

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	attelo 0.2 documentation

Welcome to attelo’s documentation!

Contents:

	User manual
	Getting started

	Input format

	Output format

	Learning

	Decoding

	Evaluation with attelo report

	Tutorial
	Datapacks and multipacks

	Parsers

	Parsers (part 2)

	Harnesses

	attelo API
	attelo package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

User manual

Unfortunately we do not have much of a user manual at the time
of this writing, but we hope to have enough of skeleton to enable
us to write one over time.

	Getting started

	Input format
	EDU inputs

	Pairings

	Features

	Output format

	Learning
	AD.L scheme

	Probabilities

	Decoding
	Joint decoding mode (AD.L and ADL)

	Post-label decoding mode (AD.L and ADL)

	Evaluation with attelo report
	Mode A: predictions file

	Mode B: harness mode

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	User manual

Getting started

Attelo is mostly a parsing library with a couple of helper command
line tools on the side.

The bulk of attelo usage goes through the API. Below is an example showing
how you might run a simple attelo decoding cross-fold validation experiment
(This is doc/quickstart.py in the attelo source
tree)

"""
Example minature attelo evaluation for a dataset
"""

from __future__ import print_function

from os import path as fp
import os
import sys

from sklearn.linear_model import (LogisticRegression)

from attelo.decoding.mst import (MstDecoder,
 MstRootStrategy)
from attelo.decoding.util import (prediction_to_triples)

from attelo.learning.local import (SklearnAttachClassifier,
 SklearnLabelClassifier)
from attelo.parser.full import (JointPipeline)

from attelo.fold import (make_n_fold,
 select_testing,
 select_training)
from attelo.io import (load_multipack,
 write_predictions_output)
from attelo.report import (CombinedReport,
 EdgeReport)
from attelo.score import (score_edges)
from attelo.table import (DataPack)
from attelo.util import (mk_rng, Team)

pylint: disable=invalid-name

WORKING_DIR = 'doc/example-corpus'
PREFIX = fp.join(WORKING_DIR, 'tiny')
TMP_OUTPUT = '/tmp/mini-evaluate'
if not fp.exists(TMP_OUTPUT):
 os.makedirs(TMP_OUTPUT)

load the data
mpack = load_multipack(PREFIX + '.edus',
 PREFIX + '.pairings',
 PREFIX + '.features.sparse',
 PREFIX + '.features.sparse.vocab',
 verbose=True)

divide the dataset into folds
num_folds = min((10, len(mpack)))
fold_dict = make_n_fold(mpack, num_folds, mk_rng())

select a decoder and a learner team
decoder = MstDecoder(root_strategy=MstRootStrategy.fake_root)
learners = Team(attach=SklearnAttachClassifier(LogisticRegression()),
 label=SklearnLabelClassifier(LogisticRegression()))

put them together as a parser
parser = JointPipeline(learner_attach=learners.attach,
 learner_label=learners.label,
 decoder=decoder)

run cross-fold evaluation
scores = []
for fold in range(num_folds):
 print(">>> doing fold ", fold + 1, file=sys.stderr)
 print("training ... ", file=sys.stderr)
 # learn a model for the training data for this fold
 train_packs = select_training(mpack, fold_dict, fold).values()
 parser.fit(train_packs,
 [x.target for x in train_packs])

 fold_predictions = []
 # decode each document separately
 test_pack = select_testing(mpack, fold_dict, fold)
 for onedoc, dpack in test_pack.items():
 print("decoding on file : ", onedoc, file=sys.stderr)
 dpack = parser.transform(dpack)
 prediction = prediction_to_triples(dpack)
 # print("Predictions: ", prediction)
 # record the prediction score
 scores.append(score_edges(dpack, prediction))
 # optional: save the predictions for further inspection
 fold_predictions.extend(prediction)

 # optional: write predictions for this fold
 output_file = fp.join(TMP_OUTPUT, 'fold-%d' % fold)
 print("writing: %s" % output_file, file=sys.stderr)
 write_predictions_output(DataPack.vstack(test_pack.values()),
 fold_predictions, output_file)

report = EdgeReport(scores)

a combined report provides scores for multiple configurations
here, we are only using it for the single config
combined_report = CombinedReport(EdgeReport,
 {('maxent', 'mst'): report})
print(combined_report.table())

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	User manual

Input format

Input to attelo consists of three files two of which are aligned:

	an EDU input file with one line per discourse unit

	a pairings file with one line per EDU pair

	a features file also with one line per EDU pair

EDU inputs

	global id: used by your application, arbitrary string?
(NB: ROOT is a special name: no EDU should be named that,
but all EDUs can have ROOT as a potential parent)

	text: essentially for debugging purposes, used by attelo
graph to provide a visualisation of parses

	grouping (eg. file name, dialogue id): edus are only ever
connected with edus in the same group. Also, folds are
built on the basis of EDU groupings

	subgrouping (eg. sentence id): any common subunit that
can hold multiple EDUs (use the EDU id itself if there
is no useful notion of subgrouping). Some decoders may
try to treat links between EDUs in the same subgrouping
differently from the general case

	span start: (int): used by decoders to order EDUs and
determine their adjacency

	span end: (int): see span start

d1_492 sheep for wood? dialogue_1 sent1 0 15
d1_493 nope, not me dialogue_1 sent2 16 28
d1_494 not me either dialogue_1 sent2 29 42

Pairings

The pairings file is a tab-delimited list of (parent, child) pairs,
with each element being either an EDU global id (from the EDU inputs),
or the distinguished label ROOT. Each row in this file is corresponds with a
row in the feature files

ROOT d1_492
d1_493 d1_492
d1_494 d1_492
ROOT d1_493
d1_492 d1_493
d1_494 d1_493
ROOT d1_494
d1_492 d1_494
d1_493 d1_494

Note that attelo can also accept pairings files with a third column (which
it ignores)

Features

Features and labels are supplied as in (multiclass) libsvm/svmlight format.

Relation labels

You should supply a single comment at the very beginning of the file,
which attelo can use to associate relation labels with string values

labels: <space delimited list of labels>

The labels ‘UNRELATED’ must exist and be used for any edu pairs which are not
related/attached. For example, in the below, the second and fourth EDU pairs
are not considered to be related

labels: elaboration narration continuation UNRELATED ROOT
1 1:1 2:1
4 1:2
2 1:3 3:1
4 1:1
3 1:2

Also, if intersentential learning/decoding is used, the label ‘ROOT’ must also
be exist and be used for links from the ROOT edu.

Note that labels are assumed to start from 1.

Categorical features

Attelo no longer provides direct support for categorical features, that is,
features whose possible values are members of a set (eg. POS tag). You should
perform one hot encoding [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html]
on any categorical features you have. Luckily, with the svmlight sparse format,
this can be done with no additional cost in space and also opens the door for
more straightforward filtering on your part.

Other notes on features

Don’t forget that the order that features appear in must correspond to the
order that pairings appear in the EDU file

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	User manual

Output format

The output format is similar to the EDU pairings format. It is a tab-delimited
text file divided into rows and columns. The columns are

	parent EDU id

	child EDU id

	relation label (or UNRELATED if no link between the two)

ROOT d1_492 ROOT
d1_493 d1_492 UNRELATED
d1_494 d1_492 UNRELATED
ROOT d1_493 UNRELATED
d1_492 d1_493 elaboration
d1_494 d1_493 result
ROOT d1_494 UNRELATED
d1_492 d1_494 narration
d1_493 d1_494 UNRELATED

The output above corresponds to the graph below

ROOT
 |
 | ROOT
 V
d1_492 ------------------+
 | |
 | elaboration | narration
 V V
d1_493 <---[result]-- d1_494

You can visualise the results with the attelo report (see Evaluation with attelo report) and
attelo graph commands

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	User manual

Learning

In what follows,

	A refers to the attachment task: given an edu pair, is there a link between
the two edus in any direction?

	D refers to the direction task: given an edu pair with a link between them,
is the link from the textually earlier edu to the later on or vice-versa?

	L refers to the labelling task: given a directed linked edu pair, what is the
label on edges between them?

	We use a ‘.’ character to denote the grouping of the tasks into models, so
for example, an ‘AD.L’ scheme is one in which we use one model for predicting
attachement and directions together; and a separate model for predicting
labels

AD.L scheme

In the AD.L scheme, we learn

	a binary attachment/direction model on all edu pairs — (e1, e2) and (e2, e1)
are considered to be different pairs here

	a multiclass label model on only the edu pairs that are have an edge between
them in the training data

See decoding for details on how these models are used on decoding time

Probabilities

In the general case both attachment and labelling scores are probabilities,
and so the resulting score is also a probability; however, this is not always
appropriate for all classifiers.

For example, see this blog post on the implications of using a hinge loss
function [http://mark.reid.name/blog/proper-losses-inevitability-of-rediscovery.html]
as opposed to the proper loss. If you are using a non-probability-based
learner,
you should also set –non-prob-scores to false on decoding time

Sometimes classifiers may not naturally support probabilities but can
provide conversion mechanisms to compute them from scores. These methods
may come with various downsides (eg. be expensive to compute, and more
worryingly, inconsistent with the scores), so it may
be best to stick with non-prob decoding for them too. See the note in the
scikit manual [http://scikit-learn.org/stable/modules/svm.html#scores-and-probabilities]
for details.

Developers’ note: if you are developing classifiers for attelo, and your
classifier does not return probabilties, it should implement
decision_function instead

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	User manual

Decoding

Joint decoding mode (AD.L and ADL)

Joint decoding mode works with both the AD.L and the ADL schemes
(latter is not yet implemented at the time of this writing 2015-02-16).

In the AD.L scheme, we query the attachment model for an attachment
probability and the relation labelling model for its best labelling
probability. We then multiply these into a single probability score
for the decoder.

In the ADL scheme (ie. with only one model that does everything), we
merely retrieve the highest probability score for each given instance.

Note that joint decoding mode cannot be used with models that cannot
supply probabilities (for example, the perceptron). Post-label mode
must be used instead. (See learning for details)

Post-label decoding mode (AD.L and ADL)

In post-label mode we retrieve just the probability of attachment
(from the AD model in the AD.L case, and 1-P(UNRELATED) in the
ADL case) and feed this to the decoder (along with a dummy
UNKNOWN label).

For each edge in the decoder output, we then retrieve the best label possible
from the labeling model (or the best non-UNRELATED label in the ADL case) and
apply that to the decoder outputs

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	User manual

Evaluation with attelo report

The attelo report command generates a set of evaluation reports
by comparing attelo decode results against a gold standard. So
far it creates:

	global precision/recall reports

	confusion matrices

There are two ways to use attelo report. You have it report scores
on a single predictions file (produced by attelo decode); or you
can have it report on a full set of predictions generated by a harness
over multiple folds.

Mode A: predictions file

For one-off tests on attelo decode results, use the predictions
file mode (–prediction <FILE>).

(NB: if your test was on a particular fold of the data you can
also supply the –fold and –fold-file arguments to slice the
data)

Mode B: harness mode

Harness-level reporting is only available programmatically
via the attelo API

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

Tutorial

Note: if you have downloaded the attelo source code, the tutorial is available
as iPython notebooks in the doc directory

	Datapacks and multipacks

	Parsers

	Parsers (part 2)

	Harnesses

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	Tutorial

Datapacks and multipacks

Attelo reads its input files into “datapacks”. Generally
speaking, we have one datapack per document, so when reading a corpus
in, we would be reading multiple datapacks (we read a multipack, ie. a
dictionary of datapacks, or perhaps a fancier structure in future attelo
versions)

from __future__ import print_function

from os import path as fp
from attelo.io import (load_multipack)

CORPUS_DIR = 'example-corpus'
PREFIX = fp.join(CORPUS_DIR, 'tiny')

load the data into a multipack
mpack = load_multipack(PREFIX + '.edus',
 PREFIX + '.pairings',
 PREFIX + '.features.sparse',
 PREFIX + '.features.sparse.vocab',
 verbose=True)

Reading edus and pairings... done [0 ms]
Reading features... done [2 ms]
Build data packs... done [0 ms]

As we can see below, multipacks are dictionaries from document names to
dpacks.

for dname, dpack in mpack.items():
 about = ("Doc: {name} |"
 " edus: {edus}, pairs: {pairs},"
 " features: {feats}")
 print(about.format(name=dname,
 edus=len(dpack.edus),
 pairs=len(dpack),
 feats=dpack.data.shape))

Doc: d2 | edus: 4, pairs: 9, features: (9, 7)
Doc: d3 | edus: 3, pairs: 4, features: (4, 7)
Doc: d1 | edus: 4, pairs: 9, features: (9, 7)

Datapacks store everything we know about a document:

	edus: edus and their and their metadata

	pairings: factors to learn on

	data: feature array

	target: predicted label for each instance

dpack = mpack.values()[0] # pick an arbitrary pack
print("LABELS ({num}): {lbls}".format(num=len(dpack.labels),
 lbls=", ".join(dpack.labels)))
print()
note that attelo will by convention insert __UNK__ into the list of
labels, at position 0. It also requires that UNRELATED and ROOT be
in the list of available labels

for edu in dpack.edus[:3]:
 print(edu)
print("...\n")

for i, (edu1, edu2) in enumerate(dpack.pairings[:3]):
 lnum = dpack.target[i]
 lbl = dpack.get_label(lnum)
 feats = dpack.data[i,:].toarray()[0]
 print('PAIR', i, edu1.id, edu2.id, '\t|', lbl, '\t|', feats)
print("...\n")

for j, vocab in enumerate(dpack.vocab[:3]):
 print('FEATURE', j, vocab)
print("...\n")

LABELS (6): __UNK__, elaboration, narration, continuation, UNRELATED, ROOT

EDU ROOT: (0, 0) from None [None]
EDU d2_e2: (0, 27) from d2 [s3] anybody want sheep for wood?
EDU d2_e3: (28, 40) from d2 [s4] nope, not me
...

PAIR 0 ROOT d2_e2 | elaboration | [0. 0. 0. 0. 0. 0. 0.]
PAIR 1 d2_e3 d2_e2 | narration | [1. 1. 0. 0. 0. 0. 0.]
PAIR 2 d2_e4 d2_e2 | UNRELATED | [2. 0. 1. 0. 0. 0. 0.]
...

FEATURE 0 sentence_id_EDU2=1
FEATURE 1 offset_diff_div3=0
FEATURE 2 num_tokens_EDU2=19
...

There are a couple of datapack variants to be aware of:

	weighted datapacks are parsed or partially parsed datapacks. They
have a graph entry. We will explore weighted datapacks in the
parser tutorial.

	stacked datapacks: are formed by combining datapacks from different
documents into one. Some parts of the attelo API (namely scoring and
reporting) work with stacked datapacks. In the future (now:
2015-05-06), they may evolve to deal with multipacks, in which case
the notion of stack datapacks may dissapear

Conclusion

This concludes our tour of attelo datapacks. In other tutorials we will
explore some of the uses of datapacks, namely as the input/output of our
parsers.

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	Tutorial

Parsers

An attelo parser converts “documents” (here: EDUs with some metadata)
into graphs (with EDUs as nodes and relation labels between them). In
API terms, a parser is something that enriches datapacks, progressively
adding or stripping away information until we get a full graph.

Parsers follow the scikit-learn estimator and transformer conventions,
ie. with a fit function to learn some model from training data and a
transform function to convert (in our case) datapacks to enriched
datapacks.

Preliminaries

To begin our exploration of attelo parsers, let’s load up a tiny
multipack of sample data.

from __future__ import print_function

from os import path as fp
from attelo.io import (load_multipack)

CORPUS_DIR = 'example-corpus'
PREFIX = fp.join(CORPUS_DIR, 'tiny')

load the data into a multipack
mpack = load_multipack(PREFIX + '.edus',
 PREFIX + '.pairings',
 PREFIX + '.features.sparse',
 PREFIX + '.features.sparse.vocab',
 verbose=True)

Reading edus and pairings... done [1 ms]
Reading features... done [1 ms]
Build data packs... done [0 ms]

We’ll set aside one of the datapacks to test with, leaving the other two
for training. We do this by hand for this simple example, but you may
prefer to use the helper functions in
attelo.fold when working with
real data

test_dpack = mpack.values()[0]
train_mpack = {k: mpack[k] for k in mpack.keys()[1:]}

print('multipack entries:', len(mpack))
print('train entries:', len(train_mpack))

multipack entries: 3
train entries: 2

Trying a parser out 1 (attach)

Now that we have our training and test data, we can try feeding them to
a simple parser. Before doing this, we’ll take a quick detour to define
a helper function to visualise our parse results.

def print_results(dpack):
 'summarise parser results'
 for i, (edu1, edu2) in enumerate(dpack.pairings):
 wanted = dpack.get_label(dpack.target[i])
 got = dpack.get_label(dpack.graph.prediction[i])
 print(i, edu1.id, edu2.id, '\t|', got, '\twanted:', wanted)

As for parsing, we’ll start with the attachment pipeline. It combines a
learner with a
decoder

from attelo.decoding.baseline import (LastBaseline)
from attelo.learning import (SklearnAttachClassifier)
from attelo.parser.attach import (AttachPipeline)
from sklearn.linear_model import (LogisticRegression)

learner = SklearnAttachClassifier(LogisticRegression())
decoder = LastBaseline()
parser1 = AttachPipeline(learner=learner,
 decoder=decoder)

train the parser
train_dpacks = train_mpack.values()
train_targets = [x.target for x in train_dpacks]
parser1.fit(train_dpacks, train_targets)

now run on a test pack
dpack = parser1.transform(test_dpack)
print_results(dpack)

0 ROOT d2_e2 | __UNK__ wanted: elaboration
1 d2_e3 d2_e2 | UNRELATED wanted: narration
2 d2_e4 d2_e2 | UNRELATED wanted: UNRELATED
3 ROOT d2_e3 | UNRELATED wanted: continuation
4 d2_e2 d2_e3 | __UNK__ wanted: narration
5 d2_e4 d2_e3 | UNRELATED wanted: narration
6 ROOT d2_e4 | UNRELATED wanted: UNRELATED
7 d2_e3 d2_e4 | __UNK__ wanted: elaboration
8 d2_e2 d2_e4 | UNRELATED wanted: UNRELATED

Trying a parser out 2 (label)

In the output above, our predictions for every edge are either
__UNK__ or UNRELATED. The attachment pipeline only predicts if
edges will be attached or not. What we need is to be able to predict
their labels.

from attelo.learning import (SklearnLabelClassifier)
from attelo.parser.label import (SimpleLabeller)
from sklearn.linear_model import (LogisticRegression)

learner = SklearnLabelClassifier(LogisticRegression())
parser2 = SimpleLabeller(learner=learner)

train the parser
parser2.fit(train_dpacks, train_targets)

now run on a test pack
dpack = parser2.transform(test_dpack)
print_results(dpack)

0 ROOT d2_e2 | elaboration wanted: elaboration
1 d2_e3 d2_e2 | elaboration wanted: narration
2 d2_e4 d2_e2 | narration wanted: UNRELATED
3 ROOT d2_e3 | elaboration wanted: continuation
4 d2_e2 d2_e3 | elaboration wanted: narration
5 d2_e4 d2_e3 | narration wanted: narration
6 ROOT d2_e4 | elaboration wanted: UNRELATED
7 d2_e3 d2_e4 | elaboration wanted: elaboration
8 d2_e2 d2_e4 | narration wanted: UNRELATED

That doesn’t quite look right. Now we have labels, but none of our edges
are UNRELATED. But this is because the simple labeller will apply
labels on all unknown edges. What we need is to be able to combine the
attach and label parsers in a parsing pipeline

Parsing pipeline

A parsing pipeline is a parser that combines other parsers in sequence.
For purposes of learning/fitting, the individual steps can be thought of
as being run in parallel (in practice, they are fitted in sequnce). For
transforming though, they are run in order. A pipeline thus refines a
datapack over the course of multiple parsers.

from attelo.parser.pipeline import (Pipeline)

this is actually attelo.parser.full.PostlabelPipeline
parser3 = Pipeline(steps=[('attach', parser1),
 ('label', parser2)])

parser3.fit(train_dpacks, train_targets)
dpack = parser3.transform(test_dpack)
print_results(dpack)

0 ROOT d2_e2 | elaboration wanted: elaboration
1 d2_e3 d2_e2 | UNRELATED wanted: narration
2 d2_e4 d2_e2 | UNRELATED wanted: UNRELATED
3 ROOT d2_e3 | UNRELATED wanted: continuation
4 d2_e2 d2_e3 | elaboration wanted: narration
5 d2_e4 d2_e3 | UNRELATED wanted: narration
6 ROOT d2_e4 | UNRELATED wanted: UNRELATED
7 d2_e3 d2_e4 | elaboration wanted: elaboration
8 d2_e2 d2_e4 | UNRELATED wanted: UNRELATED

Conclusion (for now)

We have now seen some basic attelo parsers, how they use the
scikit-learn fit/transform idiom, and we can combine them with
pipelines. In future tutorials we’ll break some of the parsers down into
their constituent parts (notice the attach pipeline is itself a
pipeline) and explore the process of writing parsers of our own.

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	Tutorial

Parsers (part 2)

In the previous tutorial, we saw a couple of basic parsers, and also
introduced the notion of a pipeline parser. It turns out that some of
the parsers we introduced and had taken for granted are themselves
pipelines. In this tutorial we will break these pipelines down and
explore some of finer grained tasks that a parser can do.

Preliminaries

We begin with the same multipacks and the same breakdown into a training
and test set

from __future__ import print_function

from os import path as fp
from attelo.io import (load_multipack)

CORPUS_DIR = 'example-corpus'
PREFIX = fp.join(CORPUS_DIR, 'tiny')

load the data into a multipack
mpack = load_multipack(PREFIX + '.edus',
 PREFIX + '.pairings',
 PREFIX + '.features.sparse',
 PREFIX + '.features.sparse.vocab',
 verbose=True)

test_dpack = mpack.values()[0]
train_mpack = {k: mpack[k] for k in mpack.keys()[1:]}
train_dpacks = train_mpack.values()
train_targets = [x.target for x in train_dpacks]

def print_results(dpack):
 'summarise parser results'
 for i, (edu1, edu2) in enumerate(dpack.pairings):
 wanted = dpack.get_label(dpack.target[i])
 got = dpack.get_label(dpack.graph.prediction[i])
 print(i, edu1.id, edu2.id, '\t|', got, '\twanted:', wanted)

Reading edus and pairings... done [1 ms]
Reading features... done [1 ms]
Build data packs... done [0 ms]

Breaking a parser down (attach)

If we examine the source code for the attach
pipeline [https://github.com/irit-melodi/attelo/blob/master/attelo/parser/attach.py],
we can see that it is in fact a two step pipeline combining the attach
classifier wrapper and a decoder. So let’s see what happens when we run
the attach classifier by itself.

import numpy as np
from attelo.learning import (SklearnAttachClassifier)
from attelo.parser.attach import (AttachClassifierWrapper)
from sklearn.linear_model import (LogisticRegression)

def print_results_verbose(dpack):
 """Print detailed parse results"""
 for i, (edu1, edu2) in enumerate(dpack.pairings):
 attach = "{:.2f}".format(dpack.graph.attach[i])
 label = np.around(dpack.graph.label[i,:], decimals=2)
 got = dpack.get_label(dpack.graph.prediction[i])
 print(i, edu1.id, edu2.id, '\t|', attach, label, got)

learner = SklearnAttachClassifier(LogisticRegression())
parser1a = AttachClassifierWrapper(learner)
parser1a.fit(train_dpacks, train_targets)

dpack = parser1a.transform(test_dpack)
print_results_verbose(dpack)

0 ROOT d2_e2 | 0.44 [1. 1. 1. 1. 1. 1.] __UNK__
1 d2_e3 d2_e2 | 0.43 [1. 1. 1. 1. 1. 1.] __UNK__
2 d2_e4 d2_e2 | 0.43 [1. 1. 1. 1. 1. 1.] __UNK__
3 ROOT d2_e3 | 0.44 [1. 1. 1. 1. 1. 1.] __UNK__
4 d2_e2 d2_e3 | 0.97 [1. 1. 1. 1. 1. 1.] __UNK__
5 d2_e4 d2_e3 | 0.39 [1. 1. 1. 1. 1. 1.] __UNK__
6 ROOT d2_e4 | 0.01 [1. 1. 1. 1. 1. 1.] __UNK__
7 d2_e3 d2_e4 | 0.42 [1. 1. 1. 1. 1. 1.] __UNK__
8 d2_e2 d2_e4 | 0.39 [1. 1. 1. 1. 1. 1.] __UNK__

Parsers and weighted datapacks

In the output above, we have dug a little bit deeper into our datapacks.
Recall above that a parser translates datapacks to datapacks. The output
of a parser is always a weighted datapack., ie. a datapack whose
‘graph’ attribute is set to a record containing

	attachment weights

	label weights

	predictions (like target values)

So called “standalone” parsers will take an unweighted datapack
(graph == None) and produce a weighted datapack with predictions
set. But some parsers tend to be more useful as part of a pipeline:

	the attach classfier wrapper fills the attachment weights

	likewise the label classifier wrapper assigns label weights

	a decoder assigns predictions from weights

We see the first case in the above output. Notice that the attachments
have been set to values from a model, but the label weights and
predictions are assigned default values.

NB: all parsers should do “something sensible” in the face of all
inputs. This typically consists of assuming the default weight of 1.0
for unweighted datapacks.

Decoders

Having now transformed a datapack with the attach classifier wrapper,
let’s now pass its results to a decoder. In fact, let’s try a couple of
different decoders and compare the output.

from attelo.decoding.baseline import (LocalBaseline)

decoder = LocalBaseline(threshold=0.4)
dpack2 = decoder.transform(dpack)
print_results_verbose(dpack2)

0 ROOT d2_e2 | 0.44 [1. 1. 1. 1. 1. 1.] __UNK__
1 d2_e3 d2_e2 | 0.43 [1. 1. 1. 1. 1. 1.] __UNK__
2 d2_e4 d2_e2 | 0.43 [1. 1. 1. 1. 1. 1.] __UNK__
3 ROOT d2_e3 | 0.44 [1. 1. 1. 1. 1. 1.] __UNK__
4 d2_e2 d2_e3 | 0.97 [1. 1. 1. 1. 1. 1.] __UNK__
5 d2_e4 d2_e3 | 0.39 [1. 1. 1. 1. 1. 1.] UNRELATED
6 ROOT d2_e4 | 0.01 [1. 1. 1. 1. 1. 1.] UNRELATED
7 d2_e3 d2_e4 | 0.42 [1. 1. 1. 1. 1. 1.] __UNK__
8 d2_e2 d2_e4 | 0.39 [1. 1. 1. 1. 1. 1.] UNRELATED

The result above is what we get if we run a decoder on the output of the
attach classifier wrapper. This is in fact, the the same thing as
running the attachment pipeline. We can define a similar pipeline below.

from attelo.parser.pipeline import (Pipeline)

this is basically attelo.parser.attach.AttachPipeline
parser1 = Pipeline(steps=[('attach weights', parser1a),
 ('decoder', decoder)])
parser1.fit(train_dpacks, train_targets)
print_results_verbose(parser1.transform(test_dpack))

0 ROOT d2_e2 | 0.44 [1. 1. 1. 1. 1. 1.] __UNK__
1 d2_e3 d2_e2 | 0.43 [1. 1. 1. 1. 1. 1.] UNRELATED
2 d2_e4 d2_e2 | 0.43 [1. 1. 1. 1. 1. 1.] UNRELATED
3 ROOT d2_e3 | 0.44 [1. 1. 1. 1. 1. 1.] UNRELATED
4 d2_e2 d2_e3 | 0.97 [1. 1. 1. 1. 1. 1.] __UNK__
5 d2_e4 d2_e3 | 0.39 [1. 1. 1. 1. 1. 1.] UNRELATED
6 ROOT d2_e4 | 0.01 [1. 1. 1. 1. 1. 1.] UNRELATED
7 d2_e3 d2_e4 | 0.42 [1. 1. 1. 1. 1. 1.] __UNK__
8 d2_e2 d2_e4 | 0.39 [1. 1. 1. 1. 1. 1.] UNRELATED

Mixing and matching

Being able to break parsing down to this level of granularity lets us
experiment with parsing techniques by composing different parsing
substeps in different ways. For example, below, we write two slightly
different pipelines, one which sets labels separately from decoding, and
one which combines attach and label scores before handing them off to a
decoder.

from attelo.learning.local import (SklearnLabelClassifier)
from attelo.parser.label import (LabelClassifierWrapper,
 SimpleLabeller)
from attelo.parser.full import (AttachTimesBestLabel)

learner_l = SklearnLabelClassifier(LogisticRegression())

print("Post-labelling")
print("--------------")
parser = Pipeline(steps=[('attach weights', parser1a),
 ('decoder', decoder),
 ('labels', SimpleLabeller(learner_l))])
parser.fit(train_dpacks, train_targets)
print_results_verbose(parser.transform(test_dpack))

print()
print("Joint")
print("-----")
parser = Pipeline(steps=[('attach weights', parser1a),
 ('label weights', LabelClassifierWrapper(learner_l)),
 ('attach times label', AttachTimesBestLabel()),
 ('decoder', decoder)])
parser.fit(train_dpacks, train_targets)
print_results_verbose(parser.transform(test_dpack))

Post-labelling

0 ROOT d2_e2 | 0.44 [0. 0.45 0.28 0.28 0. 0.] elaboration
1 d2_e3 d2_e2 | 0.43 [0. 0.4 0.34 0.25 0. 0.] elaboration
2 d2_e4 d2_e2 | 0.43 [0. 0.3 0.53 0.17 0. 0.] narration
3 ROOT d2_e3 | 0.44 [0. 0.45 0.28 0.28 0. 0.] elaboration
4 d2_e2 d2_e3 | 0.97 [0. 0.52 0.03 0.45 0. 0.] elaboration
5 d2_e4 d2_e3 | 0.39 [0. 0.37 0.43 0.2 0. 0.] UNRELATED
6 ROOT d2_e4 | 0.01 [0. 0.45 0.28 0.28 0. 0.] UNRELATED
7 d2_e3 d2_e4 | 0.42 [0. 0.41 0.35 0.24 0. 0.] elaboration
8 d2_e2 d2_e4 | 0.39 [0. 0.37 0.43 0.2 0. 0.] UNRELATED

Joint

0 ROOT d2_e2 | 0.19 [0. 0.45 0.28 0.28 0. 0.] UNRELATED
1 d2_e3 d2_e2 | 0.17 [0. 0.4 0.34 0.25 0. 0.] UNRELATED
2 d2_e4 d2_e2 | 0.23 [0. 0.3 0.53 0.17 0. 0.] UNRELATED
3 ROOT d2_e3 | 0.19 [0. 0.45 0.28 0.28 0. 0.] UNRELATED
4 d2_e2 d2_e3 | 0.50 [0. 0.52 0.03 0.45 0. 0.] elaboration
5 d2_e4 d2_e3 | 0.17 [0. 0.37 0.43 0.2 0. 0.] UNRELATED
6 ROOT d2_e4 | 0.00 [0. 0.45 0.28 0.28 0. 0.] UNRELATED
7 d2_e3 d2_e4 | 0.17 [0. 0.41 0.35 0.24 0. 0.] UNRELATED
8 d2_e2 d2_e4 | 0.17 [0. 0.37 0.43 0.2 0. 0.] UNRELATED

Conclusion

Thinking of parsers as transformers from weighted datapacks to weighted
datapacks should allow for some interesting parsing experiments, parsers
that

	divide the work using different strategies on different subtypes of
input (eg. intra vs intersentential links), or

	work in multiple stages, maybe modifying past decisions along the
way, or

	influence future parsing stages by tweaking the weights they might
see, or

	prune out undesirable edges (by setting their weights to zero), or

	apply some global constraint satisfaction algorithm across the
possible weights

With a notion of a parsing pipeline, you should also be able to build
parsers that combine different experiments that you want to try
simultaneously

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	Tutorial

Harnesses

In the previous tutorials, we introduced the notion of parsers, broke them down
into their constituent parts, and very briefly touched upon the idea of mixing
and matching parsers to form more interesting combinations.

If you find yourself in a situation where you have several parsing ideas that
you would like to explore, you may find it helpful to create an experimental
harness. A harness can be useful for

	[reliability, convenience] bundling all the evaluation steps into a single
easy-to-remember command (this eliminates the risk of omitting a crucial
step)

	[convenience] consistently generating an detailed report including
confusion matrices, discriminating features, some visual samples of
the output

	[performance] caching shareable results to save evaluation time (both
horizontally, for example, across parsers that can share models, and
vertically, perhaps across different versions of a decoder but using the
same model)

	[performance] managing concurrency and distributed evaluation, which may
be attractive if you have access to a compute cluster

The attelo.harness provides a basic framework for defining such
harnesses. You would need to implement the Harness class, specifying

	the data to read

	a list of parsers to run (wrapped in attelo.harness.config.EvaluationConfig)

	some functions for assigning filenames to intermediary results

	and a variety of reporting options (for example, which evaluations you
would like to generate extra reports on)

Have a look at the example harness [https://github.com/irit-melodi/attelo/blob/master/attelo/harness/example.py]
to get started, and perhaps also the irit-rst-dt [https://github.com/irit-melodi/irit-rst-dt] to see how this might be
used in a real experimental setting.

Caching

Attelo’s caching mechanism uses the cache keyword argument in
attelo.parser.Parser.fit (cache is an attelo-ism, and is not standard to the
scikit estimator/transformer idiom). The idea is for parsers to accept a
dictionary from simple cache keywords (eg. ‘attach’) to paths. Parsers could
interact with the cache in different ways. In the simplest case, they might
look for a particular keyword to determine if there is a cache entry that
it could load (or should save to). Alternatively, if multiple parsers are
composed of parsers that they have in commone, they can avoid repeating work on
their constituent parts by simply passing their cache dictionaries down
(NB: it is up to parser authors to ensure that cache keys do not conflict;
parsers should document their cache keys in the API)

The attelo.harness.Harness.model_paths function implemented by your harness
should return exactly such a dictionary, as we might see in the example below

def model_paths(self, rconf, fold):
 if fold is None:
 parent_dir = self.combined_dir_path()
 else:
 parent_dir = self.fold_dir_path(fold)

 def _eval_model_path(mtype):
 "Model for a given loop/eval config and fold"
 bname = self._model_basename(rconf, mtype, 'model')
 return fp.join(parent_dir, bname)

 return {'attach': _eval_model_path("attach"),
 'label': _eval_model_path("label")}

Cluster mode: parallel and distributed

The attelo harness provides some crude support on a cluster:

	decoding is split into one decoding job per document/grouping; as each
parser is learned [fit] (sequentially), the harness adds its decoding jobs
[transform] to a pool of jobs in progress.

	each fold is self-contained, and can be run concurrently. If you are on
a cluster with multiple machines reading from a shared filesystem, you
can farm the folds out to separate machines (nb: the harness itself does
not do this for you, so you would need to write eg. a shell script that
does this parceling out of folds, but it can be broken down in a way that
facilitates this usage, ie. with “initialise”, “run folds 1 and 2”,
“run folds 3 and 4”, … “gather the results” as discrete steps)

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

attelo API

	attelo package
	Subpackages
	attelo.decoding package
	Submodules

	attelo.decoding.astar module

	attelo.decoding.baseline module

	attelo.decoding.greedy module

	attelo.decoding.interface module

	attelo.decoding.local module

	attelo.decoding.mst module

	attelo.decoding.util module

	attelo.decoding.window module

	attelo.harness package
	Submodules

	attelo.harness.config module

	attelo.harness.evaluate module

	attelo.harness.example module

	attelo.harness.graph module

	attelo.harness.interface module

	attelo.harness.parse module

	attelo.harness.report module

	attelo.harness.util module

	attelo.learning package
	Submodules

	attelo.learning.interface module

	attelo.learning.local module

	attelo.learning.oracle module

	attelo.learning.perceptron module

	attelo.learning.util module

	attelo.metrics package
	Submodules

	attelo.metrics.tree module

	attelo.optimisation package
	Submodules

	attelo.optimisation.astar module

	attelo.parser package
	Submodules

	attelo.parser.attach module

	attelo.parser.full module

	attelo.parser.interface module

	attelo.parser.intra module

	attelo.parser.label module

	attelo.parser.pipeline module

	Submodules

	attelo.args module

	attelo.edu module

	attelo.fold module

	attelo.graph module

	attelo.io module

	attelo.report module

	attelo.score module

	attelo.table module

	attelo.util module

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	attelo API

attelo package

Attelo is a statistical discourse parser.
The API provides

	decoders which you should be able to call in a standalone way

	machine learning infrastructure wrapping around a library
like sci-kit learn

	support for building experimental harnesses around the parser

Subpackages

	attelo.decoding package
	Submodules

	attelo.decoding.astar module

	attelo.decoding.baseline module

	attelo.decoding.greedy module

	attelo.decoding.interface module

	attelo.decoding.local module

	attelo.decoding.mst module

	attelo.decoding.util module

	attelo.decoding.window module

	attelo.harness package
	Submodules

	attelo.harness.config module

	attelo.harness.evaluate module

	attelo.harness.example module

	attelo.harness.graph module

	attelo.harness.interface module

	attelo.harness.parse module

	attelo.harness.report module

	attelo.harness.util module

	attelo.learning package
	Submodules

	attelo.learning.interface module

	attelo.learning.local module

	attelo.learning.oracle module

	attelo.learning.perceptron module

	attelo.learning.util module

	attelo.metrics package
	Submodules

	attelo.metrics.tree module

	attelo.optimisation package
	Submodules

	attelo.optimisation.astar module

	attelo.parser package
	Submodules

	attelo.parser.attach module

	attelo.parser.full module

	attelo.parser.interface module

	attelo.parser.intra module

	attelo.parser.label module

	attelo.parser.pipeline module

Submodules

attelo.args module

Managing command line arguments

	
attelo.args.add_common_args(psr)

	add usual attelo args to subcommand parser

	
attelo.args.add_fold_choice_args(psr)

	ability to select a subset of the data according to a fold

	
attelo.args.add_model_read_args(psr, help_)

	models files we can read in

	Parameters:	help (string) – python format string for help {} will
have a word (eg. ‘attachment’) plugged in

	
attelo.args.add_report_args(psr)

	add args to scoring/evaluation

	
attelo.args.validate_fold_choice_args(wrapped)

	Given a function that accepts an argparsed object, check
the fold arguments before carrying on.

The idea here is that –fold and –fold-file are meant to
be used together (xnor)

This is meant to be used as a decorator, eg.:

@validate_fold_choice_args
def main(args):
 blah

attelo.edu module

Uniquely identifying information for an EDU

	
class attelo.edu.EDU

	Bases: attelo.edu.EDU

a class representing the EDU
(id, span start and end, grouping, subgrouping)

	
span()

	Starting and ending position of the EDU as an integer pair

	
attelo.edu.FAKE_ROOT = EDU(id='ROOT', text='', start=0, end=0, grouping=None, subgrouping=None)

	a distinguished fake root EDU which simultaneously appears in
all groupings

attelo.fold module

Group-aware n-fold evaluation.

Attelo uses a variant of n-fold evaluation, where we (still)
andomly partition the dataset into a set of folds of roughly even
size, but respecting the additional constraint that any two data
entries belonging in the same “group” (determined a single
distiguished feature, eg. the document id, the dialogue id, etc)
are always in the same fold. Note that this makes it a bit harder
to have perfectly evenly sized folds

Created on Jun 20, 2012

@author: stergos

contribs: phil

	
attelo.fold.fold_groupings(fold_dict, fold)

	Return the set of groupings that belong in a fold.
Raise an exception if the fold is not in the fold dictionary

:rtype frozenset(int)

	
attelo.fold.make_n_fold(groupings, folds, rng)

	Given a set of groupings and a desired number of folds,
return a fold selection dictionary assigning a fold number
to each each grouping (see attelo.edu.EDU).

	Parameters:	rng (:py:class:random.Random:) – random number generator (hint: the random module
will be just fine if you don’t mind shared state)

:rtype dict(string, int)

	
attelo.fold.select_testing(mpack, fold_dict, fold)

	Given a division into folds and a fold number,
return only the test items for that fold

	Return type:	Multipack

	
attelo.fold.select_training(mpack, fold_dict, fold)

	Given a division into folds and a fold number,
return only the training items for that fold

	Return type:	Multipack

attelo.graph module

graph visualisation

	
exception attelo.graph.Alarm

	Bases: exceptions.Exception

Exception to raise on signal timeout

	
class attelo.graph.GraphSettings

	Bases: attelo.graph.GraphSettings

	Parameters:	
	hide (string or None) – ‘intra’ to hide links between EDUs in the
same subgrouping; ‘inter’ to hide links
across subgroupings; None to show all links

	select ([string] or None) – EDU groupings to graph (if None,
all groupings will be graphed unless)

	unrelated (bool) – show unrelated links

	timeout (int) – number of seconds to allow graphviz
to run before it times out

	quiet (bool) – suppress informational messages

	
attelo.graph.alarm_handler(_, frame)

	Raise Alarm on signal

	
attelo.graph.diff_all(edus, src_predictions, tgt_predictions, settings, output_dir)

	Generate graphs for all the given predictions.
Each grouping will have its own graph, saved in the
output directory

	
attelo.graph.graph_all(edus, predictions, settings, output_dir)

	Generate graphs for all the given predictions.
Each grouping will have its own graph, saved in the
output directory

	
attelo.graph.mk_diff_graph(title, edus, src_links, tgt_links, settings)

	Convert attelo predictions to a graphviz graph diplaying
differences between two predictions

Predictions here consist of an EDU followed by a list of
(parent name, relation label) tuples

	Parameters:	tgt_links – if present, we generate a graph that
represents a difference between the
links and tgt_links (by highlighting
links that only occur in one or the
other)

	
attelo.graph.mk_single_graph(title, edus, links, settings)

	Convert single set of attelo predictions to a graphviz
graph

	
attelo.graph.select_links(edus, links, settings)

	Given a set of edus and of edu id pairs, return only the pairs
whose ids appear in the edu list

	Parameters:	
	intra – if True, in addition to the constraints above,
only return links that are in the same subgrouping

	inter – if True, only return links between subgroupings

	
attelo.graph.write_dot_graph(filename, dot_graph, run_graphviz=True, quiet=False, timeout=30)

	Write a dot graph and possibly run graphviz on it

attelo.io module

attelo.report module

attelo.score module

attelo.table module

Manipulating data tables (taking slices, etc)

	
class attelo.table.DataPack

	Bases: attelo.table.DataPack

A set of data that can be said to belong together.

A typical use of the datapack would be to group together
data for a single document/grouping. But in cases where
this distinction does not matter, it can also be convenient
to combine data from multiple documents into a single pack.

Notes

A datapack is said to be

	single document (the usual case) it corresponds to a single
document or “stacked” if it is made by joining multiple
datapacks together. Some functions may only behave correctly
on single-document datapacks

	weighted if the graphs tuple is set. You should never see
weighted datapacks outside of a learner or decoder

	Parameters:	
	(EDU) (edus) – effectively a set of edus

	([(EDU, EDU)]) (pairings) – edu pairs

	2D array(float) (data) – sparse matrix of features, each
row corresponding to a pairing

	1D array (should be int, really) (target) – array of predictions for each pairing

	ctarget (dict from string to objects) – Mapping from grouping name to structured target

	([string]) (vocab) – list of relation labels (NB: by convention label zero
is always the unknown label)

	([string]) – feature names (corresponds to the feature
indices) in data

	(None or Graph) (graph) – if set, arrays representing the probabilities (or
confidence scores) of attachment and labelling

	
get_label(i)

	Return the class label for the given target value.

	Parameters:	(int, less than len(self.labels)) (i) – a target value

See also

label_number

	
label_number(label)

	Return the numerical label that corresponnds to the given
string label

Useful idiom: unrelated = dpack.label_number(UNRELATED)

	Parameters:	(string in self.labels) (label) – a label string

See also

get_label

	
classmethod load(edus, pairings, data, target, ctarget, labels, vocab)

	Build a data pack and run some sanity checks
(see :py:method:sanity_check’)
(recommended if reading from disk)

	Return type:	DataPack

	
sanity_check()

	Raising DataPackException if anything about
this datapack seems wrong, for example if the number of
rows in one table is not the same as in another

	
selected(indices)

	Return only the items in the specified rows

	
set_graph(graph)

	Return a copy of the datapack with weights set

	
classmethod vstack(dpacks)

	Combine several datapacks into one.

The labels and vocabulary for all packs must be the same

	
exception attelo.table.DataPackException(msg)

	Bases: exceptions.Exception

An exception which arises when worknig with an attelo data pack

	
class attelo.table.Graph

	Bases: attelo.table.Graph

A graph can only be interpreted in light of a datapack.

It has predictions and attach/label weights. Predictions work like
DataPack.target. The weights are useful within parsing pipelines,
where it is sometimes useful for an intermediary parser to manipulate
the weight vectors that a parser may calculate downstream.

See the parser interface for more details.

	Parameters:	
	prediction (array(int)) – label for each edge (each cell corresponds to edge)

	attach (array(float)) – attachment weights (each cell corresponds to an edge)

	label (2D array(float)) – label attachment weights (edge by label)

Notes

Predictions are always labels; however, datapack targets may also
be -1/0/1 when adapted to binary attachment task

	
selected(indices)

	Return a subset of the links indicated by the list/array
of indices

	
tweak(prediction=None, attach=None, label=None)

	Return a variant of the current graph with some values changed.

	Parameters:	
	prediction (1D array of int16) – Predicted label for each pair of EDUs

	attach (1D array of float) – Attachment scores for each pair of EDUs

	label (2D array of float) – Score of each label for each pair of EDUs

	Returns:	g_copy –
Copy of self with prediction, attach or label overridden with
the values passed as arguments.

	Return type:	Graph

Notes

This returns a copy of self with graph changed, because
“[EYK] superstitiously believes that datapacks and graphs should be
immutable as much as possible, and that mutability in the parsing
pipeline would lead to confusion; hence this and namedtuples
instead of simple getting and setting”.

	
classmethod vstack(graphs)

	Combine several graphs into one.

	
class attelo.table.Multipack

	Bases: dict

A multipack is a mapping from groupings to datapacks

This class exists purely for documentation purposes; in
practice, a dictionary of string to Datapack will do just
fine

	
attelo.table.UNKNOWN = '__UNK__'

	distinguished internal value for post-labelling mode

	
attelo.table.UNRELATED = 'UNRELATED'

	distinguished value for unrelated relation labels

	
attelo.table.attached_only(dpack, target)

	Return only the instances which are labelled as
attached (ie. this would presumably return an empty
pack on completely unseen data)

	Parameters:	
	dpack (DataPack) – Original datapack

	target (array(int)) – Original targets

	Returns:	
	dpack (DataPack) –
Transformed datapack, with binary labels

	target (array(int)) –
Transformed targets, with binary labels

	
attelo.table.for_attachment(dpack, target)

	Adapt a datapack to the attachment task.

This could involve:
* selecting some of the features (all for now, but may
change in the future)
* modifying the features/labels in some way:
we currently binarise labels to {-1 ; 1} for UNRELATED and
not-UNRELATED respectively.

	Parameters:	
	dpack (DataPack) – Original datapack

	target (array(int)) – Original targets

	Returns:	
	dpack (DataPack) –
Transformed datapack, with binary labels

	target (array(int)) –
Transformed targets, with binary labels

	
attelo.table.for_labelling(dpack, target)

	Adapt a datapack to the relation labelling task (currently a no-op).

This could involve
* selecting some of the features (all for now, but may
change in the future)
* modifying the features/labels in some way (in practice
no change)

	Parameters:	
	dpack (DataPack) – Original datapack

	target (array(int)) – Original targets

	Returns:	
	dpack (DataPack) –
Transformed datapack, with binary labels

	target (array(int)) –
Transformed targets, with binary labels

	
attelo.table.get_label_string(labels, i)

	Return the class label for the given target value.

	
attelo.table.grouped_intra_pairings(dpack, include_fake_root=False)

	Retrieve intra pairings from a datapack, grouped by subgrouping.

	Parameters:	
	dpack (DataPack) – The datapack under scrutiny.

	include_fake_root (boolean, optional) – If True, (FAKE_ROOT_ID, x) pairings are included in the group
defined by (grouping(x), subgrouping(x)).

	Returns:	groups –
Map each (grouping, subgrouping) to the list of pairing indices
within the same subgrouping.

	Return type:	dict from (string, string) to list of integers

Notes

The result roughly corresponds to a hypothetical
dpack.pairings[‘intra’].groupby([‘grouping’, ‘subgrouping’]).groups.

	
attelo.table.groupings(pairings)

	Given a list of EDU pairings, return a dictionary mapping
grouping names to list of rows within the pairings.

	Return type:	dict(string, [int])

	
attelo.table.idxes_attached(dpack, target)

	Indices of attached pairings from dpack, according to target.

	Parameters:	
	dpack (DataPack) – Datapack

	target (list of integers) – Label for each pairings of dpack

	Returns:	
	indices (array of integers) –
Indices of attached pairings.

	TODO

	—-

	Try and apply widely, especially for parser.intra ;

	search for e.g. “target != unrelated” and “target[i] != unrelated”.

	
attelo.table.idxes_fakeroot(dpack)

	Return datapack indices only the pairings which involve the
fakeroot node

	
attelo.table.idxes_inter(dpack, include_fake_root=False)

	Return indices of pairings from different subgroupings.

	Parameters:	
	dpack (DataPack) – Datapack under scrutiny

	include_fake_root (boolean, optional) – If True, pairings of the form (FAKE_ROOT_ID, x) are included.

	Returns:	idxes –
Indices of the inter pairings.

	Return type:	list of int

	
attelo.table.idxes_intra(dpack, include_fake_root=False)

	Return indices of pairings from same subgrouping, inside a datapack.

	Parameters:	
	dpack (DataPack) – Datapack under scrutiny

	include_fake_root (boolean, optional) – If True, pairings of the form (FAKE_ROOT_ID, x) are included.

	Returns:	idxes –
Indices of the intra pairings.

	Return type:	list of int

	
attelo.table.locate_in_subpacks(dpack, subpacks)

	Given a datapack and some of its subpacks, return a
list of tuples identifying for each pair, its subpack
and index in that subpack.

If a pair is not found in the list of subpacks, we
return None instead of tuple

	Returns:	

	Return type:	[None or (DataPack, float)]

	
attelo.table.mpack_pairing_distances(mpack)

	Return for each target value (label) in the multipack.
See pairing_distances() for details

:rtype dict(int, (int, int))

	
attelo.table.pairing_distances(dpack)

	Return for each target value (label) in the datapack,
the left and right maximum distances of edu pairings
(in number of EDUs, so adjacent EDUs have distance of 0)

Note that we assume a single-document datapack. If you
give this a stacked datapack, you may get very large
distances to the fake root

:rtype dict(int, (int, int))

	
attelo.table.select_window(dpack, window)

	Select only EDU pairs that are at most window EDUs apart
from each other (adjacent EDUs would be considered 0 apart)

Note that if the window is None, we simply return the
original datapack

Note that will only work correctly on single-document datapacks

attelo.util module

General-purpose classes and functions

	
class attelo.util.ArgparserEnum

	Bases: enum.Enum

An enumeration whose values we spit out as choices to argparser

	
classmethod choices_str()

	available choices in this enumeration

	
classmethod from_string(string)

	from command line arg

	
classmethod help_suffix(default)

	help text suffix showing choices and default

	
class attelo.util.Team

	Bases: attelo.util.Team

Any collection where we have the same thing but duplicated
for each attelo subtask (eg. models, learners,)

	
fmap(func)

	Apply a function to each member of the collection

	
attelo.util.concat_i(iters)

	Merge an iterable of iterables into a single iterable

	
attelo.util.concat_l(iters)

	Merge an iterable of iterables into a list

	
attelo.util.mk_rng(shuffle=False, default_seed=None)

	Return a random number generator instance, hard-seeded
unless we ask for shuffling to be enabled

(note: if shuffle mode is enable, the rng in question
will just be the system generator)

	
attelo.util.truncate(text, width)

	Truncate a string and append an ellipsis if truncated

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	attelo API

 	attelo package

attelo.decoding package

Decoding in attelo consists in building discourse graphs from a
set of attachment/labelling predictions.

Submodules

attelo.decoding.astar module

module for building discourse graphs from probability distribution and
respecting some constraints, using
Astar heuristics based search and variants (beam, b&b)

TODO: unlabelled evaluation seems to bug on RF decoding (relation is of type orange.value
-> go see in decoding.py)

	
class attelo.decoding.astar.AstarArgs

	Bases: attelo.decoding.astar.AstarArgs

Configuration options for the A* decoder

	Parameters:	
	heuristics (Heuristic) – an a* heuristic funtion (estimate the cost of what has
not been explored yet)

	use_prob (bool) – indicates if previous scores are probabilities in [0,1]
(to be mapped to -log) or arbitrary scores (untouched)

	beam (int or None) – size of the beam-search (if None: vanilla astar)

	rfc (RfcConstraint) – what sort of right frontier constraint to apply

	
class attelo.decoding.astar.AstarDecoder(astar_args)

	Bases: attelo.decoding.interface.Decoder

wrapper for astar decoder to be used by processing pipeline
returns the best structure

	
decode(dpack)

	

	
class attelo.decoding.astar.DiscData(parent=None, accessible=None, tolink=None)

	Bases: object

Natural reading order decoding: incremental building of tree in order of
text (one edu at a time)

Basic discourse data for a state: chosen links between edus at that stage +
right-frontier state. To save space, only new links are stored. the
complete solution will be built with backpointers via the parent field

RF: right frontier, = admissible attachment point of current discourse unit

	Parameters:	
	parent – parent state (previous decision)

	link ((string, string, string)) – current decision (a triplet: target edu, source edu, relation)

	tolink ([string]) – remaining unattached discourse units

	
accessible()

	return the list of edus that are on the right frontier

	Return type:	[string]

	
final()

	return True if there are no more links to be made

	
last_link()

	return the link that was made to get to this state, if any

	
link(to_edu, from_edu, relation, rfc=<RfcConstraint.full: 2>)

	rfc = “full”: use the distinction coord/subord
rfc = “simple”: consider everything as subord
rfc = “none” no constraint on attachment

	
tobedone()

	return the list of edus to be linked

	Return type:	[string]

	
class attelo.decoding.astar.DiscourseBeamSearch(heuristic=<function <lambda>>, shared=None, queue_size=10)

	Bases: attelo.decoding.astar.DiscourseSearch, attelo.optimisation.astar.BeamSearch

	
class attelo.decoding.astar.DiscourseSearch(heuristic=<function <lambda>>, shared=None, queue_size=None)

	Bases: attelo.optimisation.astar.Search

subtype of astar search for discourse: should be the same for
every astar decoder, provided the discourse state is a subclass
of DiscourseState

recover solution should be as is, provided a state has at least the following
info:
- parent: parent state
- _link: the actual prediction made at this stage (1 state = 1 relation = (du1, du2, relation)

	
new_state(data)

	

	
recover_solution(endstate)

	follow back pointers to collect list of chosen relations on edus.

	
class attelo.decoding.astar.DiscourseState(data, heuristics, shared)

	Bases: attelo.optimisation.astar.State

Natural reading order decoding: incremental building of tree in order of
text (one edu at a time)

instance of discourse graph with probability for each attachement+relation on a subset
of edges.

implements the State interface to be used by Search

strategy: at each step of exploration choose a relation between two edus
related by probability distribution, reading order
a.k.a NRO “natural reading order”, cf Bramsen et al., 2006. in temporal processing.

‘data’ is set of instantiated relations (typically nothing at the
beginning, but could be started with a few chosen relations)

‘shared’ points to shared data between states (here proba distribution
between considered pairs of edus at least, but also can include precomputed
info for heuristics)

	
h_average()

	return the average probability possible when n nodes still need to be attached
assuming the best overall prob in the distrib

	
h_best()

	return the best probability possible when n nodes still need to be attached
assuming the best overall prob in the distrib

	
h_best_overall()

	return the best probability possible when n nodes still need to be attached
assuming the best overall prob in the distrib

	
h_zero()

	always 0

	
is_solution()

	

	
next_states()

	must return a state and a cost
TODO: adapt to disc parse, according to choice made for data -> especially update to RFC

	
proba(edu_pair)

	return the label and probability that an edu pair are attached,
or (“no”, None) if we don’t have a prediction for the pair

	Return type:	(string, float or None)

	
shared()

	information shared between states

	
strategy()

	full or not, if the RFC is applied to labelled edu pairs

	
class attelo.decoding.astar.Heuristic

	Bases: enum.Enum

Heuristic cost to guide A* search with

	zero: see DiscourseState.h_zero

	max: see DiscourseState.h_best_overall

	best: see DiscourseState.h_best

	average: see DiscourseState.h_average

	
average = <Heuristic.average: 3>

	

	
best = <Heuristic.best: 2>

	

	
max = <Heuristic.max: 1>

	

	
zero = <Heuristic.zero: 0>

	

	
class attelo.decoding.astar.RfcConstraint

	Bases: enum.Enum

What sort of right frontier constraint to apply during decoding:

	simple: every relation is treated as subordinating

	full: (falls back to simple in case of unlabelled prediction)

	
full = <RfcConstraint.full: 2>

	

	
none = <RfcConstraint.none: 3>

	

	
simple = <RfcConstraint.simple: 1>

	

	
class attelo.decoding.astar.TwoStageNRO

	Bases: attelo.decoding.astar.DiscourseState

similar as above with different handling of inter-sentence and intra-sentence relations

	
next_states()

	must return a state and a cost

	
same_sentence(edu1, edu2)

	not implemented: will always return False
TODO: this should go in preprocessing before launching astar
?? would it be easier to have access to all edu pair features ??
(certainly for that one)

	
class attelo.decoding.astar.TwoStageNROData(parent=None, accessible=None, tolink=None)

	Bases: attelo.decoding.astar.DiscData

similar as above with different handling of inter-sentence and intra-sentence relations

accessible is list of starting edus (only one for now)

	
accessible()

	wip:

	
link(to_edu, from_edu, relation)

	WIP

	
update_mode()

	switch between intra/inter-sentential parsing mode

	
attelo.decoding.astar.preprocess_heuristics(cands)

	
	precompute a set of useful information used by heuristics, such as

	
	best probability

	table of best probability when attaching a node, indexed on that node

format of cands is format given in main decoder: a list of
(arg1,arg2,proba,best_relation)

attelo.decoding.baseline module

Baseline decoders

	
class attelo.decoding.baseline.LastBaseline

	Bases: attelo.decoding.interface.Decoder

attach to last, always

	
decode(dpack, nonfixed_pairs=None)

	

	
class attelo.decoding.baseline.LocalBaseline(threshold, use_prob=True)

	Bases: attelo.decoding.interface.Decoder

just attach locally if prob is > threshold

	
decode(dpack, nonfixed_pairs=None)

	

attelo.decoding.greedy module

Implementation of the locally greedy approach similar with DuVerle & Predinger
(2009, 2010) (but adapted for SDRT, where the notion of adjacency includes
embedded segments)

July 2012

@author: stergos

	
class attelo.decoding.greedy.LocallyGreedy

	Bases: attelo.decoding.interface.Decoder

The locally greedy decoder

	
decode(dpack)

	

	
class attelo.decoding.greedy.LocallyGreedyState(instances)

	Bases: object

the mutable parts of the locally greedy algorithm

	
decode()

	Run the decoder

:rtype [(EDU, EDU, string)]

	
attelo.decoding.greedy.are_strictly_adjacent(one, two, edus)

	returns True in the following cases

[one] [two]
[two] [one]

in the rest of the cases (when there is an edu between one and two) it
returns False

	
attelo.decoding.greedy.get_neighbours(edus)

	Return a mapping from each EDU to its neighbours

	Return type:	Dict Edu [Edu]

	
attelo.decoding.greedy.is_embedded(one, two)

	returns True when one is embedded in two, that is

[two ... [one] ...]

returns False in all other cases

attelo.decoding.interface module

Common interface that all decoders must implement

	
class attelo.decoding.interface.Decoder

	Bases: attelo.parser.interface.Parser

A decoder is a function which given a probability distribution (see below)
and some control parameters, returns a sequence of predictions.

Most decoders only really return one prediction in practice, but some,
like the A* decoder might have able to return a ranked sequence of
the “N best” predictions it can find

We have a few informal types to consider here:

	a link ((string, string, string)) represents a link
between a pair of EDUs. The first two items are their
identifiers, and the third is the link label

	a candidate link (or candidate, to be short,
(EDU, EDU, float, string))
is a link with a probability attached

	a prediction is morally a set (in practice a list) of links

	a distribution is morally a set of proposed links

Note that a decoder could also be seen/used as a sort of crude parser
(with a fit function is a no-op). You’ll likely want to prefix it with
a parser that extracts weights from datapacks lest you work with the
somewhat unformative 1.0s everywhere.

	
decode(dpack)

	Return the N-best predictions in the form of a datapack per
prediction.

	
fit(dpacks, targets, nonfixed_pairs=None, cache=None)

	

	
transform(dpack, nonfixed_pairs=None)

	

attelo.decoding.local module

Local decoders make decisions for each edge independently.

	
class attelo.decoding.local.AsManyDecoder

	Bases: attelo.decoding.interface.Decoder

Greedy decoder that picks as many edges as there are real EDUs.

The output structure is a graph that has the same number of edges
as a spanning tree over the EDUs.
It can be non-connex, contain cycles and re-entrancies.

	
decode(dpack)

	Return the set of top N edges

	
class attelo.decoding.local.BestIncomingDecoder

	Bases: attelo.decoding.interface.Decoder

Greedy decoder that picks the best incoming edge for each EDU.

The output structure is a graph that contains exactly one incoming
edge for each EDU, thus it has the same number of edges as a
spanning tree over the EDUs.
It can be non-connex or contain cycles, but no re-entrancy.

	
decode(dpack)

	Return the best incoming edge for each EDU

attelo.decoding.mst module

Created on Jun 27, 2012

@author: stergos, jrmyp

	
class attelo.decoding.mst.MsdagDecoder(root_strategy, use_prob=True)

	Bases: attelo.decoding.mst.MstDecoder

Attach according to MSDAG (subgraph of original)

	
decode(dpack, nonfixed_pairs=None)

	

	
class attelo.decoding.mst.MstDecoder(root_strategy, use_prob=True)

	Bases: attelo.decoding.interface.Decoder

Attach in such a way that the resulting subgraph is a
maximum spanning tree of the original

	
decode(dpack, nonfixed_pairs=None)

	

	
class attelo.decoding.mst.MstRootStrategy

	Bases: attelo.util.ArgparserEnum

How we declare the MST root node

	
fake_root = <MstRootStrategy.fake_root: 1>

	

	
leftmost = <MstRootStrategy.leftmost: 2>

	

attelo.decoding.util module

Utility classes functions shared by decoders

	
exception attelo.decoding.util.DecoderException

	Bases: exceptions.Exception

Exceptions that arise during the decoding process

	
attelo.decoding.util.cap_score(score)

	Cap a real-valued score between MIN_SCORE and MAX_SCORE.

The current default values for MIN_SCORE and MAX_SCORE follow the
requirements from the decoders:
* The MST decoder uses the depparse package whose MST implementation
has a hardcoded minimum score of -1e100 ; Feeding it lower weights
crashes the algorithm. Combined scores can’t reach the limit unless
we have more than 1e10 nodes.
* The Eisner decoder internally uses float64 scores.

	Parameters:	score (float) – Original score.

	Returns:	bounded_score –
Score bounded to [MIN_SCORE, MAX_SCORE].

	Return type:	float

	
attelo.decoding.util.convert_prediction(dpack, triples)

	Populate a datapack prediction array from a list
of triples

	Parameters:	prediction ([(string, string, string)]) – List of EDU id, EDU id, label triples

	Returns:	dpack –
A copy of the original DataPack with predictions
set

	Return type:	DataPack

	
attelo.decoding.util.get_prob_map(instances)

	Reformat a probability distribution as a dictionary from
edu id pairs to a (relation, probability) tuples

:rtype dict (string, string) (string, float)

	
attelo.decoding.util.get_sorted_edus(instances)

	Return a list of EDUs, using the following as sort key in order of

	starting position (earliest edu first)

	ending position (narrowest edu first)

Note that there may be EDU pairs with the same spans
(particularly in case of annotation error). In case of ties,
the order should be considered arbitrary

	
attelo.decoding.util.prediction_to_triples(dpack)

	

	Returns:	triples –List of EDU id, EDU id, label triples
omitting the unrelated triples

	Return type:	prediction: [(string, string, string)]

	
attelo.decoding.util.simple_candidates(dpack)

	Translate the links into a list of (EDU, EDU, float, string)
quadruplets representing the attachment probability and the
the best label for each EDU pair. This is often good enough
for simplistic decoders

attelo.decoding.window module

A “pruning” decoder that pre-processes candidate edges and prunes them away
if they are separated by more than a certain number of EDUs

	
class attelo.decoding.window.WindowPruner(window)

	Bases: attelo.decoding.interface.Decoder

Notes

We assume that the datapack includes every EDU in its
grouping.

If there are any gaps, the window will be a bit messed up

As decoders are parsers like any other, if you just want
to apply this as preprocessing to a decoder, you could
construct a mini pipeline consisting of this plus the
decoder. Alternatively, if you already have a larger
pipeline of which the decoder is already part, you can
just insert this before the decoder.

	
decode(dpack)

	

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	attelo API

 	attelo package

attelo.harness package

attelo experimental harness helpers

The modules here are meant to help with building your own
test harnesses around attelo. They provide opinionated
support for experiment layout and interfacing with attelo

Submodules

attelo.harness.config module

Configuring the harness

	
class attelo.harness.config.ClusterStage

	Bases: enum.Enum

What stage of cluster usage we are at

This is used when you want to distribute the evaluation
across multiple nodes of a cluster.

The idea is that you would run the harness in separate
stages:

	a single “start” stage, then

	in parallel
* nodes running “main” stages for some folds
* a node running a “combined_model” stage

	finally, a single “end” stage

	
combined_models = <ClusterStage.combined_models: 3>

	

	
end = <ClusterStage.end: 4>

	

	
main = <ClusterStage.main: 2>

	

	
start = <ClusterStage.start: 1>

	

	
class attelo.harness.config.DataConfig

	Bases: attelo.harness.config.DataConfig

Data tables read during harness evaluation

This class may be folded into HarnessConfig eventually

	
class attelo.harness.config.EvaluationConfig

	Bases: attelo.harness.config.EvaluationConfig

Combination of learners, decoders and decoder settings
for an attelo evaluation

The settings can really be of type that has a ‘key’
field; but you should have a way of extracting at
least a DecodingMode from it

	Parameters:	
	learner (Keyed learnercfg) – Some sort of keyed learner configuration. This is usually
of type LearnerConfig but there are cases where you have
fancier objects in place

	parser (Keyed (learnercfg -> Parser)) – A (keyed) function that builds a parser from whatever
learner configuration you used in learner

	settings (Keyed (???)) –

	
classmethod simple_key(learner, decoder)

	generate a short unique name for a learner/decoder combo

	
class attelo.harness.config.Keyed

	Bases: attelo.harness.config.Keyed

A keyed object is just any object that is attached with a
short unique (mnemonic) identifier.

Keys often appear in filenames so it’s best to avoid
whitespace, fancy characters, and for portability reasons,
anything non-ASCII.

	
class attelo.harness.config.LearnerConfig

	Bases: attelo.util.Team

Combination of an attachment and a relation learner variant

	
class attelo.harness.config.RuntimeConfig

	Bases: attelo.harness.config.RuntimeConfig

Harness runtime options.

These are mostly relevant to when using the harness on
a cluster.

	Parameters:	
	mode (string ('resume' or 'jumpstart') or None) –
	jumpstart: copy model and fold files from a previous evaluation

	resume: pick an evaluation up from where it left off

	folds ([int] or None) – Which folds to run the harness on.
None to run on all folds

	n_jobs (int (-1 or natural)) – Number of parallel jobs to run (-1 for max cores).
See joblib doc for details

	stage (ClusterStage or None) – Which evaluation stage to run

	
classmethod empty()

	Empty configuration

attelo.harness.evaluate module

attelo.harness.example module

attelo.harness.graph module

attelo.harness.interface module

Basic interface that all test harnesses should respect

	
class attelo.harness.interface.Harness(dataset, testset)

	Bases: object

Test harness configuration.

Among other things, this is about defining conventions for
filepaths.

Notes

You should have a method that calls load.
It should be invoked once before running the harness.
A natural idiom may be to implement a single run function
that does this.

	
combined_dir_path()

	Return path to directory where combined/global models should
be stored

This would be for all training data, ie. without paying attention
to folds

	Returns:	

	Return type:	filepath

	
config_files

	Files needed to reproduce the configuration behind a
particular set of scores.

Will be copied into the provenance section of the report.

Some harnesses have parameter files that should be saved
in case there is any need to reproduce results much
futher into the future. Specifying them here gives you some
extra insurance in case you neglect to put them under version
control.

	
create_folds(mpack)

	Generate the folds dictionary for the given multipack, optionally
caching them to disk

In some harness configurations, it may make sense to have a fixed
set of folds rather than generating them on the fly

	Returns:	fold_dict –
dictionary from document names to fold

	Return type:	dict(string, int)

	
decode_output_path(econf, fold)

	Return path to output graph for given fold and config

	
detailed_evaluations

	Set of evaluations for which we would like detailed reporting

	
eval_dir

	Directory to store evaluation results.

Basically anything that should be considered as important for
long-term archiving and reproducibility

	
evaluations

	List of evaluations to use on the training data

	
fold_dir_path(fold)

	Return path to working directory for a given fold

	Parameters:	fold (int) –

	Returns:	

	Return type:	filepath

	
fold_file

	Path to the fold allocation dictionary

	
graph_docs

	List of document names for which we would like to generate graphs

	
load(runcfg, eval_dir, scratch_dir)

	

	Parameters:	
	eval_dir (filepath) – Directory to store evaluation results, basically anything
that should be considered as important for long-term
archiving and reproducibility

	scratch_dir (filepath) – Directory for relatively emphemeral intermediary results.
One would be more inclined to delete scratch than eval

	runcfg (RuntimeConfig or None) – Runtime configuration. None for default options

See also

See()

	
metrics

	Selection of metrics to compute in reports.

	
model_paths(rconf, fold, parser)

	Return attelo model paths in dictionary form

	Parameters:	
	rconf (LearnerConfig) –

	fold (int) –

	Returns:	

	Return type:	Dictionary from attelo parser cache keys to paths

	
mpack_paths(test_data, stripped=False)

	Return a dict of paths needed to read a datapack.

Usual keys are:
* edu_input
* pairings
* features
* vocab

	Parameters:	
	test_data (bool) – If True, it’s test data we wanted.

	stripped (bool, defaults to False) – If True, return path for a “stripped” version of the data
(faster loading, but only useful for scoring).

	Returns:	res –
Paths to files that enable to read a datapack.

	Return type:	dict

	
report_digits

	Number of digits to display floats in reports.

	
report_dir_path(test_data, fold=None, is_tmp=True)

	Path to a directory containing reports.

	Parameters:	
	test_data (bool) – If True, the report is about the test set, otherwise the
(usually, training) dataset.

	fold (int, optional) – Number of the fold under scrutiny ; if None, all folds.

	is_tmp (bool, defaults to True) – If True, only return the path to a provisional report in
progress.

	
runcfg

	Runtime configuration settings for the harness

	
scratch_dir

	Directory for relatively emphemeral intermediary results.

One would be more inclined to delete scratch than eval

	
test_evaluation

	The test evaluation for this harness, or None if it’s unset

	
exception attelo.harness.interface.HarnessException

	Bases: exceptions.Exception

Things that go wrong in the test harness itself.

attelo.harness.parse module

attelo.harness.report module

attelo.harness.util module

Miscellaneous utility functions

	
attelo.harness.util.call(args, **kwargs)

	Execute a command and die prettily if it fails

	
attelo.harness.util.force_symlink(source, link_name, **kwargs)

	Symlink from source to link_name, removing any
prexisting file at link_name

	
attelo.harness.util.makedirs(path, **kwargs)

	Create a directory and its parents if it does not already
exist

	
attelo.harness.util.md5sum_dir(path, blocksize=65536)

	Read a dir and return its md5 sum

	
attelo.harness.util.md5sum_file(path, blocksize=65536)

	Read a file and return its md5 sum

	
attelo.harness.util.subdirs(parent)

	Return all subdirectories within the parent dir
(with combined path, ie. parent/subdir)

	
attelo.harness.util.timestamp()

	Current date/time to minute resolution in an ISO format.

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	attelo API

 	attelo package

attelo.learning package

Submodules

attelo.learning.interface module

attelo.learning.local module

attelo.learning.oracle module

attelo.learning.perceptron module

attelo.learning.util module

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	attelo API

 	attelo package

attelo.metrics package

Submodules

attelo.metrics.tree module

Metrics to assess performance on tree-structured predictions.

Functions named as *_loss return a scalar value to minimize:
the lower the better.

	
attelo.metrics.tree.labelled_tree_loss(ref_tree, pred_tree)

	Compute the labelled tree loss.

The labelled tree loss is the fraction of edges that are incorrectly
predicted, with a lesser penalty for edges with the correct attachment
but the wrong label.

	Parameters:	
	ref_tree (list of edges (source, target, label)) – reference tree

	pred_tree (list of edges (source, target, label)) – predicted tree

	Returns:	loss –
Return the tree loss between edges of ref_tree and
pred_tree.

	Return type:	float

See also

tree_loss()

Notes

The labelled tree loss counts only half of the penalty for edges with
the right attachment but the wrong label.

	
attelo.metrics.tree.tree_loss(ref_tree, pred_tree)

	Compute the tree loss.

The tree loss is the fraction of edges that are incorrectly predicted.

	Parameters:	
	ref_tree (list of edges (source, target, label)) – reference tree

	pred_tree (list of edges (source, target, label)) – predicted tree

	Returns:	loss –
Return the tree loss between edges of ref_tree and
pred_tree.

	Return type:	float

See also

labelled_tree_loss()

Notes

For labelled trees, the tree loss checks for strict correspondence:
it does not differentiate between incorrectly attached edges and
correctly attached but incorrectly labelled edges.

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	attelo 0.2 documentation

 	attelo API

 	attelo package

attelo.optimisation package

Submodules

attelo.optimisation.astar module

Various search algorithms for combinatorial problems:

	[OK] Astar (shortest path with heuristics),
and variants:

	[OK] beam search (astar with size limit on waiting queue)

	
	[OK] nbest solutions: implies storing solutions and a counter, and changing

	return values (actually most search will make use of a
recover_solution(s) to reconstruct desired data)

	branch and bound (astar with forward lookahead)

	
class attelo.optimisation.astar.BeamSearch(heuristic=<function <lambda>>, shared=None, queue_size=10)

	Bases: attelo.optimisation.astar.Search

search with heuristics but limited size waiting queue
(restrict to p-best solutions at each iteration)

	
add_queue(items, ancestor_cost)

	

	
new_state(data)

	

	
class attelo.optimisation.astar.Search(heuristic=<function <lambda>>, shared=None, queue_size=None)

	Bases: object

abstract class for search
each state to be explored must have methods

	next_states() - successor states + costs

	is_solution() - is the state a valid solution

	cost() - cost of the state so far (must be additive)

default is astar search (search the minimum cost from init state to a
solution

	Parameters:	
	heuristic – heuristics guiding the search (applies to state-specific
data(), see State)

	shared – other data shared by all nodes (eg. for heuristic
computation)

	queue_size – limited beam-size to store states. (commented out,
pending tests)

	
add_queue(items, ancestor_cost)

	Add a set of succesors to the search queue

:type items [(data, float)]

	
add_seen(state)

	Mark a state as seen

	
has_empty_queue()

	Return True if the search queue is empty

	
is_already_seen(state)

	Return True if the given search state has already been seen

	
launch(init_state, verbose=False, norepeat=False)

	launch search from initital state value

	Param:	norepeat: there’s no need for an “already seen states”
datastructure

	
new_state(data)

	Build a new state from the given data

	
pop_best()

	Return and remove the lowest cost item from the search queue

	
reset_queue()

	Clear out the search queue

	
reset_seen()

	Mark every state as not yet seen

	
shared()

	Information that can be shared across states

	
class attelo.optimisation.astar.State(data, cost=0, future_cost=0)

	Bases: object

state for state space exploration with search

(contains at least state info and cost)

Note the functions is_solution and next_states which
must be implemented

	
cost()

	past path cost

	
data()

	actual distinguishing contents of a state

	
future_cost()

	future cost

	
is_solution()

	return True if the state is a valid solution

	
next_states()

	return the successor states and their costs

	
total_cost()

	past and future cost

	
update_cost(value)

	add to the current cost

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	attelo 0.2 documentation

 	attelo API

 	attelo package

attelo.parser package

Attelo is essentially a toolkit for producing parsers: parsers are black boxes
that take EDUS as inputs and produce graphs as output.

Parsers follow the scikit fit/transform idiom. They are learned from some
training data via the fit() function (this usually results in some model
that the parser remembers; but a hypothetical purely rule-based parser might
have a no-op fit function). Once fitted to the training data, they can be set
loose on anything you might want to parse: the transform function will
produce graphs from the EDUs.

Submodules

attelo.parser.attach module

A parser that only decides on the attachment task (whether this
is directed or not depends on the underlying datapack and decoder).
You could also combine this with the label parser

	
class attelo.parser.attach.AttachClassifierWrapper(learner_attach)

	Bases: attelo.parser.interface.Parser

Parser that extracts attachments weights from an attachment
classifier.

This parser is really meant to be used in conjunction with
other parsers downstream that make use of these weights.

If you use it in standalone mode, it will just provide the
standard unknown prediction everywhere

Notes

Cache keys

	attach: attachment model path

	
fit(dpacks, targets, nonfixed_pairs=None, cache=None)

	Extract whatever models or other information from the multipack
that is necessary to make the parser operational

	Parameters:	mpack (MultiPack) –

	
transform(dpack, nonfixed_pairs=None)

	

	
class attelo.parser.attach.AttachPipeline(learner, decoder)

	Bases: attelo.parser.pipeline.Pipeline

Parser that performs the attachment task.

Attachments may be directed or undirected depending on
the datapack and models.

For the moment, this assumes AD models, but perhaps over
time could be generalised to A.D models too.

This can work as a standalone parser: if the datapack is
unweighted it will initalise it from the classifier.
Also, if there are pre-existing weights, they will be
multiplied with the new weights.

Notes

fit() and transform() have a ‘cache’ parameter that is a dict
with expected keys:
* attach: attachment model path

attelo.parser.full module

A ‘full’ parser does the attach, direction, and labelling tasks

	
class attelo.parser.full.AttachTimesBestLabel

	Bases: attelo.parser.interface.Parser

Intermediary parser that adjusts the attachment weight
by multiplying the best label weight with it.

This is most useful in the middle of a parsing pipeline:
we need something upstream to assign initial attachment and
label weights (otherwise we get the default 1.0 everywhere),
and something downstream to make predictions (otherwise
it’s UNKNOWN everywhere)

	
fit(dpacks, targets, nonfixed_pairs=None, cache=None)

	

	
transform(dpack, nonfixed_pairs=None)

	

	
class attelo.parser.full.JointPipeline(learner_attach, learner_label, decoder)

	Bases: attelo.parser.pipeline.Pipeline

Parser that performs attach, direction, and labelling tasks.

For the moment, this assumes AD.L models, but we hope to
explore possible generalisations of this idea over time.

In our working shorthand, this would be an AD.L:adl parser,
ie. one that has separate attach-direct model and label
model (AD.L); but which treats decoding as a joint-prediction
task.

Notes

fit() and transform() have a cache parameter, it should be a
dict with keys:
* ‘attach’: attach model path
* ‘label’: label model path

	
class attelo.parser.full.PostlabelPipeline(learner_attach, learner_label, decoder)

	Bases: attelo.parser.pipeline.Pipeline

Parser that perform the attachment task (may be directed
or undirected depending on datapack and models), and then
the labelling task in a second step

For the moment, this assumes AD models, but perhaps over
time could be generalised to A.D models too

This can work as a standalone parser: if the datapack is
unweighted it will initalise it from the classifier.
Also, if there are pre-existing weights, they will be
multiplied with the new weights

Notes

fit() and transform() have a ‘cache’ parameter that is a dict with
expected keys:
* ‘attach’: attach model path
* ‘label’: label model path

attelo.parser.interface module

Basic interface that all parsers should respect

	
class attelo.parser.interface.Parser

	Bases: object

Parsers follow the scikit fit/transform idiom. They are learned from some
training data via the fit() function. Once fitted to the training data,
they can be set loose on anything you might want to parse: the transform
function will produce graphs from the EDUs.

If the learning process is expensive, it would make sense to offer the
ability to initialise a parser from a cached model

	
static deselect(dpack, idxes)

	Common parsing pattern: mark all edges at the given indices
as unrelated with attachment score of 0. This should normally
exclude them from attachment by a decoder.

Warning: assumes a weighted datapack

This is often a better bet than using something like
DataPack.selected because it keeps the unwanted edges in
the datapack

	
static dzip(fun, dpacks, targets)

	Apply a function on each datapack and the corresponding target
block

	Parameters:	
	((a, b) -> (a, b)) (fun) –

	[a] (dpacks) –

	[b] (targets) –

	Returns:	

	Return type:	[a], [b]

	
fit(dpacks, targets, cache=None)

	Extract whatever models or other information from the multipack
that is necessary to make the parser operational

	Parameters:	
	dpacks ([DataPack]) –

	targets ([array(int)]) – A block of labels for each datapack. Each block should
have the same length as its corresponding datapack

	cache (dict(string, object), optional) – Paths to submodels. If set, this dictionary associates
submodel names with filenames. The submodel names are
arbitrary strings like “attach” or “label” (check the
documentation for the parser itself to see what
submodels it recognises) with some sort of cache.

This usage is necessarily loose. The parser should be
prepared to ignore a key if it does not exist in the
cache. The typical cache value is a filepath containing
a pickle to load or dump; but other objects may sometimes
be used depending on the parser (eg. other caches if it’s
a parser that somehow combines other parsers together)

	
static multiply(dpack, attach=None, label=None)

	If the datapack is weighted, multiply its existing probabilities
by the given ones, otherwise set them

	Parameters:	
	(array(float), optional) (attach) – If unset will default to ones

	(2D array(float), optional) (label) – If unset will default to ones

	Returns:	

	Return type:	The modified datapack

	
static select(dpack, idxes)

	Mark any pairs except the ones indicated as unrelated

See also

Parser.deselect

	
transform(dpack)

	Refine the parse for a single document: given a document and a
graph (for the same document), add or remove edges from the
graph (mostly remove).

A standalone parser should be able to start from an unweighted
datapack (a fully connected graph with all labels equally
liekly) and pare it down with to a much more useful graph
with one best label per edge.

Standalone parsers ought to also do something sensible with
weighted datapacks (partially instantiated graphs), but in
practice they may ignore them.

Not all parsers may necessarily standalone. Some may only be
designed to refine already existing parses. Or may require
further processing.

	Parameters:	dpack (DataPack) – the graph to refine (can be unweighted for standalone
parsers, MUST be weighted for other parsers)

	Returns:	predictions –
the best graph/prediction for this document(TODO: support n-best)

	Return type:	DataPack

attelo.parser.intra module

Document-level parsers that first do sentence-level parsing.

An IntraInterParser applies separate parsers on edges within a sentence
and then on edges across sentences.

	
class attelo.parser.intra.FrontierToHeadParser(parsers, sel_inter='inter', verbose=False)

	Bases: attelo.parser.intra.IntraInterParser

Intra/inter parser in which sentence recombination consists of
parsing with edges from the frontier of sentential subtree to sentence
head.

[] write and integrate an oracle that replaces lost gold edges (from
non-head to head) with the closest alternative ; here this probably
happens on leaky sentences and I still have to figure out what an
oracle should look like.

	
class attelo.parser.intra.HeadToHeadParser(parsers, sel_inter='inter', verbose=False)

	Bases: attelo.parser.intra.IntraInterParser

Intra/inter parser in which sentence recombination consists of
parsing with only sentence heads.

[] write and integrate an oracle that replaces lost gold edges (from
non-head to head) with the closest alternative, here moving edges
up the intra subtrees so they link the (recursive) heads of their
original nodes.

	
class attelo.parser.intra.IntraInterPair

	Bases: attelo.parser.intra.IntraInterPair

Any pair of the same sort of thing, but with one meant
for intra-sentential decoding, and the other meant for
intersentential

	
fmap(fun)

	Return the result of applying a function on both intra/inter

	Parameters:	fun (a -> b) –

	Returns:	

	Return type:	IntraInterPair(b)

	
class attelo.parser.intra.IntraInterParser(parsers, sel_inter='inter', verbose=False)

	Bases: attelo.parser.interface.Parser

Parser that performs attach, direction, and labelling tasks;
but in two phases:

	by separately parsing edges within the same sentence

	and then combining the results to form a document

This is an abstract class

Notes

/Cache keys/: Same as whatever included parsers would use.
This parser will divide the dictionary into keys that
have an ‘intra:’ prefix or not. The intra prefixed keys
will be passed onto the intrasentential parser (with
the prefix stripped). The other keys will be passed onto
the intersentential parser

	
fit(dpacks, targets, cache=None)

	

	
transform(dpack)

	

	
class attelo.parser.intra.SentOnlyParser(parsers, sel_inter='inter', verbose=False)

	Bases: attelo.parser.intra.IntraInterParser

Intra/inter parser with no sentence recombination.
We also chop off any fakeroot connections

	
class attelo.parser.intra.SoftParser(parsers, sel_inter='inter', verbose=False)

	Bases: attelo.parser.intra.IntraInterParser

Intra/inter parser in which sentence recombination consists of

	passing intra-sentential edges through but

	marking 1.0 attachment probabilities if they are attached
and 1.0 label probabilities on the resulting edge

Notes

In its current implementation, this parser needs a global model,
i.e. one fit on the whole dataset, so that it can correctly score
intra-sentential edges.
Different, alternative implementations could probably solve or work
around this.

	
attelo.parser.intra.edu_id2num(edu_id)

	Get the number of an EDU

	
attelo.parser.intra.for_intra(dpack, target)

	Adapt a datapack to intrasentential decoding.

An intrasentential datapack is almost identical to its original,
except that we set the label for each (‘ROOT’, edu) pairing to
‘ROOT’ if that edu is a subgrouping head (if it has no parents other
than ‘ROOT’ within its subgrouping).

This should be done before either for_labelling or for_attachment

	Returns:	
	dpack (DataPack)

	target (array(int))

	
attelo.parser.intra.partition_subgroupings(dpack)

	Partition the pairings of a datapack along (grouping, subgrouping).

	Parameters:	dpack (DataPack) – Datapack to partition

	Returns:	groups –
Map each (grouping, subgrouping) to the list of indices of pairings
within the same subgrouping.

	Return type:	dict from (string, string) to list of integers

Notes

	
	(FAKE_ROOT, x) pairings are included in the group defined by

	(grouping(x), subgrouping(x)).

	
	This function is a tiny wrapper around

	attelo.table.grouped_intra_pairings.

attelo.parser.label module

Labelling

	
class attelo.parser.label.LabelClassifierWrapper(learner)

	Bases: attelo.parser.interface.Parser

Parser that extracts label weights from a label classifier.

This parser is really meant to be used in conjunction with
other parsers downstream that make use of these weights.

If you use it in standalone mode, it will just provide the
standard unknown prediction everywhere.

Notes

fit() and transform() have a ‘cache’ argument that is a dict with
expected keys:
* ‘label’: label model path

	
fit(dpacks, targets, nonfixed_pairs=None, cache=None)

	Extract whatever models or other information from the multipack
that is necessary to make the labeller operational.

	Returns:	self

	Return type:	object

	
transform(dpack, nonfixed_pairs=None)

	

	
class attelo.parser.label.SimpleLabeller(learner)

	Bases: attelo.parser.label.LabelClassifierWrapper

A simple parser that assigns the best label to any edges with
unknown labels.

This can be used as a standalone parser if the underlying
classifier predicts UNRELATED.

Notes

fit() and transform() have a ‘cache’ parameter that is a dict with
expected keys:
* ‘label’: label model path

	
transform(dpack, nonfixed_pairs=None)

	

attelo.parser.pipeline module

Parser made by sequencing other parsers.

Ideally, we’d like to use sklearn.pipeline.Pipeline but our previous
attempts have failed.
The current trend is to try and slowly converge.

	
class attelo.parser.pipeline.Pipeline(steps)

	Bases: attelo.parser.interface.Parser

Apply a sequence of parsers.

NB. For now we assume that these parsers can be
fitted independently of each other.

Steps should be a tuple of names and parsers, just like
in sklearn.

	Parameters:	steps (list) – List of (name, parser) tuples that are chained.

	
named_steps

	dict

Read-only attribute to access any step parameter by user given
name. Keys are step names and values are step parameters.

	
fit(dpacks, targets, nonfixed_pairs=None, cache=None)

	Fit.

	
named_steps

	

	
transform(dpack, nonfixed_pairs=None)

	Transform.

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	attelo 0.2 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 attelo	

 	
 	
 attelo.args	

 	
 	
 attelo.decoding	

 	
 	
 attelo.decoding.astar	

 	
 	
 attelo.decoding.baseline	

 	
 	
 attelo.decoding.greedy	

 	
 	
 attelo.decoding.interface	

 	
 	
 attelo.decoding.local	

 	
 	
 attelo.decoding.mst	

 	
 	
 attelo.decoding.util	

 	
 	
 attelo.decoding.window	

 	
 	
 attelo.edu	

 	
 	
 attelo.fold	

 	
 	
 attelo.graph	

 	
 	
 attelo.harness	

 	
 	
 attelo.harness.config	

 	
 	
 attelo.harness.interface	

 	
 	
 attelo.harness.util	

 	
 	
 attelo.metrics	

 	
 	
 attelo.metrics.tree	

 	
 	
 attelo.optimisation	

 	
 	
 attelo.optimisation.astar	

 	
 	
 attelo.parser	

 	
 	
 attelo.parser.attach	

 	
 	
 attelo.parser.full	

 	
 	
 attelo.parser.interface	

 	
 	
 attelo.parser.intra	

 	
 	
 attelo.parser.label	

 	
 	
 attelo.parser.pipeline	

 	
 	
 attelo.table	

 	
 	
 attelo.util	

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	attelo 0.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	

 	accessible() (attelo.decoding.astar.DiscData method)

 	

 	(attelo.decoding.astar.TwoStageNROData method)

 	add_common_args() (in module attelo.args)

 	add_fold_choice_args() (in module attelo.args)

 	add_model_read_args() (in module attelo.args)

 	add_queue() (attelo.optimisation.astar.BeamSearch method)

 	

 	(attelo.optimisation.astar.Search method)

 	add_report_args() (in module attelo.args)

 	add_seen() (attelo.optimisation.astar.Search method)

 	Alarm

 	alarm_handler() (in module attelo.graph)

 	are_strictly_adjacent() (in module attelo.decoding.greedy)

 	ArgparserEnum (class in attelo.util)

 	AsManyDecoder (class in attelo.decoding.local)

 	AstarArgs (class in attelo.decoding.astar)

 	AstarDecoder (class in attelo.decoding.astar)

 	AttachClassifierWrapper (class in attelo.parser.attach)

 	attached_only() (in module attelo.table)

 	AttachPipeline (class in attelo.parser.attach)

 	AttachTimesBestLabel (class in attelo.parser.full)

 	attelo (module)

 	attelo.args (module)

 	attelo.decoding (module)

 	attelo.decoding.astar (module)

 	attelo.decoding.baseline (module)

 	attelo.decoding.greedy (module)

 	attelo.decoding.interface (module)

 	

 	attelo.decoding.local (module)

 	attelo.decoding.mst (module)

 	attelo.decoding.util (module)

 	attelo.decoding.window (module)

 	attelo.edu (module)

 	attelo.fold (module)

 	attelo.graph (module)

 	attelo.harness (module)

 	attelo.harness.config (module)

 	attelo.harness.interface (module)

 	attelo.harness.util (module)

 	attelo.metrics (module)

 	attelo.metrics.tree (module)

 	attelo.optimisation (module)

 	attelo.optimisation.astar (module)

 	attelo.parser (module)

 	attelo.parser.attach (module)

 	attelo.parser.full (module)

 	attelo.parser.interface (module)

 	attelo.parser.intra (module)

 	attelo.parser.label (module)

 	attelo.parser.pipeline (module)

 	attelo.table (module)

 	attelo.util (module)

 	average (attelo.decoding.astar.Heuristic attribute)

B

 	

 	BeamSearch (class in attelo.optimisation.astar)

 	best (attelo.decoding.astar.Heuristic attribute)

 	

 	BestIncomingDecoder (class in attelo.decoding.local)

C

 	

 	call() (in module attelo.harness.util)

 	cap_score() (in module attelo.decoding.util)

 	choices_str() (attelo.util.ArgparserEnum class method)

 	ClusterStage (class in attelo.harness.config)

 	combined_dir_path() (attelo.harness.interface.Harness method)

 	combined_models (attelo.harness.config.ClusterStage attribute)

 	

 	concat_i() (in module attelo.util)

 	concat_l() (in module attelo.util)

 	config_files (attelo.harness.interface.Harness attribute)

 	convert_prediction() (in module attelo.decoding.util)

 	cost() (attelo.optimisation.astar.State method)

 	create_folds() (attelo.harness.interface.Harness method)

D

 	

 	data() (attelo.optimisation.astar.State method)

 	DataConfig (class in attelo.harness.config)

 	DataPack (class in attelo.table)

 	DataPackException

 	decode() (attelo.decoding.astar.AstarDecoder method)

 	

 	(attelo.decoding.baseline.LastBaseline method)

 	(attelo.decoding.baseline.LocalBaseline method)

 	(attelo.decoding.greedy.LocallyGreedy method)

 	(attelo.decoding.greedy.LocallyGreedyState method)

 	(attelo.decoding.interface.Decoder method)

 	(attelo.decoding.local.AsManyDecoder method)

 	(attelo.decoding.local.BestIncomingDecoder method)

 	(attelo.decoding.mst.MsdagDecoder method)

 	(attelo.decoding.mst.MstDecoder method)

 	(attelo.decoding.window.WindowPruner method)

 	decode_output_path() (attelo.harness.interface.Harness method)

 	Decoder (class in attelo.decoding.interface)

 	DecoderException

 	

 	deselect() (attelo.parser.interface.Parser static method)

 	detailed_evaluations (attelo.harness.interface.Harness attribute)

 	diff_all() (in module attelo.graph)

 	DiscData (class in attelo.decoding.astar)

 	DiscourseBeamSearch (class in attelo.decoding.astar)

 	DiscourseSearch (class in attelo.decoding.astar)

 	DiscourseState (class in attelo.decoding.astar)

 	dzip() (attelo.parser.interface.Parser static method)

E

 	

 	EDU (class in attelo.edu)

 	edu_id2num() (in module attelo.parser.intra)

 	empty() (attelo.harness.config.RuntimeConfig class method)

 	end (attelo.harness.config.ClusterStage attribute)

 	

 	eval_dir (attelo.harness.interface.Harness attribute)

 	EvaluationConfig (class in attelo.harness.config)

 	evaluations (attelo.harness.interface.Harness attribute)

F

 	

 	fake_root (attelo.decoding.mst.MstRootStrategy attribute)

 	FAKE_ROOT (in module attelo.edu)

 	final() (attelo.decoding.astar.DiscData method)

 	fit() (attelo.decoding.interface.Decoder method)

 	

 	(attelo.parser.attach.AttachClassifierWrapper method)

 	(attelo.parser.full.AttachTimesBestLabel method)

 	(attelo.parser.interface.Parser method)

 	(attelo.parser.intra.IntraInterParser method)

 	(attelo.parser.label.LabelClassifierWrapper method)

 	(attelo.parser.pipeline.Pipeline method)

 	fmap() (attelo.parser.intra.IntraInterPair method)

 	

 	(attelo.util.Team method)

 	fold_dir_path() (attelo.harness.interface.Harness method)

 	fold_file (attelo.harness.interface.Harness attribute)

 	fold_groupings() (in module attelo.fold)

 	

 	for_attachment() (in module attelo.table)

 	for_intra() (in module attelo.parser.intra)

 	for_labelling() (in module attelo.table)

 	force_symlink() (in module attelo.harness.util)

 	from_string() (attelo.util.ArgparserEnum class method)

 	FrontierToHeadParser (class in attelo.parser.intra)

 	full (attelo.decoding.astar.RfcConstraint attribute)

 	future_cost() (attelo.optimisation.astar.State method)

G

 	

 	get_label() (attelo.table.DataPack method)

 	get_label_string() (in module attelo.table)

 	get_neighbours() (in module attelo.decoding.greedy)

 	get_prob_map() (in module attelo.decoding.util)

 	get_sorted_edus() (in module attelo.decoding.util)

 	Graph (class in attelo.table)

 	

 	graph_all() (in module attelo.graph)

 	graph_docs (attelo.harness.interface.Harness attribute)

 	GraphSettings (class in attelo.graph)

 	grouped_intra_pairings() (in module attelo.table)

 	groupings() (in module attelo.table)

H

 	

 	h_average() (attelo.decoding.astar.DiscourseState method)

 	h_best() (attelo.decoding.astar.DiscourseState method)

 	h_best_overall() (attelo.decoding.astar.DiscourseState method)

 	h_zero() (attelo.decoding.astar.DiscourseState method)

 	Harness (class in attelo.harness.interface)

 	

 	HarnessException

 	has_empty_queue() (attelo.optimisation.astar.Search method)

 	HeadToHeadParser (class in attelo.parser.intra)

 	help_suffix() (attelo.util.ArgparserEnum class method)

 	Heuristic (class in attelo.decoding.astar)

I

 	

 	idxes_attached() (in module attelo.table)

 	idxes_fakeroot() (in module attelo.table)

 	idxes_inter() (in module attelo.table)

 	idxes_intra() (in module attelo.table)

 	IntraInterPair (class in attelo.parser.intra)

 	

 	IntraInterParser (class in attelo.parser.intra)

 	is_already_seen() (attelo.optimisation.astar.Search method)

 	is_embedded() (in module attelo.decoding.greedy)

 	is_solution() (attelo.decoding.astar.DiscourseState method)

 	

 	(attelo.optimisation.astar.State method)

J

 	

 	JointPipeline (class in attelo.parser.full)

K

 	

 	Keyed (class in attelo.harness.config)

L

 	

 	label_number() (attelo.table.DataPack method)

 	LabelClassifierWrapper (class in attelo.parser.label)

 	labelled_tree_loss() (in module attelo.metrics.tree)

 	last_link() (attelo.decoding.astar.DiscData method)

 	LastBaseline (class in attelo.decoding.baseline)

 	launch() (attelo.optimisation.astar.Search method)

 	LearnerConfig (class in attelo.harness.config)

 	

 	leftmost (attelo.decoding.mst.MstRootStrategy attribute)

 	link() (attelo.decoding.astar.DiscData method)

 	

 	(attelo.decoding.astar.TwoStageNROData method)

 	load() (attelo.harness.interface.Harness method)

 	

 	(attelo.table.DataPack class method)

 	LocalBaseline (class in attelo.decoding.baseline)

 	LocallyGreedy (class in attelo.decoding.greedy)

 	LocallyGreedyState (class in attelo.decoding.greedy)

 	locate_in_subpacks() (in module attelo.table)

M

 	

 	main (attelo.harness.config.ClusterStage attribute)

 	make_n_fold() (in module attelo.fold)

 	makedirs() (in module attelo.harness.util)

 	max (attelo.decoding.astar.Heuristic attribute)

 	md5sum_dir() (in module attelo.harness.util)

 	md5sum_file() (in module attelo.harness.util)

 	metrics (attelo.harness.interface.Harness attribute)

 	mk_diff_graph() (in module attelo.graph)

 	mk_rng() (in module attelo.util)

 	

 	mk_single_graph() (in module attelo.graph)

 	model_paths() (attelo.harness.interface.Harness method)

 	mpack_pairing_distances() (in module attelo.table)

 	mpack_paths() (attelo.harness.interface.Harness method)

 	MsdagDecoder (class in attelo.decoding.mst)

 	MstDecoder (class in attelo.decoding.mst)

 	MstRootStrategy (class in attelo.decoding.mst)

 	Multipack (class in attelo.table)

 	multiply() (attelo.parser.interface.Parser static method)

N

 	

 	named_steps (attelo.parser.pipeline.Pipeline attribute), [1]

 	new_state() (attelo.decoding.astar.DiscourseSearch method)

 	

 	(attelo.optimisation.astar.BeamSearch method)

 	(attelo.optimisation.astar.Search method)

 	

 	next_states() (attelo.decoding.astar.DiscourseState method)

 	

 	(attelo.decoding.astar.TwoStageNRO method)

 	(attelo.optimisation.astar.State method)

 	none (attelo.decoding.astar.RfcConstraint attribute)

P

 	

 	pairing_distances() (in module attelo.table)

 	Parser (class in attelo.parser.interface)

 	partition_subgroupings() (in module attelo.parser.intra)

 	Pipeline (class in attelo.parser.pipeline)

 	pop_best() (attelo.optimisation.astar.Search method)

 	

 	PostlabelPipeline (class in attelo.parser.full)

 	prediction_to_triples() (in module attelo.decoding.util)

 	preprocess_heuristics() (in module attelo.decoding.astar)

 	proba() (attelo.decoding.astar.DiscourseState method)

R

 	

 	recover_solution() (attelo.decoding.astar.DiscourseSearch method)

 	report_digits (attelo.harness.interface.Harness attribute)

 	report_dir_path() (attelo.harness.interface.Harness method)

 	reset_queue() (attelo.optimisation.astar.Search method)

 	

 	reset_seen() (attelo.optimisation.astar.Search method)

 	RfcConstraint (class in attelo.decoding.astar)

 	runcfg (attelo.harness.interface.Harness attribute)

 	RuntimeConfig (class in attelo.harness.config)

S

 	

 	same_sentence() (attelo.decoding.astar.TwoStageNRO method)

 	sanity_check() (attelo.table.DataPack method)

 	scratch_dir (attelo.harness.interface.Harness attribute)

 	Search (class in attelo.optimisation.astar)

 	select() (attelo.parser.interface.Parser static method)

 	select_links() (in module attelo.graph)

 	select_testing() (in module attelo.fold)

 	select_training() (in module attelo.fold)

 	select_window() (in module attelo.table)

 	selected() (attelo.table.DataPack method)

 	

 	(attelo.table.Graph method)

 	SentOnlyParser (class in attelo.parser.intra)

 	set_graph() (attelo.table.DataPack method)

 	

 	shared() (attelo.decoding.astar.DiscourseState method)

 	

 	(attelo.optimisation.astar.Search method)

 	simple (attelo.decoding.astar.RfcConstraint attribute)

 	simple_candidates() (in module attelo.decoding.util)

 	simple_key() (attelo.harness.config.EvaluationConfig class method)

 	SimpleLabeller (class in attelo.parser.label)

 	SoftParser (class in attelo.parser.intra)

 	span() (attelo.edu.EDU method)

 	start (attelo.harness.config.ClusterStage attribute)

 	State (class in attelo.optimisation.astar)

 	strategy() (attelo.decoding.astar.DiscourseState method)

 	subdirs() (in module attelo.harness.util)

T

 	

 	Team (class in attelo.util)

 	test_evaluation (attelo.harness.interface.Harness attribute)

 	timestamp() (in module attelo.harness.util)

 	tobedone() (attelo.decoding.astar.DiscData method)

 	total_cost() (attelo.optimisation.astar.State method)

 	transform() (attelo.decoding.interface.Decoder method)

 	

 	(attelo.parser.attach.AttachClassifierWrapper method)

 	(attelo.parser.full.AttachTimesBestLabel method)

 	(attelo.parser.interface.Parser method)

 	(attelo.parser.intra.IntraInterParser method)

 	(attelo.parser.label.LabelClassifierWrapper method)

 	(attelo.parser.label.SimpleLabeller method)

 	(attelo.parser.pipeline.Pipeline method)

 	

 	tree_loss() (in module attelo.metrics.tree)

 	truncate() (in module attelo.util)

 	tweak() (attelo.table.Graph method)

 	TwoStageNRO (class in attelo.decoding.astar)

 	TwoStageNROData (class in attelo.decoding.astar)

U

 	

 	UNKNOWN (in module attelo.table)

 	UNRELATED (in module attelo.table)

 	

 	update_cost() (attelo.optimisation.astar.State method)

 	update_mode() (attelo.decoding.astar.TwoStageNROData method)

V

 	

 	validate_fold_choice_args() (in module attelo.args)

 	

 	vstack() (attelo.table.DataPack class method)

 	

 	(attelo.table.Graph class method)

W

 	

 	WindowPruner (class in attelo.decoding.window)

 	

 	write_dot_graph() (in module attelo.graph)

Z

 	

 	zero (attelo.decoding.astar.Heuristic attribute)

 Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		attelo 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, IRIT MELODI team.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

