
attentive
Release 0.1.4

Sep 12, 2017





Contents

1 Example Run 3

2 Install 5

3 Versioning 7

i



ii



attentive, Release 0.1.4

from attentive import StoppableThread, quit
from random import randint

class Man(StoppableThread):
def __init__(self, name):

StoppableThread.__init__(self)
self.name = name

def run(self):
print('{} has quickened'.format(self.name))
while not self.stopped:

self.sleep(randint(1, 10))
print('{} throws a {}'.format(self.name, randint(1, 6)))

print('{} expires'.format(self.name))

with Man('Trump'), Man('Wang'), Man('Erdoğan'):
while not quit.is_set():

quit.wait(1)

Contents 1



attentive, Release 0.1.4

2 Contents



CHAPTER 1

Example Run

Trump has quickened
Wang has quickened
Erdoğan has quickened
Wang throws a
Trump throws a
Erdoğan throws a
Wang throws a
Wang throws a
Erdoğan throws a
Erdoğan throws a
Trump throws a
^CErdoğan throws a

Erdoğan expires
Wang throws a

Wang expires
Trump throws a

Trump expires

Use attentive if you need to wire up a some worker threads that needs to cleanly shut themselves down on a
SIG_INT or SIG_TERM.

StoppableThread is a context managed thread that lives on while in context. Once it exists context it sets its
internal stopped flag that are periodically checked for state. This signals thread state allowing the thread to cleanly
exit.

External state is controlled by a signal event, exiting the main context loop.

Internally use the StoppableThread.sleep() method that is interrupted when stop()ed during sleep.

3



attentive, Release 0.1.4

4 Chapter 1. Example Run



CHAPTER 2

Install

Install from pypi

$ pip install attentive

Install from source

$ pip install .

5



attentive, Release 0.1.4

6 Chapter 2. Install



CHAPTER 3

Versioning

Current version is 0.1.3

7


	Example Run
	Install
	Versioning

