dictionary containing audiomate.issuers.Issuer

	objects with the issuer-idx as key.

	Return type

	dict

	
classmethod load(path, reader=None, **kwargs)

	Loads the corpus from the given path, using the given reader. If no
reader is given the audiomate.corpus.io.DefaultReader
is used.

	Parameters

	
	path (str) – Path to load the corpus from.

	reader (str, CorpusReader) – The reader or the name of the
reader to use.

	Returns

	The loaded corpus.

	Return type

	Corpus

	
classmethod merge_corpora(corpora)

	Merge a list of corpora into one.

	Parameters

	corpora (Iterable) – An iterable of
audiomate.corpus.CorpusView.

	Returns

	
	A corpus with the data from all given corpora

	merged into one.

	Return type

	Corpus

	
merge_corpus(corpus)

	Merge the given corpus into this corpus. All assets (tracks, utterances,
issuers, …) are copied into this corpus. If any ids (utt-idx,
track-idx, issuer-idx, subview-idx, …) are occurring in both corpora,
the ids from the merging corpus are suffixed by a number
(starting from 1 until no other is matching).

	Parameters

	corpus (CorpusView) – The corpus to merge.

	
name

	Return the name of the dataset
(Equals basename of the path, if not None).

	
new_feature_container(idx, path=None)

	Add a new feature container with the given data.

	Parameters

	
	idx (str) – An unique identifier within the dataset.

	path (str) – The path to store the feature file. If None
a default path is used.

	Returns

	The newly added feature-container.

	Return type

	FeatureContainer

	
new_file(path, track_idx, copy_file=False)

	Adds a new audio file to the corpus with the given data.

	Parameters

	
	path (str) – Path of the file to add.

	track_idx (str) – The id to associate the file-track with.

	copy_file (bool) – If True the file is copied to the data set
folder, otherwise the given path is used directly.

	Returns

	The newly added file.

	Return type

	FileTrack

	
new_issuer(issuer_idx, info=None)

	Add a new issuer to the dataset with the given data.

	Parameters

	
	issuer_idx (str) – The id to associate the issuer with. If None
or already exists, one is generated.

	info (dict, list) – Additional info of the issuer.

	Returns

	The newly added issuer.

	Return type

	Issuer

	
new_utterance(utterance_idx, track_idx, issuer_idx=None, start=0, end=inf)

	Add a new utterance to the corpus with the given data.

	Parameters

	
	track_idx (str) – The track id the utterance is in.

	utterance_idx (str) – The id to associate with the utterance.
If None or already exists, one is generated.

	issuer_idx (str) – The issuer id to associate with the utterance.

	start (float) – Start of the utterance within the track [seconds].

	end (float) – End of the utterance within the track [seconds].
inf equals the end of the track.

	Returns

	The newly added utterance.

	Return type

	Utterance

	
relocate_audio_to_single_container(target_path)

	Copies every track to a single container.
Afterwards all tracks in the container are linked against
this single container.

	
relocate_audio_to_wav_files(target_path)

	Copies every track to its own wav file in the given folder.
Every track will be stored at target_path/track_id.wav.

	
save(writer=None)

	If self.path is defined,
it tries to save the corpus at the given path.

	
save_at(path, writer=None)

	Save this corpus at the given path. If the path differs from
the current path set, the path gets updated.

	Parameters

	
	path (str) – Path to save the data set to.

	writer (str, CorpusWriter) – The writer or the name of the
reader to use.

	
subviews

	Return the subviews of the corpus.

	Returns

	
	A dictionary containing audiomate.corpus.Subview

	objects with the subview-idx as key.

	Return type

	dict

	
tracks

	Return the tracks in the corpus.

	Returns

	
	A dictionary containing audiomate.track.Track

	objects with the track-idx as key.

	Return type

	dict

	
utterances

	Return the utterances in the corpus.

	Returns

	
	A dictionary containing

	audiomate.corpus.assets.Utterance objects with the
utterance-idx as key.

	Return type

	dict

audiomate.corpus.io

Base Classes

Implementations

Support for Reading and Writing by Format

	Format

	Download

	Read

	Write

	Acoustic Event Dataset

	x

	x

	

	AudioMNIST

	x

	x

	

	Broadcast

	
	x

	

	Common Voice

	x

	x

	

	Default

	
	x

	x

	ESC-50

	x

	x

	

	Free-Spoken-Digit-Dataset

	x

	x

	

	Folder

	
	x

	

	Fluent Speech Commands Dataset

	
	x

	

	Google Speech Commands

	
	x

	

	GTZAN

	x

	x

	

	Kaldi

	
	x

	x

	LibriSpeech

	x

	x

	

	Mozilla DeepSpeech

	
	
	x

	MUSAN

	x

	x

	

	M-AILABS Speech Dataset

	x

	x

	

	LITIS Rouen Audio scene dataset

	x

	x

	

	Spoken Wikipedia Corpora

	x

	x

	

	Tatoeba

	x

	x

	

	TIMIT

	
	x

	

	TUDA German Distant Speech

	x

	x

	

	Urbansound8k

	
	x

	

	VoxForge

	x

	x

	

	Wav2Letter

	
	
	x

Acoustic Event Dataset

AudioMNIST

Broadcast

Common-Voice

Default

ESC-50

Folder

Free-Spoken-Digit-Dataset

Fluent Speech Commands Dataset

Google Speech Commands

GTZAN

Kaldi

LibriSpeech

Mozilla DeepSpeech

MUSAN

M-AILABS Speech Dataset

NVIDIA Jasper

LITIS Rouen Audio scene dataset

SWC - Spoken Wikipedia Corpora

Tatoeba

TIMIT DARPA Acoustic-Phonetic Continuous Speech Corpus

TUDA German Distant Speech

Urbansound8k

VoxForge

Wav2Letter

audiomate.corpus.subset

This module contains functionality for creating any kind of subsets from a corpus.
A subset of a corpus is represented with a Subview.
The data contained in a subview is defined by one or more FilterCriterion.

For creating subviews there are additional classes.
Splitter can be used to divide a corpus into subsets according to given proportions.
SubsetGenerator can be used to create subset with given settings.

Subview

	
class audiomate.corpus.subset.Subview(corpus, filter_criteria)

	A subview is a readonly layer representing some subset of a corpus.
The assets the subview contains are defined by filter criteria.
Only if an utterance passes all filter criteria it is contained
in the subview.

	Parameters

	
	corpus (CorpusView) – The corpus this subview is based on.

	filter_criteria (list, FilterCriterion) – List of
FilterCriterion

Example:

>>> filter = subview.MatchingUtteranceIdxFilter(utterance_idxs=(['utt-1', 'utt-3']))
>>> corpus = audiomate.corpus.load('path/to/corpus')
>>> corpus.num_utterances
14
>>> subset = subview.Subview(self.corpus, filter_criteria=[filter])
>>> subset.num_utterances
2

	
all_label_values(label_list_ids=None)

	Return a set of all label-values occurring in this corpus.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this list are
considered.

	Returns

	A set of distinct label-values.

	Return type

	set

	
all_tokens(delimiter=' ', label_list_ids=None)

	Return a list of all tokens occurring in one of the labels
in the corpus.

	Parameters

	
	delimiter (str) – The delimiter used to split labels into tokens.
(see audiomate.annotations.Label.tokenized())

	label_list_ids (list) – If not None, only labels from label-lists
with an idx contained in this list are
considered.

	Returns

	A set of distinct tokens.

	Return type

	set

	
contains_issuer(issuer)

	Return True if the given issuer is in the corpus already,
False otherwise.

	
contains_track(track)

	Return True if the given track is in the corpus already,
False otherwise.

	
feature_containers

	Return the feature-containers in the corpus.

	Returns

	
	A dictionary containing

	audiomate.container.FeatureContainer objects
with the feature-idx as key.

	Return type

	dict

	
issuers

	Return the issuers in the corpus.

	Returns

	
	A dictionary containing audiomate.issuers.Issuer

	objects with the issuer-idx as key.

	Return type

	dict

	
label_count(label_list_ids=None)

	Return a dictionary containing the number of times,
every label-value in this corpus is occurring.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this list are
considered.

	Returns

	
	A dictionary containing the number of occurrences with the

	label-value as key.

	Return type

	dict

	
label_durations(label_list_ids=None)

	Return a dictionary containing the total duration,
every label-value in this corpus is occurring.

	Parameters

	label_list_ids (list) – If not None, only labels from label-lists
with an id contained in this list are
considered.

	Returns

	
	A dictionary containing the total duration with

	the label-value as key.

	Return type

	dict

	
name

	Return the name of the dataset
(Equals basename of the path, if not None).

	
num_feature_containers

	Return the number of feature-containers in the corpus.

	
num_issuers

	Return the number of issuers in the corpus.

	
num_subviews

	Return the number of subviews in the corpus.

	
num_tracks

	Return number of tracks.

	
num_utterances

	Return number of utterances.

	
classmethod parse(representation, corpus=None)

	Creates a subview from a string representation
(created with self.serialize).

	Parameters

	representation (str) – The representation.

	Returns

	The created subview.

	Return type

	Subview

	
serialize()

	Return a string representing the subview
with all of its filter criteria.

	Returns

	String with subview definition.

	Return type

	str

	
split_utterances_to_max_time(max_time=60.0, overlap=0.0)

	Create a new corpus, where all the utterances are of given maximal
duration. Utterance longer than max_time are split up into
multiple utterances.

Warning

Subviews and FeatureContainers are not added to the newly
create corpus.

	Parameters

	
	max_time (float) – Maximal duration for target utterances in seconds.

	overlap (float) – Amount of overlap in seconds. The overlap is
measured from the center of the splitting.
(The actual overlap of two segments is 2 * overlap)

	Returns

	A new corpus instance.

	Return type

	Corpus

	
stats()

	Return statistics calculated overall samples of all utterances
in the corpus.

	Returns

	
	A DataStats object containing statistics overall

	samples in the corpus.

	Return type

	DataStats

	
stats_per_utterance()

	Return statistics calculated for all samples of each utterance
in the corpus.

	Returns

	A dictionary containing a DataStats object for each utt.

	Return type

	dict

	
subviews

	Return the subviews of the corpus.

	Returns

	
	A dictionary containing audiomate.corpus.Subview

	objects with the subview-idx as key.

	Return type

	dict

	
total_duration

	Return the total amount of audio summed over all utterances
in the corpus in seconds.

	
tracks

	Return the tracks in the corpus.

	Returns

	
	A dictionary containing audiomate.track.Track

	objects with the track-idx as key.

	Return type

	dict

	
utterances

	Return the utterances in the corpus.

	Returns

	
	A dictionary containing

	audiomate.corpus.assets.Utterance objects with the
utterance-idx as key.

	Return type

	dict

Filter

	
class audiomate.corpus.subset.FilterCriterion

	A filter criterion decides wheter a given utterance contained
in a given corpus matches the filter.

	
match(utterance, corpus)

	Check if the utterance matches the filter.

	Parameters

	
	utterance (Utterance) – The utterance to match.

	corpus (CorpusView) – The corpus that contains the utterance.

	Returns

	True if the filter matches the utterance, False otherwise.

	Return type

	bool

	
classmethod name()

	Returns a name identifying this type of filter criterion.

	
classmethod parse(representation)

	Create a filter criterion based on a string representation
(created with serialize).

	Parameters

	representation (str) – The string representation.

	Returns

	The filter criterion from that representation.

	Return type

	FilterCriterion

	
serialize()

	Serialize this filter criterion to write to a file.
The output needs to be a single line without line breaks.

	Returns

	A string representing this filter criterion.

	Return type

	str

MatchingUtteranceIdxFilter

	
class audiomate.corpus.subset.MatchingUtteranceIdxFilter(utterance_idxs, inverse=False)

	A filter criterion that matches utterances based on utterance-ids.

	Parameters

	
	utterance_idxs (set) – A list of utterance-ids. Only utterances
in the list will pass the filter

	inverse (bool) – If True only utterance not in the list pass the filter.

MatchingLabelFilter

	
class audiomate.corpus.subset.MatchingLabelFilter(labels, label_list_ids=None)

	A filter criterion that only accepts utterances
which only have the given labels.

	Parameters

	
	labels (set) – A set of labels which are accepted.

	label_list_ids (set) – Only check label-lists with these ids.
If None, checks all label-lists.

Splitter

	
class audiomate.corpus.subset.Splitter(corpus, random_seed=None)

	A splitter provides methods for splitting a corpus into different subsets.
It provides different approaches for splitting the corpus.
(Methods indicated by split_by_)
These methods mostly take some proportions parameter,
which defines how big (in relation) the
subsets should be. The subsets are returned
as audiomate.corpus.Subview.

	Parameters

	
	corpus (Corpus) – The corpus that should be splitted.

	random_seed (int) – Seed to use for random number generation.

	
split(proportions, separate_issuers=False)

	Split the corpus based on the number of utterances.
The utterances are distributed to len(proportions) subsets,
according to the ratios proportions[subset].

	Parameters

	
	proportions (dict) – A dictionary containing the relative size of
the target subsets. The key is an identifier
for the subset.

	separate_issuers (bool) – If True it makes sure that all utterances
of an issuer are in the same subset.

	Returns

	
	A dictionary containing the subsets with the identifier

	from the input as key.

	Return type

	(dict)

Example:

>>> spl = Splitter(corpus)
>>> corpus.num_utterances
100
>>> subsets = spl.split(proportions={
>>> "train" : 0.6,
>>> "dev" : 0.2,
>>> "test" : 0.2
>>> })
>>> print(subsets)
{'dev': <audiomate.corpus.subview.Subview at 0x104ce7400>,
'test': <audiomate.corpus.subview.Subview at 0x104ce74e0>,
'train': <audiomate.corpus.subview.Subview at 0x104ce7438>}
>>> subsets['train'].num_utterances
60
>>> subsets['dev'].num_utterances
20
>>> subsets['test'].num_utterances
20

	
split_by_audio_duration(proportions, separate_issuers=False)

	Split the corpus based on the the total duration of audio.
The utterances are distributed to len(proportions) subsets.
Utterances are split up in a way that each subset contains
audio with a duration proportional to the given proportions.

	Parameters

	
	proportions (dict) – A dictionary containing the relative size of
the target subsets. The key is an identifier
for the subset.

	separate_issuers (bool) – If True it makes sure that all utterances
of an issuer are in the same subset.

	Returns

	
	A dictionary containing the subsets with the identifier

	from the input as key.

	Return type

	(dict)

Example:

>>> spl = Splitter(corpus)
>>> corpus.num_utterances
100
>>> subsets = spl.split_by_audio_duration(proportions={
>>> "train" : 0.6,
>>> "dev" : 0.2,
>>> "test" : 0.2
>>> })
>>> print(subsets)
{'dev': <audiomate.corpus.subview.Subview at 0x104ce7400>,
'test': <audiomate.corpus.subview.Subview at 0x104ce74e0>,
'train': <audiomate.corpus.subview.Subview at 0x104ce7438>}
>>> subsets['train'].num_utterances
55
>>> subsets['dev'].num_utterances
35
>>> subsets['test'].num_utterances
10

	
split_by_label_duration(proportions, separate_issuers=False)

	Split the corpus based on the total duration of labels (end - start).
The utterances are distributed to len(proportions) subsets.
Utterances are split up in a way that each subset contains
labels with a duration proportional to the given proportions.

	Parameters

	
	proportions (dict) – A dictionary containing the relative size of
the target subsets. The key is an identifier
for the subset.

	separate_issuers (bool) – If True it makes sure that all utterances
of an issuer are in the same subset.

	Returns

	
	A dictionary containing the subsets with the identifier

	from the input as key.

	Return type

	(dict)

Example:

>>> spl = Splitter(corpus)
>>> corpus.num_utterances
100
>>> subsets = spl.split_by_label_duration(proportions={
>>> "train" : 0.6,
>>> "dev" : 0.2,
>>> "test" : 0.2
>>> })
>>> print(subsets)
{'dev': <audiomate.corpus.subview.Subview at 0x104ce7400>,
'test': <audiomate.corpus.subview.Subview at 0x104ce74e0>,
'train': <audiomate.corpus.subview.Subview at 0x104ce7438>}
>>> subsets['train'].num_utterances
55
>>> subsets['dev'].num_utterances
35
>>> subsets['test'].num_utterances
10

	
split_by_label_length(proportions, label_list_idx=None, separate_issuers=False)

	Split the corpus based on the the total length of the label-list.
The utterances are distributed to len(proportions) subsets.
Utterances are split up in a way that each subset contains
labels summed up to a length proportional to the given proportions.
Length is defined as the number of characters.

	Parameters

	
	proportions (dict) – A dictionary containing the relative size
of the target subsets.
The key is an identifier for the subset.

	label_list_idx (str) – The idx of the label-list to use for compute
the length. If None all label-lists are used.

	separate_issuers (bool) – If True it makes sure that all utterances
of an issuer are in the same subset.

	Returns

	
	A dictionary containing the subsets with the identifier

	from the input as key.

	Return type

	(dict)

Example:

>>> spl = Splitter(corpus)
>>> corpus.num_utterances
100
>>> subsets = spl.split_by_label_length(proportions={
>>> "train" : 0.6,
>>> "dev" : 0.2,
>>> "test" : 0.2
>>> })
>>> print(subsets)
{'dev': <audiomate.corpus.subview.Subview at 0x104ce7400>,
'test': <audiomate.corpus.subview.Subview at 0x104ce74e0>,
'train': <audiomate.corpus.subview.Subview at 0x104ce7438>}
>>> subsets['train'].num_utterances
55
>>> subsets['dev'].num_utterances
35
>>> subsets['test'].num_utterances
10

	
split_by_label_occurence(proportions, separate_issuers=False)

	Split the corpus based on the total number of occcurences of labels.
The utterances are distributed to len(proportions) subsets.
Utterances are split up in a way that each subset contains
labels-occurences proportional to the given proportions.

	Parameters

	
	proportions (dict) – A dictionary containing the relative size
of the target subsets.
The key is an identifier for the subset.

	separate_issuers (bool) – If True it makes sure that all utterances
of an issuer are in the same subset.

	Returns

	
	A dictionary containing the subsets with the identifier

	from the input as key.

	Return type

	(dict)

Example:

>>> spl = Splitter(corpus)
>>> corpus.num_utterances
100
>>> subsets = spl.split_by_label_occurence(proportions={
>>> "train" : 0.6,
>>> "dev" : 0.2,
>>> "test" : 0.2
>>> })
>>> print(subsets)
{'dev': <audiomate.corpus.subview.Subview at 0x104ce7400>,
'test': <audiomate.corpus.subview.Subview at 0x104ce74e0>,
'train': <audiomate.corpus.subview.Subview at 0x104ce7438>}
>>> subsets['train'].num_utterances
55
>>> subsets['dev'].num_utterances
35
>>> subsets['test'].num_utterances
10

SubsetGenerator

	
class audiomate.corpus.subset.SubsetGenerator(corpus, random_seed=None)

	This class is used to generate subsets of a corpus.

	Parameters

	
	corpus (Corpus) – The corpus to create subsets from.

	random_seed (int) – Seed to use for random number generation.

	
maximal_balanced_subset(by_duration=False, label_list_ids=None)

	Create a subset of the corpus as big as possible, so that the labels are balanced approximately.
The label with the shortest duration (or with the fewest utterance if by_duration=False) is taken as reference.
All other labels are selected so they match the shortest one as far as possible.

	Parameters

	
	by_duration (bool) – If True the size measure is the duration of all utterances in a subset/corpus.

	label_list_ids (list) – List of label-list ids. If none is given, all label-lists are considered
for balancing. Otherwise only the ones that are in the list are considered.

	Returns

	The subview representing the subset.

	Return type

	Subview

	
random_subset(relative_size, balance_labels=False, label_list_ids=None)

	Create a subview of random utterances with a approximate size relative to the full corpus.
By default x random utterances are selected with x equal to relative_size * corpus.num_utterances.

	Parameters

	
	relative_size (float) – A value between 0 and 1.
(0.5 will create a subset with approximately 50% of the full corpus size)

	balance_labels (bool) – If True, the labels of the selected utterances are balanced as far as possible.
So the count/duration of every label within the subset is equal.

	label_list_ids (list) – List of label-list ids. If none is given, all label-lists are considered
for balancing. Otherwise only the ones that are in the list are considered.

	Returns

	The subview representing the subset.

	Return type

	Subview

	
random_subset_by_duration(relative_duration, balance_labels=False, label_list_ids=None)

	Create a subview of random utterances with a approximate duration relative to the full corpus.
Random utterances are selected so that the sum of all utterance durations
equals to the relative duration of the full corpus.

	Parameters

	
	relative_duration (float) – A value between 0 and 1. (e.g. 0.5 will create a subset with approximately
50% of the full corpus duration)

	balance_labels (bool) – If True, the labels of the selected utterances are balanced as far as possible.
So the count/duration of every label within the subset is equal.

	label_list_ids (list) – List of label-list ids. If none is given, all label-lists are considered
for balancing. Otherwise only the ones that are in the list are considered.

	Returns

	The subview representing the subset.

	Return type

	Subview

	
random_subsets(relative_sizes, by_duration=False, balance_labels=False, label_list_ids=None)

	Create a bunch of subsets with the given sizes relative to the size or duration of the full corpus.
Basically the same as calling random_subset or random_subset_by_duration multiple times
with different values. But this method makes sure that every subset contains only utterances,
that are also contained in the next bigger subset.

	Parameters

	
	relative_sizes (list) – A list of numbers between 0 and 1 indicating the sizes of the desired subsets,
relative to the full corpus.

	by_duration (bool) – If True the size measure is the duration of all utterances in a subset/corpus.

	balance_labels (bool) – If True the labels contained in a subset are chosen to be balanced
as far as possible.

	label_list_ids (list) – List of label-list ids. If none is given, all label-lists are considered
for balancing. Otherwise only the ones that are in the list are considered.

	Returns

	A dictionary containing all subsets with the relative size as key.

	Return type

	dict

Utils

	
audiomate.corpus.subset.utils.absolute_proportions(proportions, count)

	Split a given integer into n parts according to len(proportions) so they sum up to count and
match the given proportions.

	Parameters

	proportions (dict) – Dict of proportions, with a identifier as key.

	Returns

	Dictionary with absolute proportions and same identifiers as key.

	Return type

	dict

Example:

>>> absolute_proportions({'train': 0.5, 'test': 0.5}, 100)
{'train': 50, 'test': 50}

	
audiomate.corpus.subset.utils.get_identifiers_splitted_by_weights(identifiers, proportions, seed=None)

	Divide the given identifiers based on the given proportions. But instead of randomly split
the identifiers it is based on category weights. Every identifier has a weight for any
number of categories. The target is, to split the identifiers in a way, so the sum of
category k within part x is proportional to the sum of category x over all parts
according to the given proportions. This is done by greedily insert the identifiers step by
step in a part which has free space (weight). If there are no fitting parts anymore, the one
with the least weight exceed is used.
This function is deterministic, given the same seed.
First the identifiers are sorted before shuffled using the given seed.

	Parameters

	
	identifiers (dict) – A dictionary containing the weights for each identifier (key). Per
item a dictionary of weights per category is given.

	proportions (dict) – Dict of proportions, with a identifier as key.

	seed (int) – Seed to use for random operations.

	Returns

	Dictionary containing a list of identifiers per part with the same key as the proportions dict.

	Return type

	dict

Example:

>>> identifiers = {
>>> 'a': {'music': 2, 'speech': 1},
>>> 'b': {'music': 5, 'speech': 2},
>>> 'c': {'music': 2, 'speech': 4},
>>> 'd': {'music': 1, 'speech': 4},
>>> 'e': {'music': 3, 'speech': 4}
>>> }
>>> proportions = {
>>> "train" : 0.6,
>>> "dev" : 0.2,
>>> "test" : 0.2
>>> }
>>> get_identifiers_splitted_by_weights(identifiers, proportions)
{
 'train': ['a', 'b', 'd'],
 'dev': ['c'],
 'test': ['e']
}

	
audiomate.corpus.subset.utils.select_balanced_subset(items, select_count, categories, select_count_values=None, seed=None)

	Select items so the summed category weights are balanced.
Each item has a dictionary containing the category weights.
Items are selected until select_count is reached.
The value that is added to select_count for an item can be defined in the dictionary select_count_values.
If this is not defined it is assumed to be 1, which means select_count items are selected.

	Parameters

	
	items (dict) – Dictionary containing items with category weights.

	select_count (float) – Value to reach for selected items.

	categories (list) – List of all categories.

	select_count_values (dict) – The select_count values to be used.
For example an utterance with multiple labels:
The category weights (label-lengths) are used for balance,
but the utterance-duration is used for reaching the select_count.

	Returns

	List of item ids, containing number_of_items (or len(items) if smaller).

	Return type

	list

Example

>>> items = {
>>> 'utt-1' : {'m': 1, 's': 0, 'n': 0},
>>> 'utt-2' : {'m': 0, 's': 2, 'n': 1},
>>> ...
>>> }
>>> select_balanced_subset(items, 5)
>>> ['utt-1', 'utt-3', 'utt-9', 'utt-33', 'utt-34']

	
audiomate.corpus.subset.utils.split_identifiers(identifiers, proportions, seed=None)

	Split the given identifiers by the given proportions.
This function is deterministic, given the same seed.
First the identifiers are sorted before shuffled using the given seed.

	Parameters

	
	identifiers (list) – List of identifiers (str).

	proportions (dict) – A dictionary containing the proportions with the identifier from the

	as key. (input) –

	seed (int) – Seed to use for random operations.

	Returns

	Dictionary containing a list of identifiers per part with the same key as the
proportions dict.

	Return type

	dict

Example:

>>> split_identifiers(
>>> identifiers=['a', 'b', 'c', 'd'],
>>> proportions={'melvin' : 0.5, 'timmy' : 0.5}
>>>)
{'melvin' : ['a', 'c'], 'timmy' : ['b', 'd']}

audiomate.corpus.validation

This module contains functions for validating a corpus on different properties.
e.g. if the length of the utterance is to short for its corresponding transcription.

audiomate.corpus.validation.Validator is the base class for performing validations.
It can be extended to implement validators for specific tests/validations.
Thre result of every validator has to be a audiomate.corpus.validation.ValidationResult
or a subclass of it.

Base

	
class audiomate.corpus.validation.Validator

	A validator is a class that tests a specific behaviour/state
of a corpus.

	
name()

	Return a name, identifying the task.

	
validate(corpus_to_validate)

	Perform the validation on the given corpus.

	Parameters

	corpus (Corpus) – The corpus to test/validate.

	Returns

	
	The result containing at least the

	pass/fail indication.

	Return type

	ValidationResult

	
class audiomate.corpus.validation.ValidationResult(passed, name='Validation', info=None)

	Representation of the result of a validation.
The basic result just indicates a pass or fail.
Depending on the validator it can be extended to hold more information
(e.g. utterance-ids which triggered the task to fail).

	Parameters

	
	passed (bool) – A boolean indicating, if the validation has passed
(True) or failed (False).

	name (str) – The name of the validator, that produced the result.

	info (dict) – Dictionary containing key/value string-pairs with detailed
information of the validation. For example id of the
label-list that was validated.

	
get_report()

	Return a string containing a report of the result.
This can used to print or save to a text file.

	Returns

	String containing infos about the result

	Return type

	str

	
class audiomate.corpus.validation.InvalidItemsResult(passed, invalid_items, name='Validation', item_name='Utterances', info=None)

	A generic result class for validators that return a list of items
(utterances, tracks) that were classified invalid. Besides the id of the
item, a reason may be appended.

	Parameters

	
	passed (bool) – A boolean indicating, if the validation has passed
(True) or failed (False).

	invalid_items (dict) – A dictionary containing item-ids, that are
invalid. The values are reasons why they are
invalid.

	name (str) – The name of the validator, that produced the result.

	info (dict) – Dictionary containing key/value string-pairs with detailed
information of the validation. For example id of the
label-list that was validated.

	
get_report()

	Return a string containing a report of the result.
This can used to print or save to a text file.

	Returns

	String containing infos about the result

	Return type

	str

Combination

	
class audiomate.corpus.validation.CombinedValidator(validators=None)

	The CombinedValidator is used to execute multiple validators at once.

	Parameters

	validators (list) – A list of validators that are executed.

	
name()

	Return a name, identifying the task.

	
validate(corpus_to_validate)

	Perform validation on the given corpus.

	Parameters

	corpus (Corpus) – The corpus to test/validate.

	
class audiomate.corpus.validation.CombinedValidationResult(passed, results=None, info=None)

	Result of running multiple validation-tasks with the validator.

	Parameters

	
	passed (bool) – A boolean, indicating if all tasks have passed (True) or at least one failed (False).

	results (dict) – A dictionary containing the results of all validators, with the task name as key.

	info (dict) – Dictionary containing key/value string-pairs with detailed information of the validation.
For example id of the label-list that was validated.

	
get_report()

	Return a string containing a report of the result.
This can used to print or save to a text file.

	Returns

	String containing infos about the result

	Return type

	str

Label-List

	
class audiomate.corpus.validation.UtteranceTranscriptionRatioValidator(max_characters_per_second=10, label_list_idx='word-transcript', num_threads=1)

	Checks if the ratio between utterance-duration and transcription-length
is below a given ratio. This is used to find utterances where the speech
transcription is to long for a given utterance, meaning too much characters
per second.

	Parameters

	
	max_characters_per_second (int) – If char/sec of an utterance is
higher than this it is returned.

	label_list_idx (str) – The label-list to use for validation.

	num_threads (int) – Number of threads to use.

	
name()

	Return a name, identifying the task.

	
validate(corpus_to_validate)

	Perform the validation on the given corpus.

	Parameters

	corpus_to_validate (Corpus) – The corpus to test/validate.

	Returns

	Validation result.

	Return type

	InvalidItemsResult

	
class audiomate.corpus.validation.LabelCountValidator(min_number_of_labels=1, label_list_idx='word-transcript')

	Checks if every utterance contains a label-list with the given id
and has at least min_number_of_labels.

	Parameters

	
	min_number_of_labels (int) – Minimum number of expected labels.

	label_list_idx (str) – The label-list to use for validation.

	
name()

	Return a name, identifying the task.

	
validate(corpus_to_validate)

	Perform the validation on the given corpus.

	Parameters

	corpus_to_validate (Corpus) – The corpus to test/validate.

	Returns

	Validation result.

	Return type

	InvalidItemsResult

	
class audiomate.corpus.validation.LabelCoverageValidator(label_list_idx, threshold=0.01)

	Check if every portion of the utterance is covered with at least one label.
The validator returns segments (start, end) of an utterance,
where no label is defined within the given label-list.

	Parameters

	
	label_list_idx (str) – The idx of the label-list to check.

	threshold (float) – A threshold for the length of a segment
to be considered as uncovered.

	
name()

	Return a name, identifying the task.

	
validate(corpus_to_validate)

	Perform the validation on the given corpus.

	Parameters

	corpus_to_validate (Corpus) – The corpus to test/validate.

	Returns

	Validation result.

	Return type

	LabelCoverageValidationResult

	
validate_utterance(utterance)

	Validate the given utterance and
return a list of uncovered segments (start, end).

	
class audiomate.corpus.validation.LabelCoverageValidationResult(passed, uncovered_segments, name, info=None)

	Result of a the LabelCoverageValidator.

	Parameters

	
	passed (bool) – A boolean indicating, if the validation has
passed (True) or failed (False).

	uncovered_segments (dict) – A dictionary containing a list of uncovered
segments for every utterance.

	name (str) – The name of the validator, that produced the result.

	info (dict) – Dictionary containing key/value string-pairs with detailed
information of the validation. For example id of the
label-list that was validated.

	
get_report()

	Return a string containing a report of the result.
This can used to print or save to a text file.

	Returns

	String containing infos about the result

	Return type

	str

	
class audiomate.corpus.validation.LabelOverflowValidator(label_list_idx, threshold=0.01)

	Check if all labels are within the boundaries of an utterance.
Finds all segments of labels that lie outside of an utterance.

	Parameters

	
	label_list_idx (str) – The idx of the label-list to check.

	threshold (float) – A threshold for a time distance to be
considered for an overflow.

	
name()

	Return a name, identifying the task.

	
validate(corpus_to_validate)

	Perform the validation on the given corpus.

	Parameters

	corpus_to_validate (Corpus) – The corpus to test/validate.

	Returns

	Validation result.

	Return type

	LabelOverflowValidationResult

	
validate_utterance(utterance)

	Validate the given utterance and return a list of
segments (start, end, label-value), that are outside of the utterance.

	
class audiomate.corpus.validation.LabelOverflowValidationResult(passed, overflow_segments, name, info=None)

	Result of a the LabelOverflowValidator.

	Parameters

	
	passed (bool) – A boolean indicating, if the validation has
passed (True) or failed (False).

	overflow_segments (dict) – A dictionary containing a list of
overflowing segments for every utterance.

	name (str) – The name of the validator, that produced the result.

	info (dict) – Dictionary containing key/value string-pairs with
detailed information of the validation. For example
id of the label-list that was validated.

	
get_report()

	Return a string containing a report of the result.
This can used to print or save to a text file.

	Returns

	String containing infos about the result

	Return type

	str

Track

	
class audiomate.corpus.validation.TrackReadValidator(num_workers=1)

	Check if the track can be opened and read.
By reading the first few samples.

	
name()

	Return a name, identifying the task.

	
validate(corpus_to_validate)

	Perform the validation on the given corpus.

	Parameters

	corpus (Corpus) – The corpus to test/validate.

	Returns

	Validation result.

	Return type

	InvalidItemsResult

audiomate.corpus.conversion

This module contains classes to convert the data of a corpus.
It is for example used to convert all audio data to wav files.

Audio File Conversion

	
class audiomate.corpus.conversion.AudioFileConverter(sampling_rate=16000, separate_file_per_utterance=False, force_conversion=False)

	Base class for converters that convert all audio to a specific format.
A converter creates a new instance of a corpus,
so that all audio files meet given requirements.

	Parameters

	
	sampling_rate (int) – Target sampling rate to convert audio to.

	separate_file_per_utterance (bool) – If True, every utterance in the
resulting corpus is in a separate file.
If False, the file/utt structure will
be preserved.

	force_conversion (bool) – If True, all utterances will be converted
whether or not it already matches the target
format. If False, only utterances not
matching the target format will be converted.
Others are reference to the original files.

	
convert(corpus, target_audio_path)

	Convert the given corpus.

	Parameters

	
	corpus (Corpus) – The input corpus.

	target_audio_path (str) – The path where the audio files of the
converted corpus should be saved.

	Returns

	The newly created corpus.

	Return type

	Corpus

	
class audiomate.corpus.conversion.WavAudioFileConverter(num_workers=4, sampling_rate=16000, separate_file_per_utterance=False, force_conversion=False)

	Class that creates a new instance of a corpus,
so that all audio files meet given requirements.

	
convert(corpus, target_audio_path)

	Convert the given corpus.

	Parameters

	
	corpus (Corpus) – The input corpus.

	target_audio_path (str) – The path where the audio files of the
converted corpus should be saved.

	Returns

	The newly created corpus.

	Return type

	Corpus

audiomate.processing

The processing module provides tools for processing audio data in a batch-wise manner.
The idea is to setup a predefined tool that can process all the audio from a corpus.

The basic component is the audiomate.processing.Processor. It provides the functionality
to reduce any input component like a corpus, feature-container, utterance, file to the abstraction of frames.
A concrete implementation then only has to provide the proper method to process these frames.

Often in audio processing the same components are used in combination with others.
For this purpose a pipeline can be built that processes the frames in multiple steps.
The audiomate.processing.pipeline provides the audiomate.processing.pipeline.Computation
and audiomate.processing.pipeline.Reduction classes.
These abstract classes can be extended to create processing components of a pipeline.
The different components are then be coupled to create custom pipelines.

Processor

	
class audiomate.processing.Processor

	The processor base class provides the functionality to process audio data on different levels
(Corpus, Utterance, Track). For every level there is an offline and an online method.
In the offline mode the data is processed in one step (e.g. the whole track/utterance at once).
This means the process_frames method is called with all the frames of the track/utterance.
In online mode the data is processed in chunks, so the process_frames method is called multiple times
per track/utterance with different chunks.

To implement a concrete processor the process_frames method has to be implemented.
This method is called in online and offline mode. So it is up to the user to determine
if a processor can be called in either online or offline mode, maybe both. This differs between use cases.

If the implementation of a processor does change the frame or hop-size,
it is expected to provide a transform via the frame_transform method.
Frame-size and hop-size are measured in samples regarding the original audio signal (or simply its sampling rate).

	
frame_transform(frame_size, hop_size)

	If the processor changes the number of samples that build up a frame or
the number of samples between two consecutive frames (hop-size),
this function needs transform the original frame- and/or hop-size.

This is used to store the frame-size and hop-size in a feature-container.
In the end one can calculate start and end time of a frame with this information.

By default it is assumed that the processor doesn’t change the frame-size and the hop-size.

	Parameters

	
	frame_size (int) – The original frame-size.

	hop_size (int) – The original hop-size.

	Returns

	The (frame-size, hop-size) after processing.

	Return type

	tuple

	
process_corpus(corpus, output_path, frame_size=400, hop_size=160, sr=None)

	Process all utterances of the given corpus and save the processed features in a feature-container.
The utterances are processed in offline mode so the full utterance in one go.

	Parameters

	
	corpus (Corpus) – The corpus to process the utterances from.

	output_path (str) – A path to save the feature-container to.

	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	sr (int) – Use the given sampling rate. If None uses the native sampling rate from the underlying data.

	Returns

	The feature-container containing the processed features.

	Return type

	FeatureContainer

	
process_corpus_online(corpus, output_path, frame_size=400, hop_size=160, chunk_size=1, buffer_size=5760000)

	Process all utterances of the given corpus and save the processed features in a feature-container.
The utterances are processed in online mode, so chunk by chunk.

	Parameters

	
	corpus (Corpus) – The corpus to process the utterances from.

	output_path (str) – A path to save the feature-container to.

	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	chunk_size (int) – Number of frames to process per chunk.

	buffer_size (int) – Number of samples to load into memory at once.
The exact number of loaded samples depends on the block-size of the audioread library.
So it can be of block-size higher, where the block-size is typically 1024 or 4096.

	Returns

	The feature-container containing the processed features.

	Return type

	FeatureContainer

	
process_features(corpus, input_features, output_path)

	Process all features of the given corpus and save the processed features in a feature-container.
The features are processed in offline mode, all features of an utterance at once.

	Parameters

	
	corpus (Corpus) – The corpus to process the utterances from.

	input_features (FeatureContainer) – The feature-container to process the frames from.

	output_path (str) – A path to save the feature-container to.

	Returns

	The feature-container containing the processed features.

	Return type

	FeatureContainer

	
process_features_online(corpus, input_features, output_path, chunk_size=1)

	Process all features of the given corpus and save the processed features in a feature-container.
The features are processed in online mode, chunk by chunk.

	Parameters

	
	corpus (Corpus) – The corpus to process the utterances from.

	input_features (FeatureContainer) – The feature-container to process the frames from.

	output_path (str) – A path to save the feature-container to.

	chunk_size (int) – Number of frames to process per chunk.

	Returns

	The feature-container containing the processed features.

	Return type

	FeatureContainer

	
process_frames(data, sampling_rate, offset=0, last=False, utterance=None, corpus=None)

	Process the given chunk of frames. Depending on online or offline mode,
the given chunk is either the full data or just part of it.

	Parameters

	
	data (np.ndarray) – nD Array of frames (num-frames x frame-dimensions).

	sampling_rate (int) – The sampling rate of the underlying signal.

	offset (int) – The index of the first frame in the chunk. In offline mode always 0.
(Relative to the first frame of the utterance/sequence)

	last (bool) – True indicates that this is the last frame of the sequence/utterance.
In offline mode always True.

	utterance (Utterance) – The utterance the frame is from, if available.

	corpus (Corpus) – The corpus the frame is from, if available.

	Returns

	The processed frames.

	Return type

	np.ndarray

	
process_track(track, frame_size=400, hop_size=160, sr=None, start=0, end=inf, utterance=None, corpus=None)

	Process the track in offline mode, in one go.

	Parameters

	
	track (Track) – The track to process.

	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	sr (int) – Use the given sampling rate. If None,
uses the native sampling rate from the underlying data.

	start (float) – The point within the track in seconds,
to start processing from.

	end (float) – The point within the track in seconds,
to end processing.

	utterance (Utterance) – The utterance that is associated with
this track, if available.

	corpus (Corpus) – The corpus this track is part of, if available.

	Returns

	The processed features.

	Return type

	np.ndarray

	
process_track_online(track, frame_size=400, hop_size=160, start=0, end=inf, utterance=None, corpus=None, chunk_size=1, buffer_size=5760000)

	Process the track in online mode, chunk by chunk.
The processed chunks are yielded one after another.

	Parameters

	
	track (Track) – The track to process.

	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	start (float) – The point within the track in seconds to start processing from.

	end (float) – The point within the trac in seconds to end processing.

	utterance (Utterance) – The utterance that is associated with this track, if available.

	corpus (Corpus) – The corpus this track is part of, if available.

	chunk_size (int) – Number of frames to process per chunk.

	buffer_size (int) – Number of samples to load into memory at once.
The exact number of loaded samples depends
on the type of track.
It can be of block-size higher,
where the block-size is typically 1024 or 4096.

	Returns

	A generator that yield processed chunks.

	Return type

	Generator

	
process_utterance(utterance, frame_size=400, hop_size=160, sr=None, corpus=None)

	Process the utterance in offline mode, in one go.

	Parameters

	
	utterance (Utterance) – The utterance to process.

	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	sr (int) – Use the given sampling rate. If None uses the native sampling rate from the underlying data.

	corpus (Corpus) – The corpus this utterance is part of, if available.

	Returns

	The processed features.

	Return type

	np.ndarray

	
process_utterance_online(utterance, frame_size=400, hop_size=160, chunk_size=1, buffer_size=5760000, corpus=None)

	Process the utterance in online mode, chunk by chunk.
The processed chunks are yielded one after another.

	Parameters

	
	utterance (Utterance) – The utterance to process.

	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	chunk_size (int) – Number of frames to process per chunk.

	buffer_size (int) – Number of samples to load into memory at once.
The exact number of loaded samples depends on the block-size of the audioread library.
So it can be of block-size higher, where the block-size is typically 1024 or 4096.

	corpus (Corpus) – The corpus this utterance is part of, if available.

	Returns

	A generator that yield processed chunks.

	Return type

	Generator

Pipeline

This module contains classes for creating frame processing pipelines.

A pipeline consists of one of two types of steps. A computation step takes data from a previous step or the input and
processes it. A reduction step is used to merge outputs of multiple previous steps.
It takes outputs of all incoming steps and outputs a single data block.

The steps are managed as a directed graph,
which is built by passing the parent steps to the __init__ method of a step.
Every step that is created has his own graph, but inherits all nodes and edges of the graphs of his parent steps.

Every pipeline represents a processor and implements the process_frames method.

	
class audiomate.processing.pipeline.Chunk(data, offset, is_last, left_context=0, right_context=0)

	Represents a chunk of data. It is used to pass data between different
steps of a pipeline.

	Parameters

	
	data (np.ndarray or list) – A single array of frames or a list of
separate chunks of frames of equal size.

	offset (int) – The index of the first frame in the chunk within
the sequence.

	is_last (bool) – Whether this is the last chunk of the sequence.

	left_context (int) – Number of frames that act as context at the begin
of the chunk (left).

	right_context (int) – Number of frames that act as context at the end
of the chunk (right).

	
class audiomate.processing.pipeline.Step(name=None, min_frames=1, left_context=0, right_context=0)

	This class is the base class for a step in a processing pipeline.

It handles the procedure of executing the pipeline. It makes sure the steps
are computed in the correct order. It also provides the correct inputs to
every step.

Every step has to provide a compute method which is the actual
processing.

If the implementation of a step does change the frame or hop-size,
it is expected to provide a transform via the frame_transform_step
method. Frame-size and hop-size are measured in samples regarding the
original audio signal (or simply its sampling rate).

	Parameters

	name (str, optional) – A name for identifying the step.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
frame_transform(frame_size, hop_size)

	If the processor changes the number of samples that build up a frame or
the number of samples between two consecutive frames (hop-size),
this function needs transform the original frame- and/or hop-size.

This is used to store the frame-size and hop-size in a feature-container.
In the end one can calculate start and end time of a frame with this information.

By default it is assumed that the processor doesn’t change the frame-size and the hop-size.

	Parameters

	
	frame_size (int) – The original frame-size.

	hop_size (int) – The original hop-size.

	Returns

	The (frame-size, hop-size) after processing.

	Return type

	tuple

	
frame_transform_step(frame_size, hop_size)

	If the processor changes the number of samples that build up a frame or
the number of samples between two consecutive frames (hop-size),
this function needs transform the original frame- and/or hop-size.

This is used to store the frame-size and hop-size in a
feature-container. In the end one can calculate start and end time of
a frame with this information.

By default it is assumed that the processor doesn’t change the
frame-size and the hop-size.

Note

This function is simply for this step, whereas frame_transform()
computes the transformation for the whole pipeline.

	Parameters

	
	frame_size (int) – The original frame-size.

	hop_size (int) – The original hop-size.

	Returns

	The (frame-size, hop-size) after processing.

	Return type

	tuple

	
process_frames(data, sampling_rate, offset=0, last=False, utterance=None, corpus=None)

	Execute the processing of this step and all dependent
parent steps.

	
class audiomate.processing.pipeline.Computation(parent=None, name=None, min_frames=1, left_context=0, right_context=0)

	Base class for a computation step. To implement a computation step for
pipeline the compute method has to be implemented. This method gets
the frames from its parent step including context frames if defined. It
has to return the same number of frames but without context frames.

	Parameters

	
	parent (Step, optional) – The parent step this step depends on.

	name (str, optional) – A name for identifying the step.

	
class audiomate.processing.pipeline.Reduction(parents, name=None, min_frames=1, left_context=0, right_context=0)

	Base class for a reduction step.
It gets the frames of all its parent steps as a list.
It has to return a single chunk of frames.

	Parameters

	
	parents (list) – List of parent steps this step depends on.

	name (str, optional) – A name for identifying the step.

Implementations

Some processing pipeline steps are already implemented.

Implementations of processing pipeline steps.

	Name

	Description

	MeanVarianceNorm

	Normalizes features with given mean and variance.

	MelSpectrogram

	Exctracts MelSpectrogram features.

	MFCC

	Extracts MFCC features.

	PowerToDb

	Convert power spectrum to Db.

	Delta

	Compute delta features.

	AddContext

	Add previous and subsequent frames to the current frame.

	Stack

	Reduce multiple features into one by stacking them on top of each other.

	AvgPool

	Compute the average (per dimension) over a given number of sequential frames.

	VarPool

	Compute the variance (per dimension) over a given number of sequential frames.

	OnsetStrength

	Compute onset strengths.

	Tempogram

	Compute tempogram features.

	
class audiomate.processing.pipeline.MeanVarianceNorm(mean, variance, parent=None, name=None)

	Pre-processing step to normalize mean and variance.

frame = (frame - mean) / sqrt(variance)

	Parameters

	
	mean (float) – The mean to use for normalization.

	variance (float) – The variance to use for normalization.s

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.MelSpectrogram(n_mels=128, parent=None, name=None)

	Computation step that extracts mel-spectrogram features from the given frames.

Based on http://librosa.github.io/librosa/generated/librosa.feature.melspectrogram.html

	Parameters

	n_mels (int) – Number of mel bands to generate.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.MFCC(n_mfcc=13, n_mels=128, parent=None, name=None)

	Computation step that extracts mfcc features from the given frames.

Based on http://librosa.github.io/librosa/generated/librosa.feature.mfcc.html

	Parameters

	
	n_mels (int) – Number of mel bands to generate.

	n_mfcc (int) – number of MFCCs to return.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.PowerToDb(ref=1.0, amin=1e-10, top_db=80.0, parent=None, name=None)

	Convert a power spectrogram (amplitude squared) to decibel (dB) units.

See http://librosa.github.io/librosa/generated/librosa.core.power_to_db.html

Note

The output can differ depending on offline or online processing, since it depends on statistics over all values.
And in online mode it only considers values from a single chunk,
while in offline mode all values of the whole sequence are considered.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.Delta(width=9, order=1, axis=0, mode='interp', parent=None, name=None)

	Compute delta features.

See http://librosa.github.io/librosa/generated/librosa.feature.delta.html

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.AddContext(left_frames, right_frames, parent=None, name=None)

	For every frame add context frames from left or/and right.
For frames at the beginning and end of a sequence, where no context is available, zeros are used.

	Parameters

	
	left_frames (int) – Number of previous frames to prepend to a frame.

	right_frames (int) – Number of subsequent frames to append to a frame.

Example

>>> input = np.array([
>>> [1,2,3],
>>> [4,5,6],
>>> [7,8,9]
>>>])
>>> chunk = Chunk(input, offset=0, is_last=True)
>>> AddContext(left_frames=1, right_frames=1).compute(chunk, 16000)
array([[0, 0, 0, 1, 2, 3, 4, 5, 6],
 [1, 2, 3, 4, 5, 6, 7, 8, 9],
 [4, 5, 6, 7, 8, 9, 0, 0, 0]])

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.Stack(parents, name=None, min_frames=1, left_context=0, right_context=0)

	Stack the features from multiple inputs.
All input matrices have to be of the same length (same number of frames).

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.AvgPool(size, parent=None, name=None)

	Average a given number of sequential frames into a single frame.
If at the end of a stream just the remaining frames are used, no matter how many there are left.

	Parameters

	size (float) – The maximum number of frames to pool by taking the mean.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
frame_transform_step(frame_size, hop_size)

	If the processor changes the number of samples that build up a frame or
the number of samples between two consecutive frames (hop-size),
this function needs transform the original frame- and/or hop-size.

This is used to store the frame-size and hop-size in a
feature-container. In the end one can calculate start and end time of
a frame with this information.

By default it is assumed that the processor doesn’t change the
frame-size and the hop-size.

Note

This function is simply for this step, whereas frame_transform()
computes the transformation for the whole pipeline.

	Parameters

	
	frame_size (int) – The original frame-size.

	hop_size (int) – The original hop-size.

	Returns

	The (frame-size, hop-size) after processing.

	Return type

	tuple

	
class audiomate.processing.pipeline.VarPool(size, parent=None, name=None)

	Variance over a given number of sequential frames to form a single frame.
If at the end of a stream just the remaining frames are used, no matter how many there are left.

	Parameters

	size (float) – The maximum number of frames to pool by taking the mean.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
frame_transform_step(frame_size, hop_size)

	If the processor changes the number of samples that build up a frame or
the number of samples between two consecutive frames (hop-size),
this function needs transform the original frame- and/or hop-size.

This is used to store the frame-size and hop-size in a
feature-container. In the end one can calculate start and end time of
a frame with this information.

By default it is assumed that the processor doesn’t change the
frame-size and the hop-size.

Note

This function is simply for this step, whereas frame_transform()
computes the transformation for the whole pipeline.

	Parameters

	
	frame_size (int) – The original frame-size.

	hop_size (int) – The original hop-size.

	Returns

	The (frame-size, hop-size) after processing.

	Return type

	tuple

	
class audiomate.processing.pipeline.OnsetStrength(n_mels=128, parent=None, name=None)

	Compute a spectral flux onset strength envelope.

Based on http://librosa.github.io/librosa/generated/librosa.onset.onset_strength.html

	Parameters

	n_mels (int) – Number of mel bands to generate.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

	
class audiomate.processing.pipeline.Tempogram(n_mels=128, win_length=384, parent=None, name=None)

	Computation step to compute tempogram

Based on http://librosa.github.io/librosa/generated/librosa.feature.tempogram.html

	Parameters

	
	n_mels (int) – Number of mel bands to generate.

	win_length (int) – Length of the onset autocorrelation window (in frames/onset measurements).
The default settings (384) corresponds to 384 * hop_length / sr ~= 8.9s.

	
compute(chunk, sampling_rate, corpus=None, utterance=None)

	Do the computation of the step. If the step uses context, the result has
to be returned without context.

	Parameters

	
	chunk (Chunk) – The chunk containing data and info about context,
offset, …

	sampling_rate (int) – The sampling rate of the underlying signal.

	corpus (Corpus) – The corpus the data is from, if available.

	utterance (Utterance) – The utterance the data is from, if available.

	Returns

	The array of processed frames, without context.

	Return type

	np.ndarray

audiomate.encoding

The encoding module provides functionality to encode labels to use
for example for training a DNN.

Encoder

	
class audiomate.encoding.Encoder

	Base class for an encoder. The goal of an encoder is to extract encoded targets for an utterance.
The base class provides functionality to perform encoding for a full corpus.
A concrete encoder just has to provide the method to encode a single utterance via encode_utterance.

For example for training a frame-classifier, an encoder extracts one-hot encoded vectors from a label-list.

	
encode_corpus(corpus, output_path)

	Encode all utterances of the given corpus and store them in a audiomate.container.Container.

	Parameters

	
	corpus (Corpus) – The corpus to process.

	output_path (str) – The path to store the container with the encoded data.

	Returns

	The container with the encoded data.

	Return type

	Container

	
encode_utterance(utterance, corpus=None)

	Encode the given utterance.

	Parameters

	
	utterance (Utterance) – The utterance to encode.

	corpus (Corpus) – The corpus the utterance is from.

	Returns

	Encoded data.

	Return type

	np.ndarray

Frame-Based

	
class audiomate.encoding.FrameHotEncoder(labels, label_list_idx, frame_settings, sr=None)

	The FrameHotEncoder is used to encode the labels per frame.
It creates a matrix with dimension num-frames x len(labels).
The vector (2nd dim) has an entry for every label in the passed labels-list.
If the sequence contains a given label within a frame it is set to 1.

	Parameters

	
	labels (list) – List of labels (str) which should be included in the vector representation.

	label_list_idx (str) – The name of the label-list to use for encoding.
Only labels of this label-list are considered.

	frame_settings (FrameSettings) – Frame settings to use.

	sr (int) – The sampling rate used, if None it is assumed the native sampling rate from the file is used.

Example

>>> from audiomate import annotations
>>> from audiomate.utils import units import
>>>
>>> ll = annotations.LabelList(idx='test', labels=[
>>> annotations.Label('music', 0, 2),
>>> annotations.Label('speech', 2, 5),
>>> annotations.Label('noise', 4, 6),
>>> annotations.Label('music', 6, 8)
>>>])
>>> utt.set_label_list(ll)
>>>
>>> labels = ['speech', 'music', 'noise']
>>> fs = units.FrameSettings(16000, 16000)
>>> encoder = FrameHotEncoder(labels, 'test', frame_settings=fs, sr=16000)
>>> encoder.encode_utterance(utt)
array([
 [0, 1, 0],
 [0, 1, 0],
 [1, 0, 0],
 [1, 0, 0],
 [1, 0, 1],
 [0, 0, 1],
 [0, 1, 0],
 [0, 1, 0]
])

	
encode_utterance(utterance, corpus=None)

	Encode the given utterance.

	Parameters

	
	utterance (Utterance) – The utterance to encode.

	corpus (Corpus) – The corpus the utterance is from.

	Returns

	Encoded data.

	Return type

	np.ndarray

	
class audiomate.encoding.FrameOrdinalEncoder(labels, label_list_idx, frame_settings, sr=None)

	The FrameOrdinalEncoder is used to encode the labels per frame.
It creates a vector with length num-frames.
For every frame sets the index of the label that is present for that frame.
If multiple labels are present the longest within the frame.
If multiple labels have the same length the smaller index is selected, hence
the passed labels list acts as a priority.

	Parameters

	
	labels (list) – List of labels (str) which should be included in the vector representation.

	label_list_idx (str) – The name of the label-list to use for encoding.
Only labels of this label-list are considered.

	frame_settings (FrameSettings) – Frame settings to use.

	sr (int) – The sampling rate used, if None it is assumed the native sampling rate from the file is used.

Example

>>> from audiomate import annotations
>>> from audiomate.utils import units import
>>>
>>> ll = annotations.LabelList(idx='test', labels=[
>>> annotations.Label('music', 0, 2),
>>> annotations.Label('speech', 2, 5),
>>> annotations.Label('noise', 4, 6),
>>> annotations.Label('music', 6, 8)
>>>])
>>> utt.set_label_list(ll)
>>>
>>> labels = ['speech', 'music', 'noise']
>>> fs = units.FrameSettings(16000, 16000)
>>> encoder = FrameOrdinalEncoder(labels, 'test', frame_settings=fs)
>>> encoder.encode_utterance(utt)
array([1,1,0,0,0,2,1,1])

	
encode_utterance(utterance, corpus=None)

	Encode the given utterance.

	Parameters

	
	utterance (Utterance) – The utterance to encode.

	corpus (Corpus) – The corpus the utterance is from.

	Returns

	Encoded data.

	Return type

	np.ndarray

Utterance-Based

	
class audiomate.encoding.TokenOrdinalEncoder(label_list_idx, tokens, token_delimiter=' ')

	Class to encode labels of a given label-list. Every token of the labels is mapped to a number.
For the full utterance a sequence/array of numbers are computed, which correspond to tokens.

Tokens are extracted from labels by splitting using a delimiter (by default space).
See audiomate.annotations.Label.tokenized().
Hence a token can be word, phone, …, depending on the label and the delimiter.

	Parameters

	
	label_list_idx (str) – The name of the label-list to use for encoding.
Only labels of this label-list are considered.

	tokens (list) – List of tokens that defines the mapping. First label will get the 0 in the encoding and so on.

	token_delimiter (str) – Delimiter to split labels into tokens.

Example

>>> ll = LabelList(idx='words', labels=[Label('down the road')])
>>> utt = Utterance('utt-1', 'file-x', label_lists=ll)
>>>
>>> tokens = ['up', 'down', 'road', 'stree', 'the']
>>> encoder = TokenOrdinalEncoder('words', tokens, token_delimiter=' ')
>>> encoder.encode_utterance(utt)
np.array([1, 4, 2])

	
encode_utterance(utterance, corpus=None)

	Encode the given utterance.

	Parameters

	
	utterance (Utterance) – The utterance to encode.

	corpus (Corpus) – The corpus the utterance is from.

	Returns

	Encoded data.

	Return type

	np.ndarray

audiomate.feeding

The audiomate.feeding module provides tools for a simple access to data stored in different
audiomate.corpus.assets.Container.

Datasets

	
class audiomate.feeding.Dataset(corpus_or_utt_ids, feature_containers)

	An abstract class representing a dataset. A dataset provides indexable access to data.
An implementation of a concrete dataset should override the methods __len__ and __getitem.

A sample returned from a dataset is a tuple containing the data for this sample from every container.
The data from different containers is ordered in the way the containers were passed to the Dataset.

	Parameters

	
	corpus_or_utt_ids (Corpus, list) – Either a corpus or a list of utterances.
This defines which utterances are considered for iterating.

	containers (list, Container) – A single container or a list of containers.

	
class audiomate.feeding.FrameDataset(corpus_or_utt_ids, container)

	A dataset wrapping frames of a corpus. A single sample represents a single frame.

	Parameters

	
	corpus_or_utt_ids (Corpus, list) – Either a corpus or a list of utterances.
This defines which utterances are considered for iterating.

	container (list, Container) – A single container or a list of containers.

Note

For a frame dataset it is expected that every container contains exactly one value/vector for every frame.
So the first dimension of every array in every container have to match.

Example

>>> corpus = audiomate.Corpus.load('/path/to/corpus')
>>> container_inputs = containers.FeatureContainer('/path/to/features.hdf5')
>>> container_outputs = containers.Container('/path/to/targets.hdf5')
>>>
>>> ds = FrameDataset(corpus, [container_inputs, container_outputs])
>>> len(ds) # Number of frames in the dataset
2938
>>> ds[293] # Frame (inputs, outputs) with index 293
(
 array([0.58843831, 0.18128443, 0.19718328, 0.25284105]),
 array([0.0, 1.0])
)

	
get_utt_regions()

	Return the regions of all utterances, assuming all utterances are concatenated.
It is assumed that the utterances are sorted in ascending order for concatenation.

A region is defined by offset (in chunks), length (num-chunks) and
a list of references to the utterance datasets in the containers.

	Returns

	List of with a tuple for every utterances containing the region info.

	Return type

	list

	
partitioned_iterator(partition_size, shuffle=True, seed=None)

	Return a partitioning audiomate.feeding.FrameIterator for the dataset.

	Parameters

	
	partition_size (str) – Size of the partitions in bytes. The units k (kibibytes), m
(mebibytes) and g (gibibytes) are supported, i.e. a partition_size
of 1g equates \(2^{30}\) bytes.

	shuffle (bool) – Indicates whether the data should be returned in
random order (True) or not (False).

	seed (int) – Seed to be used for the random number generator.

	Returns

	A partition iterator over the dataset.

	Return type

	FrameIterator

	
class audiomate.feeding.MultiFrameDataset(corpus_or_utt_ids, container, frames_per_chunk, return_length=False, pad=False)

	A dataset wrapping chunks of frames of a corpus. A single sample represents a chunk of frames.

A chunk doesn’t overlap an utterances boundaries. So if the utterance length is not divisible by the chunk length,
the last chunk of an utterance may be smaller than the chunk size.

	Parameters

	
	corpus_or_utt_ids (Corpus, list) – Either a corpus or a list of utterances.
This defines which utterances are considered for iterating.

	container (list, Container) – A single container or a list of containers.

	frames_per_chunk (int) – Number of subsequent frames in a single sample.

	return_length (bool) – If True, the length of the chunk is returned as well. (default False)
The length is appended to tuple as the last element.
(e.g. [container1-data, container2-data, length])

	pad (bool) – If True, samples that are shorter are padded with zeros to match frames_per_chunk.
If padding is enabled, the lengths are always returned return_length = True.

Note

For a multi-frame dataset it is expected that every container contains exactly one value/vector for every frame.
So the first dimension of every array in every container have to match.

Examples

>>> corpus = audiomate.Corpus.load('/path/to/corpus')
>>> container_inputs = containers.FeatureContainer('/path/to/features.hdf5')
>>> container_outputs = containers.Container('/path/to/targets.hdf5')
>>>
>>> ds = MultiFrameDataset(corpus, [container_inputs, container_outputs], 5)
>>> len(ds) # Number of chunks in the dataset
355
>>> ds[20] # Chunk (inputs, outputs) with index 20
(
 array([[0.72991909, 0.20258683, 0.30574747, 0.53783217],
 [0.38875413, 0.83611128, 0.49054591, 0.15710017],
 [0.35153358, 0.40051009, 0.93647765, 0.29589257],
 [0.97465772, 0.80160451, 0.81871436, 0.4892925],
 [0.59310933, 0.8565602 , 0.95468696, 0.07933512]]),
 array([[0.0, 1.0], [0.0, 1.0],[0.0, 1.0],[0.0, 1.0], [0.0, 1.0]])
)

If the length should be returned, pass True to return_length
(Except for chunks at the of utterances the length will be equal to frames_per_chunk.)

>>> corpus = audiomate.Corpus.load('/path/to/corpus')
>>> container_inputs = containers.FeatureContainer('/path/to/features.hdf5')
>>> container_outputs = containers.Container('/path/to/targets.hdf5')
>>>
>>> ds = MultiFrameDataset(corpus, [container_inputs, container_outputs], 5)
>>> len(ds) # Number of chunks in the dataset
355
>>> ds[20] # Chunk (inputs, outputs) with index 20
(
 array([[0.72991909, 0.20258683, 0.30574747, 0.53783217],
 [0.38875413, 0.83611128, 0.49054591, 0.15710017],
 [0.35153358, 0.40051009, 0.93647765, 0.29589257],
 [0.97465772, 0.80160451, 0.81871436, 0.4892925],
 [0.59310933, 0.8565602 , 0.95468696, 0.07933512]]),
 array([[0.0, 1.0], [0.0, 1.0],[0.0, 1.0],[0.0, 1.0], [0.0, 1.0]]),
 5
)

	
get_utt_regions()

	Return the regions of all utterances, assuming all utterances are concatenated.
It is assumed that the utterances are sorted in ascending order for concatenation.

A region is defined by offset (in chunks), length (num-chunks) and
a list of references to the utterance datasets in the containers.

	Returns

	List of with a tuple for every utterances containing the region info.

	Return type

	list

	
partitioned_iterator(partition_size, shuffle=True, seed=None)

	Return a partitioning audiomate.feeding.MultiFrameIterator for the dataset.

	Parameters

	
	partition_size (str) – Size of the partitions in bytes. The units k (kibibytes), m
(mebibytes) and g (gibibytes) are supported, i.e. a partition_size
of 1g equates \(2^{30}\) bytes.

	shuffle (bool) – Indicates whether the data should be returned in
random order (True) or not (False).

	seed (int) – Seed to be used for the random number generator.

	Returns

	A partition iterator over the dataset.

	Return type

	MultiFrameIterator

Iterator

	
class audiomate.feeding.DataIterator(corpus_or_utt_ids, feature_containers, shuffle=True, seed=None)

	An abstract class representing a data-iterator. A data-iterator provides sequential access to data.
An implementation of a concrete data-iterator should override the methods __iter__ and __next__.

A sample returned from a data-iterator is a tuple containing the data for this sample from every container.
The data from different containers is ordered in the way the containers were passed to the DataIterator.

	Parameters

	
	corpus_or_utt_ids (Corpus, list) – Either a corpus or a list of utterances.
This defines which utterances are considered for iterating.

	containers (list, Container) – A single container or a list of containers.

	shuffle (bool) – Indicates whether the data should be returned in
random order (True) or not (False).

	seed (int) – Seed to be used for the random number generator.

	
class audiomate.feeding.FrameIterator(corpus_or_utt_ids, container, partition_size, shuffle=True, seed=None)

	A data-iterator wrapping frames of a corpus. A single sample represents a single frame.

	Parameters

	
	corpus_or_utt_ids (Corpus, list) – Either a corpus or a list of utterances.
This defines which utterances are considered for iterating.

	container (list, Container) – A single container or a list of containers.

	partition_size (str) – Size of the partitions in bytes. The units k (kibibytes), m (mebibytes) and g
(gibibytes) are supported, i.e. a partition_size of 1g equates \(2^{30}\)
bytes.

	shuffle (bool) – Indicates whether the data should be returned in
random order (True) or not (False).

	seed (int) – Seed to be used for the random number generator.

Note

For a FrameIterator it is expected that every container contains exactly one value/vector for every frame.
So the first dimension of every array in every container have to match.

Example

>>> corpus = audiomate.Corpus.load('/path/to/corpus')
>>> container_inputs = containers.FeatureContainer('/path/to/features.hdf5')
>>> container_outputs = containers.Container('/path/to/targets.hdf5')
>>>
>>> ds = FrameIterator(corpus, [container_inputs, container_outputs], '1G', shuffle=True, seed=23)
>>> next(ds) # Next Frame (inputs, outputs)
(
 array([0.58843831, 0.18128443, 0.19718328, 0.25284105]),
 array([0.0, 1.0])
)

	
class audiomate.feeding.MultiFrameIterator(corpus_or_utt_ids, container, partition_size, frames_per_chunk, return_length=False, pad=False, shuffle=True, seed=None)

	A data-iterator wrapping chunks of subsequent frames of a corpus.
A single sample represents a chunk of frames.

	Parameters

	
	corpus_or_utt_ids (Corpus, list) – Either a corpus or a list of utterances.
This defines which utterances are considered for iterating.

	container (list, Container) – A single container or a list of containers.

	partition_size (str) – Size of the partitions in bytes. The units k (kibibytes), m (mebibytes) and g
(gibibytes) are supported, i.e. a partition_size of 1g equates \(2^{30}\)
bytes.

	frames_per_chunk (int) – Number of subsequent frames in a single sample.

	return_length (bool) – If True, the length of the chunk is returned as well. (default False)
The length is appended to tuple as the last element.
(e.g. [container1-data, container2-data, length])

	pad (bool) – If True, samples that are shorter are padded with zeros to match frames_per_chunk.
If padding is enabled, the lengths are always returned return_length = True.

	shuffle (bool) – Indicates whether the data should be returned in
random order (True) or not (False).

	seed (int) – Seed to be used for the random number generator.

Note

For a MultiFrameIterator it is expected that every container contains exactly one value/vector for every frame.
So the first dimension (outermost) of every array in every container have to match.

Example

>>> corpus = audiomate.Corpus.load('/path/to/corpus')
>>> container_inputs = containers.FeatureContainer('/path/to/features.hdf5')
>>> container_outputs = containers.Container('/path/to/targets.hdf5')
>>>
>>> ds = MultiFrameIterator(corpus, [container_inputs, container_outputs], '1G', 5, shuffle=True, seed=23)
>>> next(ds) # Next Chunk (inputs, outputs)
(
 array([[0.72991909, 0.20258683, 0.30574747, 0.53783217],
 [0.38875413, 0.83611128, 0.49054591, 0.15710017],
 [0.35153358, 0.40051009, 0.93647765, 0.29589257],
 [0.97465772, 0.80160451, 0.81871436, 0.4892925],
 [0.59310933, 0.8565602 , 0.95468696, 0.07933512]])
 array([[0.0, 1.0], [0.0, 1.0],[0.0, 1.0],[0.0, 1.0], [0.0, 1.0]])
)

Partitioning

	
class audiomate.feeding.PartitioningContainerLoader(corpus_or_utt_ids, feature_containers, partition_size, shuffle=True, seed=None)

	Load data from one or more containers in partitions.
It computes a scheme to load the data of as many utterances
as possible in one partition.

A scheme is initially computed on creation of the loader.
To compute a new one the reload() method can be used.
This only has an effect if shuffle == True,
otherwise the utterances are defined always loaded in the same order.

With a given scheme, data of a partition can be
retrieved via load_partition_data().
It loads all data of the partition with the given index into memory.

	Parameters

	
	corpus_or_utt_ids (Corpus, list) – Either a corpus or a list of
utterances. This defines which
utterances are considered for loading.

	containers (container.Container, list) – Either a single or a list of
Container objects. From the
given containers data is loaded.

	partition_size (str) – Size of the partitions in bytes. The units
k (kibibytes), m (mebibytes) and g
(gibibytes) are supported, i.e. a
partition_size of 1g
equates \(2^{30}\) bytes.

	shuffle (bool) – Indicates whether the utterances should be returned in
random order (True) or not (False).

	seed (int) – Seed to be used for the random number generator.

Example

>>> corpus = audiomate.Corpus.load('/path/to/corpus')
>>> container_inputs = containers.FeatureContainer('/path/to/feat.hdf5')
>>> container_outputs = containers.Container('/path/to/targets.hdf5')
>>>
>>> lo = PartitioningContainerLoader(
>>> corpus,
>>> [container_inputs, container_outputs],
>>> '1G',
>>> shuffle=True,
>>> seed=23
>>>)
>>> len(lo.partitions) # Number of parititions
5
>>> lo.partitions[0].utt_ids # Utterances in the partition with index 0
['utt-1', 'utt-2', ...]
>>> p0 = lo.load_partition_data(0) # Load partition 0 into memory
>>> p0.info.utt_ids[0] # First utterance in the partition
'utt-1'
>>> p0.utt_data[0] # Data of the first utterance
(
 array([[0.58843831, 0.18128443, 0.19718328, 0.25284105], ...]),
 array([[0.0, 1.0], ...])
)

	
load_partition_data(index)

	Load and return the partition with the given index.

	Parameters

	index (int) – The index of partition,
that refers to the index in self.partitions.

	Returns

	
	A PartitionData object containing the data

	for the partition with the given index.

	Return type

	PartitionData

	
reload()

	Create a new partition scheme. A scheme defines which utterances
are in which partition. The scheme only changes after every call
if self.shuffle == True.

	Returns

	
	List of PartitionInfo objects, defining the new partitions

	(same as self.partitions).

	Return type

	list

	
class audiomate.feeding.PartitionInfo

	Class for holding the info of a partition.

	Variables

	
	utt_ids (list) – A list of utterance-ids in the partition.

	utt_lengths (list) – List with lengths of the utterances (Outermost
dimension in the dataset of the container). Since
there are maybe multiple containers, every item
is a tuple of lengths. They correspond to the
length of the utterance in every container, in the
order of the containers passed to
the ParitioningContainerLoader.

	size (int) – The number of bytes the partition will allocate,
when loaded.

	
total_lengths()

	Return the total length of all utterances for every container.

	
class audiomate.feeding.PartitionData(info)

	Class for holding the loaded data of a partition.

	Parameters

	info (PartitionInfo) – The info about the partition.

	Variables

	utt_data (list) – A list holding the data-objects for every utterance
in the order of info.utt_ids. The entries are
also lists or tuples containing the array for every
container.

	
class audiomate.feeding.PartitioningFeatureIterator(hdf5file, partition_size, shuffle=True, seed=None, includes=None, excludes=None)

	Iterates over all features in the given HDF5 file.

Before iterating over the features, the iterator slices the file into one
or more partitions and loads the data into memory. This leads to
significant speed-ups even with moderate partition sizes, regardless
of the type of disk (spinning or flash). Pseudo random access is supported
with a negligible impact on performance and randomness: The data is
randomly sampled (without replacement) within each partition and
the partitions are loaded in random order, too.

The features are emitted as triplets in the form of
(utterance name, index of the feature within the utterance, feature).

When calculating the partition sizes only the size of the features itself
is factored in, overhead of data storage is ignored. This overhead is
usually negligible even with partition sizes of multiple gigabytes because
the data is stored as numpy ndarrays in memory (one per utterance).
The overhead of a single ndarray is 96 bytes regardless of its size.
Nonetheless the partition size should be chosen to be lower than the
total available memory.

	Parameters

	
	hdf5file (h5py.File) – HDF5 file containing the features

	partition_size (str) – Size of the partitions in bytes. The units
k (kibibytes), m (mebibytes) and
g (gibibytes) are supported,
i.e. a partition_size of 1g
equates \(2^{30}\) bytes.

	shuffle (bool) – Indicates whether the features should be returned in
random order (True) or not (False).

	seed (int) – Seed to be used for the random number generator.

	includes (iterable) – Iterable of names of data sets that should be
included when iterating over the feature
container. Mutually exclusive with excludes.
If both are specified,
only includes will be considered.

	excludes (iterable) – Iterable of names of data sets to skip
when iterating over the feature container.
Mutually exclusive with includes. If both
are specified, only includes will be considered.

Example

>>> import h5py
>>> from audiomate.feeding import PartitioningFeatureIterator
>>> hdf5 = h5py.File('features.h5', 'r')
>>> iterator = PartitioningFeatureIterator(hdf5, '12g', shuffle=True)
>>> next(iterator)
('music-fma-0100', 227, array([
 -0.15004082, -0.30246958, -0.38708138, ...,
 -0.93471956, -0.94194776, -0.90878332], dtype=float32))
>>> next(iterator)
('music-fma-0081', 2196, array([
 -0.00207647, -0.00101351, -0.00058832, ...,
 -0.00207647, -0.00292684, -0.00292684], dtype=float32))
>>> next(iterator)
('music-hd-0050', 1026, array([
 -0.57352495, -0.63049972, -0.63049972, ...,
 0.82490814, 0.84680521, 0.75517786], dtype=float32))

audiomate.formats

This module contains code for working with different file formats.

Audacity Labels

	
audiomate.formats.audacity.read_label_file(path)

	Read the labels from an audacity label file.

	Parameters

	path (str) – Path to the label file.

	Returns

	List of labels (start [sec], end [sec], label)

	Return type

	list

Example:

>>> read_label_file('/path/to/label/file.txt')
[
 [0.0, 0.2, 'sie'],
 [0.2, 2.2, 'hallo']
]

	
audiomate.formats.audacity.read_label_list(path)

	Reads labels from an Audacity label file
and returns them wrapped in a audiomate.annotations.LabelList.

	Parameters

	path (str) – Path to the Audacity label file

	Returns

	Label list containing the labels

	Return type

	audiomate.annotations.LabelList

	
audiomate.formats.audacity.write_label_file(path, entries)

	Writes an audacity label file. Start and end times are in seconds.

	Parameters

	
	path (str) – Path to write the file to.

	entries (list) – List with entries to write.

Example:

>>> data = [
>>> [0.0, 0.2, 'sie'],
>>> [0.2, 2.2, 'hallo']
>>>]
>>>
>>> write_label_file('/some/path/to/file.txt', data)

	
audiomate.formats.audacity.write_label_list(path, label_list)

	Writes the given label_list to an audacity label file.

	Parameters

	
	path (str) – Path to write the file to.

	label_list (audiomate.annotations.LabelList) – Label list

CTM Files

	
audiomate.formats.ctm.read_file(path)

	Reads a ctm file.

	Parameters

	path (str) – Path to the file

	Returns

	Dictionary with entries.

	Return type

	(dict)

Example:

>>> read_file('/path/to/file.txt')
{
 'wave-ab': [
 ['1', 0.00, 0.07, 'HI', 1],
 ['1', 0.09, 0.08, 'AH', 1]
],
 'wave-xy': [
 ['1', 0.00, 0.07, 'HI', 1],
 ['1', 0.09, 0.08, 'AH', 1]
]
}

	
audiomate.formats.ctm.write_file(path, entries)

	Writes a ctm file.

	Parameters

	
	path (str) – Path to write the file to.

	entries (list) – List with entries to write. (entries -> wave-file, channel, start (seconds),
duration (seconds), label)

Example:

>>> data = [
>>> ["wave-ab", '1', 0.0, 0.82, "duda"],
>>> ["wave-xy", '1', 0.82, 0.57, "Jacques"],
>>>]
>>>
>>> write_file('/path/to/file.txt', data)

TRN Files

Functions for reading/writing sclite transcription files.

Description of the format:
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/infmts.htm#trn_fmt_name_0

	
audiomate.formats.trn.read(path)

	Read the labels from a transcription file.

	Parameters

	path (str) – Path to the label file.

	Returns

	Dictionary of transcriptions (utt-idx: transcription)

	Return type

	dict

Example:

>>> read_label_file('/path/to/label/file.txt')
{
 'utt-1': 'sie',
 'utt-2': 'hallo'
}

	
audiomate.formats.trn.write(path, entries)

	Writes an transcription file.

	Parameters

	
	path (str) – Path to write the file to.

	entries (dict) – List with entries to write.

Example:

>>> data = {
>>> 'utt-1': 'sie',
>>> 'utt-2': 'hallo',
>>> }
>>>
>>> write_label_file('/some/path/to/file.txt', data)

audiomate.utils

Audio

	
audiomate.utils.audio.process_buffer(buffer, n_channels)

	Merge the read blocks and resample if necessary.

	Parameters

	
	buffer (list) – A list of blocks of samples.

	n_channels (int) – The number of channels of the input data.

	Returns

	The samples

	Return type

	np.array

	
audiomate.utils.audio.read_blocks(file_path, start=0.0, end=inf, buffer_size=5760000)

	Read an audio file block after block. The blocks are yielded one by one.

	Parameters

	
	file_path (str) – Path to the file to read.

	start (float) – Start in seconds to read from.

	end (float) – End in seconds to read to.
inf means to the end of the file.

	buffer_size (int) – Number of samples to load into memory at once and
return as a single block. The exact number of loaded
samples depends on the block-size of the
audioread library. So it can be of x higher,
where the x is typically 1024 or 4096.

	Returns

	A generator yielding the samples for every block.

	Return type

	Generator

	
audiomate.utils.audio.read_frames(file_path, frame_size, hop_size, start=0.0, end=inf, buffer_size=5760000)

	Read an audio file frame by frame. The frames are yielded one after another.

	Parameters

	
	file_path (str) – Path to the file to read.

	frame_size (int) – The number of samples per frame.

	hop_size (int) – The number of samples between two frames.

	start (float) – Start in seconds to read from.

	end (float) – End in seconds to read to.
inf means to the end of the file.

	buffer_size (int) – Number of samples to load into memory at once
and return as a single block.
The exact number of loaded samples depends on the
block-size of the audioread library. So it can be
of x higher, where the x is typically 1024 or 4096.

	Returns

	A generator yielding a tuple for every frame.
The first item is the frame and
the second a boolean indicating if it is the last frame.

	Return type

	Generator

	
audiomate.utils.audio.write_wav(path, samples, sr=16000)

	Write to given samples to a wav file.
The samples are expected to be floating point numbers
in the range of -1.0 to 1.0.

	Parameters

	
	path (str) – The path to write the wav to.

	samples (np.array) – A float array .

	sr (int) – The sampling rate.

Audioread

Wrapping opening function of audioread library.
This is used to cache the available backends.
If backend evaluation is done on every call it is very inefficient.

	
audiomate.utils.audioread.audio_open(path)

	Just calls audioread.audio_open,
but with backends cached in a global variable.
Brings better performance, since available backends
are evaluated only once.

JSON File

This module contains functions for reading and writing json files.

	
audiomate.utils.jsonfile.read_json_file(path)

	Reads and return the data from the json file at the given path.

	Parameters

	path (str) – Path to read

	Returns

	The read json as dict/list.

	Return type

	dict,list

	
audiomate.utils.jsonfile.write_json_to_file(path, data)

	Writes data as json to file.

	Parameters

	
	path (str) – Path to write to

	data (dict, list) – Data

Naming

This module contains functions for working with names.
For example to generate identifiers or find an identifier which not already exists in a given list.

	
audiomate.utils.naming.generate_name(length=15, not_in=None)

	Generates a random string of lowercase letters with the given length.

	Parameters

	
	length (int) – Length of the string to output.

	not_in (list) – Only return a string not in the given iterator.

	Returns

	A new name thats not in the given list.

	Return type

	str

	
audiomate.utils.naming.index_name_if_in_list(name, name_list, suffix='', prefix='')

	Find a unique name by adding an index to the name so it is unique within the given list.

	Parameters

	
	name (str) – Name

	name_list (iterable) – List of names that the new name must differ from.

	suffix (str) – The suffix to append after the index.

	prefix (str) – The prefix to append in front of the index.

	Returns

	A unique name within the given list.

	Return type

	str

Text

This module contains any functions
for working with text/strings/punctuation.

	
audiomate.utils.text.remove_punctuation(text, exceptions=None)

	Return a string with punctuation removed.

	Parameters

	
	text (str) – The text to remove punctuation from.

	exceptions (list) – List of symbols to keep in the given text.

	Returns

	The input text without the punctuation.

	Return type

	str

	
audiomate.utils.text.starts_with_prefix_in_list(text, prefixes)

	Return True if the given string starts with one of the prefixes
in the given list, otherwise return False.

	Parameters

	
	text (str) – Text to check for prefixes.

	prefixes (list) – List of prefixes to check for.

	Returns

	
	True if the given text starts with any of the given prefixes,

	False otherwise.

	Return type

	bool

Text File

The textfile module contains functions
for reading and writing textfiles.

	
audiomate.utils.textfile.read_key_value_lines(path, separator=' ', default_value='')

	Reads lines of a text file with two columns as key/value dictionary.

	Parameters

	
	path (str) – Path to the file.

	separator (str) – Separator that is used to split key and value.

	default_value (str) – If no value is given this value is used.

	Returns

	A dictionary with first column as key and second as value.

	Return type

	dict

	
audiomate.utils.textfile.read_separated_lines(path, separator=' ', max_columns=-1, keep_empty=False)

	Reads a text file where each line represents a record with some separated columns.

	Parameters

	
	path (str) – Path to the file to read.

	separator (str) – Separator that is used to split the columns.

	max_columns (int) – Number of max columns (if the separator occurs within the last column).

	keep_empty (bool) – If True empty columns are returned as well.

	Returns

	A list containing a list for each line read.

	Return type

	list

	
audiomate.utils.textfile.read_separated_lines_generator(path, separator=' ', max_columns=-1, ignore_lines_starting_with=None, keep_empty=False)

	Creates a generator through all lines of a file and returns the splitted line.

	Parameters

	
	path (str) – Path to the file.

	separator (str) – Separator that is used to split the columns.

	max_columns (int) – Number of max columns (if the separator occurs within the last column).

	ignore_lines_starting_with (list) – Lines starting with a string in this list will be ignored.

	keep_empty (bool) – If True empty columns are returned as well.

	
audiomate.utils.textfile.read_separated_lines_with_first_key(path: str, separator: str = ' ', max_columns: int = -1, keep_empty: bool = False)

	Reads the separated lines of a file and return a dictionary with the first column as keys, value
is a list with the rest of the columns.

	Parameters

	
	path (str) – Path to the file to read.

	separator (str) – Separator that is used to split the columns.

	max_columns (str) – Number of max columns (if the separator occurs within the last column).

	keep_empty (bool) – If True empty columns are returned as well.

	Returns

	Dictionary with list of column values and first column value as key.

	Return type

	dict

	
audiomate.utils.textfile.write_separated_lines(path, values, separator=' ', sort_by_column=0)

	Writes list or dict to file line by line. Dict can have list as value then they written
separated on the line.

	Parameters

	
	path (str) – Path to write file to.

	values (dict, list) – A dictionary or a list to write to the file.

	separator (str) – Separator to use between columns.

	sort_by_column (int) – if >= 0, sorts the list by the given index, if its 0 or 1 and its a
dictionary it sorts it by either the key (0) or value (1). By default
0, meaning sorted by the first column or the key.

Units

This module contains functions for handling different units.
Especially it provides function to convert from one to another unit (e.g. seconds -> sample-indexn).

	
class audiomate.utils.units.FrameSettings(frame_size, hop_size)

	This class provides functions for handling conversions/calculations between time, samples and frames.

	By default the framing is done as follows:

	
	The first frame starts at sample 0

	The end of the last frame is higher than the last sample.

	The end of the last frame is smaller than the last sample + hop_size

	Parameters

	
	frame_size (int) – Number of samples used per frame.

	hop_size (int) – Number of samples between two frames.

	
frame_to_sample(frame_index)

	Return a tuple containing the indices of the sample
which are the first sample and the end (exclusive)
of the frame with the given index.

	
frame_to_seconds(frame_index, sr)

	Return a tuple containing the start and end
of the frame in seconds.

	
num_frames(num_samples)

	Return the number of frames that will be used
for a signal with the length of num_samples.

	
sample_to_frame_range(sample_index)

	Return a tuple containing the indices of the first frame
containing the sample with the given index and
the last frame (exclusive, doesn’t contain the sample anymore).

	
time_range_to_frame_range(start, end, sr)

	Calculate the frames containing samples from the given time range in seconds.

	Parameters

	
	start (float) – Start time in seconds.

	end (float) – End time in seconds.

	sr (int) – The sampling rate to use for time-to-sample conversion.

	Returns

	A tuple containing the start and end (exclusive) frame indices.

	Return type

	tuple

	
audiomate.utils.units.parse_storage_size(storage_size)

	Parses an expression that represents an amount of storage/memory
and returns the number of bytes it represents.

	Parameters

	storage_size (str) – Size in bytes. The units k (kibibytes),
m (mebibytes) and g (gibibytes)
are supported, i.e. a partition_size of 1g
equates \(2^{30}\) bytes.

	Returns

	Number of bytes.

	Return type

	int

	
audiomate.utils.units.sample_to_seconds(sample, sampling_rate=16000)

	Convert a sample index to seconds based on the given sampling rate.

	Parameters

	
	sample (int) – The index of the sample (0 based).

	sampling_rate (int) – The sampling rate to use for conversion.

	Returns

	The time in seconds.

	Return type

	float

	Example::

	>>> sample_to_seconds(20800, sampling_rate=16000)
1.3

	
audiomate.utils.units.seconds_to_sample(seconds, sampling_rate=16000)

	Convert a value in seconds to a sample index based on the given sampling rate.

	Parameters

	
	seconds (float) – The value in seconds.

	sampling_rate (int) – The sampling rate to use for conversion.

	Returns

	The sample index (0-based).

	Return type

	int

	Example::

	>>> seconds_to_sample(1.3, sampling_rate=16000)
20800

Misc

	
audiomate.utils.misc.length_of_overlap(first_start, first_end, second_start, second_end)

	Find the length of the overlapping part of two segments.

	Parameters

	
	first_start (float) – Start of the first segment.

	first_end (float) – End of the first segment.

	second_start (float) – Start of the second segment.

	second_end (float) – End of the second segment.

	Returns

	The amount of overlap or 0 if they don’t overlap at all.

	Return type

	float

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 audiomate	

 	
 	
 audiomate.annotations	

 	
 	
 audiomate.annotations.relabeling	

 	
 	
 audiomate.containers	

 	
 	
 audiomate.corpus	

 	
 	
 audiomate.corpus.conversion	

 	
 	
 audiomate.corpus.subset	

 	
 	
 audiomate.corpus.subset.utils	

 	
 	
 audiomate.corpus.validation	

 	
 	
 audiomate.encoding	

 	
 	
 audiomate.feeding	

 	
 	
 audiomate.formats	

 	
 	
 audiomate.formats.audacity	

 	
 	
 audiomate.formats.ctm	

 	
 	
 audiomate.formats.trn	

 	
 	
 audiomate.issuers	

 	
 	
 audiomate.processing	

 	
 	
 audiomate.processing.pipeline	

 	
 	
 audiomate.tracks	

 	
 	
 audiomate.utils.audio	

 	
 	
 audiomate.utils.audioread	

 	
 	
 audiomate.utils.jsonfile	

 	
 	
 audiomate.utils.misc	

 	
 	
 audiomate.utils.naming	

 	
 	
 audiomate.utils.text	

 	
 	
 audiomate.utils.textfile	

 	
 	
 audiomate.utils.units	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	absolute_proportions() (in module audiomate.corpus.subset.utils)

 	add() (audiomate.annotations.LabelList method)

 	AddContext (class in audiomate.processing.pipeline)

 	addl() (audiomate.annotations.LabelList method)

 	all_label_values() (audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	(audiomate.tracks.Utterance method)

 	all_tokens() (audiomate.annotations.LabelList method)

 	(audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	(audiomate.tracks.Utterance method)

 	append() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	apply() (audiomate.annotations.LabelList method)

 	Artist (class in audiomate.issuers)

 	audio_open() (in module audiomate.utils.audioread)

 	AudioContainer (class in audiomate.containers)

 	AudioFileConverter (class in audiomate.corpus.conversion)

 	audiomate.annotations (module)

 	audiomate.annotations.relabeling (module)

 	audiomate.containers (module)

 	audiomate.corpus (module)

 	
 	audiomate.corpus.conversion (module)

 	audiomate.corpus.subset (module)

 	audiomate.corpus.subset.utils (module)

 	audiomate.corpus.validation (module)

 	audiomate.encoding (module)

 	audiomate.feeding (module)

 	audiomate.formats (module)

 	audiomate.formats.audacity (module)

 	audiomate.formats.ctm (module)

 	audiomate.formats.trn (module)

 	audiomate.issuers (module)

 	audiomate.processing (module)

 	audiomate.processing.pipeline (module)

 	audiomate.tracks (module)

 	audiomate.utils.audio (module)

 	audiomate.utils.audioread (module)

 	audiomate.utils.jsonfile (module)

 	audiomate.utils.misc (module)

 	audiomate.utils.naming (module)

 	audiomate.utils.text (module)

 	audiomate.utils.textfile (module)

 	audiomate.utils.units (module)

 	AvgPool (class in audiomate.processing.pipeline)

C

 	
 	Chunk (class in audiomate.processing.pipeline)

 	close() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	CombinedValidationResult (class in audiomate.corpus.validation)

 	CombinedValidator (class in audiomate.corpus.validation)

 	Computation (class in audiomate.processing.pipeline)

 	compute() (audiomate.processing.pipeline.AddContext method)

 	(audiomate.processing.pipeline.AvgPool method)

 	(audiomate.processing.pipeline.Delta method)

 	(audiomate.processing.pipeline.MFCC method)

 	(audiomate.processing.pipeline.MeanVarianceNorm method)

 	(audiomate.processing.pipeline.MelSpectrogram method)

 	(audiomate.processing.pipeline.OnsetStrength method)

 	(audiomate.processing.pipeline.PowerToDb method)

 	(audiomate.processing.pipeline.Stack method)

 	(audiomate.processing.pipeline.Step method)

 	(audiomate.processing.pipeline.Tempogram method)

 	(audiomate.processing.pipeline.VarPool method)

 	
 	Container (class in audiomate.containers)

 	ContainerTrack (class in audiomate.tracks)

 	contains_issuer() (audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	contains_track() (audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	convert() (audiomate.corpus.conversion.AudioFileConverter method)

 	(audiomate.corpus.conversion.WavAudioFileConverter method)

 	Corpus (class in audiomate.corpus)

 	CorpusView (class in audiomate.corpus)

 	create_single() (audiomate.annotations.LabelList class method)

D

 	
 	DataIterator (class in audiomate.feeding)

 	Dataset (class in audiomate.feeding)

 	Delta (class in audiomate.processing.pipeline)

 	do_overlap() (audiomate.annotations.Label method)

 	
 	duration (audiomate.annotations.Label attribute)

 	(audiomate.tracks.ContainerTrack attribute)

 	(audiomate.tracks.FileTrack attribute)

 	(audiomate.tracks.Track attribute)

 	(audiomate.tracks.Utterance attribute)

E

 	
 	encode_corpus() (audiomate.encoding.Encoder method)

 	encode_utterance() (audiomate.encoding.Encoder method)

 	(audiomate.encoding.FrameHotEncoder method)

 	(audiomate.encoding.FrameOrdinalEncoder method)

 	(audiomate.encoding.TokenOrdinalEncoder method)

 	
 	Encoder (class in audiomate.encoding)

 	end (audiomate.annotations.LabelList attribute)

 	end_abs (audiomate.annotations.Label attribute)

 	(audiomate.tracks.Utterance attribute)

F

 	
 	feature_containers (audiomate.corpus.Corpus attribute)

 	(audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	FeatureContainer (class in audiomate.containers)

 	FileTrack (class in audiomate.tracks)

 	FilterCriterion (class in audiomate.corpus.subset)

 	find_missing_projections() (in module audiomate.annotations.relabeling)

 	frame_size (audiomate.containers.FeatureContainer attribute)

 	frame_to_sample() (audiomate.utils.units.FrameSettings method)

 	frame_to_seconds() (audiomate.utils.units.FrameSettings method)

 	
 	frame_transform() (audiomate.processing.pipeline.Step method)

 	(audiomate.processing.Processor method)

 	frame_transform_step() (audiomate.processing.pipeline.AvgPool method)

 	(audiomate.processing.pipeline.Step method)

 	(audiomate.processing.pipeline.VarPool method)

 	FrameDataset (class in audiomate.feeding)

 	FrameHotEncoder (class in audiomate.encoding)

 	FrameIterator (class in audiomate.feeding)

 	FrameOrdinalEncoder (class in audiomate.encoding)

 	FrameSettings (class in audiomate.utils.units)

 	from_corpus() (audiomate.corpus.Corpus class method)

G

 	
 	generate_name() (in module audiomate.utils.naming)

 	get() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	get_identifiers_splitted_by_weights() (in module audiomate.corpus.subset.utils)

 	get_report() (audiomate.corpus.validation.CombinedValidationResult method)

 	(audiomate.corpus.validation.InvalidItemsResult method)

 	(audiomate.corpus.validation.LabelCoverageValidationResult method)

 	(audiomate.corpus.validation.LabelOverflowValidationResult method)

 	(audiomate.corpus.validation.ValidationResult method)

 	
 	get_utt_regions() (audiomate.feeding.FrameDataset method)

 	(audiomate.feeding.MultiFrameDataset method)

H

 	
 	hop_size (audiomate.containers.FeatureContainer attribute)

I

 	
 	import_issuers() (audiomate.corpus.Corpus method)

 	import_subview() (audiomate.corpus.Corpus method)

 	import_tracks() (audiomate.corpus.Corpus method)

 	import_utterances() (audiomate.corpus.Corpus method)

 	index_name_if_in_list() (in module audiomate.utils.naming)

 	InvalidItemsResult (class in audiomate.corpus.validation)

 	
 	is_open() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	Issuer (class in audiomate.issuers)

 	issuers (audiomate.corpus.Corpus attribute)

 	(audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

J

 	
 	join() (audiomate.annotations.LabelList method)

K

 	
 	keys() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

L

 	
 	Label (class in audiomate.annotations)

 	label_count() (audiomate.annotations.LabelList method)

 	(audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	(audiomate.tracks.Utterance method)

 	label_durations() (audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	label_total_duration() (audiomate.annotations.LabelList method)

 	(audiomate.tracks.Utterance method)

 	label_values() (audiomate.annotations.LabelList method)

 	LabelCountValidator (class in audiomate.corpus.validation)

 	
 	LabelCoverageValidationResult (class in audiomate.corpus.validation)

 	LabelCoverageValidator (class in audiomate.corpus.validation)

 	LabelList (class in audiomate.annotations)

 	LabelOverflowValidationResult (class in audiomate.corpus.validation)

 	LabelOverflowValidator (class in audiomate.corpus.validation)

 	labels (audiomate.annotations.LabelList attribute)

 	labels_in_range() (audiomate.annotations.LabelList method)

 	length (audiomate.annotations.Label attribute)

 	length_of_overlap() (in module audiomate.utils.misc)

 	load() (audiomate.corpus.Corpus class method)

 	load_partition_data() (audiomate.feeding.PartitioningContainerLoader method)

 	load_projections() (in module audiomate.annotations.relabeling)

M

 	
 	match() (audiomate.corpus.subset.FilterCriterion method)

 	MatchingLabelFilter (class in audiomate.corpus.subset)

 	MatchingUtteranceIdxFilter (class in audiomate.corpus.subset)

 	maximal_balanced_subset() (audiomate.corpus.subset.SubsetGenerator method)

 	MeanVarianceNorm (class in audiomate.processing.pipeline)

 	MelSpectrogram (class in audiomate.processing.pipeline)

 	
 	merge_corpora() (audiomate.corpus.Corpus class method)

 	merge_corpus() (audiomate.corpus.Corpus method)

 	merge_overlaps() (audiomate.annotations.LabelList method)

 	MFCC (class in audiomate.processing.pipeline)

 	MultiFrameDataset (class in audiomate.feeding)

 	MultiFrameIterator (class in audiomate.feeding)

N

 	
 	name (audiomate.corpus.Corpus attribute)

 	(audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	name() (audiomate.corpus.subset.FilterCriterion class method)

 	(audiomate.corpus.validation.CombinedValidator method)

 	(audiomate.corpus.validation.LabelCountValidator method)

 	(audiomate.corpus.validation.LabelCoverageValidator method)

 	(audiomate.corpus.validation.LabelOverflowValidator method)

 	(audiomate.corpus.validation.TrackReadValidator method)

 	(audiomate.corpus.validation.UtteranceTranscriptionRatioValidator method)

 	(audiomate.corpus.validation.Validator method)

 	new_feature_container() (audiomate.corpus.Corpus method)

 	new_file() (audiomate.corpus.Corpus method)

 	new_issuer() (audiomate.corpus.Corpus method)

 	new_utterance() (audiomate.corpus.Corpus method)

 	num_channels (audiomate.tracks.ContainerTrack attribute)

 	(audiomate.tracks.FileTrack attribute)

 	(audiomate.tracks.Track attribute)

 	
 	num_feature_containers (audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	num_frames() (audiomate.utils.units.FrameSettings method)

 	num_issuers (audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	num_samples (audiomate.tracks.ContainerTrack attribute)

 	(audiomate.tracks.FileTrack attribute)

 	(audiomate.tracks.Track attribute)

 	num_samples() (audiomate.tracks.Utterance method)

 	num_subviews (audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	num_tracks (audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	num_utterances (audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

O

 	
 	OnsetStrength (class in audiomate.processing.pipeline)

 	open() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	
 	open_if_needed() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	overlap_duration() (audiomate.annotations.Label method)

P

 	
 	parse() (audiomate.corpus.subset.FilterCriterion class method)

 	(audiomate.corpus.subset.Subview class method)

 	parse_storage_size() (in module audiomate.utils.units)

 	PartitionData (class in audiomate.feeding)

 	partitioned_iterator() (audiomate.feeding.FrameDataset method)

 	(audiomate.feeding.MultiFrameDataset method)

 	PartitionInfo (class in audiomate.feeding)

 	PartitioningContainerLoader (class in audiomate.feeding)

 	PartitioningFeatureIterator (class in audiomate.feeding)

 	PowerToDb (class in audiomate.processing.pipeline)

 	process_buffer() (in module audiomate.utils.audio)

 	
 	process_corpus() (audiomate.processing.Processor method)

 	process_corpus_online() (audiomate.processing.Processor method)

 	process_features() (audiomate.processing.Processor method)

 	process_features_online() (audiomate.processing.Processor method)

 	process_frames() (audiomate.processing.pipeline.Step method)

 	(audiomate.processing.Processor method)

 	process_track() (audiomate.processing.Processor method)

 	process_track_online() (audiomate.processing.Processor method)

 	process_utterance() (audiomate.processing.Processor method)

 	process_utterance_online() (audiomate.processing.Processor method)

 	Processor (class in audiomate.processing)

R

 	
 	raise_error_if_not_open() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	random_subset() (audiomate.corpus.subset.SubsetGenerator method)

 	random_subset_by_duration() (audiomate.corpus.subset.SubsetGenerator method)

 	random_subsets() (audiomate.corpus.subset.SubsetGenerator method)

 	ranges() (audiomate.annotations.LabelList method)

 	read() (in module audiomate.formats.trn)

 	read_blocks() (in module audiomate.utils.audio)

 	read_file() (in module audiomate.formats.ctm)

 	read_frames() (audiomate.tracks.ContainerTrack method)

 	(audiomate.tracks.FileTrack method)

 	(audiomate.tracks.Track method)

 	(in module audiomate.utils.audio)

 	read_json_file() (in module audiomate.utils.jsonfile)

 	read_key_value_lines() (in module audiomate.utils.textfile)

 	read_label_file() (in module audiomate.formats.audacity)

 	
 	read_label_list() (in module audiomate.formats.audacity)

 	read_samples() (audiomate.annotations.Label method)

 	(audiomate.tracks.ContainerTrack method)

 	(audiomate.tracks.FileTrack method)

 	(audiomate.tracks.Track method)

 	(audiomate.tracks.Utterance method)

 	read_separated_lines() (in module audiomate.utils.textfile)

 	read_separated_lines_generator() (in module audiomate.utils.textfile)

 	read_separated_lines_with_first_key() (in module audiomate.utils.textfile)

 	Reduction (class in audiomate.processing.pipeline)

 	relabel() (in module audiomate.annotations.relabeling)

 	reload() (audiomate.feeding.PartitioningContainerLoader method)

 	relocate_audio_to_single_container() (audiomate.corpus.Corpus method)

 	relocate_audio_to_wav_files() (audiomate.corpus.Corpus method)

 	remove() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	remove_punctuation() (in module audiomate.utils.text)

S

 	
 	sample_to_frame_range() (audiomate.utils.units.FrameSettings method)

 	sample_to_seconds() (in module audiomate.utils.units)

 	sampling_rate (audiomate.containers.FeatureContainer attribute)

 	(audiomate.tracks.ContainerTrack attribute)

 	(audiomate.tracks.FileTrack attribute)

 	(audiomate.tracks.Track attribute)

 	(audiomate.tracks.Utterance attribute)

 	save() (audiomate.corpus.Corpus method)

 	save_at() (audiomate.corpus.Corpus method)

 	seconds_to_sample() (in module audiomate.utils.units)

 	select_balanced_subset() (in module audiomate.corpus.subset.utils)

 	separated() (audiomate.annotations.LabelList method)

 	serialize() (audiomate.corpus.subset.FilterCriterion method)

 	(audiomate.corpus.subset.Subview method)

 	set() (audiomate.containers.AudioContainer method)

 	(audiomate.containers.Container method)

 	(audiomate.containers.FeatureContainer method)

 	set_label_list() (audiomate.tracks.Utterance method)

 	Speaker (class in audiomate.issuers)

 	split() (audiomate.annotations.LabelList method)

 	(audiomate.corpus.subset.Splitter method)

 	(audiomate.tracks.Utterance method)

 	split_by_audio_duration() (audiomate.corpus.subset.Splitter method)

 	
 	split_by_label_duration() (audiomate.corpus.subset.Splitter method)

 	split_by_label_length() (audiomate.corpus.subset.Splitter method)

 	split_by_label_occurence() (audiomate.corpus.subset.Splitter method)

 	split_identifiers() (in module audiomate.corpus.subset.utils)

 	split_utterances_to_max_time() (audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	Splitter (class in audiomate.corpus.subset)

 	Stack (class in audiomate.processing.pipeline)

 	start (audiomate.annotations.LabelList attribute)

 	start_abs (audiomate.annotations.Label attribute)

 	starts_with_prefix_in_list() (in module audiomate.utils.text)

 	stats() (audiomate.containers.FeatureContainer method)

 	(audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	stats_per_key() (audiomate.containers.FeatureContainer method)

 	stats_per_utterance() (audiomate.corpus.CorpusView method)

 	(audiomate.corpus.subset.Subview method)

 	Step (class in audiomate.processing.pipeline)

 	SubsetGenerator (class in audiomate.corpus.subset)

 	Subview (class in audiomate.corpus.subset)

 	subviews (audiomate.corpus.Corpus attribute)

 	(audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

T

 	
 	Tempogram (class in audiomate.processing.pipeline)

 	time_range_to_frame_range() (audiomate.utils.units.FrameSettings method)

 	tokenized() (audiomate.annotations.Label method)

 	(audiomate.annotations.LabelList method)

 	TokenOrdinalEncoder (class in audiomate.encoding)

 	total_duration (audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	
 	total_length (audiomate.annotations.LabelList attribute)

 	total_lengths() (audiomate.feeding.PartitionInfo method)

 	Track (class in audiomate.tracks)

 	TrackReadValidator (class in audiomate.corpus.validation)

 	tracks (audiomate.corpus.Corpus attribute)

 	(audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

U

 	
 	UnmappedLabelsException, [1]

 	update() (audiomate.annotations.LabelList method)

 	Utterance (class in audiomate.tracks)

 	
 	utterances (audiomate.corpus.Corpus attribute)

 	(audiomate.corpus.CorpusView attribute)

 	(audiomate.corpus.subset.Subview attribute)

 	UtteranceTranscriptionRatioValidator (class in audiomate.corpus.validation)

V

 	
 	validate() (audiomate.corpus.validation.CombinedValidator method)

 	(audiomate.corpus.validation.LabelCountValidator method)

 	(audiomate.corpus.validation.LabelCoverageValidator method)

 	(audiomate.corpus.validation.LabelOverflowValidator method)

 	(audiomate.corpus.validation.TrackReadValidator method)

 	(audiomate.corpus.validation.UtteranceTranscriptionRatioValidator method)

 	(audiomate.corpus.validation.Validator method)

 	
 	validate_utterance() (audiomate.corpus.validation.LabelCoverageValidator method)

 	(audiomate.corpus.validation.LabelOverflowValidator method)

 	ValidationResult (class in audiomate.corpus.validation)

 	Validator (class in audiomate.corpus.validation)

 	VarPool (class in audiomate.processing.pipeline)

W

 	
 	WavAudioFileConverter (class in audiomate.corpus.conversion)

 	with_label_values() (audiomate.annotations.LabelList class method)

 	write() (in module audiomate.formats.trn)

 	write_file() (in module audiomate.formats.ctm)

 	
 	write_json_to_file() (in module audiomate.utils.jsonfile)

 	write_label_file() (in module audiomate.formats.audacity)

 	write_label_list() (in module audiomate.formats.audacity)

 	write_separated_lines() (in module audiomate.utils.textfile)

 	write_wav() (in module audiomate.utils.audio)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to audiomate’s documentation!

 		
 Installation

 		
 Dependencies

 		
 Changelog

 		
 Next Version

 		
 v6.0.0

 		
 v5.2.0

 		
 v5.1.0

 		
 v5.0.0

 		
 v4.0.1

 		
 v4.0.0

 		
 v3.0.0

 		
 v2.0.0

 		
 v1.0.0

 		
 v0.1.0

 		
 Corpus Structure

 		
 Corpus

 		
 Track

 		
 Utterance

 		
 Issuer

 		
 LabelList

 		
 Label

 		
 FeatureContainer

 		
 Corpus Formats

 		
 Add Dataset/Format

 		
 Corpus Downloader

 		
 Corpus Reader

 		
 Testing

 		
 Corpus Writer

 		
 Data Mapping

 		
 Issuer

 		
 Labels

 		
 general

 		
 speech

 		
 music

 		
 noise

 		
 Indirectly Supported Corpora

 		
 Logging

 		
 Enable Logging

 		
 Create log messages in audiomate

 		
 audiomate.tracks

 		
 Track

 		
 FileTrack

 		
 ContainerTrack

 		
 Utterance

 		
 audiomate.annotations

 		
 Label

 		
 LabelList

 		
 Relabeling

 		
 Exceptions

 		
 audiomate.issuers

 		
 Issuer

 		
 Speaker

 		
 Artist

 		
 audiomate.containers

 		
 Container

 		
 FeatureContainer

 		
 AudioContainer

 		
 audiomate.corpus

 		
 CorpusView

 		
 Corpus

 		
 audiomate.corpus.io

 		
 Base Classes

 		
 Implementations

 		
 Acoustic Event Dataset

 		
 AudioMNIST

 		
 Broadcast

 		
 Common-Voice

 		
 Default

 		
 ESC-50

 		
 Folder

 		
 Free-Spoken-Digit-Dataset

 		
 Fluent Speech Commands Dataset

 		
 Google Speech Commands

 		
 GTZAN

 		
 Kaldi

 		
 LibriSpeech

 		
 Mozilla DeepSpeech

 		
 MUSAN

 		
 M-AILABS Speech Dataset

 		
 NVIDIA Jasper

 		
 LITIS Rouen Audio scene dataset

 		
 SWC - Spoken Wikipedia Corpora

 		
 Tatoeba

 		
 TIMIT DARPA Acoustic-Phonetic Continuous Speech Corpus

 		
 TUDA German Distant Speech

 		
 Urbansound8k

 		
 VoxForge

 		
 Wav2Letter

 		
 audiomate.corpus.subset

 		
 Subview

 		
 Filter

 		
 MatchingUtteranceIdxFilter

 		
 MatchingLabelFilter

 		
 Splitter

 		
 SubsetGenerator

 		
 Utils

 		
 audiomate.corpus.validation

 		
 Base

 		
 Combination

 		
 Label-List

 		
 Track

 		
 audiomate.corpus.conversion

 		
 Audio File Conversion

 		
 audiomate.processing

 		
 Processor

 		
 Pipeline

 		
 Implementations

 		
 audiomate.encoding

 		
 Encoder

 		
 Frame-Based

 		
 Utterance-Based

 		
 audiomate.feeding

 		
 Datasets

 		
 Iterator

 		
 Partitioning

 		
 audiomate.formats

 		
 Audacity Labels

 		
 CTM Files

 		
 TRN Files

 		
 audiomate.utils

 		
 Audio

 		
 Audioread

 		
 JSON File

 		
 Naming

 		
 Text

 		
 Text File

 		
 Units

 		
 Misc

_images/basic_structure.png
Corpus Track Lael
T
N
N N
Issuer Utterance LabelList

_images/idea.png
Kaldi

MUSAN

Corpus

Utterances
Labels
Issuers

