
atsim_potentials Documentation

M.J.D. Rushton

May 20, 2021

Contents

1 Features 3

2 Contents 5
2.1 Quick-Start . 5
2.2 Installation . 12
2.3 User Guide . 12
2.4 Reference . 86
2.5 List of Examples . 129
2.6 Credits . 131
2.7 Changes . 131
2.8 License . 132
2.9 References . 135

3 Contact 137

4 Indices and tables 139

Bibliography 141

Python Module Index 143

Index 145

i

ii

atsim_potentials Documentation

Classical simulation codes typically contain a good selection of analytical forms for describing atomic interactions.
Sometimes however, you may need to use a potential that is not directly supported by the code. Luckily, most simu-
lation codes allow you to provide tabulated potentials in which energies and forces, for a range of interatomic separa-
tions, are pre-calculated and specified as rows within a text file. The atsim.potentials package provides python
modules to make the specification and tabulation of pair- and many-body potentials straightforward and consistent.

Contents 1

atsim_potentials Documentation

2 Contents

CHAPTER 1

Features

• Pair-Potential Tabulation: Effective pair-potentials can be tabulated for multiple codes including:

– GULP

– LAMMPS

– DL_POLY

• Many-Bodied Potentials: Embedded Atom Model (EAM) potential tabulation is supported in the following
formats:

– DYNAMO - as used by LAMMPS and several other codes:

* Support for LAMMPS eam, eam/fs, eam/alloy, adp pair-styles.

– DL_POLY: write TABEAM formatted files.

• No programming required: atsim.potentials can be driven using its own potential definition format.
Using simple configuration files complex models can be defined and tabulated without requiring any program-
ming experience.

• Potential forms: comes pre-loaded with a wide range of common-potential types.

• Potential splining: join different potentials together with splines.

• Flexible: the atsim.potentials potential definition format allows the use of arbitrary mathematical for-
mulae to define new potential functions. If this isn’t sufficient it also provides a powerful Python API which
should allow most tabulation tasks to be achieved.

3

https://nanochemistry.curtin.edu.au/gulp/
http://lammps.sandia.gov
https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
http://lammps.sandia.gov
http://lammps.sandia.gov
https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx

atsim_potentials Documentation

4 Chapter 1. Features

CHAPTER 2

Contents

2.1 Quick-Start

The following provides a quick example of how a pair potential model can be defined and then tabulated for different
simulation codes. For more advanced features such as EAM potentials, defining custom potential forms, splining or
using the python interface, please see User Guide.

In this example we will define Basak’s [Basak2003] potential model for UO2. This has been chosen as it presents
an issue that is often solved by using tabulated potentials. The U-O interaction combines Buckingham and Morse
potential forms. Although most simulation codes natively provide these as analytical forms, some don’t then allow
them to be used in combination for the same pair-interaction. As a result, it becomes necessary to combine them
externally and feed them into the code in tabulated form. This tutorial will show how this can be achieved using
atsim.potentials.

1. Installation (see Installation for more detail):

pip install atsim.potentials

2. Write input file

• In the Basak model [Basak2003] the O-O and U-U interactions are defined entirely using the Buck-
ingham potential form. Whilst the O-U pair is the sum of a Buckingham and Morse potential (see
below for full details of the potential model). Both forms are provided by atsim.potentials
and are specified as:

𝑉 atsim
Buck (𝑟𝑖𝑗) = 𝐴𝑖𝑗 exp

(︂
− 𝑟𝑖𝑗
𝜌𝑖𝑗

)︂
− 𝐶𝑖𝑗

𝑟6𝑖𝑗

𝑉 atsim
Morse(𝑟𝑖𝑗) = 𝐷𝑖𝑗

[︀
exp{−2𝛾𝑖𝑗(𝑟𝑖𝑗 − 𝑟*𝑖𝑗} − 2 exp{−𝛾𝑖𝑗(𝑟𝑖𝑗 − 𝑟*𝑖𝑗}

]︀ (2.1)

• The Buckingham potential is parametrised using values for 𝐴𝑖𝑗, 𝜌𝑖𝑗 and 𝐶𝑖𝑗 , specific to each species
pair.

• The Morse potential takes 𝐷𝑖𝑗 , 𝛾𝑖𝑗and 𝑟*𝑖𝑗 .

• Parameters for the Basak model are given in Table 2.1.

5

atsim_potentials Documentation

Table 2.1: Basak parameters for use with standard form of Buckingham
and Morse potentials

Parameters O-O U-U O-U
𝐴𝑖𝑗 /eV 1633.010243 294.640906 693.650934
𝜌𝑖𝑗 /Å 0.327022 0.327022 0.327022
𝐶𝑖𝑗 /eV6 3.948787 0.0 0.0
𝐷𝑖𝑗 /eV NA NA 0.577190
𝛾𝑖𝑗 /−1 NA NA 1.650000
𝑟*𝑖𝑗 /Å NA NA 2.369000

• The potable tool is used to generate table files.

• It accepts input in a straightforward format, reminiscent of .ini configuration files.

• The potential parameters from Table 2.1 have been transferred into a file suitable for potable: basak.
aspot:

[Tabulation]
target : DL_POLY
cutoff : 6.5
nr : 652

[Pair]
O-O = as.buck 1633.010242995040 0.327022 3.948787
U-U = as.buck 294.640906285709 0.327022 0.0
O-U = sum(as.buck 693.650933805978 0.327022 0.0,

as.morse 1.65 2.369 0.577189831995)

3. Generate tabulated potential

• Download the basak.aspot file and then generate a tabulation in DL_POLY format (see below for
information on other formats) by running this command:

potable basak.aspot TABLE

• This will generate a tabulation in the file named TABLE.

And that’s it! The rest of this page now gives details on what you’ve just done. Read on for more.

2.1.1 What are tabulated potentials?

Pair potentials are functions that relate potential energy to the separation of two interacting particles: 𝑈𝑖𝑗(𝑟𝑖𝑗). These
are typically defined as equations, with a particular analytical form, that can be tailored to the chemistry of a given
pair of species through a set of parameters (e.g. 𝐴𝑖𝑗, 𝜌𝑖𝑗 and 𝐶𝑖𝑗 in the case of the Buckingham form shown above).

Using these analytical potentials, an entire potential model, comprising of many interactions, can be described in a
very compact form. Simulation codes come with large libraries of analytical potential forms, even so, it is impossible
for all codes to support all potential forms. As a way of providing flexibility, and as an alternative to requiring users to
edit and recompile simulation codes whenever they want to use an unusual form, most support table files.

Tabulated potential approximate a 𝑈𝑖𝑗(𝑟𝑖𝑗) functions as a series of [separation, potential-energy] points that are stored
in a file, readable by the code. For values not stored in the file, the simulation code performs interpolation to obtain
energies and forces for in-between values.

Fig. 2.1 shows the process followed in producing one of these tables. The desired analytical potential is defined and
energy and forces (the first derivative of energy with respect to separation) are sampled at regular intervals. These
samples are then written to a file in the format required by the simulation code.

6 Chapter 2. Contents

atsim_potentials Documentation

The aim of atsim.potentials is to make this process simple, flexible and transferable across simulation codes.

Fig. 2.1: Tabulated potentials are obtained by sampling a mathematical formula at regular separations.

2.1.2 Potential model

Before moving on to the tabulation procedure, it is useful to understand what it is we’re trying to tabulate.

Basak’s [Basak2003] model employs the following potential form:

𝑉 (𝑟𝑖𝑗) = 𝑉Coul(𝑟𝑖𝑗) + 𝑉Buck(𝑟𝑖𝑗) + 𝑉Morse(𝑟𝑖𝑗) (2.2)

Where 𝑉 (𝑟𝑖𝑗) is the potential energy of two atoms (𝑖 and 𝑗) separated by 𝑟𝑖𝑗 . The first term in eqn. (2.2) defines the
long range electrostatic interaction between the two atoms (with charges 𝑞𝑖 and 𝑞𝑗):

𝑉Coul(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
(2.3)

Where 𝜖0 is the permittivity of free space.

In a periodic system like UO2, it is necessary to employ various mathematical tricks to get the Coulomb sum to
converge quickly and reliably (see for instance Ewald, cell-multipole or particle-mesh methods). As a result the
Coulomb part of a potential model isn’t normally included in a tabulation file and therefore it won’t appear further in
this example.

This leaves the short-range components of 𝑉 (𝑟𝑖𝑗) from eqn. (2.2) for us to bother about, namely 𝑉Buck(𝑟𝑖𝑗) and
𝑉Morse(𝑟𝑖𝑗). In Basak’s [Basak2003] paper these are defined as follows:

𝑉Buck(𝑟𝑖𝑗) = 𝑓0𝑏𝑖𝑗 exp

(︂
𝑎𝑖𝑗 − 𝑟𝑖𝑗

𝑏𝑖𝑗

)︂
− 𝐶𝑖𝑗

𝑟6𝑖𝑗

𝑉Morse(𝑟𝑖𝑗) = 𝑓0𝑑𝑖𝑗
[︀
exp{−2𝛾𝑖𝑗(𝑟𝑖𝑗 − 𝑟*𝑖𝑗)} − 2 exp{−𝛾𝑖𝑗(𝑟𝑖𝑗 − 𝑟*𝑖𝑗)}

]︀ (2.4)

The 𝑓0, 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝐶𝑖𝑗 , 𝐷𝑖𝑗 , 𝛾𝑖𝑗 and 𝑟*𝑖𝑗 specifying each pair interaction are given in the following table.

Table 2.2: Potential parameters for Basak model taken from original pa-
per [Basak2003] (units have been converted for certain values).

Parameters O-O U-U O-U
𝑎𝑖𝑗 / 3.82 3.26 3.54
𝑏𝑖𝑗 / 0.327022 0.327022 0.327022
𝐶𝑖𝑗 /eV6 3.948787 0.0 0.0
𝑑𝑖𝑗 /𝑟*𝑖𝑗 NA NA 13.6765
𝛾𝑖𝑗 /𝑟*𝑖𝑗 NA NA 1.65
𝑟*𝑖𝑗 NA NA 2.369
𝑓0/eV−1 0.042203 0.042203 0.042203

The atsim.potentials package comes pre-loaded with a large number of potential-forms, so that you don’t have
to constantly redefine functional forms (see List of Potential Forms). In this tutorial you will use the pre-defined
versions of the Buckingham and Morse potentials.

If you compare the two definitions of the Buckingham and Morse potentials given in eqns. (2.1) and (2.4) you will see
there are some differences. The definitions of the Morse potential are almost identical, allowing 𝛾𝑖𝑗 and 𝑟*𝑖𝑗 to be used
directly with the atsim Morse form. 𝐷𝑖𝑗 , is however obtained as the product of 𝑓0 and 𝑑𝑖𝑗

𝐷𝑖𝑗 = 𝑓0𝑑𝑖𝑗 (2.5)

2.1. Quick-Start 7

atsim_potentials Documentation

The Buckingham potential used by Basak has more significant differences to the atsim standard. The 𝐶𝑖𝑗 parameter
can be used directly in both versions, however we need to manipulate the function from eqn. (2.4) to show how 𝐴𝑖𝑗

and 𝜌𝑖𝑗 may be obtained from the original Basak parameter set (Table 2.2).

Let’s do this now by rearranging the Buckingham potential from eqn. (2.4):

𝑉Buck(𝑟𝑖𝑗) = 𝑓0𝑏𝑖𝑗 exp

(︂
𝑎𝑖𝑗 − 𝑟𝑖𝑗

𝑏𝑖𝑗

)︂
− 𝐶𝑖𝑗

𝑟6𝑖𝑗

= 𝑓0𝑏𝑖𝑗 exp

(︂
𝑎𝑖𝑗
𝑏𝑖𝑗

− 𝑟𝑖𝑗
𝑏𝑖𝑗

)︂
− 𝐶𝑖𝑗

𝑟6𝑖𝑗

= 𝑓0𝑏𝑖𝑗
exp

(︁
𝑎𝑖𝑗

𝑏𝑖𝑗

)︁
exp

(︁
𝑟𝑖𝑗
𝑏𝑖𝑗

)︁ − 𝐶𝑖𝑗

𝑟6𝑖𝑗

= 𝑓0𝑏𝑖𝑗 exp

(︂
𝑎𝑖𝑗
𝑏𝑖𝑗

)︂
exp

(︂
−𝑟𝑖𝑗
𝑏𝑖𝑗

)︂
− 𝐶𝑖𝑗

𝑟6𝑖𝑗

(2.6)

By comparing coefficients between this equation, eqn. (2.6) and the atsim form, eqn. (2.1), it becomes obvious that
the Basak parameters can be brought into the standard form using these relationships:

𝐴𝑖𝑗 = 𝑓0𝑏𝑖𝑗 exp

(︂
𝑎𝑖𝑗
𝑏𝑖𝑗

)︂
𝜌𝑖𝑗 = 𝑏𝑖𝑗

(2.7)

Using these relationships together with 𝐷𝑖𝑗 from eqn. (2.5) the table of potential parameters given above was obtained
(Table 2.1).

2.1.3 Writing the potential definition

Using the parameters from Table 2.1, the model was described in the basak.aspot file:

[Tabulation]
target : DL_POLY
cutoff : 6.5
nr : 652

[Pair]
O-O = as.buck 1633.010242995040 0.327022 3.948787
U-U = as.buck 294.640906285709 0.327022 0.0
O-U = sum(as.buck 693.650933805978 0.327022 0.0,

as.morse 1.65 2.369 0.577189831995)

This file contains two configuration blocks:

• [Tabulation]: this defines the table’s output format

– target : DL_POLY means a DL_POLY TABLE file will be produced.

– cutoff : 6.5 gives the maximum separation to include in the tabulation (𝑟𝑖𝑗 = 6.5 Å).

– nr : 652 the tabulation should contain 652 rows.

• [Pair]: this section defines the O-O, U-U and O-U pair interactions:

– The basic form of each line is SPECIES_A-SPECIES_B = POTENTIAL_FORM PARAMETER_1
PARAMETER_2 ... PARAMETER_N

* Where SPECIES_A and SPECIES_B define each pair of interacting species.

8 Chapter 2. Contents

atsim_potentials Documentation

* POTENTIAL_FORM is a label identifying the functional form of the interaction. Here the as.buck
and as.morse types are used. The as. prefix indicates these are standard forms provided by
atsim.potentials (see List of Potential Forms for a complete list).

The Buckingham (buck) potential takes three parameters, separated by spaces:

as.buck A C

And the Morse (morse) parameters are:

as.morse r* D

By comparing the input file and Table 2.1, it should be apparent how the pair-interactions have been parametrised.

The O-U interaction makes use of a potential modifier to combine the as.buck and as.morse forms. This is
achieved using the sum() modifier which adds up all the contributions of the comma separated list of potentials defined
inside the brackets.

2.1.4 Generating the tabulation

Save the basak.aspot to your drive. Then generate the TABLE file by executing the potable command:

potable basak.aspot TABLE

This will interpret the potential model described above and write it in DL_POLY format to a file named TABLE.

For an example of how this TABLE file can be used in a DL_POLY simulation see Using the TABLE File in DL_POLY .

Using the TABLE File in DL_POLY

A set of DL_POLY files are provided allowing a simple NPT molecular dynamics equilibration simulation to be run
using a TABLE file created with atsim.potentials. Copy the files linked from the following table into the same
directory as the TABLE file:

File Description
CONFIG 4×4×4 UO2:sub:2 super-cell containing 768 atoms.
CONTROL Defines 300K equilibration run under NPT ensemble lasting 10ps.
FIELD File defining potentials and charges.

• The FIELD file contains the directives relevant to the TABLE file:

UO2.cif. Supercell: 4 x 4 x 4
units eV
molecules 1
UO2.cif. Supercell: 4 x 4 x 4
nummols 1
atoms 768

O 15.999400 -1.200000 512 0
U 238.028910 2.400000 256 0

finish
vdw 3
O O tab
U U tab
O U tab
CLOSE

2.1. Quick-Start 9

atsim_potentials Documentation

• The following lines define the atom multiplicity and charges (O=-1.2e and U=2.4e):

nummols 1
atoms 768

O 15.999400 -1.200000 512 0
U 238.028910 2.400000 256 0

finish

• The vdw section states that the O-O, U-U and O-U interactions should be read from the TABLE file:

vdw 3
O O tab
U U tab
O U tab
CLOSE

• Once all the files are in the same directory, the simulation can be started by invoking DL_POLY:

DLPOLY.Z

2.1.5 Specifying other tabulation targets

Once the potential model has been defined, creating tabulations for different codes in different formats is simple.

LAMMPS

To target LAMMPS it is just a case of changing the target option in the [Tabulation] section of the basak.
aspot file to LAMMPS e.g.

[Tabulation]
target : LAMMPS
cutoff : 6.5
nr : 652

A LAMMPS table file named Basak.lmptab would then be generated by re-running potable:

potable basak.aspot Basak.lmptab

An example of how to use this file in LAMMPS is given here: Using Basak.lmptab in LAMMPS.

GULP

In the previous section a new tabulation target was specified by editing the basak.aspot file. For temporary
changes, the potable allows configuration options to be overridden from the command line. Let’s do this now to make
a table file suitable for GULP. This is achieved with the –override-item option, like this:

potable --override-item Tabulation:target=GULP basak.aspot potentials.lib

The potentials.lib file can be used with the following GULP input file to run an energy minimisation: basak.
gin

10 Chapter 2. Contents

atsim_potentials Documentation

Using Basak.lmptab in LAMMPS

LAMMPS input files are provided for use with the table file:

• UO2.lmpstruct: structure file for single UO2 cell, that can be read with read_data when atom_style full
is used.

• equilibrate.lmpin: input file containing LAMMPS instructions. Performs 10ps of 300K NPT equilibra-
tion, creating a 4×4×4 super-cell.

Copy these files into the same directory as Basak.lmptab, the simulation can then be run using:

lammps -in equilibrate.lmpin -log equilibrate.lmpout -echo both

The section of equilibrate.lmpinwhich defines the potential model and makes use of the table file is as follows:

variable O equal 1
variable U equal 2

set type $O charge -1.2
set type $U charge 2.4

kspace_style pppm 1.0e-6

pair_style hybrid/overlay coul/long ${SR_CUTOFF} table linear 6500 pppm
pair_coeff * * coul/long
pair_coeff $O $O table Basak.lmptab O-O
pair_coeff $O $U table Basak.lmptab O-U
pair_coeff $U $U table Basak.lmptab U-U

Notes:

1. As LAMMPS uses ID numbers to define species the variable commands associate:

• index 1 with variable $O

• index 2 with $U to aid readability.

3. The set type SPECIES_ID charge lines define the charges of oxygen and ura-
nium.

3. Uses the hybrid/overlay pair_style to combine the coul/long and table styles.

pair_style hybrid/overlay coul/long ${SR_CUTOFF} table
→˓linear 6500 pppm

• The coul/long style is used to calculate electrostatic interactions using the
pppm kspace_style defined previously.

• table linear 6500 pppm:

– linear interpolation of table values should be used

– all 6500 rows of the table are employed

– corrections appropriate to the pppm kspace_style will be applied.

4. Means that electrostatic interactions should be calculated between all pairs of ions.

pair_coeff * * coul/long

5. Each pair_coeff reads an interaction from the Basak.lmptab file.

2.1. Quick-Start 11

http://lammps.sandia.gov
http://lammps.sandia.gov/doc/read_data.html
http://lammps.sandia.gov/doc/atom_style.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/doc/pair_hybrid.html
http://lammps.sandia.gov/doc/pair_coul.html
http://lammps.sandia.gov/doc/pair_table.html
http://lammps.sandia.gov/doc/pair_coul.html
http://lammps.sandia.gov/doc/kspace_style.html
http://lammps.sandia.gov/doc/kspace_style.html

atsim_potentials Documentation

pair_coeff $O $O table Basak.lmptab O-O
pair_coeff $O $U table Basak.lmptab O-U
pair_coeff $U $U table Basak.lmptab U-U

• The general form is:

– pair_coeff SPECIES_A SPECIES_A table
TABLE_FILENAME TABLE_KEYWORD

– Here the SPECIES_* use the $O and $U variables defined earlier.

– TABLE_KEYWORD - the table file contains multiple blocks, each defining a
single interaction.

– The TABLE_KEYWORD is the title of the block. The labels are of the form
LABEL_A-LABEL_B albeit with the species sorted into alphabetical order.

2.2 Installation

2.2.1 Install Using Pip

If you have Pip type the following to install atsim.potentials:

pip install atsim.potentials

2.2.2 Install from Source

The source is hosted on github and can be cloned using git as follows:

git clone https://github.com/mjdrushton/atsim-potentials.git

alternatively a tarball of the source can be downloaded here

From the source directory install atsim.potentials using the following command:

python setup.py install

Build the Documentation

The documentation (which you are currently reading) can be built from source using (assuming sphinx is installed):

sphinx-build docs html

This will place documents in html within the project directory.

Alternatively this documentation is hosted at http://atsimpotentials.readthedocs.org

2.3 User Guide

This user-guide is broadly split into two sections. The first (Using potable) is for users of the potable. This tool allows
potential tabulation without knowledge of Python and this section of the user-guide is aimed at describing potableinput
files and how they can be used to describe a wide-range of potential models.

12 Chapter 2. Contents

http://www.pip-installer.org/
https://github.com/mjdrushton/atsim-potentials
https://git-scm.com
https://github.com/mjdrushton/atsim-potentials/archive/master.zip
http://atsimpotentials.readthedocs.org

atsim_potentials Documentation

The second half (Using the Python API) describes the python interface to atsim.potentials. This is provided to
allow tabulation tasks to be automated, included in other scripts or for when potable is not expressive enough.

2.3.1 Using potable

This section of the user-guide will start by first explaining pair-potential tabulation before moving on to describe many
body potentials, these contain additional terms that add more complexity to their tabulation.

Pair-potential models

The Quick Start guide should have already given you an idea of what a potable potential definition looks like. We will
now delve a little deeper and describe this input in more detail.

File Structure

[Tabulation] section

This section defines the file format in which potable will write its output files through the target configuration item.

See also:

• Input format reference: [Tabulation].

The pair-tabulation target can be one of:

• DL_POLY (or DLPOLY): this creates output in the TABLE format accepted by the DL_POLY simulation code.

• LAMMPS: creates output suitable for use with the LAMMPS pair_style table (see Using Basak.lmptab
in LAMMPS).

• GULP produces a table for the GULP code by defining a set of separation, energy pairs using the GULP spline
directive.

Defining table cut-off

The extent of the table is defined in the [Tabulation] section using the nr, dr and cutoff options:

• dr defines the row increment (step-size) between table rows.

• cutoff gives the maximum separation to be tabulated.

• nr determines the number of rows in the tabulation.

Any two of nr, drand cutoff can be used to define the extent and resolution of the tabulation. As an example all
three of the following [Tabulation] sections would produce a table with 1000 rows, each separated by 0.01:

1. cutoff and nr

[Tabulation]
target: LAMMPS
cutoff : 9.99
nr : 1000

2. cutoff and dr

2.3. User Guide 13

atsim_potentials Documentation

[Tabulation]
target: LAMMPS
cutoff : 9.99
dr : 0.01

3. nr and dr

[Tabulation]
target: LAMMPS
nr : 1000
dr : 0.01

[Pair] section

In the [Pair] section of the model definition, potential-forms are combined with parameters that tailor them to a
given pair of species.

The basic form of an entry in this section is:

SPECIES_A-SPECIES_B : POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N

• The label before the colon: SPECIES_A-SPECIES_B identifies the pair interaction being parametrised.

– This label consists of two species identifiers (SPECIES_A and SPECIES_B) separated by a hyphen
-.

– The order in which the species labels are specified does not matter. That is, Au-Ag and Ag-Au would
be equivalent.

– The [Pair] section can only contain one entry per unique species pair.

• The potential definition, specified after the colon, consists of the name of the potential-form
(POTENTIAL_FORM) followed by the numeric parameters it requires.

Pre-defined potential-forms

A number of pre-defined potential forms are provided. These all have names pre-fixed by as.

Each entry in the list of potentials provides an entry called potable signature. This shows the order in which
parameters should be given to create a potential.

For the Buckingham potential the potable signature is:

as.buck 𝐴 𝜌 𝐶

which is associated with the formula:

𝑉 (𝑟𝑖𝑗) = 𝐴 exp

(︂
−𝑟𝑖𝑗

𝜌

)︂
− 𝐶

𝑟6𝑖𝑗

This means that if we were defining a potential between Si and O that had 𝐴𝑖𝑗 = 18003, 𝜌𝑖𝑗 = 0.205 and 𝐶𝑖𝑗 = 133.36
then the entry in the [Pair] section would be:

[Pair]
Si-O = as.buck 18003.0 0.205 133.36

14 Chapter 2. Contents

atsim_potentials Documentation

Please refer to the potable signaturewhen using the as.* potential-forms; specifying parameters in the wrong
order will cause you problems.

It is also possible to define your own potential-forms in the [Potential-Form] section of potable file. These
are parametrised here in the [Pair] section in the same way as the pre-defined as.* potential-forms. This usage is
documented later here: [Potential-Form] section.

Potential modifiers

If you followed the Quick-Start guide, you will have already seen a potential modifier. The [Pair] section from the
basak.aspot used in the Quick-Start is repeated here:

[Pair]
O-O = as.buck 1633.010242995040 0.327022 3.948787
U-U = as.buck 294.640906285709 0.327022 0.0
O-U = sum(as.buck 693.650933805978 0.327022 0.0,

as.morse 1.65 2.369 0.577189831995)

You can see that the O-O and U-U pairs use the basic definition we have just seen. The U-O interaction however uses
the modified form:

O-U = sum(as.buck 693.650933805978 0.327022 0.0,
as.morse 1.65 2.369 0.577189831995)

Here sum() takes two basic pair-definitions (one for as.buck and one for as.morse) and creates a pair-potential that is
the sum of both. Here sum() is acting as a potential-modifier.

Potential-modifiers take the input or output of other potentials and produce outputs that have been altered in some way.
A number of modifiers are provided with atsim.potentials and these are listed.

See also:

See List of Potential Modifiers.

Multi-range potentials

The potential definition syntax used in the [Pair] section supports an extension which allows a series of potential-
forms to be concatenated to each other, allowing each to act over a particular range of separations. These are defined
as multi-range potentials. Concrete examples of where they are useful are provided in Multi-range potential examples
however the basic syntax defining multi-range potentials is introduced here.

Suppose we want to define a potential acting between Mg and O using two potential-forms: pot_A and pot_B. The
first is to be parametrised with values of 5.3 and 1.2 and pot_B with 9.6 and 2.4. Now say we want pot_A to act
over the separations 0 ≥ 𝑟𝑖𝑗 ≤ 3 and pot_B 3 < 𝑟𝑖𝑗 ≤ 8 and for the pair-potential to evaluate to zero when 𝑟𝑖𝑗 > 8.

Fig. 2.2: Illustration of multi-range potential definition described in the text.

The multi-range potential just described is summarised in Fig. 2.2. This would be defined as follows in the potable
input file:

[Pair]
Mg-O : >=0 pot_A 5.3 1.2 >3 pot_B 9.6 2.4 >8 as.zero

Notice that we used the as.zero potential-form to provide a constant value of 0.0 when 𝑟𝑖𝑗 > 8 (equally as.
constant 0.0 could have been used).

2.3. User Guide 15

atsim_potentials Documentation

The syntax for a multi-range potential can be summarised as:

• A series of single potential definitions delimited by range markers.

• Range markers take the form:

– >=R which indicates that the potential definition, following the marker, will be used at separations greater
than or equal to the value specifid by R

– >R which means the same but acts only for separations greater than R.

Note: potable defines all potentials to have the initial range of >0 unless a range is explicitly defined. This is
to avoid divide by zero errors when the potential is evaluated for 𝑟𝑖𝑗 = 0. As this separation is unimportant to most
physically relevant simulation.

To include 𝑟𝑖𝑗 = 0 in you tabulations simply make sure that your potential starts with >=0

>=0 POTENTIAL_DEFN

See also:

• Examples of multi-range potentials can be found here: Multi-range potential examples

[Potential-Form] section

This section of the input file is used for defining formulae that can be used as potential-forms and functions elsewhere
in the model definition.

This allows for potential-forms that are not described in the standard file itself. Entries in this section have the general
form:

LABEL([ARG_1, ARG_2, ... , ARG_N]) : FORMULA

• LABEL is a unique identifier for the function (this can be used to refer to this function in the [Pair]).

• ARG ... defines the function signature by naming the arguments it takes.

• FORMULA mathematical expression defining the function.

Formula syntax

The FORMULA strings used in this section of the configuration file support a rich range of mathematical expressions.
These are parsed using the cexprtk python module which is built on top of the exprtk library. As a result the supported
operators and functions are listed here .

In addition, users can make use of functions from the python math module. In FORMULA definitions these are called
with a pymath.* prefix. A list of the supported python math functions are given here: Python maths functions
supported in mathematical expressions.

pymath formula example

As an example of where a pymath function might be useful, exprtk does not natively provide a means of calculating
factorials. Instead, the python factorial() function can be used in a FORMULA as shown in this potential form definition:

16 Chapter 2. Contents

https://pypi.org/project/cexprtk/
http://www.partow.net/programming/exprtk/
http://www.partow.net/programming/exprtk/
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html#math.factorial

atsim_potentials Documentation

N(zeta, n) = (2*zeta)**n * sqrt((2*zeta)/pymath.factorial(2*n))

Example: using custom-potential forms to define Basak potential

We will revisit the Basak [Basak2003] UO2 model. In the Quick-Start guide you will have seen that the published
potential parameters required considerable manipulation to make them compatible with the Buckingham (buck) and
Morse (morse) potential-forms defined in atsim.potentials (see Potential model). Rather than transforming
model parameters in this way, it may be easier to use the pair-potential equations and parameters directly as they
appear in a paper. The [Potential-Form] section is the mechanism by which this may be achieved.

The Buckingham potential used in the Basak paper has the form:

𝑉Buck(𝑟𝑖𝑗) = 𝑓0𝑏𝑖𝑗 exp

(︂
𝑎𝑖𝑗 − 𝑟𝑖𝑗

𝑏𝑖𝑗

)︂
− 𝐶𝑖𝑗

𝑟6𝑖𝑗

We can write this as an entry in [Potential-Form] as:

[Potential-Form]
basak_buck(r,f0,a,b,c) = f0*b*exp((a-r)/b) - c/r^6

Note: You may have noticed in this equation that we defined one of the terms using r^6 (r to the sixth power), where
python syntax would define this as r**6. This is because, the formulae defined in this section are parsed using the
exprtk library (via its python wrapper cexprtk).

To understand the functions, operators and syntax, supported for formulae please refer to the exprtk documentation.

It is also possible to call the standard as.* potential-forms in [Potential-Form] expressions. This is shown
here to define a basak_morse function, where as.morse will be used to provide a function that can be used directly
with the parameters from the Basak paper (Table 2.2). For reference, as.morse has the potable signature:

as.morse 𝛾 𝑟* 𝐷

Remembering that the 𝐷 parameter is given as 𝑓0 ×𝐷 using parameters from Table 2.2 (see Potential model) we can
now define our second potential function:

[Potential-Form]
basak_buck(r,f0,a,b,c) = f0*b*exp((a-r)/b) - c/r^6
basak_morse(r, f0, d, gamma, r_star) = as.morse(r,gamma, r_star, f0*d)

Note: It should also be noted that not-all the as.* potential-forms are available as functions within these formulae
(for instance as.buck4 isn’t). If you would like to check, please refer to the List of Potential Forms and make sure that
potential-function is listed as one of its Features.

Now that we have both functions, we need to parametrise them for each interaction using values from Table 2.2. This
is achieved in the normal way in the [Pair] section:

[Pair]
O-O : basak_buck 0.042203 3.82 0.327022 3.948787
U-U : basak_buck 0.042203 3.26 0.327022 0.0
O-U : sum(

basak_buck 0.042203 3.54 0.327022 0.0,
basak_morse 0.042203 13.6765 1.65 2.369)

2.3. User Guide 17

http://www.partow.net/programming/exprtk/
https://pypi.org/project/cexprtk/
http://www.partow.net/programming/exprtk/

atsim_potentials Documentation

Notice that for the O-U interaction we continue to use the sum() potential-modifier to combine our Buckingham and
Morse potentials (see Potential modifiers).

The order in which parameters are specified in the [Pair] entries correspond to the arguments in the function
signatures for basak_buck and basak_morse, as is now shown:

Note: By convention the as.* potentials take r (separation) as their first argument when used in formulae in the
[Potential-Form] section.

This represents a subtle to difference to when they appear in the [Pair] section and the argument list defined by the
potable signature entries in List of Potential Forms.

For instance where as.buck could be parametrised as as.buck 1000.0 0.2 32.0 in the [Pair] section it
would be defined as as.buck(r, 1000.0, 0.2, 32.0) in a [Potential-Form] formula.

The model is now fully defined and gives the following potable input:

[Tabulation]
target : LAMMPS
nr : 1000
dr : 0.01

[Pair]
O-O : basak_buck 0.042203 3.82 0.327022 3.948787
U-U : basak_buck 0.042203 3.26 0.327022 0.0
O-U : sum(

basak_buck 0.042203 3.54 0.327022 0.0,
basak_morse 0.042203 13.6765 1.65 2.369)

[Potential-Form]
basak_buck(r,f0,a,b,c) = f0*b*exp((a-r)/b) - c/r^6
basak_morse(r, f0, d, gamma, r_star) = as.morse(r,gamma, r_star, f0*d)

This input file can be downloaded as basak_custom_potential_form_a.aspot and tabulated thus:

potable basak_custom_potential_form_a.aspot Basak.lmptab

Section Using Basak.lmptab in LAMMPS describes how this table can then be used to perform a molecular dynamics
simulation.

Alternative descriptions

The potential-forms used in the previous example could have been defined in a number of different ways. Some of
these are now shown to illustrate the flexibility of the potable system:

• basak_custom_potential_form_b.aspot. In this example, a third potential-form
basak_buckmorse is defined. This adds basak_buck() to basak_morse as an alternative to
using the sum() potential modifier in the [Pair].

[Tabulation]
target : LAMMPS
nr : 1000
dr : 0.01

(continues on next page)

18 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

[Pair]
O-O : basak_buck 0.042203 3.82 0.327022 3.948787
U-U : basak_buck 0.042203 3.26 0.327022 0.0
O-U : basak_buckmorse 0.042203 3.54 0.327022 0.0 13.6765 1.65 2.369

[Potential-Form]
basak_buck(r,f0,a,b,c) = f0*b*exp((a-r)/b) - c/r^6
basak_morse(r, f0, d, gamma, r_star) = as.morse(r,gamma, r_star, f0*d)
basak_buckmorse(r,f0,a,b,c,d,gamma,r_star) = basak_buck(r,f0,a,b,c) +
→˓basak_morse(r, f0,d,gamma,r_star)

• basak_custom_potential_form_c.aspot. In this example the Morse potential is described directly
rather than delegating to the as.morse() function:

[Tabulation]
target : LAMMPS
nr : 1000
dr : 0.01

[Pair]
O-O : basak_buck 0.042203 3.82 0.327022 3.948787
U-U : basak_buck 0.042203 3.26 0.327022 0.0
O-U : basak_buckmorse 0.042203 3.54 0.327022 0.0 13.6765 1.65 2.369

[Potential-Form]
basak_buck(r,f0,a,b,c) = f0*b*exp((a-r)/b) - c/r^6
basak_morse(r, f0, d, gamma, r_star) = f0*d*(exp(-2*gamma*(r-r_star)) -
→˓2*exp(-gamma*(r-r_star)))
basak_buckmorse(r,f0,a,b,c,d,gamma,r_star) = basak_buck(r,f0,a,b,c) +
→˓basak_morse(r, f0,d,gamma,r_star)

• basak_custom_potential_form_d.aspot. This example shows that [Potential-Form] formu-
lae can refer to each other.

– In order to use the standard as.buck() potential-function, its 𝐴𝑖𝑗 parameter must be calculated from
the f0, a and b Basak parameters (see Potential model).

– Here an A_ij() formula is defined which is then invoked from inside the basak_buck() function.
This sort of modularisation allows well structured and hence simpler expressions to be define.

[Tabulation]
target : LAMMPS
nr : 1000
dr : 0.01

[Pair]
O-O : basak_buck 0.042203 3.82 0.327022 3.948787
U-U : basak_buck 0.042203 3.26 0.327022 0.0
O-U : basak_buckmorse 0.042203 3.54 0.327022 0.0 13.6765 1.65 2.369

[Potential-Form]
A_ij(f0, a,b) = f0*b*exp(a/b)
basak_buck(r,f0,a,b,c) = as.buck(r, A_ij(f0,a,b), b, c)

(continues on next page)

2.3. User Guide 19

atsim_potentials Documentation

(continued from previous page)

basak_morse(r, f0, d, gamma, r_star) = as.morse(r,gamma, r_star, f0*d)
basak_buckmorse(r,f0,a,b,c,d,gamma,r_star) = basak_buck(r,f0,a,b,c) +
→˓basak_morse(r, f0,d,gamma,r_star)

[Table-Form] section

This section of the input serves a similar purpose to the [Potential-Form] section as it allows custom potential functions
to be defined. However, instead of being defined using a mathematical expression they are specified as tables of x,y
points with interpolation providing intermediate values.

It is sometimes to convenient to use pre-tabulated values for very complex expressions however you should always use
caution. It is recommended that when using [Table-Form] that you plot the resulting functions and derivatives.
This is because interpolation can sometimes introduce spurious effects, so it’s worth checking that nothing odd has
happened.

Defining a Table Form

The general form of a [Table-Form] section is:

[Table-Form:NAME]
interpolation : INTERPOLATION_TYPE
xy : DATA

Multiple [Table-Form] sections can appear in a potable input file and are distinguished by the NAME identifier
included after the colon in the section header. This identifier can be used elsewhere, such as in [Pair] to use the
function.

The value of INTERPOLATION_TYPE specifies how values are calculated between data-points. A list of supported
interpolation schemes can be found here, but for the examples that follow we will use cubic_spline interpolation.

Finally the function’s data is provided through the xy option. The value of DATA is a list of space separated x,y pairs.
To aid readability these can appear on separate lines as long as they are indented. Alternatively, table data can be
specified as separate arrays of x and y values see here for more .

Example: [Table-Form] pair-potential

Revisiting the example from earlier (see Potential model) the following shows how the O-U interaction from the Basak
model [Basak2003] can be represented as a [Table-Form]:

The data points from Fig. 2.3 (blue) have been included in the potable input file basak_table_form.aspot
using the xy option.

The third line of the [Pair] section deserves notice:

O-U = tabulated

The potential-form tabulated specified for the O-U interaction refers to the name of the table-form:
[Table-Form:tabulated]. It should also be noted that instances of the potential form do not take any pa-
rameters.

20 Chapter 2. Contents

atsim_potentials Documentation

[Tabulation]
target : LAMMPS
cutoff : 6.5
nr : 652

[Pair]
O-O = as.buck 1633.010242995040 0.327022 3.948787
U-U = as.buck 294.640906285709 0.327022 0.0
O-U = tabulated

[Table-Form:tabulated]
interpolation : cubic_spline
xy : 0.019969278 1939.293892

0.169738863 1188.215091
0.319508449 726.7144999
0.469278034 443.3947902
0.619047619 269.6704607
0.768817204 163.3187664
0.91858679 98.35155402
1.068356375 58.77819733
1.21812596 34.76429963
1.367895545 20.26573351
1.517665131 11.57134322
1.667434716 6.405364338
1.817204301 3.374649118
1.966973886 1.62831462
2.116743472 0.648256084
2.266513057 0.120274645
2.416282642 -0.14514429
2.566052227 -0.261481615
2.715821813 -0.29602021
2.865591398 -0.288108481
3.015360983 -0.260312815
3.165130568 -0.225205576
3.314900154 -0.189478838
3.464669739 -0.15642305
3.614439324 -0.127408946
3.764208909 -0.102764146
3.913978495 -0.082284087
4.06374808 -0.065523547
4.213517665 -0.051957769
4.36328725 -0.04106708
4.513056836 -0.032377452
4.662826421 -0.025476347
4.812596006 -0.020015289
4.962365591 -0.015705784
5.112135177 -0.012312372
5.261904762 -0.009644843
5.411674347 -0.007550718
5.561443932 -0.005908467
5.711213518 -0.004621653
5.860983103 -0.00361401
6.010752688 -0.002825384
6.160522273 -0.002208426
6.310291859 -0.001725927
6.460061444 -0.001348681
6.5 0.0

2.3. User Guide 21

atsim_potentials Documentation

The following figure shows the good match between the analytical and tabulated forms resulting from the use of the
[Table-Form].

Fig. 2.3: Plot showing the table points used in the example (blue circles) and the function resulting from cubic spline
interpolation (red). The original analytical form is shown in grey.

Potable files for pair-potential models may contain the following sections:

[Tabulation]
...

[Pair]
...

[Potential-Form]
...

[Table-Form:NAME]
...

[Species]
...

Each section may contain a number of configuration options. These have the general form:

ITEM : VALUE

or an equals sign may be used instead:

ITEM = VALUE

Where ITEM identifies the configuration option’s name and VALUE its value.

Lines maybe commented out using # and line continuation is supported according to identation (see here for more
details).

Each section of the file has a specific purpose and not all sections will be required in all cases:

• [Tabulation] section

– describes how the file should be converted into a table file by the potable command. Contains infor-
mation such as cutoff, output table format and cutoff.

• [Pair] section

– this is where pair interactions are defined by parametrising a potential-form.

• [Potential-Form] section

– this section allows custom potential-forms to be defined. This may be required when you can’t find an
appropriate function from those supplied with atsim.potentials. However in many cases this
won’t be necessary and this section needn’t appear in your model definition.

• [Table-Form] section

– Multiple [Table-Form] sections may be specified. These allow potential-forms to be defined
from tables of x,y points. These tabulated forms can be used in the same way as potnetials defined in
[Potential-Form].

• [Species]

22 Chapter 2. Contents

https://docs.python.org/3/library/configparser.html#supported-ini-file-structure

atsim_potentials Documentation

– this is used to provide meta-data about the species being tabulated. In most cases this section can be
omitted (as very little species data is used during pair-tabulation). It is however, sometimes useful
to include atomic charges etc, here so that the input file represents a complete description of a given
potential model.

For completeness the [EAM-Embed] and [EAM-Density] sections are mentioned here. These are not required
for pair potential models but are used in many body models:

• [EAM-Density] is described here.

• [EAM-Embed] is described here.

Combining potentials

It is often useful to describe the different regions of a pair-potential using different functional forms. This section of
the user-guide will show ways in which different potentials can be combined.

First, examples will be given demonstrating the use multi-range potentials described earlier.

Methods for linking potential-forms using splines will then be considered.

Multi-range potential examples

This section shows how potential-forms can be combined using the multi-range syntax introduced here: Multi-range
potentials.

Example: truncating a potential

The starting structure for a simulation may contain overlapping atoms (for example if generated from random coordi-
nates). In these cases it is useful to move atoms apart before starting the simulation proper.

In principle this should be possible by using an energy minimisation run, however some potential forms are badly
behaved at very small separations (for instance the Buckingham catastrophe) leading to unexpected results.

One way of removing atom overlap is to temporarily substitute the potentials with some that are guaranteed to work,
even when two atoms are completely on top of each other. An example of a potential-form that could be used for this
purpose is now described (this is available natively in LAMMPS as pair_style soft):

𝑉𝑖𝑗(𝑟𝑖𝑗) = 𝐴

[︂
1 + cos

(︂
𝜋𝑟𝑖𝑗
𝑟𝑐

)︂]︂
Let’s start by plotting this function with sensible parameter values of 𝐴 = 10 and 𝑟𝑐 = 1.6:

To make this useful, the potential is truncated at 𝑟𝑐 (i.e. 𝑟𝑖𝑗 < 𝑟𝑐). This means that the potential is repulsive below 𝑟𝑐
and doesn’t act above:

Now, having been suitably truncated, the potential will gently push atoms apart in an MD or energy minimisation run.
This can be implemented for potable as follows; first define the cosine function:

[Potential-Form]
soft(r, A, rc) = A * (1+cos((pi*r)/rc))

The truncation at 𝑟𝑐 can then be applied using a multi-range [Pair] deinition.

2.3. User Guide 23

https://lammps.sandia.gov/doc/pair_soft.html

atsim_potentials Documentation

[Pair]
Si-O : soft 10.0 1.6 >1.6 as.zero
O-O : soft 5.0 2.4 >2.4 as.zero

Here the Si-O interaction have 𝐴 = 10.0 and an 𝑟𝑐 value of 1.6Å (the position of the Si-O peak in a silica glass radial
distribution function) after which the Zero (zero) potential-form takes over. Similarly, the O-O pair has a weaker
repulsion (𝐴 = 5.0) and a cutoff-radius, 𝑟𝑐, of 2.4Å (again this is about the position of the O-O peak in the RDF for
silica glass).

In this way the cosine function has been truncated. Specifying an Si-Si interaction will be left as an exercise for the
reader.

The complete input file for this example can be downloaded here soft_a.aspot and is:

[Tabulation]
target : GULP
cutoff : 10.0
dr : 0.01

[Pair]
Si-O : soft 10.0 1.6 >1.6 as.zero
O-O : soft 5.0 2.4 >2.4 as.zero

[Potential-Form]
soft(r, A, rc) = A * (1+cos((pi*r)/rc))

Example: truncating using if() statement

This example shows an alternative to using the multi-range syntax to implement the soft cosine potential described
above. The exprtk package used to evaluate expressions in the [Potential-Form] section, support an if ... then
... else construct through its if() function. This has the form:

if (CONDITION, FORMULA_IF_TRUE, FORMULA_IF_FALSE)

This means the 𝑟 > 𝑟𝑐 condition could have been included in [Potential-Form] like this:

[Potential-Form]
cos_form(r, A, rc) = A * (1+cos((pi*r)/rc))
soft(r, A, rc) = if(r>rc, 0, cos_form(r, A, rc))

This simplifies the definition of the [Pair] section by avoiding the repetition of the 𝑟𝑐 parameter when defining the
multi-range version of the potential:

[Pair]
Si-O : soft 10.0 1.6
O-O : soft 5.0 2.4

The potable input using this version of the potential-form can be downloaded here: soft_if.aspot.

Example: parametrising a model using published spline coefficients

The UO2 potential model by Morelon describes U-O and O-O interactions [Morelon2003]. The former employs the
Born-Mayer (bornmayer) potential-form while the latter uses the combination of a 3rd and 5th order polynomial spline

24 Chapter 2. Contents

http://www.partow.net/programming/exprtk/index.html

atsim_potentials Documentation

to link an 𝐴 exp
(︁
− 𝑟𝑖𝑗

𝜌

)︁
term to a − 𝐶

𝑟6𝑖𝑗
term. The spline-coefficients for the Morelon model are available in a paper

by Potashnikov et al. [Potashnikov2011]. They give the O-O interaction as:

𝑉 (𝑟𝑖𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
11272.6 exp

(︁
0.1363
𝑟𝑖𝑗

)︁
: 𝑟𝑖𝑗 < 1.2

479.955− 1372.53𝑟𝑖𝑗 + 1562.22𝑟2𝑖𝑗 − 881.969𝑟3𝑖𝑗 + 246.435𝑟4𝑖𝑗 − 27.2447𝑟5𝑖𝑗 : 1.2 ≤ 𝑟𝑖𝑗 < 2.1

42.8917− 55.4965𝑟𝑖𝑗 + 23.0774𝑟2𝑖𝑗 − 31.13140𝑟3𝑖𝑗 : 2.1 ≤ 𝑟𝑖𝑗 < 2.6

− 134
𝑟6𝑖𝑗

: 𝑟𝑖𝑗 ≥ 2.6

(2.8)

The following figure plots the O-O interaction to show how its constituent parts relate to each other.

Fig. 2.4: The O-O interaction of the Morelon model is made up of several potential-forms acting over different ranges.
The upper plot shows the un-trimmed versions of the individual functions. The lower plot shows how these combine
to form the overall interaction.

Note: in a simulation the O-O interaction would also include a repulsive electrostatic term which isn’t plotted here.

Using this information we can write the Morelon model as potable input (and can be downloaded as morelon.
aspot) :

[Tabulation]
target : LAMMPS
cutoff : 10.0
nr : 1001

[Pair]
O-U : as.bornmayer 566.498 0.42056
O-O : as.bornmayer 11272.6 0.1363

>1.2
as.polynomial 479.955 -1372.53 1562.22 -881.969 246.435 -27.2447

>2.1
as.polynomial 42.8917 -55.4965 23.0774 -3.13140

>2.6
as.buck 0.0 1.0 134.0

There are a few features here that are worth noting:

• The four distinct regions are defined as multi-range potentials.

• The third and fifth order polynomials are both defined using the as.polynomial form:

– The order of the polynomial is implicitly defined by the number of parameters.

• The − 𝐶
𝑟6𝑖𝑗

term is implemented using the Buckingham (buck) form. In order to only use the attractive part of the
potential an A parameter of 0.0 is used as its first argument and a non-zero rho is then specified.

Splining

Splines are curves that are used to smoothly connect different functional forms across different ranges of a potential-
form. Typically splining curves are polynomials. Care must be taken when determining the coefficients of the spline
function as it is important that potentials are smooth and do not have steps in their derivatives. For this reason spline
parameters are determined so that at its end-points, it gives the same potential-energy and derivatives (1st and 2nd) as
the functions it joins.

In the previous example (see Example: parametrising a model using published spline coefficients), spline coefficients
were provided but their calculation can be quite involved. As a result potable provides services to make this easier.

2.3. User Guide 25

atsim_potentials Documentation

Splining is performed in the [Pair] section of the input through the spline() potential-modifier.

spline() takes a single argument which has the form of a multi-range potential definition. This has three distinct
parts, representing the three ranges of the splined potential:

1. The region described by the starting potential.

2. The interpolation region given by the spline.

3. The final part defined by the end potential.

In the description that follows, the separation at which the starting potential ends will be referred to as the detachment-
point. Similarly, the end of the splined region is the attachment-point.

Bearing in mind its similarity to the multi-range syntax spline() definitions have this basic form:

spline(POT_A_DEFN >R_DETACH SPLINE_DEFN >R_ATTACH POT_B_DEFN)

Where:

• POT_A_DEFN - this is the potential definition for the starting-potential. This is typically a potential-form label
followed by potential parameters (see [Pair] section).

• R_DETACH - detachment-point (note: as this is a multi-range potential definition the inclusive form
>=R_DETACH is also valid).

• SPLINE_DEFN - the type of spline to be used along with any parameters it takes. This will be described
properly in the next paragraph.

• R_ATTACH - attachment point (again >=R_ATTACH is also accepted).

• POT_B_DEFN - the potential definition of the end-potential.

SPLINE_DEFN has the same format as a potential-definition: an identifying label followed by a list of parameters
(note: some spline-types do not take any parameters):

SPLINE_LABEL PARAM_1 PARAM_2 ... PARAM_N

Currently SPLINE_LABEL can be exp_spline or buck4_spline. These spline-types will now be described.

Exponential Spline exp_spline

The spline used when exp_spline is specified is given as:

𝑉 (𝑟𝑖𝑗) = exp
(︀
𝐵0 +𝐵1𝑟𝑖𝑗 +𝐵2𝑟

2
𝑖𝑗 +𝐵3𝑟

3
𝑖𝑗 +𝐵4𝑟

4
𝑖𝑗 +𝐵5𝑟

5
𝑖𝑗

)︀
(2.9)

Where 𝐵0..5 are the spline coefficients calculated automatically during splining.

The exponential spline does not take any parameters.

The functional form given in eqn. (2.9) is also available as a potential-form. Although the user is then responsible for
calculating their own spline-coefficients. See: Exponential Spline (exp_spline).

Example: splining to the zbl potential form using exp_spline

This example will show how to use spline() with the exp_spline type to add the repulsive Ziegler-Biersack-
Littmark (zbl) to a Buckingham (buck) potential that is unphysical at small separations.

For certain parameterisations, popular potential forms can exhibit unphysical behaviour for some interatomic separa-
tions. A popular model for the description of silicate and phosphate systems is that due to van Beest, Kramer and van

26 Chapter 2. Contents

atsim_potentials Documentation

Santen (the BKS potential set) [VanBeest1990]. In the current example, the Si-O interaction from this model will be
considered. This uses the Buckingham potential form with the following parameters:

• A = 18003.7572 eV

• 𝜌 = 0.205204

• C = 133.5381 eV 6

• Charges:

– Si = 2.4 e

– O = -1.2 e

The plot in Fig. 2.5 shows the combined coulomb and short-range contributions for this interaction plotted as a function
of separation. The large C term necessary to describe the equilibrium properties of silicates means that as 𝑟𝑖𝑗 gets
smaller, the 𝐶

𝑟6𝑖𝑗
overwhelms the repulsive Born-Mayer component of the Buckingham potential meaning that it turns

over. This creates only a relatively shallow minimum around the equilibrium Si-O separation. Within simulations
containing high velocities (e.g. high temperatures or collision cascades) atoms could easily enter the very negative,
attractive portion of the potential at low 𝑟𝑖𝑗 - effectively allowing atoms to collapse onto each other. In order to
overcome this deficiency a ZBL potential will be splined onto the Si-O interaction within this example.

Fig. 2.5: Plot showing Si-O pair-potential and its electrostatic and short-range components. A small separations it
becomes attractive which is unphysical.

The first step to using exp_spline is to choose appropriate detachment and attachment points. This is perhaps
best done by plotting the two potential functions to be splined. The as.buck and as.zbl curves in Fig. 2.6a, show that
detachment and attachment at separations of 0.8 and 1.4 may be appropriate.

Fig. 2.6: The result of splining using the exp_spline potential.

We now have enough information to spline the two potentials together. This gives is defined in the [Pair] section:

[Pair]
Si-O : spline(

as.zbl 14 8
>=0.8

exp_spline
>=1.4

as.buck 18003.7572 0.205204 133.5381)

The result of splining can be seen in Fig. 2.6b (here it plotted with the Coulomb interaction included).

The complete potable input can be downloaded here: exp_spline.aspot.

See also:

• This example Example: Splining ZBL Potential on to Buckingham Potential shows how to achieve the same
result using the Python API.

2.3. User Guide 27

atsim_potentials Documentation

Buckingham-4 Spline buck4_spline

When used with buck4_spline the overall potential has the form:

𝑉 (𝑟𝑖𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑉PotA(𝑟𝑖𝑗) : 0 ≤ 𝑟𝑖𝑗 ≤ 𝑟detach

𝑎0 + 𝑎1𝑟𝑖𝑗 + 𝑎2𝑟
2
𝑖𝑗 + 𝑎3𝑟

3
𝑖𝑗 + 𝑎4𝑟

4
𝑖𝑗 + 𝑎5𝑟

5
𝑖𝑗 : 𝑟detach < 𝑟𝑖𝑗 < 𝑟min

𝑏0 + 𝑏1𝑟𝑖𝑗 + 𝑏2𝑟
2
𝑖𝑗 + 𝑏3𝑟

3
𝑖𝑗 : 𝑟min ≤ 𝑟𝑖𝑗 < 𝑟attach

𝑉PotB(𝑟𝑖𝑗) : 𝑟𝑖𝑗 ≥ 𝑟attach

(2.10)

The spline form can be seen to be the combination of a fifth order and cubic polynomial. As for other spline types the
coefficients (𝑎0...5 and 𝑏0...3) are chosen so that first and second derivatives (with respect to separation) are continuous
through the attachment and detachment points. In addition, the coefficients are determined to give a stationary point
where the two polynomials meet at 𝑟min.

The SPLINE_DEFN part of the spline() definition for buck4_spline is:

buck4_spline 𝑟min

Relationship to as.buck4 potential-form

As its name suggests, the buck4_spline is closely related to the Buckingham-4 (buck4) potential-form. When used
as a potential-form, the 𝑉PotA(𝑟𝑖𝑗) and 𝑉PotB(𝑟𝑖𝑗) terms from eqn. (2.10) are pre-defined as the first and last terms of
the Buckingham potential:

𝑉PotA(𝑟𝑖𝑗) = 𝐴𝑖𝑗 exp

(︂
−𝑟𝑖𝑗

𝜌

)︂
𝑉PotB(𝑟𝑖𝑗) = − 𝐶

𝑟𝑖𝑗

The potential-form is therefore shorthand for the following:

spline(as.buck A RHO 0.0 >R_DETACH buck4_spline R_MIN >R_ATTACH as.buck 0 1.0 C)

And would be specified as:

as.buck4 A RHO C R_DETACH R_MIN R_ATTACH

Where: A, RHO and C are the potential parameters and R_DETACH, R_MIN and R_ATTACH define the splined region.

In most cases users will prefer the as.buck4 form unless they have a specific reason to change the initial and final
potential functions.

Example: redefining the Morelon model using buck4_spline

In this example the Morelon potential model will be re-implemented first using the spline() modifier then with the
as.buck4.

This model was discussed in a previous example: Example: parametrising a model using published spline coefficients
where O-O and O-U interactions were defined like this:

[Pair]
O-U : as.bornmayer 566.498 0.42056
O-O : as.bornmayer 11272.6 0.1363

>1.2

(continues on next page)

28 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

as.polynomial 479.955 -1372.53 1562.22 -881.969 246.435 -27.2447
>2.1

as.polynomial 42.8917 -55.4965 23.0774 -3.13140
>2.6

as.buck 0.0 1.0 134.0

From this it can be seen that the O-U interaction is relatively simple whilst the O-O interaction has four distinct parts
(also defined in eqn. (2.8)), and when examined more closely it can be seen it matches the four range Buckingham
form.

The polynomial terms, with their pre-supplied coefficients, can be replaced by using the spline() modifier with the
buck4_spline spline type. This is now shown and can be downloaded as: morelon_buck4_spline.aspot

1 [Pair]
2 O-U : as.bornmayer 566.498 0.42056
3 O-O : spline(
4 as.bornmayer 11272.6 0.1363
5 >1.2
6 buck4_spline 2.1
7 >2.6
8 as.buck 0.0 1.0 134.0)

To change the starting potential and end potential lines 4 and 8 would be edited. To edit the detach and attach points
then lines 5 and 7 would be altered. To change the position of the stationary point in the splined region, the value of
2.1 at the end of line 6 would be edited.

This input file could also be re-written to use the buck4 potential-form, like this:

[Pair]
O-U : as.bornmayer 566.498 0.42056
O-O : as.buck4 11272.6 0.1363 134.0 1.2 2.1 2.6

This version of the model can be downloaded here: morelon_buck4.aspot

Many body models

Models that use the Embedded Atom Method (EAM) can be tabulated using potable. Embedded atom models take the
general form

𝐸𝑖 = 𝐹𝛼

⎛⎝∑︁
𝑗 ̸=𝑖

𝜌𝛽(𝑟𝑖𝑗)

⎞⎠+
1

2

∑︁
𝑗 ̸=𝑖

𝜑𝛼𝛽(𝑟𝑖𝑗) (2.11)

• Where:

– 𝜌𝛽(𝑟𝑖𝑗) is the density function which gives the electron density for atom 𝑗 with species 𝛽 as a function of
its separation from atom 𝑖, 𝑟𝑖𝑗 .

– The electron density for atom 𝑖 is obtained by summing over the density (𝜌𝛽(𝑟𝑖𝑗) contributions due to its
neighbours.

– The embedding function 𝐹𝛼(𝜌) is used to calculate the many-bodied energy contribution from this summed
electron density.

– The sum 1
2

∑︀
𝑗 ̸=𝑖 𝜑𝛼𝛽(𝑟𝑖𝑗) gives the pair-potential contribution to atom 𝑖’s energy.

– 𝜑𝛼𝛽(𝑟𝑖𝑗) are simply pair potentials that describe the energy between two atoms as a function of their
separation.

2.3. User Guide 29

atsim_potentials Documentation

In order to support the description of EAM when compared to pair-potential models, additional sections in the input
file are required. These are:

• [EAM-Density]: defines EAM density functions.

• [EAM-Embed]: describe the model’s embedding functions.

As before, the pairwise section of the forcefield is specified in the [Pair] section of the input file.

The EAM sections of the input are defined in much the same way as the [Pair] section. Both [EAM-Density],
[EAM-Embed] allow the use of multi-range potential definitions and potential modifiers.

As for pair only models, many-bodied force fields can specify [Potential-Form] and [Table-Form] sections can be
provided if custom functional forms are required in [EAM-Density], [EAM-Embed] or [Pair].

[EAM-Density]

The density functions for embedded atom models are specified in this section. For the EAM form shown in equation
(2.11) entries in this section take the form:

SPECIES : POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N

• Where:

– SPECIES species for which density should be calculated

– POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N potential form definition.

Density functions are tabulate in 𝑟𝑖𝑗 space, therefore their extent and resolution are controlled by the the dr, nr and
cutoff fields in the [Tabulation] section in the same way as for [Pair] potentials.

Note: The SPECIES label can take the form ALPHA->BETA for Finnis-Sinclair tabulations. See Finnis Sinclair
Models, below and [EAM-Density] in the reference section .

Example

A density function for silver may look something like this:

[EAM-Density]
Ag : as.exponential 4681.013008649 -6

This is taken from Sutton Ag EAM Example. As you can determine from the parameters given there, and just for fun,
this could have been defined using potential-modifiers as this, which makes the original parameters self evident:

[EAM-Density]
Ag : pow(

product(as.constant 4.09,
pow(

as.polynomial 0 1,
as.constant -1)),

as.constant 6)

30 Chapter 2. Contents

atsim_potentials Documentation

[EAM-Embed]

Embedding functions are defined in this section.

Entries have the following form:

SPECIES : POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N

Where:

• SPECIES is atomic type at which the surrounding electron density will be embedded using the specified poten-
tial form.

• POTENTIAL_FORM PARAM_1 ... : embedding functions instantiate potential forms in the same way as in
the [Pair] section.

Note: Embedding functions are tabulated using rho values. The resolution and extent of functions in rho are defined
by drho, nrho and cutoff_rho in the [Tabulation] section.

Example

This shows the embedding function used in the Sutton Ag EAM Example for Ag:

[EAM-Embed]
Ag : product(as.constant 2.5415e-3, as.sqrt -144.41)

Note the use of the product() modifier to apply a constant multiplication factor to the square root embedding function.

Standard EAM Examples

Sutton Ag EAM Example

This provides an example of using potable to tabulate the Ag model given by Sutton and Chen in1.

Potential Model

𝐸𝑖 = 𝜖

⎡⎣1
2

∑︁∑︁
𝑖 ̸=𝑗

𝜑𝛼𝛽(𝑟𝑖𝑗)− 𝑐
∑︁
𝑖

√
𝜌𝑖

⎤⎦ (2.12)

Where:

• 𝐸𝑇 is the energy of ths system.

• 𝑟𝑖𝑗 is the separation between atoms 𝑖 and 𝑗.

• 𝑐 and 𝜖 are adjustable parameters specific to interacting species.

• Inside the square brackets the first term 𝑉 (𝑟𝑖𝑗) are the pair potentials.

• The second is the many body term: 𝑐
∑︀

𝑖

√
𝜌𝑖. Where 𝜌𝑖 is the electron density.

1 A.P. Sutton, and J. Chen, “Long-range Finnis-Sinclair potentials”, Philos. Mag. Lett. 61 (1990) 139 doi:10.1080/09500839008206493.

2.3. User Guide 31

https://dx.doi.org/10.1080/09500839008206493

atsim_potentials Documentation

Pair potential form:

𝜑𝛼𝛽(𝑟𝑖𝑗) = (𝑎/𝑟𝑖𝑗)
𝑛

Where:

• 𝑎 and 𝑛 are potential parameters.

This must be multiplied by the 𝜖 term from equation (2.12) above:

𝜑𝛼𝛽(𝑟𝑖𝑗) = 𝜖(𝑎/𝑟𝑖𝑗)
𝑛

To make things easier later on, this will be re-expressed as:

𝜑𝛼𝛽(𝑟𝑖𝑗) = 𝜖𝑎𝑛𝑟𝑛𝑖𝑗

This will allow this functional form to be written using the provided as.exponential potential-form.

Many body terms

Density function:

The density function is:

𝜌𝑖 =

(︂
𝑎

𝑟𝑖𝑗

)︂𝑚

Again to allow the use of the as.exponential potential-form this will be re-written as:

𝜌𝑖 = 𝑎𝑚𝑟−𝑚
𝑖𝑗

Embedding function:

Examining the many-body term from (2.12) it can be seen that the embedding function is:

𝑐
√
𝜌𝑖

Taking the the 𝜖 term from outside the square brackets and pre-multiplying the expression this becomes:

𝜖𝑐
√
𝜌𝑖

Potential parameters

The potential parameters for Ag are:

Table 2.3: Potential parameters for Ag
Parameter Value
𝑚 6
𝑛 12
𝜖 2.5415×10-3 eV
𝑎 4.09
𝑐 144.41

32 Chapter 2. Contents

atsim_potentials Documentation

Potable input

The potable input for this model can be downloaded as Ag_sutton.aspot and will now be described:

1 [Tabulation]
2 target : setfl
3 #
4 cutoff_rho : 600
5 drho : 0.005
6 #
7 cutoff : 12.0
8 dr : 0.001
9

10 [EAM-Embed]
11 Ag : product(as.constant 2.5415e-3, as.sqrt -144.41)
12

13 [EAM-Density]
14 Ag : as.exponential 4681.013008649 -6
15

16 [Pair]
17 Ag-Ag : product(as.constant 2.5415e-3, as.exponential 21911882.787 -12)

Notes:

• lines 1-8 [Tabulation]:

– lines 4,5: gives the resolution and extent of the function in [EAM-Embed].

– lines 7,8: defines resolution and extent of the tables generated for the [Pair] and [EAM-Density]
functions.

• lines 10 and 11 [EAM-Embed]:

– Defines the embedding function.

– Note the use of the product() potential modifier to multiply the square root embedding function by the
value of 𝜖.

• lines 13 and 14 [EAM-Density]:

– Describes the density function.

– The value of 4681.013008649 is obtained as 𝑎𝑚 = 4.096.

• lines 16 and 17 [Pair]:

– Defines the pair potential component of the model.

– As above, the product() potential modifier has been used to multiply the function by 𝜖.

– Here the first parameter to the as.exponential form is 𝑎𝑛 = 4.0912 = 21911882.78.

Making and testing the tabulation

To tabulate the potential download the aspot file and run it through potable

potable Ag_sutton.aspot Ag_sutton.eam.alloy

2.3. User Guide 33

atsim_potentials Documentation

A LAMMPS input file is provided to allow you to test the Ag_sutton.eam.alloy file produced by potable.
This input file can be downloaded here: Ag_sutton_fcc.lmpin and will energy minimize the structure and then
perform an NPT MD equilibration at T=300K. Frames will be dumped every 1000 timesteps (1ps) and dumped to a
LAMMPS dump file named dump.atom(this is suitable for visualisation in Ovito).

In terms of the table file the important part of the LAMMPS input is:

pair_style eam/alloy
pair_coeff * * Ag_sutton.eam.alloy Ag

This tells LAMMPS to accept a setfl formatted file (pair_style eam/alloy). The Ag at the end of the
pair_coeff line says that LAMMPS should associate atom type 1 with the Al species label in the table file
Ag_sutton_eam.alloy.

Placing both the LAMMPS and table file in the same directory run LAMMPS as follows:

mpirun lammps -in Ag_sutton_fcc.lmpin -log Ag_sutton_fcc.lmpout

Footnotes:

More complete examples of EAM tabulation are listed in the following table:

Example Description
Sutton Ag EAM Exam-
ple

An example of how to tabulate a single component EAM potential for Ag, to use in
LAMMPS

Finnis-Sinclair Style EAM Models

A variation of the standard EAM is supported allowing different density functions to be specified for each pair of
species. Before looking at this let’s have another look at original definition of the EAM given in (2.11):

𝐸𝑖 = 𝐹𝛼

⎛⎝∑︁
𝑗 ̸=𝑖

𝜌𝛽(𝑟𝑖𝑗)

⎞⎠+
1

2

∑︁
𝑗 ̸=𝑖

𝜑𝛼𝛽(𝑟𝑖𝑗)

Here the many body term is:

𝐹𝛼

⎛⎝∑︁
𝑗 ̸=𝑖

𝜌𝛽(𝑟𝑖𝑗)

⎞⎠
From this it can be seen that for any atom type 𝛽 surrounding atom 𝑖, the same density function is used for 𝛽, no matter
the species (𝛼) of the central atom. So in the standard EAM, the density due to a 𝐵 atom neighbouring an 𝐴 atom
would be calculatd by 𝜌𝐵(𝑟𝑖𝑗). Similarly a 𝐵 atom next to another 𝐵 atom would also have its density calculated
using the same 𝜌𝐵(𝑟𝑖𝑗) function.

By comparison, the EAM variant (referred to as Finnis-Sinclair by LAMMPS) has the following form:

𝐸𝑖 = 𝐹𝛼

⎛⎝∑︁
𝑗 ̸=𝑖

𝜌𝛼𝛽(𝑟𝑖𝑗)

⎞⎠+
1

2

∑︁
𝑗 ̸=𝑖

𝜑𝛼𝛽(𝑟𝑖𝑗) (2.13)

The difference is subtle, but has important implications for the expressiveness of the potential model. The density
function now becomes 𝜌𝛼𝛽(𝑟𝑖𝑗) meaning it is now specific the types of the interacting species. So the density due to

34 Chapter 2. Contents

https://ovito.org

atsim_potentials Documentation

a 𝐵 atom around an 𝐴 atom would be given by 𝜌𝐴𝐵(𝑟𝑖𝑗) whilst a different function 𝜌𝐵𝐵(𝑟𝑖𝑗) would be used for 𝐵
atoms around 𝐴 atoms.

The potable tool allows this concept to be expressed by using a slightly different style of [EAM-Density] section.
To define the two density functions described in the previous paragraph this would look like this:

[EAM-Density]
A->B : DENSITY_AB
B->B : DENSITY_BB

Where:

• DENSITY_AB and DENSITY_BB would be the two potential-forms for the ‘B surrounding A’ and ‘B
surrounding B’ density functions.

Summarising, the [EAM-Density] section of Finnis-Sinclair style potable files has contains SPECIES labels of
the form:

ALPHA->BETA

Where:

• ALPHA is the central atom species for the density function.

• BETA is the surrrounding atom species for the density function.

Finnis-Sinclair style models can be used with the following tabulation targets:

• excel_eam_fs

• DL_POLY_EAM_fs

• setfl_fs

Example

The following example aims to demonstrate the difference between the standard and Finnis-Sinclair potential models
and how to tabulate them. For simplicity a ‘toy’ atomic configuration will be used, this is illustrated in Fig. 2.7 and
can be downloaded as a LAMMPS file: toy_structure.lmpstruct (atom_style charge).

Fig. 2.7: The atomic configuration used in this example (viewed down z-axis).

The coordination environments of the A and B atoms in this structure are as follows:

Table 2.4: Coordination environment of the different atoms.
Central Atom Surrounding Atoms 𝑟𝑖𝑗
A 4 × B 2.0
B 1 × A 2.0

1 × B 4.0
2 × B 2

√
2

Standard EAM

For our toy example, let’s define the density due to an A atom as 𝜌𝐴(𝑟𝑖𝑗) = 2𝑟𝑖𝑗 and that due to B as 𝜌𝐵(𝑟𝑖𝑗) = 3𝑟𝑖𝑗 .
Using these we can extend our table to calculate the density expected around each type of atom:

2.3. User Guide 35

atsim_potentials Documentation

Table 2.5: Density calculation
Central
Atom

Surrounding
Atoms

𝑟𝑖𝑗 𝜌𝐴(𝑟𝑖𝑗) =
2𝑟𝑖𝑗

𝜌𝐵(𝑟𝑖𝑗) = 3𝑟𝑖𝑗 Total 𝜌

A 4 × B 2.0 4 × 3 × 2.0 = 24.0 24.0
B 1 × A 2.0 1 × 2 × 2.0 =

4.0
4.0 + 12.0 + 16.971 =
32.971

1 × B 4.0 1 × 3 × 4.0 = 12.0
2 × B 2

√
2 2 × 3 × 2

√
2 =

16.971

Looking at the calculation in Table 2.5 we can see that the density around an A atom is 24.0 and that around B is
32.971.

Let’s confirm that this is the case by running a LAMMPS calculation that reproduces the hand calculation given in the
table using the following potable input (standard_eam.aspot)

[Tabulation]
target : setfl
cutoff = 5.0
dr = 0.1
cutoff_rho = 50.0
drho = 0.1

[Species]
A.atomic_mass = 1
A.atomic_number = 1
B.atomic_mass = 2
B.atomic_number = 2

[EAM-Embed]
A = as.polynomial 0 1
B = as.zero

[EAM-Density]
A = as.polynomial 0 2
B = as.polynomial 0 3

[Pair]

Notes:

• The [Species] section has been included so we can use A and B as species labels rather than proper element
names.

• The [Pair] section has been left empty as we haven’t defined any pair potentials to use with this model.

The [EAM-Density] section uses the as.polynomial potential form to give our 𝜌𝐴(𝑟𝑖𝑗) = 2𝑟𝑖𝑗 and 𝜌𝐵(𝑟𝑖𝑗) = 3𝑟𝑖𝑗
density functions:

[EAM-Density]
A = as.polynomial 0 2
B = as.polynomial 0 3

More unusual is the use of the as.polynomial and as.zero potential forms in the [EAM-Embed] section. Our example
is in no way trying to reproduce the physics of atomic bonding but is instead showing how the EAM and its tabulations
works. As a result the [EAM-Embed] section looks like this:

36 Chapter 2. Contents

atsim_potentials Documentation

[EAM-Embed]
A = as.polynomial 0 1
B = as.zero

Here the embedding function for A has been set to as.polynomial 0 1. This is useful for debugging as this is an identity
function meaning that the ‘energy’ calculated by LAMMPS for each A atom will instead be its summed density.

The embedding function for B has been set to as.zero meaning the density around these atoms will not contribute to the
value output by LAMMPS. We will turn the B embedding function back on later in the example, however for our first
run the potable tabulation should result in the density surrounding the single A atom in Fig. 2.7 being produced.
According to the calculation in Table 2.5 this should be 24.0.

Run potable on standard_eam.aspot to produce a table file named standard_eam.eam

potable standard_eam.aspot standard_eam.eam

Now download the structure file (toy_structure.lmpstruct) and the following LAMMPS input script
(standard_evaluate.lmpin) into the same directory as your table:

units metal
atom_style charge

read_data toy_structure.lmpstruct

pair_style eam/alloy
pair_coeff * * standard_eam.eam A B

run 0

print ENERGY:$(pe)

Now let’s run this through LAMMPS to evaluate our table file for the example structure:

lammps -in standard_evaluate.lmpin -log standard_evaluate.lmpout

This should produce output similar to this:

LAMMPS (3 Mar 2020)
units metal
atom_style charge

read_data toy_structure.lmpstruct
orthogonal box = (0 0 0) to (20 20 20)
1 by 1 by 1 MPI processor grid
reading atoms ...
5 atoms
read_data CPU = 0.004225 secs

pair_style eam/alloy
pair_coeff * * standard_eam.eam A B

run 0
WARNING: No fixes defined, atoms won't move (../verlet.cpp:52)
Neighbor list info ...

update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 7.1

(continues on next page)

2.3. User Guide 37

atsim_potentials Documentation

(continued from previous page)

ghost atom cutoff = 7.1
binsize = 3.55, bins = 6 6 6
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair eam/alloy, perpetual

attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/3d/newton
bin: standard

Per MPI rank memory allocation (min/avg/max) = 3.436 | 3.436 | 3.436 Mbytes
Step Temp E_pair E_mol TotEng Press

0 0 24 0 24 -1602.1765
Loop time of 1e-06 on 1 procs for 0 steps with 5 atoms

100.0% CPU use with 1 MPI tasks x no OpenMP threads

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total

Pair | 0 | 0 | 0 | 0.0 | 0.00
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0 | 0 | 0 | 0.0 | 0.00
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 1e-06 | | |100.00

Nlocal: 5 ave 5 max 5 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 10 ave 10 max 10 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 10
Ave neighs/atom = 2
Neighbor list builds = 0
Dangerous builds = 0

print ENERGY:$(pe)
print ENERGY:24.000000000000014211
ENERGY:24.000000000000014211
Total wall time: 0:00:00

As you can see from the penultimate line we obtain our expected value of 24.0 for the density of the A atom:

ENERGY:24.000000000000014211

Now change the [EAM-Embed] section as follows, to turn off the A density and turn on the B density:

[EAM-Embed]
A = as.zero
B = as.polynomial 0 1

Running the same process as above we get the following ENERGY line in our output:

ENERGY:131.88225099390862738

Remembering that we have four B atoms in our system, each with an expected density of 32.971 then it can be seen

38 Chapter 2. Contents

atsim_potentials Documentation

that this equates well to what we would expect: 4×32.971 = 131.884.

Finnis-Sinclair

We will now extend this example to use different density functions for the AB and BA interactions. The following
functions will be used:

• 𝜌𝐴𝐵(𝑟𝑖𝑗) = 3𝑟𝑖𝑗

• 𝜌𝐵𝐵(𝑟𝑖𝑗) = 5𝑟𝑖𝑗

• 𝜌𝐵𝐴(𝑟𝑖𝑗) = 2𝑟𝑖𝑗

Using these functions will produce a density around the A atom that is the same as in the standard EAM example
above. This is because the 𝜌𝐴𝐵(𝑟𝑖𝑗) function is the same as the 𝜌𝐴(𝑟𝑖𝑗) used earlier. However, the function for
calculating the B density surrounding a B atom is now different from the earlier example (𝜌𝐵𝐵(𝑟𝑖𝑗) = 5𝑟𝑖𝑗). As the
𝜌𝐵𝐴(𝑟𝑖𝑗) function also matches the equivalent 𝜌𝐴 function from earlier, it is only the change introduced by the new
𝜌𝐵𝐵(𝑟𝑖𝑗) = 5𝑟𝑖𝑗 function for B-B pairs, that will change the LAMMPS output for this example. Due to the single A
atom there are no density contribution from A-A pairs in this system.

The density calculation for the Finnis-Sinclair model can now be performed by hand as shown in Table 2.6.

Table 2.6: Density calculation
Central
Atom

Surrounding
Atoms

𝑟𝑖𝑗 𝜌𝐴𝐵(𝑟𝑖𝑗) =
3𝑟𝑖𝑗

𝜌𝐵𝐴(𝑟𝑖𝑗) =
2𝑟𝑖𝑗

𝜌𝐵𝐵(𝑟𝑖𝑗) =
5𝑟𝑖𝑗

Total 𝜌

A 4 × B 2.0 4 × 3 × 2.0 =
24.0

24.0

B 1 × A 2.0 1 × 2 × 2.0 =
4.0

4.0 + 20.0 + 28.284 =
52.284

1 × B 4.0 1 × 5 × 4.0 =
20.0

2 × B 2
√
2 2 × 5 × 2

√
2 =

28.284

This can be described in the potable format as follows (finnis_sinclair_eam.aspot):

[Tabulation]
target : setfl_fs
cutoff = 5.0
dr = 0.1
cutoff_rho = 50.0
drho = 0.1

[Species]
A.atomic_mass = 1
A.atomic_number = 1
B.atomic_mass = 2
B.atomic_number = 2

[EAM-Embed]
A = as.zero
B = as.polynomial 0 1

[EAM-Density]
A->B = as.polynomial 0 3
B->A = as.polynomial 0 2

(continues on next page)

2.3. User Guide 39

atsim_potentials Documentation

(continued from previous page)

B->B = as.polynomial 0 5

[Pair]

Note that the [Tabulation] section now specifies a Finnis-Sinclair compatible tabulation target:

[Tabulation]
target : setfl_fs

The important differences between this file and the standard EAM example can be found in the [EAM-Density]

[EAM-Density]
A->B = as.polynomial 0 3
B->A = as.polynomial 0 2
B->B = as.polynomial 0 5

The first entry in this section defines the 𝜌𝐴𝐵(𝑟𝑖𝑗) = 3𝑟𝑖𝑗 function and it should be apparent how the remaining density
functions are specified.

Tabulate the finnis_sinclair_eam.aspot file:

potable finnis_sinclair_eam.aspot finnis_sinclair.eam.fs

Copy the toy_structure.lmpstruct structure file and the following LAMMPs input file
(finnis_sinclair_evaluate.lmpin) to the same directory as your tabulation:

units metal
atom_style charge

read_data toy_structure.lmpstruct

pair_style eam/fs
pair_coeff * * finnis_sinclair.eam.fs A B

run 0

print ENERGY:$(pe)

Running LAMMPS to obtain the total B density:

lammps -in finnis_sinclair_evaluate.lmpin -log finnis_sinclair_evaluate.lmpout

gives the following output:

ENERGY:209.13708498984715334

Referring back to Table 2.6 and remembering that there are four B atoms in the system the value expected from the
hand calculation was 52.284 × 4 = 209.136. This very closely matches the value obtained from LAMMPS.

ADP Style EAM Models

Added in: 0.4.0

40 Chapter 2. Contents

atsim_potentials Documentation

The potable tool allows EAM models using the angular dependent potential (ADP) extension to be tabulated.

𝐸𝑖 = 𝐹𝛼

⎛⎝∑︁
𝑗 ̸=𝑖

𝜌𝛽(𝑟𝑖𝑗)

⎞⎠+
1

2

∑︁
𝑗 ̸=𝑖

𝜑𝛼𝛽(𝑟𝑖𝑗) +
1

2

∑︁
𝑠

(𝜇𝑠
𝑖)

2 +
1

2

∑︁
𝑠,𝑡

(𝜆𝑠𝑡
𝑖)2 − 1

6
𝜈2𝑖

𝜇𝑠
𝑖 =

∑︁
𝑗 ̸=𝑖

𝑢𝛼𝛽(𝑟𝑖𝑗)𝑟
𝑠
𝑖𝑗

𝜆𝑠𝑡
𝑖 =

∑︁
𝑗 ̸=𝑖

𝑤𝛼𝛽(𝑟𝑖𝑗)𝑟
𝑠
𝑖𝑗𝑟

𝑡
𝑖𝑗

𝜈𝑖 =
∑︁
𝑠

𝜆𝑠𝑠
𝑖

(2.14)

ADP extends the standard EAM (2.11) with additional dipole (𝜇𝑠
𝑖) and quadrupole terms (𝜆𝑠𝑡

𝑖). The dipoles and
quadrupoles are defined via 𝑢𝛼𝛽(𝑟𝑖𝑗) and 𝑤𝛼𝛽(𝑟𝑖𝑗) functions respectively.

As the 𝑢 and 𝑤 functions are specified for pairs of species they are defined in a potable file in the same way as pair
potentials (see [Pair] section). The 𝑢𝛼𝛽(𝑟𝑖𝑗) functions are given in the section named [EAM-ADP-Dipole] and the
𝑤𝛼𝛽(𝑟𝑖𝑗) functions appear in [EAM-ADP-Quadrupole]. Other than these new sections ADP models are defined
in the same way as the standard EAM (see Many body models). Consequently the potable file for an ADP model
minimally contains the sections:

• [Tabulation]

– For ADP the target value should be set as eam_adp.

• [EAM-Density]

• [EAM-Embed]

• [Pair]

• [EAM-ADP-Dipole]

• [EAM-ADP-Quadrupole]

Troubleshooting Potable Input Files

Checking tabulated functions

Sometimes you will want to check if the tabulated functions defining your potential model are as they should be.
Perhaps the easiest way to do this is to use the excel tabulation targets:

• excel: dumps pair potential models into an Excel spreadsheet file,

• excel_eam: as above but for EAM potentials,

• excel_eam_fs: for Finnis-Sinclair EAM potential models.

If given as the value of the target field in a potable input file’s [Tabulation] section each one will dump the
model into an Excel .xlsx formatted spreadsheet.

Depending on the type of model the spreadsheet can contain Pair, EAM-Density and EAM-Embed sheets. The first
column of each is either the r or rho values of the function with the remaining columns giving the function values.

To enable quick checks it is often more convenient to use potable’s --override-item option to temporarily set
the target, rather than having to edit the input file. For example, it is used here to set the excel target:

potable --override-item=Tabulation:target=excel potential_model.aspot test.xlsx

2.3. User Guide 41

atsim_potentials Documentation

2.3.2 Using the Python API

Python API Getting Started

The following example gives a complete python script showing how the potential API can be used to tabulate potentials
for DL_POLY .

See also:

• Also see Quick-Start which allows you to achieve the same using the potable tool without requiring program-
ming experience.

The following example (basak_tabulate.py) shows how the UO2 potential model of Basak1 can be tabulated:

• the U + O interaction within this model combines Buckingham and Morse potential forms. Although DL_POLY
natively supports both potential forms they cannot be combined with the code itself. By creating a TABLE file
the Basak model can be described to DL_POLY.

• when executed from the command line this script will write tabulated potentials into a file named TABLE.

#! /usr/bin/env python

from atsim.potentials import Potential, plus, potentialforms
from atsim.potentials.pair_tabulation import DLPoly_PairTabulation

def makePotentialObjects():
O-O Interaction:
Buckingham
A = 1633.00510, rho = 0.327022, C = 3.948790
f_OO = potentialforms.buck(1633.00510, 0.327022, 3.948790)

U-U Interaction:
Buckingham
A = 294.640000, rho = 0.327022, C = 0.0
f_UU = potentialforms.buck(294.640000, 0.327022, 0.0)

O-U Interaction
Buckingham + Morse.
Buckingham:
A = 693.648700, rho = 693.648700, C = 0.0
Morse:
D0 = 0.577190, alpha = 1.6500, r0 = 2.36900
buck_OU = potentialforms.buck(693.648700, 0.327022, 0.0)
morse_OU = potentialforms.morse(1.6500, 2.36900, 0.577190)

Compose the buckingham and morse functions into a single function
using the atsim.potentials.plus() function
f_OU = plus(buck_OU, morse_OU)

Construct list of Potential objects
potential_objects = [

Potential('O', 'O', f_OO),
Potential('U', 'U', f_UU),
Potential('O', 'U', f_OU)

]

(continues on next page)

1 Basak, C. (2003). Classical molecular dynamics simulation of UO2 to predict thermophysical properties. Journal of Alloys and Compounds,
360 (1-2), 210–216. http://dx.doi.org/doi:10.1016/S0925-8388(03)00350-5

42 Chapter 2. Contents

http://www.stfc.ac.uk/cse/25526.aspx
http://www.stfc.ac.uk/cse/25526.aspx
http://www.stfc.ac.uk/cse/25526.aspx
http://dx.doi.org/doi:10.1016/S0925-8388(03)00350-5

atsim_potentials Documentation

(continued from previous page)

return potential_objects

def main():
potential_objects = makePotentialObjects()
Tabulate into file called TABLE
using short-range cutoff of 6.5 Angs with grid
increment of 1e-3 Angs (6500 grid points)

tabulation = DLPoly_PairTabulation(potential_objects,
6.5, 6500)

with open('TABLE', 'w') as outfile:
tabulation.write(outfile)

if __name__ == '__main__':
main()

Tabulating the Potentials

Defining the Potentials

The first step to tabulating pair potentials is to define Potential objects (see Potential Objects). Normally this
involves creating a python function for the desired pair interaction before passing this to the atsim.potentials.
Potential() constructor to provide labels for the species pair pertinent to the interaction.

• The functions f_OO and f_UU use the Buckingham form and are created using buck() function factory (see
Predefined Potential Forms for more on the pre-defined forms provided):

def makePotentialObjects():
O-O Interaction:
Buckingham
A = 1633.00510, rho = 0.327022, C = 3.948790
f_OO = potentialforms.buck(1633.00510, 0.327022, 3.948790)

U-U Interaction:
Buckingham
A = 294.640000, rho = 0.327022, C = 0.0
f_UU = potentialforms.buck(294.640000, 0.327022, 0.0)

• The O-U interaction is a little more tricky to define as Buckingham and Morse potentials need to be combined.
Pre-canned implementations of both of these are provided in atsim.potentials.potentialforms as
buck() and morse(). Two functions are created, one for each component of the O-U interaction and stored
in the buck_OU and morse_OU variables:

O-U Interaction
Buckingham + Morse.
Buckingham:
A = 693.648700, rho = 693.648700, C = 0.0
Morse:
D0 = 0.577190, alpha = 1.6500, r0 = 2.36900
buck_OU = potentialforms.buck(693.648700, 0.327022, 0.0)
morse_OU = potentialforms.morse(1.6500, 2.36900, 0.577190)

2.3. User Guide 43

atsim_potentials Documentation

• These are then composed into the desired function, f_OU, using the plus() function (see Combining Potential
Forms):

f_OU = plus(buck_OU, morse_OU)

Make TABLE File

The table file is written from the main() function of basak_tabulate.py

def main():
potential_objects = makePotentialObjects()
Tabulate into file called TABLE
using short-range cutoff of 6.5 Angs with grid
increment of 1e-3 Angs (6500 grid points)

tabulation = DLPoly_PairTabulation(potential_objects,
6.5, 6500)

with open('TABLE', 'w') as outfile:
tabulation.write(outfile)

• First the makePotentialObjects() function is called, returning a list of Potential objects
that are stored in the potential_objects variable.

• An instance of DLPoly_PairTabulation is created by passing this list of potentials a cut-off
value of 6.5Å and specifying 6500 rows (i.e. a grid increment of 0.001 Å) to its constructor:

tabulation = DLPoly_PairTabulation(potential_objects,
6.5, 6500)

• The write() method of the Tabulation object is then called with the file object into which the
tabulation is written:

with open('TABLE', 'w') as outfile:
tabulation.write(outfile)

• Now run the basak_tabulate.py file (making sure you have installed atsim.potentials
first):

python basak_tabulate.py

• This will create a DL_POLY TABLE file in the working directory.

Using the TABLE File in DL_POLY

A set of DL_POLY files are provided allowing a simple NPT molecular dynamics equilibration simulation to be
run against the TABLE file created in the previous step using writePotentials. Copy the files linked from the
following table into the same directory as the TABLE file:

File Description
CONFIG 4×4×4 UO2:sub:2 super-cell containing 768 atoms.
CONTROL Defines 300K equilibration run under NPT ensemble lasting 10ps.
FIELD File defining potentials and charges.

44 Chapter 2. Contents

atsim_potentials Documentation

• The FIELD file contains the directives relevant to the TABLE file:

UO2.cif. Supercell: 4 x 4 x 4
units eV
molecules 1
UO2.cif. Supercell: 4 x 4 x 4
nummols 1
atoms 768

O 15.999400 -1.200000 512 0
U 238.028910 2.400000 256 0

finish
vdw 3
O O tab
U U tab
O U tab
CLOSE

• The following lines define the atom multiplicity and charges (O=-1.2e and U=2.4e):

nummols 1
atoms 768

O 15.999400 -1.200000 512 0
U 238.028910 2.400000 256 0

finish

• The vdw section states that the O-O, U-U and O-U interactions should be read from the TABLE file:

vdw 3
O O tab
U U tab
O U tab
CLOSE

• Once all the files are in the same directory, the simulation can be started by invoking DL_POLY:

DLPOLY.Z

Quick-Start: LAMMPS

Once the potential model has been defined as a series of Potential creating tabulations for different codes in
different formats is fairly simple. The script described in this example is given in basak_tabulate_lammps.py.
This contains the same potential definition as the previous example, however the main() function has been modified
to create a table suitable for LAMMPS :

def main():
potential_objects = makePotentialObjects()
Tabulate into file called Basak.lmptab
using short-range cutoff of 6.5 Angs with grid
increment of 1e-3 Angs (6500 grid points)
tabulation = LAMMPS_PairTabulation(potential_objects, 6.5, 6500) # <-- The

→˓tabulation class has been changed

with open('Basak.lmptab', 'w') as outfile: # <-- Filename changed from 'TABLE'
tabulation.write(outfile)

Only the two highlighted lines have been changed:

2.3. User Guide 45

http://lammps.sandia.gov

atsim_potentials Documentation

1. the first changes the tabulation class to LAMMPS_PairTabulation. This describes the same interface as the
the previous DLPoly_PairTabulation class meaning it is a drop in replacement.

2. the second changes the output filename to Basak.lmptab

Running the file creates the Basak.lmptab file:

python basak_tabulate_lammps.py

Using Basak.lmptab in LAMMPS

LAMMPS input files are provided for use with the table file:

• UO2.lmpstruct: structure file for single UO:sub:2 cell, that can be read with read_data when atom_style
full is used.

• equilibrate.lmpin: input file containing LAMMPS instructions. Performs 10ps of 300K NPT equilibra-
tion, creating a 4×4×4 super-cell.

Copy these files into the same directory as Basak.lmptab, the simulation can then be run using:

lammps -in equilibrate.lmpin -log equilibrate.lmpout -echo both

The section of equilibrate.lmpinwhich defines the potential model and makes use of the table file is as follows:

variable O equal 1
variable U equal 2

set type $O charge -1.2
set type $U charge 2.4

kspace_style pppm 1.0e-6

pair_style hybrid/overlay coul/long ${SR_CUTOFF} table linear 6500
→˓pppm
pair_coeff * * coul/long
pair_coeff $O $O table Basak.lmptab O-O
pair_coeff $O $U table Basak.lmptab O-U
pair_coeff $U $U table Basak.lmptab U-U

Notes:

1. As LAMMPS uses ID numbers to define species the variable commands associate:

• index 1 with variable $O

• index 2 with $U to aid readability.

3. The set type SPECIES_ID charge lines define the charges of oxygen and ura-
nium.

3. Uses the hybrid/overlay pair_style to combine the coul/long and table styles.

pair_style hybrid/overlay coul/long ${SR_CUTOFF} table
→˓linear 6500 pppm

• The coul/long style is used to calculate electrostatic interactions using the
pppm kspace_style defined previously.

• table linear 6500 pppm:

46 Chapter 2. Contents

http://lammps.sandia.gov
http://lammps.sandia.gov/doc/read_data.html
http://lammps.sandia.gov/doc/atom_style.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/doc/pair_hybrid.html
http://lammps.sandia.gov/doc/pair_coul.html
http://lammps.sandia.gov/doc/pair_table.html
http://lammps.sandia.gov/doc/pair_coul.html
http://lammps.sandia.gov/doc/kspace_style.html

atsim_potentials Documentation

– linear interpolation of table values should be used

– all 6500 rows of the table are employed

– corrections appropriate to the pppm kspace_style will be applied.

4. Means that electrostatic interactions should be calculated between all pairs of ions.

pair_coeff * * coul/long

5. Each pair_coeff reads an interaction from the Basak.lmptab file.

pair_coeff $O $O table Basak.lmptab O-O
pair_coeff $O $U table Basak.lmptab O-U
pair_coeff $U $U table Basak.lmptab U-U

• The general form is:

– pair_coeff SPECIES_ID_1 SPECIES_ID_2 table
TABLE_FILENAME TABLE_KEYWORD

– Here the SPECIES_IDs use the $O and $U variables defines earlier.

– TABLE_KEYWORD - the table file contains multiple blocks, each defining a single
interaction.

– The TABLE_KEYWORD is the title of the block. The writePotentials() func-
tion creates labels of the form LABEL_A-LABEL_B albeit with the species sorted
into alphabetical order. This label format is described in greater detail here.

Pair Potential Tabulation

Pair potentials are tabulated using PairTabulation objects, a tabulation class is provided for each target (note an
alternative procedural interface is also provided atsim.potentials.writePotentials()):

• atsim.potentials.pair_tabulation.DLPoly_PairTabulation

– Class for creating DL_POLY TABLE files.

• atsim.potentials.pair_tabulation.Excel_PairTabulation

– Produces Excel spreadsheet files from atsim.potentials.Potential objects. This is useful
for plotting potentials and debugging purposes (also see Troubleshooting Potable Input Files).

• atsim.potentials.pair_tabulation.GULP_PairTabulation

– Suitable for producing files usable with the GULP code.

• atsim.potentials.pair_tabulation.LAMMPS_PairTabulation

– Produces files for use with LAMMPS pair_style table.

Using Tabulation objects

The constructor of PairTabulation classes have the following basic signature:

PairTabulation(self, potentials, cutoff, nr)

Where:

• potentials is a list of Potential objects.

2.3. User Guide 47

http://lammps.sandia.gov/doc/kspace_style.html
https://lammps.sandia.gov/doc/pair_table.html

atsim_potentials Documentation

– Potential objects have energy() and force() methods called during tabulation to obtain
potential-energy as a function of separation and its derivative respectively.

– see Example: Instantiating atsim.potentials.Potential Objects and Predefined Potential Forms.

• cutoff is a float giving the maximum separation represented by the tabulation.

• nr the number of rows to be included in the tabulation.

Therefore to create a LAMMPS_PairTabulation with a 10 Å cutoff with 5000 rows from a list of potentials stored
in the variable potentials the following would be used:

tabulation = LAMMPS_PairTabulation(potentials, 10, 5000)

The pair potential model can then be written to a file-like object using the write() method:

with open("tabulation.lmptab", "w") as outfile:
tabulation.write(outfile)

See also:

• Python API Getting Started provides a complete example of using PairTabulation objects.

Potential Objects

Potential objects should implement the following interface:

class PotentialInterface

speciesA
(str): Attribute giving first species in pair being described by pair-potential

speciesB
(str): Attribute giving second species in pair described by pair-potential

energy(self, r)
Calculate energy between atoms for given separation.

Parameters r (float) – Separation between atoms of speciesA and speciesB

Returns Energy in eV for given separation.

Return type float

force(self, r)
Calculate force (-dU/dr) for interaction at a given separation.

Parameters r (float) – Separation

Returns -dU/dr at r in eV per Angstrom.

Return type float

In most cases the atsim.potentials.Potential class provided in atsim.potentials can be used. This
wraps a python callable that returns potential energy as a function of separation to provide the values returned by the
energy() method. The forces calculated by the force() method are obtained by taking the numerical derivative
of the wrapped function.

48 Chapter 2. Contents

atsim_potentials Documentation

Example: Instantiating atsim.potentials.Potential Objects

The following example shows how a Born-Mayer potential function can be described and used to create a Potential
object for the interaction between Gd and O. The Born-Mayer potential is given by:

𝑈Gd-O(𝑟𝑖𝑗) = 𝐴 exp

(︂
−𝑟𝑖𝑗
𝜌

)︂
Where 𝑈Gd-O(𝑟𝑖𝑗) is the potential energy between atoms 𝑖 and 𝑗 of types Gd and O, separated by 𝑟𝑖𝑗 . The parameters
𝐴 and 𝜌 will be taken as 1000.0 and 0.212.

The Gd-O potential function can be defined as:

import math
from atsim.potentials import Potential

def bornMayer_Gd_O(rij):
energy = 1000.0 * math.exp(-rij/0.212)
return energy

This is then passed to Potential’s constructor along with the species names:

pot = Potential('Gd', 'O', bornMayer_Gd_O)

The energy and force at a separation of 1 can then be obtained by calling the energy() and force() methods:

>>> pot.energy(1.0)
8.942132960434881
>>> pot.force(1.0)
42.17987245936639

Predefined Potential Forms

In the previous example, a function named bornMayer_Gd_O() was defined for a single pair-interaction, with
the potential parameters hard-coded within the function. Explicitly defining a function for each interaction quickly
becomes tedious for anything but the smallest parameter sets. In order to make the creation of functions us-
ing standard potential forms easier, a set of function factories are provided within the atsim.potentials.
potentialsforms module.

Using the potentialsforms module, the function:

import math

def bornMayer_Gd_O(rij):
energy = 1000.0 * math.exp(-rij/0.212)
return energy

can be rewritten as:

from atsim.potentials import potentialforms
bornMayer_Gd_O = potentialsforms.bornmayer(1000.0, 0.212)

See API reference for list of available potential forms: atsim.potentials.potentialforms

2.3. User Guide 49

atsim_potentials Documentation

Combining Potential Forms

Pair interactions are often described using a combination of standard potential forms. This was seen for the Basak
potentials used within the Python API Getting Started example, where the oxygen-uranium pair potential was the
combination of a Buckingham and Morse potential forms. This combination was made using the plus() function.
This returns a callable which, when invoked, returns the sum of the values returned by the callables originally passed
to plus().

The combination functions listed below will return a wrapped function that correctly evaluate the first and second
derivatives of the combined callables. That is, when the callables provide .deriv() and .deriv2() methods,
these will, where possible be used in the evaluation. In this way accurate analytical derivatives can be combined and
will appear in the resulting tabulation. If any callable does not implement these methods, the system will revert to
using numerical evaluation of derivatives.

• Combination functions:

– atsim.potentials.plus()

* Sum the return values of constituent callables.

– atsim.potentials.pow()

* Takes two functions and returns a third which when evaluated returns the result of
a(r)**b(r)

– atsim.potentials.product()

* Takes two callables and returns a third which when evaluated returns the result of a(r) *
b(r).

Spline Interpolation

The SplinePotential class can be used to smoothly interpolate between two different potential forms within the
same potential curve: one potential function acts below a given cutoff (referred to as the detachment point) and the
other potential function takes over at larger separations (acting above a second cutoff called the attachment point).
An exponential interpolating spline acts between the detachment and attachment points to provide a smooth transition
between the two potential curves.

See also:

• Splining with potable - description of how to do splining with potable rather than using the Python API.

The SplinePotential class aims to automatically determine spline coefficients such that the resultant, interpo-
lated, potential curve is continuous in its first and second derivatives. The analytical form of the interpolating spline
is (where 𝑟𝑖𝑗 is interatomic separation and 𝐵0..5 are the spline coefficients calculated by the SplinePotential
class):

𝑈(𝑟𝑖𝑗) = exp
(︀
𝐵0 +𝐵1𝑟𝑖𝑗 +𝐵2𝑟

2
𝑖𝑗 +𝐵3𝑟

3
𝑖𝑗 +𝐵4𝑟

4
𝑖𝑗 +𝐵5𝑟

5
𝑖𝑗

)︀
The SplinePotential has a number of applications, for example:

• certain potential forms can become attractive in an unphysical manner at small separations (an example is the
so-called Buckingham catastrophe); SplinePotential can be used to combine an appropriate repulsive
potential at short separations whilst still using the other form for equilibrium and larger separations.

• similarly different potential forms may be better able to express certain separations than others. For instance the
zbl() potential is often used to describe the high energy interactions found in radiation damage cascades but
must be combined with another potential to describe equilibrium properties.

50 Chapter 2. Contents

atsim_potentials Documentation

The atsim.potentials.spline.Buck4_SplinePotential can also be used to connect two potential
functions. The splined region of this potentialform is described via an instance of atsim.potentials.spline.
Buck4_Spline.

Both atsim.potentials.spline.Buck4_SplinePotential and atsim.potentials.spline.
SplinePotential inherit from atsim.potentials.spline.Custom_SplinePotential. This pro-
vides the useful property splineCoefficients which can be used to access the coefficients used to describe the
polynomial connecting the two potential functions. These are often quoted in journal papers as they allow the same
spline to be reproduced exactly by readers.

Example: Splining ZBL Potential on to Buckingham Potential

As mentioned above, for certain parameterisations, popular potential forms can exhibit unphysical behaviour for some
interatomic separations.

See also:

• A version of this example which uses potable instead of the Python API is given here: Example: splining to the
zbl potential form using exp_spline.

A popular model for the description of silicate and phosphate systems is that due to van Beest, Kramer and van Santen
(the BKS potential set)1. In the current example, the Si-O interaction from this model will be considered. This uses
the Buckingham potential form with the following parameters:

• A = 18003.7572 eV

• 𝜌 = 0.205204

• C = 133.5381 eV 6

• Charges:

– Si = 2.4 e

– O = -1.2 e

The following plot shows the combined coulomb and short-range contributions for this interaction plotted as a function
of separation. The large C term necessary to describe the equilibrium properties of silicates means that as 𝑟𝑖𝑗 gets
smaller, the 𝐶

𝑟6𝑖𝑗
overwhelms the repulsive Born-Mayer component of the Buckingham potential meaning that it turns

over. This creates only a relatively shallow minimum arround the equilibrium Si-O separation. Within simulations
containing high velocities (e.g. high temperatures or collision cascades) atoms could easily enter the very negative,
attractive portion of the potential at low 𝑟𝑖𝑗 - effectively allowing atoms to collapse onto each other. In order to
overcome this deficiency a ZBL potential will be splined onto the Si-O interaction within this example.

The first step to using SplinePotential is to choose appropriate detachment and attachment points. This is per-
haps best done plotting the two potential functions to be splined. The potentials module contains the convenience
functions atsim.potentials.plot() and atsim.potentials.plotToFile() to make this task easier.
The following piece of code first defines the ZBL and Buckingham potentials before plotting them into the files zbl.
dat and bks_buck.dat. These files each contain two, space delimited, columns giving 𝑟𝑖𝑗 and energy, and may
be easily plotted in Excel or GNU Plot.

from atsim.potentials import potentialforms
import atsim.potentials

zbl = potentialforms.zbl(14, 8)
bks_buck = potentialforms.buck(18003.7572, 1.0/4.87318, 133.5381)

(continues on next page)

1 Van Beest, B. W. H., Kramer, G. J., & van Santen, R. A. (1990). Force fields for silicas and aluminophosphates based on ab initio calculations.
Physical Review Letters , 64 (16), 1955–1958. http://dx.doi.org/doi:10.1103/PhysRevLett.64.1955

2.3. User Guide 51

http://dx.doi.org/doi:10.1103/PhysRevLett.64.1955

atsim_potentials Documentation

Fig. 2.8: Plot of BKS Si-O potential showing the short-range (bks_buck) component, electrostatic (bks_coul) and the
effective Si-O interaction (bks_buck + bks_coul). This shows that this potential turns over at small separations making
it unsuitable for use where high energies may be experienced such as high-temperature or radiation damage cascade
simulations.

52 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

atsim.potentials.plot('bks_buck.dat', 0.1, 10.0, bks_buck, 5000)
atsim.potentials.plot('zbl.dat', 0.1, 10.0, zbl, 5000)

Plotting these files show that detachmentX and attachmentX values of 0.8 and 1.4 may be appropriate. The
zbl and bks_buck functions can then be splined between these points as follows:

spline = atsim.potentials.SplinePotential(zbl, bks_buck, 0.8, 1.4)

Plot data can then be created for the combined functions with the interpolating spline:

atsim.potentials.plot('spline.dat', 0.1, 10.0, spline, 5000)

Plotting the splined Si-O potential together with the original buck and zbl functions allows the smooth transition
between the two functions to be observed, as shown in the following function:

Fig. 2.9: Plot of BKS Si-O interaction showing the short-range (buck) and ZBL functions plotted with the curve gener-
ated by SplinePotential (spline). This joins them with a an interpolating spline acting between the detachment
point at 𝑟𝑖𝑗 = 0.8 and re-attachment point at 𝑟𝑖𝑗 = 1.4 shown by dashed lines.

Finally, the potential can be tabulated in a format suitable for LAMMPS:

2.3. User Guide 53

atsim_potentials Documentation

bks_SiO = atsim.potentials.Potential('Si', 'O', spline)
tabulation = atsim.potentials.pair_tabulation.LAMMPS_PairTabulation(

[bks_SiO],
10.0, 5000)

with open('bks_SiO.lmptab', 'w') as outfile:
tabulation.write(outfile)

Procedural EAM Tabulation

As an alternative to the EAM_Tabulation objects described here Embedded Atom Method (EAM) Tabulation a
procedural interface is also provided for EAM tabulation using the following functions:

Function File-
Format

Simulation
Code

Example

writeFuncFL() funcfl LAMMPS Example 1: Ag in LAMMPS
writeSetFL() setfl LAMMPS Example 2a: Al-Cu in LAMMPS
writeTABEAM() TABEAM DL_POLY Example 2b: Al-Cu in LAMMPS
writeSetFLFinnisSinclair()setfl LAMMPS Example 3a: Al-Fe Finnis-Sinclair in

LAMMPS
writeTABEAMFinnisSinclair()TABEAM DL_POLY Example 3b: Al-Fe Finnis-Sinclair in

DL_POLY

Examples

Example 1: Using writeFuncFL() to Tabulate Ag Potential for LAMMPS

This example shows how to use writeFuncFL() function to tabulate an EAM model for the simulation of Ag
metal. How to use this tabulation within LAMMPS will then be demonstrated. The final tabulation script can be found
in eam_tabulate_example1.py.

The same model as used for the SetFL_EAMTabulation example (Example 1: Using SetFL_EAMTabulation
to Tabulate Ag Potential for LAMMPS) and is described the same way in python. In terms of the code, the only
significant difference between the object based example and this one, is the use of writeFuncFL() to tabulate
the model into a file. The output format used in this example is also different, it uses the simpler funcfl format.
Each funcfl file contains a single species, making alloy systems less convenient. Further more, alloy models are
simulated by combining the funcfl files using pre-determined mixing rules meaning there is much less control over
the specific interactions between the various elements in the alloy. To prodce the same setfl files as produced by the
SetFL_EAMTabulation class, the writeSetFL() function can be used (an example of which is given below).

The embed() and density() functions are defined for 𝐹Ag(𝜌) and 𝜌Ag respectively:

import math
from atsim.potentials import EAMPotential
from atsim.potentials import Potential

def embed(rho):
return -math.sqrt(rho)

def density(rij):
if rij == 0:

(continues on next page)

54 Chapter 2. Contents

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.stfc.ac.uk/cse/25526.aspx
http://lammps.sandia.gov
http://www.stfc.ac.uk/cse/25526.aspx
http://lammps.sandia.gov

atsim_potentials Documentation

(continued from previous page)

return 0.0
return (2.928323832 / rij) ** 6.0

The embedding and density functions should then be wrapped in an EAMPotential object to create a single item
list:

Create EAMPotential
eamPotentials = [EAMPotential("Ag", 47, 107.8682, embed, density)]

Similarly the pair potential component, 𝜑Ag−Ag(𝑟𝑖𝑗 , of the model can easily be defined as:

def pair_AgAg(rij):
if rij == 0:

return 0.0
return (2.485883762/rij) ** 12

This can then be wrapped in a atsim.potentials.Potential object to create a list of pair potentials.

pairPotentials = [Potential('Ag', 'Ag', pair_AgAg)]

Note: writeFuncFL() only accepts a single Potential object and this should be the X-X interaction (where X
is the species for which the funcfl tabulation is being created). Within the ‘pair’-potential is tabulated as√︁

𝜑(𝑟𝑖𝑗)𝑟𝑖𝑗
27.2×0.529

The numerical constants (27.2 and 0.529) convert from eV and Å into the units of Hartree and Bohr radius used
by the funcfl format. The square rooting of the potential function is important: the simulation code effectively
reconstitutes a pair potential by multiplying two of these tabulated square-rooted functions (one for each species in
each interacting pair) together. If atoms 𝑖 and 𝑗 in an interacting pair, have the same species then effectively the
original pair-potential is obtained (albeit multiplied by 𝑟𝑖𝑗).

By comparison, if multiple funcfl files are used to define multiple species within a simulation (e.g. for alloy sys-
tems), then the pair potential functions of each species are effectively ‘mixed’ when they are multiplied together for het-
erogeneous atom pairs. If more control is required, with pair-potential functions specific to distinct pairs of species be-
ing necessary, then the setfl format produced by the writeSetFL() and writeSetFLFinnisSinclair()
functions should be used instead.

Now all the components of the model have been defined a table file can be created in the funcfl format. Before
doing this, it is necessary to choose appropriate density and separation cut-offs together with 𝑑𝑟𝑖𝑗 and 𝑑𝜌 increments
for the density/pair functions and embedding function respectively:

• Here a 𝑑𝜌 value of 0.001 will be used and 50000 density values tabulated.

• This means the maximum density that can be accepted by the embedding function is 49999× 0.001 = 49.999

• 𝑑𝑟 = 0.001 Å using 12000 rows.

• The pair-potential cut-off and the maximum 𝑟𝑖𝑗 value for the density function is therefore 11.999 Å.

Invoking the writeFuncFL() function with these values and the EAMPotential and
potentialsPotential objects, can be used to tabulate the Ag potential into the Ag.eam file:

nrho = 50000
drho = 0.001

nr = 12000

(continues on next page)

2.3. User Guide 55

atsim_potentials Documentation

(continued from previous page)

dr = 0.001

from atsim.potentials import writeFuncFL

with open("Ag.eam", 'w') as outfile:
writeFuncFL(

nrho, drho,
nr, dr,
eamPotentials,
pairPotentials,
out= outfile,
title='Sutton Chen Ag')

Putting this together the following script is obtained (this script can also be downloaded
eam_tabulate_example1.py:

#! /usr/bin/env python
import math
from atsim.potentials import EAMPotential
from atsim.potentials import Potential

def embed(rho):
return -math.sqrt(rho)

def density(rij):
if rij == 0:
return 0.0

return (2.928323832 / rij) ** 6.0

def pair_AgAg(rij):
if rij == 0:

return 0.0
return (2.485883762/rij) ** 12

def main():
Create EAMPotential
eamPotentials = [EAMPotential("Ag", 47, 107.8682, embed, density)]
pairPotentials = [Potential('Ag', 'Ag', pair_AgAg)]

nrho = 50000
drho = 0.001

nr = 12000
dr = 0.001

from atsim.potentials import writeFuncFL

with open("Ag.eam", 'w') as outfile:
writeFuncFL(

nrho, drho,
nr, dr,
eamPotentials,
pairPotentials,

(continues on next page)

56 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

out= outfile,
title='Sutton Chen Ag')

if __name__ == "__main__":
main()

Running this script will produce a table file named Ag.eam in the same directory as the script:

python eam_tabulate_example1.py

Using the Ag.eam file within LAMMPS

This section of the example will now demonstrate how the table file can be used used to perform a static energy
minimisation of an FCC Ag structure in LAMMPS.

Place the following in a file called fcc.lmpstruct in the same directory as the Ag.eam file you created previously.
This describes a single FCC cell with a wildly inaccurate lattice parameter:

Title

4 atoms
1 atom types
0.0 5.000000 xlo xhi
0.0 5.000000 ylo yhi
0.0 5.000000 zlo zhi
0.000000 0.000000 0.000000 xy xz yz

Masses

1 107.86820000000000163709 #Ag

Atoms

1 0 1 0.000000 0.000000 0.000000 0.000000
2 0 1 0.000000 2.500000 2.500000 0.000000
3 0 1 0.000000 0.000000 2.500000 2.500000
4 0 1 0.000000 2.500000 0.000000 2.500000

The following LAMMPS input file describes a minimisation run. The lines describing potentials are highlighted. Put
its contents in a file called example1_minimize.lmpin:

units metal
boundary p p p

atom_style full
read_data fcc.lmpstruct

pair_style eam
pair_coeff 1 1 Ag.eam

(continues on next page)

2.3. User Guide 57

atsim_potentials Documentation

(continued from previous page)

fix 1 all box/relax x 0.0 y 0.0 z 0.0

minimize 0.0 1.0e-8 1000 100000

The pair_style eam command tells LAMMPS to use the EAM and expect pair_coeff commands mapping
atom types to particular table files:

pair_style eam

The following pair_coeff directive indicates that the interaction between atom-type 1 (Ag) with itself should use
the funcfl formatted file contained within Ag.eam:

pair_coeff 1 1 Ag.eam

The example can then be run by invoking LAMMPS:

lammps -in example1_minimize.lmpin

Example 2a: Tabulate Al-Cu Alloy Potentials Using writeSetFL() for LAMMPS

Within the following example the process required to generate and use a setfl file that tabulates the Al-Cu alloy
model of Zhou et al2. By comparison to the funcfl format, setfl allows multiple elements to be given in the
same file and additionally pair-potentials for particular pairs of interacting species can be specified (funcfl relies on
the simulation code to ‘mix’ pair-potentials within alloy systems). The eam_tabulate_example2a.py gives a
complete example of how the Zhou model can be tabulated.

This example is almost entirely the same as that given for the object based interface (Example 2a: Tabulate Al-Cu Alloy
Potentials Using SetFL_EAMTabulation for LAMMPS) with the only difference being the use of the writeSetFL()
function for the final tabulation. For a description of the Zhou model and how it is coded in python please see here.

Putting everything together gives the following script (which can also be downloaded using the following link
eam_tabulate_example2a.py:). Running this (python eam_tabulate_example2a.py) produces the
Zhou_AlCu.eam.alloy file in current working directory.

#! /usr/bin/env python

from atsim.potentials import writeSetFL
from atsim.potentials import Potential
from atsim.potentials import EAMPotential

import math

def makeFunc(a, b, r_e, c):
Creates functions of the form used for density function.
Functional form also forms components of pair potential.
def func(r):

return (a * math.exp(-b*(r/r_e - 1)))/(1+(r/r_e - c)**20.0)
return func

(continues on next page)

2

X. Zhou, R. Johnson and H. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers”, Phys. Rev. B. 69
(2004) 144113.

58 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

def makePairPotAA(A, gamma, r_e, kappa,
B, omega, lamda):

Function factory that returns functions parameterised for homogeneous pair
→˓interactions

f1 = makeFunc(A, gamma, r_e, kappa)
f2 = makeFunc(B, omega, r_e, lamda)

def func(r):
return f1(r) - f2(r)

return func

def makePairPotAB(dens_a, phi_aa, dens_b, phi_bb):
Function factory that returns functions parameterised for heterogeneous pair

→˓interactions
def func(r):

return 0.5 * ((dens_b(r)/dens_a(r) * phi_aa(r)) + (dens_a(r)/dens_b(r) * phi_
→˓bb(r)))

return func

def makeEmbed(rho_e, rho_s, F_ni, F_i, F_e, eta):
Function factory returning parameterised embedding function.
rho_n = 0.85*rho_e
rho_0 = 1.15*rho_e

def e1(rho):
return sum([F_ni[i] * (rho/rho_n - 1)**float(i) for i in range(4)])

def e2(rho):
return sum([F_i[i] * (rho/rho_e - 1)**float(i) for i in range(4)])

def e3(rho):
return F_e * (1.0 - eta*math.log(rho/rho_s)) * (rho/rho_s)**eta

def func(rho):
if rho < rho_n:

return e1(rho)
elif rho_n <= rho < rho_0:

return e2(rho)
return e3(rho)

return func

def makePotentialObjects():
Potential parameters
r_eCu = 2.556162
f_eCu = 1.554485
gamma_Cu = 8.127620
omega_Cu = 4.334731
A_Cu = 0.396620
B_Cu = 0.548085
kappa_Cu = 0.308782
lambda_Cu = 0.756515

(continues on next page)

2.3. User Guide 59

atsim_potentials Documentation

(continued from previous page)

rho_e_Cu = 21.175871
rho_s_Cu = 21.175395
F_ni_Cu = [-2.170269, -0.263788, 1.088878, -0.817603]
F_i_Cu = [-2.19, 0.0, 0.561830, -2.100595]
eta_Cu = 0.310490
F_e_Cu = -2.186568

r_eAl = 2.863924
f_eAl = 1.403115
gamma_Al = 6.613165
omega_Al = 3.527021
A_Al = 0.134873
A_Al = 0.314873
B_Al = 0.365551
kappa_Al = 0.379846
lambda_Al = 0.759692

rho_e_Al = 20.418205
rho_s_Al = 23.195740
F_ni_Al = [-2.807602, -0.301435, 1.258562, -1.247604]
F_i_Al = [-2.83, 0.0, 0.622245, -2.488244]
eta_Al = 0.785902
F_e_Al = -2.824528

Define the density functions
dens_Cu = makeFunc(f_eCu, omega_Cu, r_eCu, lambda_Cu)
dens_Al = makeFunc(f_eAl, omega_Al, r_eAl, lambda_Al)

Finally, define embedding functions for each species
embed_Cu = makeEmbed(rho_e_Cu, rho_s_Cu, F_ni_Cu, F_i_Cu, F_e_Cu, eta_Cu)
embed_Al = makeEmbed(rho_e_Al, rho_s_Al, F_ni_Al, F_i_Al, F_e_Al, eta_Al)

Wrap them in EAMPotential objects
eamPotentials = [

EAMPotential("Al", 13, 26.98, embed_Al, dens_Al),
EAMPotential("Cu", 29, 63.55, embed_Cu, dens_Cu)]

Define pair functions
pair_CuCu = makePairPotAA(A_Cu, gamma_Cu, r_eCu, kappa_Cu,

B_Cu, omega_Cu, lambda_Cu)

pair_AlAl = makePairPotAA(A_Al, gamma_Al, r_eAl, kappa_Al,
B_Al, omega_Al, lambda_Al)

pair_AlCu = makePairPotAB(dens_Cu, pair_CuCu, dens_Al, pair_AlAl)

Wrap them in Potential objects
pairPotentials = [

Potential('Al', 'Al', pair_AlAl),
Potential('Cu', 'Cu', pair_CuCu),
Potential('Al', 'Cu', pair_AlCu)]

return eamPotentials, pairPotentials

def main():
eamPotentials, pairPotentials = makePotentialObjects()

(continues on next page)

60 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

Perform tabulation
Make tabulation
nrho = 2000
drho = 0.05

nr = 2000
dr = 0.003

with open("Zhou_AlCu.eam.alloy", 'w') as outfile:
writeSetFL(

nrho, drho,
nr, dr,
eamPotentials,
pairPotentials,
out=outfile,
comments=['Zhou Al Cu', "", ""]) # <-- Note: title lines given as list

→˓of three strings

if __name__ == '__main__':
main()

See also:

• See Using the Zhou_AlCu.eam.alloy file within LAMMPS for details of how to use the tabulation file with
LAMMPS.

Example 2b: Tabulate Al-Cu Alloy Potentials Using writeTABEAM() for DL_POLY

The tabulation script used with Example 2a can be easily modified to produce the TABEAM format expected
by the DL_POLY simulation code by using the writeTABEAM(). See the tabulation script for this example:
eam_tabulate_example2b.py.

def main():
eamPotentials, pairPotentials = makePotentialObjects()

Perform tabulation
Make tabulation
nrho = 2000
drho = 0.05

nr = 2000
dr = 0.003

with open("TABEAM", 'w') as outfile:
writeTABEAM(

nrho, drho,
nr, dr,
eamPotentials,
pairPotentials,
out = outfile)

See also:

• See the object oriented version of this example Example 2b: Tabulate Al-Cu Alloy Potentials Using

2.3. User Guide 61

http://lammps.sandia.gov
http://www.stfc.ac.uk/cse/25526.aspx

atsim_potentials Documentation

TABEAM_EAMTabulation for DL_POLY .

Example 3a: Tabulate Al-Fe Finnis-Sinclair Potentials Using writeSetFLFinnisSinclair() for
LAMMPS

This example will show how to reproduce the EAM model described by Mendelev et al. for Fe segregation at grain
boundaries within Al3. As a result this example effectively shows how to reproduce the AlFe_mm.eam.fs file
provided with the LAMMPS source distribution using the writeSetFLFinnisSinclair() function.

The example uses the writeSetFLFinnisSinclair() function to produce files supported by the LAMMPS
pair_style eam/fs command.

The potential model and definition of potential objects is detailed in Example 3b: Tabulate Al-Fe Finnis-
Sinclair Potentials Using TABEAM_FinnisSinclair_EAMTabulation for DL_POLY which uses a tabulation class
but is otherwise very similar to this example. Having defined the list of EAMPotential instances the
writeSetFLFinnisSinclair() function is called, in this case writing the data to Mendelev_Al_Fe.eam.
fs in the current directory:

def main():
Define list of pair potentials
pairPotentials = [
Potential('Al', 'Al', ppfuncAlAl),
Potential('Al', 'Fe', ppfuncAlFe),
Potential('Fe', 'Fe', ppfuncFeFe)]

Assemble the EAMPotential objects
eamPotentials = [
#Al
EAMPotential('Al', 13, 26.98154, AlEmbedFunction,

{ 'Al' : AlAlDensityFunction,
'Fe' : FeAlDensityFunction },

latticeConstant = 4.04527,
latticeType = 'fcc'),

#Fe
EAMPotential('Fe', 26, 55.845, FeEmbedFunction,

{ 'Al': FeAlDensityFunction,
'Fe' : FeFeDensityFunction},

latticeConstant = 2.855312,
latticeType = 'bcc')]

Number of grid points and cut-offs for tabulation.
nrho = 10000
drho = 3.00000000000000E-2
nr = 10000
dr = 6.50000000000000E-4

with open("Mendelev_Al_Fe.eam.fs", "w") as outfile:
writeSetFLFinnisSinclair(

nrho, drho,
nr, dr,
eamPotentials,
pairPotentials,
outfile)

The full tabulation script can be downloaded as eam_tabulate_example3a.py.

3 M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han, “Effect of Fe Segregation on the Migration of a Non-Symmetric Σ5 Tilt Grain
Boundary in Al”, J. Mater. Res. 20 (2011) 208.

62 Chapter 2. Contents

atsim_potentials Documentation

Example 3b: Tabulate Al-Fe Finnis-Sinclair Potentials Using writeTABEAMFinnisSinclair() for
DL_POLY

Using exactly the same model definition as for Example 3a, the Al-Fe model can be re-tabulated for DL_POLY
with minimal modification to the main() function. The modified version of the tabulation script can be found in
eam_tabulate_example3b.py.

The main() function is given below:

def main():
Define list of pair potentials
pairPotentials = [
Potential('Al', 'Al', ppfuncAlAl),
Potential('Al', 'Fe', ppfuncAlFe),
Potential('Fe', 'Fe', ppfuncFeFe)]

Assemble the EAMPotential objects
eamPotentials = [
#Al
EAMPotential('Al', 13, 26.98154, AlEmbedFunction,

{ 'Al' : AlAlDensityFunction,
'Fe' : FeAlDensityFunction },

latticeConstant = 4.04527,
latticeType = 'fcc'),

#Fe
EAMPotential('Fe', 26, 55.845, FeEmbedFunction,

{ 'Al': FeAlDensityFunction,
'Fe' : FeFeDensityFunction},

latticeConstant = 2.855312,
latticeType = 'bcc')]

Number of grid points and cut-offs for tabulation.
nrho = 10000
drho = 3.00000000000000E-2
nr = 10000
dr = 6.50000000000000E-4
cutoff = 6.5

with open("TABEAM", "w") as outfile:
writeTABEAMFinnisSinclair(

nrho, drho,
nr, dr,
eamPotentials,
pairPotentials,
outfile)

Excluding the import statement at the top of the file, only two lines have been changed (highlighted). The first changes
the filename to TABEAM whilst the second tells python to call writeTABEAMFinnisSinclair() instead of
writeSetFLFinnisSinclair():

with open("TABEAM", "w") as outfile:
writeTABEAMFinnisSinclair(

nrho, drho,
nr, dr,
eamPotentials,
pairPotentials,
outfile)

2.3. User Guide 63

atsim_potentials Documentation

Embedded Atom Method (EAM) Tabulation

An EAM model is defined by constructing instances of atsim.potentials.EAMPotential describing each
species within the model. EAMPotential encapsulates the density and embedding functions specific to each
species’ many bodied interactions. In addition the purely pairwise interactions within the EAM are defined using
a list of atsim.potentials.Potential objects.

Once the EAM model has been described in terms of EAMPotential and Potential objects it can be tabulated for
specific simulation codes. This is done by using the EAM_Tabulation objects from the atsim.potentials.
eam_tabulation module:

Class Format Simulation Code Example
SetFL_EAMTabulation

setfl,
pair_style eam/alloy

LAMMPS

Example 1: Using
SetFL_EAMTabulation to
Tabulate Ag Potential for
LAMMPS

Example 2a: Tabulate
Al-Cu Alloy Potentials
Using
SetFL_EAMTabulation
for LAMMPS

SetFL_FS_EAMTabulationpair_style eam/fs LAMMPS Example 3a: Tab-
ulate Al-Fe Finnis-
Sinclair Potentials Using
SetFL_FS_EAMTabulation
for LAMMPS

TABEAM_EAMTabulationTABEAM DL_POLY Example 2b: Tabulate Al-
Cu Alloy Potentials Using
TABEAM_EAMTabulation
for DL_POLY

TABEAM_FinnisSinclair_EAMTabulationEEAM TABEAM DL_POLY Example 3b: Tab-
ulate Al-Fe Finnis-
Sinclair Potentials Using
TABEAM_FinnisSinclair_EAMTabulation
for DL_POLY

Excel_EAMTabulation .xlsx
Excel_FinnisSinclair_EAMTabulation.xlsx

Even though the use of EAM_Tabulation objects is preferred a legacy procedural interface is also provided. This
is described here: Procedural EAM Tabulation.

Examples

Example 1: Using SetFL_EAMTabulation to Tabulate Ag Potential for LAMMPS

This example shows how to use the SetFL_EAMTabulation class to tabulate an EAM model for the simulation of
Ag metal. How to use this tabulation within LAMMPS will then be demonstrated. The final tabulation script can be
found in eam_example1.py.

64 Chapter 2. Contents

http://lammps.sandia.gov/doc/pair_eam.html
http://lammps.sandia.gov/doc/pair_eam.html
http://lammps.sandia.gov

atsim_potentials Documentation

See also:

• A potable version of this example is given here: Sutton Ag EAM Example.

Model Description

Within this example the Ag potential of Sutton will be tabulated1. Within the EAM the energy (𝐸𝑖) of an atom 𝑖 whose
species is 𝛼 is given by:

𝐸𝑖 = 𝐹𝛼

⎛⎝∑︁
𝑗 ̸=𝑖

𝜌𝛽(𝑟𝑖𝑗)

⎞⎠+
1

2

∑︁
𝑗 ̸=𝑖

𝜑𝛼𝛽(𝑟𝑖𝑗)

Note:

• 𝜌𝛽(𝑟𝑖𝑗) is the density function which gives the electron density for atom 𝑗 with species 𝛽 as a function of its
separation from atom 𝑖, 𝑟𝑖𝑗 .

• The electron density for atom 𝑖 is obtained by summing over the density (𝜌𝛽(𝑟𝑖𝑗) contributions due to its neigh-
bours.

• The embedding function 𝐹𝛼(𝜌) is used to calculate the many-bodied energy contribution from this summed
electron density.

• The sum 1
2

∑︀
𝑗 ̸=𝑖 𝜑𝛼𝛽(𝑟𝑖𝑗) gives the pair-potential contribution to atom 𝑖’s energy.

• 𝜑𝛼𝛽(𝑟𝑖𝑗) are simply pair potentials that describe the energy between two atoms as a function of their separation.

The embedding function used by Sutton is:

𝐹𝛼(𝜌) = −√
𝜌

and the density function is:

𝜌𝛽(𝑟𝑖𝑗) =

(︂
𝑎

𝑟𝑖𝑗

)︂𝑚

whilst pair interactions are given by:

𝜑𝛼𝛽(𝑟𝑖𝑗) =

(︂
𝑏

𝑟𝑖𝑗

)︂𝑛

The model parameters are given as:

Parameter Value
𝑚 6
𝑛 12
𝑎 2.928323832ÅeV

1
3

𝑏 2.485883762eV
1
12 Å

1 A.P. Sutton, and J. Chen, “Long-range Finnis-Sinclair potentials”, Philos. Mag. Lett. 61 (1990) 139 doi:10.1080/09500839008206493.

2.3. User Guide 65

https://dx.doi.org/10.1080/09500839008206493

atsim_potentials Documentation

Define the Model

It is now necessary to describe the model in python code. Hard-coding the model parameters from the previous table,
embed() and density() functions can be defined for 𝐹Ag(𝜌) and 𝜌Ag respectively:

import math

from atsim.potentials import EAMPotential, Potential
from atsim.potentials.eam_tabulation import SetFL_EAMTabulation

def embed(rho):
return -math.sqrt(rho)

def density(rij):
if rij == 0:

return 0.0
return (2.928323832 / rij) ** 6.0

The embedding and density functions should then be wrapped in an EAMPotential object to create a single item
list:

eam_potentials = [EAMPotential("Ag", 47, 107.8682, embed, density)]

Similarly the pair potential component, 𝜑Ag−Ag(𝑟𝑖𝑗), of the model can easily be defined as:

def pair_AgAg(rij):
if rij == 0:

return 0.0
return (2.485883762/rij) ** 12

This can then be wrapped in a atsim.potentials.Potential object to create a list of pair potentials.

pair_potentials = [Potential('Ag', 'Ag', pair_AgAg)]

Now all the components of the model have been defined a table file can be created in the setfl format. Before
doing this, it is necessary to choose appropriate density and separation cut-offs together with the number of rows in
the density/pair functions (nr) and embedding function (nrho) respectively:

• Here 50000 density values will be tabulated to a cutoff of 50.0.

• The pair-potential cut-off and the maximum 𝑟𝑖𝑗 value for the density function is 12 Å and both will have 12000
rows.

An instance of atsim.potentials.eam_tabulation.SetFL_EAMTabulation is created with the
EAMPotential and Potential objects. This object is then used to tabulate the Ag potential by calling the
write() method with the Ag.eam.alloy file object:

pair_potentials = [Potential('Ag', 'Ag', pair_AgAg)]

cutoff_rho = 50.0
nrho = 50000

cutoff = 12.0
nr = 12000

(continues on next page)

66 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

tabulation = SetFL_EAMTabulation(
pair_potentials,
eam_potentials,
cutoff, nr,
cutoff_rho, nrho)

with open("Ag.eam.alloy", 'w') as outfile:
tabulation.write(outfile)

Putting this together the following script is obtained (this script can also be downloaded eam_example1.py:

#! /usr/bin/env python
import math

from atsim.potentials import EAMPotential, Potential
from atsim.potentials.eam_tabulation import SetFL_EAMTabulation

def embed(rho):
return -math.sqrt(rho)

def density(rij):
if rij == 0:

return 0.0
return (2.928323832 / rij) ** 6.0

def pair_AgAg(rij):
if rij == 0:

return 0.0
return (2.485883762/rij) ** 12

def main():
Create EAMPotential
eam_potentials = [EAMPotential("Ag", 47, 107.8682, embed, density)]
pair_potentials = [Potential('Ag', 'Ag', pair_AgAg)]

cutoff_rho = 50.0
nrho = 50000

cutoff = 12.0
nr = 12000

tabulation = SetFL_EAMTabulation(
pair_potentials,
eam_potentials,
cutoff, nr,
cutoff_rho, nrho)

with open("Ag.eam.alloy", 'w') as outfile:
tabulation.write(outfile)

if __name__ == "__main__":
main()

2.3. User Guide 67

atsim_potentials Documentation

Running this script will produce a table file named Ag.eam.alloy in the same directory as the script:

python eam_example1.py

Using the Ag.eam.alloy file within LAMMPS

This section of the example will now demonstrate how the table file can be used used to perform a static energy
minimisation of an FCC Ag structure in LAMMPS.

Place the following in a file called fcc.lmpstruct in the same directory as the Ag.eam.alloy file you created
previously. This describes a single FCC cell with a wildly inaccurate lattice parameter:

Title

4 atoms
1 atom types
0.0 5.000000 xlo xhi
0.0 5.000000 ylo yhi
0.0 5.000000 zlo zhi
0.000000 0.000000 0.000000 xy xz yz

Masses

1 107.86820000000000163709 #Ag

Atoms

1 0 1 0.000000 0.000000 0.000000 0.000000
2 0 1 0.000000 2.500000 2.500000 0.000000
3 0 1 0.000000 0.000000 2.500000 2.500000
4 0 1 0.000000 2.500000 0.000000 2.500000

The following LAMMPS input file describes a minimisation run. The lines describing potentials are highlighted. Put
its contents in a file called example_eam_alloy_minimize.lmpin:

units metal
boundary p p p

atom_style full
read_data fcc.lmpstruct

pair_style eam/alloy
pair_coeff * * Ag.eam.alloy Ag

fix 1 all box/relax x 0.0 y 0.0 z 0.0

minimize 0.0 1.0e-8 1000 100000

The pair_style eam/alloy command tells LAMMPS to use the EAM and expect pair_coeff commands
mapping atom types to particular table files:

68 Chapter 2. Contents

atsim_potentials Documentation

pair_style eam/alloy

The following pair_coeff directive indicates that the interaction between atom-type 1 (Ag) with itself should
use the setfl formatted file contained within Ag.eam.alloy. The Ag label at the end of the line indicates that
atom-type 1 should be associated with this label in the table file:

pair_coeff * * Ag.eam.alloy Ag

The example can then be run by invoking LAMMPS:

lammps -in example_eam_alloy_minimize.lmpin

Example 2a: Tabulate Al-Cu Alloy Potentials Using SetFL_EAMTabulation for LAMMPS

Within the following example the process required to generate and use a setfl file that tabulates the Al-Cu alloy
model of Zhou et al2. In comparison to the previous example this example contains density and embedding functions
for multiple elements and includes pair-potentials specific to pairs of interacting species. The eam_example2a.py
file gives a complete example of how the Zhou model can be tabulated.

Model Description

The model makes use of the EAM as described above (see Example 1 Model Description) . The density function,
𝜌𝛽(𝑟𝑖𝑗) for an atom 𝑗 of species 𝛽 separated from atom 𝑖 by 𝑟𝑖𝑗 is:

𝜌𝛽(𝑟𝑖𝑗) =
𝑓𝑒 exp [−𝜔(𝑟𝑖𝑗/𝑟𝑒 − 1)]

1 + (𝑟𝑖𝑗/𝑟𝑒 − 𝜆)20

where 𝑓𝑒, 𝑟𝑒, 𝜔 and 𝜆 are parameters specific to species 𝛽. The pair-potential function acting between species 𝛼–𝛽 is
obtained by combining the density functions of the interacting species:

𝜑𝛼𝛽(𝑟𝑖𝑗) =
1

2

[︂
𝜌𝛽(𝑟𝑖𝑗)

𝜌𝛼(𝑟𝑖𝑗)
𝜑𝛼𝛼(𝑟𝑖𝑗) +

𝜌𝛼(𝑟𝑖𝑗)

𝜌𝛽(𝑟𝑖𝑗)
𝜑𝛽𝛽(𝑟𝑖𝑗)

]︂
The homogeneous pair-interactions, 𝜑𝛼𝛼(𝑟𝑖𝑗) and 𝜑𝛽𝛽(𝑟𝑖𝑗) have the form:

𝜑𝛼𝛼(𝑟𝑖𝑗) =
𝐴 exp [−𝛾(𝑟𝑖𝑗/𝑟𝑒 − 1)]

1 + (𝑟𝑖𝑗/𝑟𝑒 − 𝜅)20
− 𝐵 exp [−𝜔(𝑟𝑖𝑗/𝑟𝑒 − 1)]

1 + (𝑟𝑖𝑗/𝑟𝑒 − 𝜆)20

again, 𝐴, 𝐵, 𝛾, 𝜔, 𝜅 and 𝜔 are parameters specific to the species 𝛼.

The embedding function for each species, 𝐹𝛼(𝜌), is defined over three density ranges using the following:

𝐹𝛼(𝜌) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀3
𝑖=0 𝐹𝑛𝑖

(︁
𝜌
𝜌𝑛

− 1
)︁𝑖

𝜌 < 𝜌𝑛,

𝜌𝑛 = 0.85𝜌𝑒∑︀3
𝑖=0 𝐹𝑖

(︁
𝜌
𝜌𝑒

− 1
)︁𝑖

𝜌𝑛 ≤ 𝜌 < 𝜌0,

𝜌0 = 1.15𝜌𝑒

𝐹𝑒

[︁
1− 𝜂 ln

(︁
𝜌
𝜌𝑠

)︁]︁(︁
𝜌
𝜌𝑠

)︁𝜂
𝜌0 ≤ 𝜌

The model parameters for Cu and Al are given in the following table:
2

X. Zhou, R. Johnson and H. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers”, Phys. Rev. B. 69
(2004) 144113.

2.3. User Guide 69

atsim_potentials Documentation

Parameter Cu Al
𝑟𝑒 2.556162 2.863924
𝑓𝑒 1.554485 1.403115
𝜌𝑒 21.175871 20.418205
𝜌𝑠 21.175395 23.195740
𝛾 8.127620 6.613165
𝜔 4.334731 3.527021
𝐴 0.396620 0.314873
𝐵 0.548085 0.365551
𝜅 0.308782 0.379846
𝜆 0.756515 0.759692
𝐹𝑛0 -2.170269 -2.807602
𝐹𝑛1 -0.263788 -0.301435
𝐹𝑛2 1.088878 1.258562
𝐹𝑛3 -0.817603 -1.247604
𝐹0 -2.19 -2.83
𝐹1 0 0
𝐹2 0.561830 0.622245
𝐹3 -2.100595 -2.488244
𝜂 0.310490 0.785902
𝐹𝑒 -2.186568 -2.824528

Note: The Al 𝐴 value is given as 0.134873 in Zhou’s original Phys. Rev. B paper. However parameter file provided
by Zhou for this model, at http://www.ctcms.nist.gov/potentials/Zhou04.html gives the parameter as 0.314873. It is
this latter value that is used here.

In addition the final term of the embedding function has been modified to match that used in fortran tabulation code
also provided at http://www.ctcms.nist.gov/potentials/Zhou04.html

Define the Model

A series of python functions are defined to describe the embedding, density and pair interaction functions. To en-
courage code re-use a number of function factories are defined. Using the parameters passed to them they return
specialised functions appropriate for the parameters. The given factory functions make use of python’s support for
closures in their implementation.

The makeFunc() factory function is used to define density functions. As this functional form is also used as a
component of the pair-potentials makeFunc() is re-used within the makePairPotAA() factory function.

def makeFunc(a, b, r_e, c):
Creates functions of the form used for density function.
Functional form also forms components of pair potential.
def func(r):

return (a * math.exp(-b*(r/r_e - 1)))/(1+(r/r_e - c)**20.0)
return func

The following factory returns the functions used to describe the homogeneous Al-Al and Cu-Cu pair-potential inter-
actions:

def makePairPotAA(A, gamma, r_e, kappa,
B, omega, lamda):

(continues on next page)

70 Chapter 2. Contents

http://www.ctcms.nist.gov/potentials/Zhou04.html
http://www.ctcms.nist.gov/potentials/Zhou04.html
http://www.shutupandship.com/2012/01/python-closures-explained.html

atsim_potentials Documentation

(continued from previous page)

Function factory that returns functions parameterised for homogeneous pair
→˓interactions

f1 = makeFunc(A, gamma, r_e, kappa)
f2 = makeFunc(B, omega, r_e, lamda)

def func(r):
return f1(r) - f2(r)

return func

Whilst makePairPotAB() describes the Al-Cu pair-potential:

def makePairPotAB(dens_a, phi_aa, dens_b, phi_bb):
Function factory that returns functions parameterised for heterogeneous pair

→˓interactions
def func(r):

return 0.5 * ((dens_b(r)/dens_a(r) * phi_aa(r)) + (dens_a(r)/dens_b(r) * phi_
→˓bb(r)))

return func

The makeEmbed() function describes the embedding function:

def makeEmbed(rho_e, rho_s, F_ni, F_i, F_e, eta):
Function factory returning parameterised embedding function.
rho_n = 0.85*rho_e
rho_0 = 1.15*rho_e

def e1(rho):
return sum([F_ni[i] * (rho/rho_n - 1)**float(i) for i in range(4)])

def e2(rho):
return sum([F_i[i] * (rho/rho_e - 1)**float(i) for i in range(4)])

def e3(rho):
return F_e * (1.0 - eta*math.log(rho/rho_s)) * (rho/rho_s)**eta

def func(rho):
if rho < rho_n:

return e1(rho)
elif rho_n <= rho < rho_0:

return e2(rho)
return e3(rho)

return func

Lists of EAMPotential and Potential objects are created and returned as a tuple by the
makePotentialObjects() function within eam_example2a.py. Before invoking the factory functions we
just defined, the model parameters are assigned to easily identifiable variables within this function:

def makePotentialObjects():
Potential parameters
r_eCu = 2.556162
f_eCu = 1.554485
gamma_Cu = 8.127620
omega_Cu = 4.334731
A_Cu = 0.396620
B_Cu = 0.548085
kappa_Cu = 0.308782

(continues on next page)

2.3. User Guide 71

atsim_potentials Documentation

(continued from previous page)

lambda_Cu = 0.756515

rho_e_Cu = 21.175871
rho_s_Cu = 21.175395
F_ni_Cu = [-2.170269, -0.263788, 1.088878, -0.817603]
F_i_Cu = [-2.19, 0.0, 0.561830, -2.100595]
eta_Cu = 0.310490
F_e_Cu = -2.186568

r_eAl = 2.863924
f_eAl = 1.403115
gamma_Al = 6.613165
omega_Al = 3.527021
A_Al = 0.134873
A_Al = 0.314873
B_Al = 0.365551
kappa_Al = 0.379846
lambda_Al = 0.759692

rho_e_Al = 20.418205
rho_s_Al = 23.195740
F_ni_Al = [-2.807602, -0.301435, 1.258562, -1.247604]
F_i_Al = [-2.83, 0.0, 0.622245, -2.488244]
eta_Al = 0.785902
F_e_Al = -2.824528

Define the density functions
dens_Cu = makeFunc(f_eCu, omega_Cu, r_eCu, lambda_Cu)
dens_Al = makeFunc(f_eAl, omega_Al, r_eAl, lambda_Al)

Finally, define embedding functions for each species
embed_Cu = makeEmbed(rho_e_Cu, rho_s_Cu, F_ni_Cu, F_i_Cu, F_e_Cu, eta_Cu)
embed_Al = makeEmbed(rho_e_Al, rho_s_Al, F_ni_Al, F_i_Al, F_e_Al, eta_Al)

Wrap them in EAMPotential objects
eam_potentials = [

EAMPotential("Al", 13, 26.98, embed_Al, dens_Al),
EAMPotential("Cu", 29, 63.55, embed_Cu, dens_Cu)]

Define pair functions
pair_CuCu = makePairPotAA(A_Cu, gamma_Cu, r_eCu, kappa_Cu,

B_Cu, omega_Cu, lambda_Cu)

pair_AlAl = makePairPotAA(A_Al, gamma_Al, r_eAl, kappa_Al,
B_Al, omega_Al, lambda_Al)

pair_AlCu = makePairPotAB(dens_Cu, pair_CuCu, dens_Al, pair_AlAl)

Wrap them in Potential objects
pair_potentials = [

Potential('Al', 'Al', pair_AlAl),
Potential('Cu', 'Cu', pair_CuCu),
Potential('Al', 'Cu', pair_AlCu)]

return eam_potentials, pair_potentials

Now the functions required by the EAMPotential instances for Al and Cu can be created:

72 Chapter 2. Contents

atsim_potentials Documentation

Define the density functions
dens_Cu = makeFunc(f_eCu, omega_Cu, r_eCu, lambda_Cu)
dens_Al = makeFunc(f_eAl, omega_Al, r_eAl, lambda_Al)

Finally, define embedding functions for each species
embed_Cu = makeEmbed(rho_e_Cu, rho_s_Cu, F_ni_Cu, F_i_Cu, F_e_Cu, eta_Cu)
embed_Al = makeEmbed(rho_e_Al, rho_s_Al, F_ni_Al, F_i_Al, F_e_Al, eta_Al)

Now these are wrapped up in EAMPotential objects to give the eamPotentials list:

eam_potentials = [
EAMPotential("Al", 13, 26.98, embed_Al, dens_Al),
EAMPotential("Cu", 29, 63.55, embed_Cu, dens_Cu)]

Similarly, using the makePairPotAA() and makePairPotAB() function factories the Potential objects
required for the tabulation are defined:

Define pair functions
pair_CuCu = makePairPotAA(A_Cu, gamma_Cu, r_eCu, kappa_Cu,

B_Cu, omega_Cu, lambda_Cu)

pair_AlAl = makePairPotAA(A_Al, gamma_Al, r_eAl, kappa_Al,
B_Al, omega_Al, lambda_Al)

pair_AlCu = makePairPotAB(dens_Cu, pair_CuCu, dens_Al, pair_AlAl)

Wrap them in Potential objects
pair_potentials = [

Potential('Al', 'Al', pair_AlAl),
Potential('Cu', 'Cu', pair_CuCu),
Potential('Al', 'Cu', pair_AlCu)]

Now we have all the objects required for SetFL_EAMTabulation. The next excerpt calls makeObjects() to
get the EAM and pair-potential objects before creating the tabulation object, and invoking its write() method to
write the data into a file called Zhou_AlCu.eam.alloy:

def main():
eam_potentials, pair_potentials = makePotentialObjects()

Perform tabulation
Make tabulation
cutoff_rho = 100.0
nrho = 2000

cutoff = 6.0
nr = 2000

tabulation = SetFL_EAMTabulation(
pair_potentials,
eam_potentials,
cutoff, nr,
cutoff_rho, nrho

)

with open("Zhou_AlCu.eam.alloy", 'w') as outfile:
tabulation.write(outfile)

Putting this all together gives the following script (which can also be downloaded using the following link

2.3. User Guide 73

atsim_potentials Documentation

eam_example2a.py:). Running this (python eam_example2a.py) produces the Zhou_AlCu.eam.
alloy file in current working directory.

#! /usr/bin/env python

import math

from atsim.potentials import EAMPotential, Potential
from atsim.potentials.eam_tabulation import SetFL_EAMTabulation

def makeFunc(a, b, r_e, c):
Creates functions of the form used for density function.
Functional form also forms components of pair potential.
def func(r):

return (a * math.exp(-b*(r/r_e - 1)))/(1+(r/r_e - c)**20.0)
return func

def makePairPotAA(A, gamma, r_e, kappa,
B, omega, lamda):

Function factory that returns functions parameterised for homogeneous pair
→˓interactions

f1 = makeFunc(A, gamma, r_e, kappa)
f2 = makeFunc(B, omega, r_e, lamda)

def func(r):
return f1(r) - f2(r)

return func

def makePairPotAB(dens_a, phi_aa, dens_b, phi_bb):
Function factory that returns functions parameterised for heterogeneous pair

→˓interactions
def func(r):

return 0.5 * ((dens_b(r)/dens_a(r) * phi_aa(r)) + (dens_a(r)/dens_b(r) * phi_
→˓bb(r)))

return func

def makeEmbed(rho_e, rho_s, F_ni, F_i, F_e, eta):
Function factory returning parameterised embedding function.
rho_n = 0.85*rho_e
rho_0 = 1.15*rho_e

def e1(rho):
return sum([F_ni[i] * (rho/rho_n - 1)**float(i) for i in range(4)])

def e2(rho):
return sum([F_i[i] * (rho/rho_e - 1)**float(i) for i in range(4)])

def e3(rho):
return F_e * (1.0 - eta*math.log(rho/rho_s)) * (rho/rho_s)**eta

def func(rho):
if rho < rho_n:

return e1(rho)
elif rho_n <= rho < rho_0:

(continues on next page)

74 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

return e2(rho)
return e3(rho)

return func

def makePotentialObjects():
Potential parameters
r_eCu = 2.556162
f_eCu = 1.554485
gamma_Cu = 8.127620
omega_Cu = 4.334731
A_Cu = 0.396620
B_Cu = 0.548085
kappa_Cu = 0.308782
lambda_Cu = 0.756515

rho_e_Cu = 21.175871
rho_s_Cu = 21.175395
F_ni_Cu = [-2.170269, -0.263788, 1.088878, -0.817603]
F_i_Cu = [-2.19, 0.0, 0.561830, -2.100595]
eta_Cu = 0.310490
F_e_Cu = -2.186568

r_eAl = 2.863924
f_eAl = 1.403115
gamma_Al = 6.613165
omega_Al = 3.527021
A_Al = 0.134873
A_Al = 0.314873
B_Al = 0.365551
kappa_Al = 0.379846
lambda_Al = 0.759692

rho_e_Al = 20.418205
rho_s_Al = 23.195740
F_ni_Al = [-2.807602, -0.301435, 1.258562, -1.247604]
F_i_Al = [-2.83, 0.0, 0.622245, -2.488244]
eta_Al = 0.785902
F_e_Al = -2.824528

Define the density functions
dens_Cu = makeFunc(f_eCu, omega_Cu, r_eCu, lambda_Cu)
dens_Al = makeFunc(f_eAl, omega_Al, r_eAl, lambda_Al)

Finally, define embedding functions for each species
embed_Cu = makeEmbed(rho_e_Cu, rho_s_Cu, F_ni_Cu, F_i_Cu, F_e_Cu, eta_Cu)
embed_Al = makeEmbed(rho_e_Al, rho_s_Al, F_ni_Al, F_i_Al, F_e_Al, eta_Al)

Wrap them in EAMPotential objects
eam_potentials = [

EAMPotential("Al", 13, 26.98, embed_Al, dens_Al),
EAMPotential("Cu", 29, 63.55, embed_Cu, dens_Cu)]

Define pair functions
pair_CuCu = makePairPotAA(A_Cu, gamma_Cu, r_eCu, kappa_Cu,

B_Cu, omega_Cu, lambda_Cu)

(continues on next page)

2.3. User Guide 75

atsim_potentials Documentation

(continued from previous page)

pair_AlAl = makePairPotAA(A_Al, gamma_Al, r_eAl, kappa_Al,
B_Al, omega_Al, lambda_Al)

pair_AlCu = makePairPotAB(dens_Cu, pair_CuCu, dens_Al, pair_AlAl)

Wrap them in Potential objects
pair_potentials = [

Potential('Al', 'Al', pair_AlAl),
Potential('Cu', 'Cu', pair_CuCu),
Potential('Al', 'Cu', pair_AlCu)]

return eam_potentials, pair_potentials

def main():
eam_potentials, pair_potentials = makePotentialObjects()

Perform tabulation
Make tabulation
cutoff_rho = 100.0
nrho = 2000

cutoff = 6.0
nr = 2000

tabulation = SetFL_EAMTabulation(
pair_potentials,
eam_potentials,
cutoff, nr,
cutoff_rho, nrho

)

with open("Zhou_AlCu.eam.alloy", 'w') as outfile:
tabulation.write(outfile)

if __name__ == '__main__':
main()

Using the Zhou_AlCu.eam.alloy file within LAMMPS

Within LAMMPS the setfl files generated by SetFL_EAMTabulation are used with the eam/alloy pair_style.
The pair_coeff directive used with this pair_style effectively maps LAMMPS species numbers to the element
names within the table file.

Single Element Systems

Assuming a LAMMPS system containing only Al (i.e. Al is species 1) then the pair_style and pair_coeff
directives would be given as:

pair_style eam/alloy
pair_coeff * * Zhou_AlCu.eam.alloy Al

Likewise if a copper system was being simulated:

76 Chapter 2. Contents

http://lammps.sandia.gov/doc/pair_eam.html

atsim_potentials Documentation

pair_style eam/alloy
pair_coeff * * Zhou_AlCu.eam.alloy Cu

Mixed Al-Cu System

For an Al-Cu system where Al is species 1 and Cu species 2 then the directives would be:

pair_style eam/alloy
pair_coeff * * Zhou_AlCu.eam.alloy Al Cu

Or if Cu was 1 and Al 2:

pair_style eam/alloy
pair_coeff * * Zhou_AlCu.eam.alloy Cu Al

Example 2b: Tabulate Al-Cu Alloy Potentials Using TABEAM_EAMTabulation for DL_POLY

The tabulation script used with Example 2a can be easily modified to produce the TABEAM format expected by the
DL_POLY simulation code. See the tabulation script for this example: eam_example2b.py.

The EAMPotential and Potential lists are created in exactly the same way as Example 2a, however rather
than creating an instance of SetFL_EAMTabulation in the main() function it is modified to use the DL_POLY
specific TABEAM_EAMTabulation class instead and to write into a file named TABEAM. The main() function of
eam_example2b.py is now given:

def main():
eamPotentials, pairPotentials = makePotentialObjects()

Perform tabulation
Make tabulation
cutoff_rho = 100.0
nrho = 2000

cutoff = 6
nr = 2000

tabulation = TABEAM_EAMTabulation(
pairPotentials, eamPotentials, cutoff, nr, cutoff_rho, nrho)

with open("TABEAM", 'w') as outfile:
tabulation.write(outfile)

Using the TABEAM file with DL_POLY

Running eam_example2b.py will create a file named TABEAM in the working directory. This should be copied
into the simulation directory containing the DL_POLY input files (CONTROL, CONFIG and FIELD).

The following should be added at the bottom of the FIELD file:

metal 3
Al Al eam
Cu Cu eam
Al Cu eam

2.3. User Guide 77

http://www.stfc.ac.uk/cse/25526.aspx
http://www.stfc.ac.uk/cse/25526.aspx

atsim_potentials Documentation

Example 3a: Tabulate Al-Fe Finnis-Sinclair Potentials Using SetFL_FS_EAMTabulation for
LAMMPS

This example will show how to reproduce the EAM model described by Mendelev et al. for Fe segregation at grain
boundaries within Al3. As a result this example effectively shows how to reproduce the AlFe_mm.eam.fs file
provided with the LAMMPS source distribution using the SetFL_FS_EAMTabulation class.

See also:

• Finnis-Sinclair example using potable

• Example 3a: Tabulate Al-Fe Finnis-Sinclair Potentials Using writeSetFLFinnisSinclair() for LAMMPS

The file format created by atsim.potentials.eam_tabulation.SetFL_FS_EAMTabulation is sup-
ported by the LAMMPS pair_style eam/fs command. This adds an additional level of flexibility in comparison
to the eam/alloy style; when calculating the density surrounding an atom with species 𝛼, each neighbouring atom’s
contribution to the density is calculated as a function of its separation from the central atom using 𝜌𝛼𝛽(𝑟𝑖𝑗). This
means that the density function is now specific to both the central atom species, 𝛼 and that of the surrounding atom,
𝛽. By comparison when using eam/alloy tabulations the same 𝜌𝛽(𝑟𝑖𝑗) function is used, no matter the type of the
central atom. This means that the equation describing eam/fs style models becomes:

𝐸𝑖 = 𝐹𝛼

⎛⎝∑︁
𝑗 ̸=𝑖

𝜌𝛼𝛽(𝑟𝑖𝑗)

⎞⎠+
1

2

∑︁
𝑗 ̸=𝑖

𝜑𝛼𝛽(𝑟𝑖𝑗)

Here a binary Al, Fe, model is being described and the resultant eam/fs file should contain definitions for the
following:

• Pair-Potentials: 𝜑AlAl(𝑟𝑖𝑗), 𝜑FeFe(𝑟𝑖𝑗) and 𝜑AlFe(𝑟𝑖𝑗).

• Embedding-Functions: 𝐹Al(𝜌) and 𝐹Fe(𝜌).

• Density-Functions: 𝜌AlAl(𝑟𝑖𝑗), 𝜌FeFe(𝑟𝑖𝑗), 𝜌AlFe(𝑟𝑖𝑗) and 𝜌FeAl(𝑟𝑖𝑗).

From this it can be seen that, when using eam/fs style potentials, the density functions must have both the 𝛼𝛽 and
𝛽𝛼 interactions specified.

Although both the 𝛼𝛽 and 𝛽𝛼 can be described using eam/fs files, the Mendelev model used in this example uses
the same density function for both Al-Fe and Fe-Al cross density functions3.

Using SetFL_FS_EAMTabulation to Tabulate the Model

As in previous examples it is necessary to define pair, density and embedding functions in python code that are then
wrapped in EAMPotential and Potential objects to be passed to the tabulation function. For brevity only the
names of the functions, as defined in the attached example file (eam_example3a.py) are now given:

• Pair-Potentials:

– def ppfuncAlAl(r): - Al-Al pair-potential 𝜑AlAl(𝑟𝑖𝑗).

– def ppfuncAlFe(r): - Al-Fe pair-potential 𝜑AlFe(𝑟𝑖𝑗).

– def ppfuncFeFe(r): - Fe-Fe pair-potential 𝜑FeFe(𝑟𝑖𝑗).

• Embedding-Functions:

– def AlEmbedFunction(rho): - Al embedding function 𝐹Al(𝜌).

– def FeEmbedFunction(rho): - Fe embedding function 𝐹Fe(𝜌).

3 M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han, “Effect of Fe Segregation on the Migration of a Non-Symmetric Σ5 Tilt Grain
Boundary in Al”, J. Mater. Res. 20 (2011) 208.

78 Chapter 2. Contents

atsim_potentials Documentation

• Density-Functions:

– def AlAlDensityFunction(r): - Al density function 𝜌AlAl(𝑟𝑖𝑗).

– def FeFeDensityFunction(r): - Fe density function 𝜌AlAl(𝑟𝑖𝑗).

– def FeAlDensityFunction(r): - Al-Fe density function 𝜌AlFe(𝑟𝑖𝑗).

Note: The functional forms used within the Mendelev paper3 are somewhat long, and including their implementations
here would detract from the readability of this example. However, they are included in the attached python file:
eam_example3a.py.

These functions are used within the main() function of the eam_example3a.py file which is now shown:

def main():
Define list of pair potentials
pairPotentials = [

Potential('Al', 'Al', ppfuncAlAl),
Potential('Al', 'Fe', ppfuncAlFe),
Potential('Fe', 'Fe', ppfuncFeFe)]

Assemble the EAMPotential objects
eamPotentials = [

Al
EAMPotential('Al', 13, 26.98154, AlEmbedFunction,

{'Al': AlAlDensityFunction,
'Fe': FeAlDensityFunction},

latticeConstant=4.04527,
latticeType='fcc'),

Fe
EAMPotential('Fe', 26, 55.845, FeEmbedFunction,

{'Al': FeAlDensityFunction,
'Fe': FeFeDensityFunction},

latticeConstant=2.855312,
latticeType='bcc')]

Number of grid points and cut-offs for tabulation.
cutoff_rho = 300.0
nrho = 10000

cutoff = 6.5
nr = 10000

tabulation = SetFL_FS_EAMTabulation(
pairPotentials, eamPotentials, cutoff, nr, cutoff_rho, nrho)

with open("Mendelev_Al_Fe.eam.fs", "w") as outfile:
tabulation.write(outfile)

1. Breaking main() into its components, first a list of Potential objects is created, this is common with the
other tabulation methods already discussed:

Define list of pair potentials
pairPotentials = [

Potential('Al', 'Al', ppfuncAlAl),
Potential('Al', 'Fe', ppfuncAlFe),
Potential('Fe', 'Fe', ppfuncFeFe)]

2.3. User Guide 79

atsim_potentials Documentation

2. Next, the EAMPotential objects for Al and Fe are instantiated. This is where a Finnis-Sinclair model differs
from the standard EAM seen earlier. Instead of a single density callable being passed to the EAMPotential
constructor a dictionary of density functions is passed instead (see highlighted lines):

eamPotentials = [
Al
EAMPotential('Al', 13, 26.98154, AlEmbedFunction,

{'Al': AlAlDensityFunction,
'Fe': FeAlDensityFunction},

latticeConstant=4.04527,
latticeType='fcc'),

Fe
EAMPotential('Fe', 26, 55.845, FeEmbedFunction,

{'Al': FeAlDensityFunction,
'Fe': FeFeDensityFunction},

latticeConstant=2.855312,
latticeType='bcc')]

3. The density function dictionary keys refer to the 𝛽 species in each 𝛼𝛽 pair. This means that:

• for the Al EAMPotential instance:

– 𝜌AlAl = AlAlDensityFunction(),

– 𝜌AlFe = FeAlDensityFunction().

• for the Fe EAMPotential instance:

– 𝜌FeAl = FeAlDensityFunction(),

– 𝜌FeFe = FeFeDensityFunction().

4. Finally, having defined the list of EAMPotential instances these are passed to the constructor of
SetFL_FS_EAMTabulation, in this case writing the data to Mendelev_Al_Fe.eam.fs in the current
directory:

tabulation = SetFL_FS_EAMTabulation(
pairPotentials, eamPotentials, cutoff, nr, cutoff_rho, nrho)

with open("Mendelev_Al_Fe.eam.fs", "w") as outfile:
tabulation.write(outfile)

Using the Mendelev_Al_Fe.eam.fs file within LAMMPS

For a binary system where Al and Fe have IDs of 1 and 2 the Mendelev_Al_Fe.eam.fs file is specified to
LAMMPS as follows:

pair_style eam/fs
pair_coeff * * Mendelev_Al_Fe.eam.fs Al Fe

Example 3b: Tabulate Al-Fe Finnis-Sinclair Potentials Using TABEAM_FinnisSinclair_EAMTabulation
for DL_POLY

Using exactly the same model definition as for Example 3a, the Al-Fe model can be re-tabulated for DL_POLY
with minimal modification to the main() function. The modified version of the tabulation script can be found in
eam_example3b.py.

80 Chapter 2. Contents

atsim_potentials Documentation

The main() function is given below:

def main():
Define list of pair potentials
pairPotentials = [

Potential('Al', 'Al', ppfuncAlAl),
Potential('Al', 'Fe', ppfuncAlFe),
Potential('Fe', 'Fe', ppfuncFeFe)]

Assemble the EAMPotential objects
eamPotentials = [

Al
EAMPotential('Al', 13, 26.98154, AlEmbedFunction,

{'Al': AlAlDensityFunction,
'Fe': FeAlDensityFunction},

latticeConstant=4.04527,
latticeType='fcc'),

Fe
EAMPotential('Fe', 26, 55.845, FeEmbedFunction,

{'Al': FeAlDensityFunction,
'Fe': FeFeDensityFunction},

latticeConstant=2.855312,
latticeType='bcc')]

Number of grid points and cut-offs for tabulation.
cutoff_rho = 300.0
nrho = 10000

cutoff = 6.5
nr = 10000

tabulation = TABEAM_FinnisSinclair_EAMTabulation(
pairPotentials, eamPotentials, cutoff, nr, cutoff_rho, nrho)

with open("TABEAM", "w") as outfile:
tabulation.write(outfile)

Excluding the import statement at the top of the file, only two lines have been changed (high-
lighted). The first changes the filename to TABEAM whilst the second tells python to create an object
of TABEAM_FinnisSinclair_EAMTabulation instead of atsim.potentials.eam_tabulation.
SetFL_FS_EAMTabulation:

tabulation = TABEAM_FinnisSinclair_EAMTabulation(
pairPotentials, eamPotentials, cutoff, nr, cutoff_rho, nrho)

with open("TABEAM", "w") as outfile:
tabulation.write(outfile)

That’s it, nothing else has changed.

Using the TABEAM file with DL_POLY

Running eam_example3b.py produces a file names TABEAM within the working directory. This should be placed
in the same directory as the other DL_POLY input files (CONTROL, CONFIG and FIELD). Then the following should
be added to the end of the FIELD file:

2.3. User Guide 81

atsim_potentials Documentation

metal 3
Al Al eeam
Fe Fe eeam
Al Fe eeam

Note: The Extended EAM (eeam) variant of the TABEAM file generated here is only supported in DL_POLY versions
>= 4.05.

Working with potable files in Python

Using Configuration class to create Pair_Tabulation and EAM_Tabulation objects from
potable input

atsim.potentials.config.Configuration is a factory class which accepts potable input and uses it to
create tabulation objects.

Tabulation objects are typically created by passing a file like object containing potable input to the read()method
of Configuration.

Example

The following example demonstrates how to create a atsim.potentials.pair_tabulation.
Pair_Tabulation object from potable input by using the atsim.potentials.config.
Configuration class.

The aim of the example is to find the spline coefficients for following potable input (described elsewhere Splining)

[Tabulation]
target : GULP
cutoff : 10.0
dr : 0.01

[Pair]
Si-O : spline(

as.zbl 14 8
>=0.8

exp_spline
>=1.4

as.buck 18003.7572 0.205204 133.5381)

Running the following script python_potable_api.py will print out the spline coefficients:

import io

from atsim.potentials.config import Configuration

potable_input = """
[Tabulation]
target : GULP
cutoff : 10.0
dr : 0.01

(continues on next page)

82 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

[Pair]
Si-O : spline(

as.zbl 14 8
>=0.8

exp_spline
>=1.4

as.buck 18003.7572 0.205204 133.5381)
"""

def main():
Make a file like object from the potable input string given above.
potable_input_file = io.StringIO(potable_input)

Create a Configuration() object and read input from the input file.
configuration = Configuration()
... Configuration is a factory class for PairTabulation and EAMTabulation
objects. In the current case it will return a GULP_PairTabulation object.
tabulation = configuration.read(potable_input_file)

The potable input defines a single pair potential.
Potential objects are accessible from the tabulation object through
its .potentials property.
potential_Si_O = tabulation.potentials[0]

The potential-form for this interaction is now accessed.
multirange_potentialform = potential_Si_O.potentialFunction

The potential-forms created from potable input are Multi_Range_Potential_Form
objects. This is true even if only one range is defined, as is the case here.
#
Let's get hold of the spline potential form through the Multi_Range_Potential_

→˓Form
.range_defns property (which returns a list of MultiRangeDefinitionTuple)
#
spline_potentialform = multirange_potentialform.range_defns[0].potential_form

Now let's get hold of the spline coefficients
spline_coefficients = spline_potentialform.splineCoefficients

print("Spline coefficients are: {}".format(spline_coefficients))

if __name__ == "__main__":
main()

Overriding and adding items

Items can be amended or added to the potable input before it is passed to the Configuration class. This is
done by passing a atsim.potentials.config.ConfigParser to the read_from_parser() method of
the Configuration object.

The constructor of ConfigParser accepts overrides and additional parameters, each of which accept lists
of atsim.potentials.config.ConfigParserOverrideTuple.

ConfigParserOverrideTuple is a collections.namedtuple with three properties section, key and

2.3. User Guide 83

atsim_potentials Documentation

value. The first two uniquely identify a location in the potable input whilst value specifies what should be
added or changed.

So to add an additional pair-potential to potable input contained in a file given by fp the ConfigParser would be
defined as:

cp = ConfigParser(fp,
additional=[

ConfigParserOverrideTuple(
"Pair", "O-O", "as.buck 444.7686 0.402 0.0")

])

This would be the same as if the following had been given in the original potable input:

[Pair]
O-O : as.buck 444.7686 0.402 0.0

Similarly to change the tabulation target of a potable file you could use:

cp = ConfigParser(fp,
overrides=[

ConfigParserOverrideTuple(
"Tabulation", "target", "LAMMPS"),

])

A tabulation object is then obtained by combining the ConfigParser with Configuration:

tabulation = Configuration().read_from_parser(cp)

Example

This example shows the use of overrides and additional items. Again the potable input from Splining is used.

[Tabulation]
target : GULP
cutoff : 10.0
dr : 0.01

[Pair]
Si-O : spline(

as.zbl 14 8
>=0.8

exp_spline
>=1.4

as.buck 18003.7572 0.205204 133.5381)

In python_potable_api.py the tabulation target and potential cutoff in the [Tabulation] section are over-
riden. An additional O-O interaction is added to the [Pair] section.

This is then used to create a tabulation object which is finally output to the screen:

import io
import sys

from atsim.potentials.config import (ConfigParser, ConfigParserOverrideTuple,
Configuration)

(continues on next page)

84 Chapter 2. Contents

atsim_potentials Documentation

(continued from previous page)

potable_input = """
[Tabulation]
target : GULP
cutoff : 10.0
dr : 0.01

[Pair]
Si-O : spline(

as.zbl 14 8
>=0.8

exp_spline
>=1.4

as.buck 18003.7572 0.205204 133.5381)
"""

def main():
Make a file like object from the potable input string given above.
potable_input_file = io.StringIO(potable_input)

Create a Configuration() object and read input from the input file.
configuration = Configuration()

This example shows how to override and add items to potable input before it
is passed to the Configuration object.
The tabulation target will be change to 'LAMMPS'
The cutoff will be reduced to 6.5
An additional pair-interaction will be given for O-O

cp = ConfigParser(potable_input_file,
overrides=[

ConfigParserOverrideTuple(
"Tabulation", "target", "LAMMPS"),

ConfigParserOverrideTuple(
"Tabulation", "cutoff", "6.5")

],
additional=[

ConfigParserOverrideTuple(
"Pair", "O-O", "as.buck 444.7686 0.402 0.0")

])

Create the tabulation by passing the Config_Parser object to the Configuration.
→˓read_from_parser method.

tabulation = configuration.read_from_parser(cp)

Now write tabulation to console
tabulation.write(sys.stderr)

if __name__ == "__main__":
main()

2.3. User Guide 85

atsim_potentials Documentation

2.4 Reference

2.4.1 List of Potential Forms

• Born-Mayer (bornmayer)

• Buckingham (buck)

• Buckingham-4 (buck4)

• Constant (constant)

• Coulomb (coul)

• Exponential (exponential)

• Exponential Spline (exp_spline)

• Hydrogen Bond 12-10 (hbnd)

• Lennard-Jones 12-6 (lj)

• Morse (morse)

• Polynomial (polynomial)

• Square Root (sqrt)

• Tang-Toennies (tang_toennies)

• Zero (zero)

• Ziegler-Biersack-Littmark (zbl)

Key to features:

The Features field in the following potential description may contain the following values:

• potential-form - can be used in the [Pair], [EAM-Embed] and [EAM-Density] sections of a potable
input file.

• potential-function - can also be used as a function in sections of input files that accept mathematical expres-
sions.

• deriv - potential form provides an analytical derivative with respect to separation.

• deriv2 - provides an analytical second derivative with respect to separation.

Born-Mayer (bornmayer)

𝑉 (𝑟𝑖𝑗) = 𝐴 exp

(︂
−𝑟𝑖𝑗
𝜌

)︂
potable signature as.bornmayer 𝐴 𝜌

Features potential-form, potential-function, deriv, deriv2

See also:

• Buckingham (buck)

86 Chapter 2. Contents

atsim_potentials Documentation

Buckingham (buck)

Potential form due to R.A. Buckingham [Buckingham1938]

𝑉 (𝑟𝑖𝑗) = 𝐴 exp

(︂
−𝑟𝑖𝑗

𝜌

)︂
− 𝐶

𝑟6𝑖𝑗

potable signature as.buck 𝐴 𝜌 𝐶

Features potential-form, potential-function, deriv, deriv2.

See also:

• Born-Mayer (bornmayer)

• Wikipedia - Buckingham potential

Buckingham-4 (buck4)

Four-range Buckingham potential due to B. Vessal et al. [Vessal1989], [Vessal1993].

𝑉 (𝑟𝑖𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴 exp(−𝑟𝑖𝑗/𝜌), 0 ≤ 𝑟𝑖𝑗 ≤ 𝑟detach

𝑎0 + 𝑎1𝑟𝑖𝑗 + 𝑎2𝑟
2
𝑖𝑗 + 𝑎3𝑟

3
𝑖𝑗 + 𝑎4𝑟

4
𝑖𝑗 + 𝑎5𝑟

5
𝑖𝑗 , 𝑟detach < 𝑟𝑖𝑗 < 𝑟min

𝑏0 + 𝑏1𝑟𝑖𝑗 + 𝑏2𝑟
2
𝑖𝑗 + 𝑏3𝑟

3
𝑖𝑗 , 𝑟min ≤ 𝑟𝑖𝑗 < 𝑟attach

− 𝐶
𝑟6𝑖𝑗

, 𝑟𝑖𝑗 ≥ 𝑟attach

In other words this is a Buckingham potential in which the Born-Mayer component acts at small separations and the
disprsion term acts at larger separation. These two parts are linked by a fifth then third order polynomial (with a
minimum formed in the spline at 𝑟min).

The spline parameters (𝑎0...5 and 𝑏0...3) are subject to the constraints that 𝑉 (𝑟𝑖𝑗), first and second derivatives must
be equal at the boundary points and the function must have a stationary point at 𝑟𝑚𝑖𝑛. The spline coefficients are
automatically calculated by this potential-form.

Note: Due to the complexity of calculating the spline-coefficients this potential form does not have an equivalent in
the atsim.potentials.potentialfunctions module.

potable signature as.buck4 𝐴 𝜌 𝐶 𝑟detach 𝑟min 𝑟attach

Features potential-form, deriv, deriv2

See also:

• Buckingham-4 Spline buck4_spline

• Splining

Constant (constant)

Potential form that always evaluates to a constant value.

𝑉 (𝑟𝑖𝑗) = 𝐶

potable signature as.constant C

Features potential-form, potential-function, deriv, deriv2

2.4. Reference 87

https://en.wikipedia.org/wiki/Buckingham_potential

atsim_potentials Documentation

Coulomb (coul)

Electrostatic interaction between two point charges.

𝑉 (𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗

Note: Constant value appropriate for 𝑟𝑖𝑗 in angstroms and energy in eV.

potable signature as.coul 𝑞𝑖 𝑞𝑗

Features potential-form, potential-function, deriv, deriv2

Exponential (exponential)

General exponential form.

𝑉 (𝑟𝑖𝑗) = 𝐴𝑟𝑛𝑖𝑗

potable signature as.exponential 𝐴 𝑛

Features potential-form, potential-function, deriv, deriv2

Exponential Spline (exp_spline)

Exponential spline function (as used in splining routines).

𝑉 (𝑟𝑖𝑗) = exp
(︀
𝐵0 +𝐵1𝑟𝑖𝑗 +𝐵2𝑟

2
𝑖𝑗 +𝐵3𝑟

3
𝑖𝑗 +𝐵4𝑟

4
𝑖𝑗 +𝐵5𝑟

5
𝑖𝑗

)︀
+ 𝐶

Where 𝐵0, 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐶 are spline coefficients.

potable signature as.exp_spline 𝐵0 𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐶

Features potential-form, potential-function, deriv, deriv2

See also:

• Exponential Spline exp_spline

• Splining

Hydrogen Bond 12-10 (hbnd)

𝑉 (𝑟𝑖𝑗) =
𝐴

𝑟12𝑖𝑗
− 𝐵

𝑟10𝑖𝑗

portable signature as.hbnd 𝐴 𝐵

Features potential-form, potential-function, deriv, deriv2

88 Chapter 2. Contents

atsim_potentials Documentation

Lennard-Jones 12-6 (lj)

Potential form first proposed by John Lennard-Jones in 1924 [Lennard-Jones1924].

𝑉 (𝑟𝑖𝑗) = 4𝜖

(︃
𝜎12

𝑟12𝑖𝑗
− 𝜎6

𝑟6𝑖𝑗

)︃

𝜖 defines depth of potential well and 𝜎 is the separation at which 𝑉 (𝑟𝑖𝑗) is zero.

potable signature as.lj 𝜖 𝜎

Features potential-form, potential-function, deriv, deriv2

See also:

• Wikipedia - Lennard-Jones potential

Morse (morse)

𝑉 (𝑟𝑖𝑗) = 𝐷 [exp (−2𝛾(𝑟𝑖𝑗 − 𝑟*))− 2 exp (−𝛾(𝑟 − 𝑟*))]

−𝐷 is the potential well depth at an equilibrium separation of 𝑟*.

potable signature as.morse 𝛾 𝑟* 𝐷

Features potential-form, potential-function, deriv, deriv2

See also:

• Wikipedia - Morse potential

Polynomial (polynomial)

Polynomial of arbitrary order.

𝑉 (𝑟𝑖𝑗) = 𝐶0 + 𝐶1𝑟𝑖𝑗 + 𝐶2𝑟
2
𝑖𝑗 + · · ·+ 𝐶𝑛𝑟

𝑛
𝑖𝑗

This function accepts a variable number of arguments which are 𝐶0, 𝐶1, . . . , 𝐶𝑛 respectively.

potable signatures as.polynomial 𝐶0...𝐶𝑛

Features potential-form, potential-function, deriv, deriv2

See also:

• Example: parametrising a model using published spline coefficients

Square Root (sqrt)

Potential function is:

𝑈(𝑟𝑖𝑗) = 𝐺
√
𝑟𝑖𝑗

potable signature as.sqrt 𝐺

Features potential-form, potential-function, deriv, deriv2

2.4. Reference 89

https://en.wikipedia.org/wiki/Lennard-Jones_potential
https://en.wikipedia.org/wiki/Morse_potential

atsim_potentials Documentation

Tang-Toennies (tang_toennies)

This potential form was derived to describe the Van der Waal’s interactions between the noble gases (He to Rn) by
Tang and Toennies [Tang2003].

This has the following form:

𝑉 (𝑟) = 𝐴 exp(−𝑏𝑟)−
𝑁∑︁

𝑛=3

𝑓2𝑁 (𝑏𝑅)
𝐶2𝑁

𝑅2𝑁

Where:

𝑓2𝑁 (𝑥) = 1− exp(−𝑥)

2𝑛∑︁
𝑘=0

𝑥𝑘

𝑘!

potable signature as.tang_toennies 𝐴 𝑏 𝐶6 𝐶8 𝐶10

Features potential-form, potential-function, deriv, deriv2

Zero (zero)

Potential form which returns zero for all separations.

𝑉 (𝑟) = 0

potable signature as.zero

Features potential-form, potential-function, deriv, deriv2

Ziegler-Biersack-Littmark (zbl)

Ziegler-Biersack-Littmark screened nuclear repulsion for describing high energy interactions [Ziegler2015].

𝑉 (𝑟) =

1

4𝜋𝜖0

𝑍1

𝑍2
𝜑(𝑟/𝑎) + 𝑆(𝑟)

𝑎 =

0.46850

𝑍0.23
𝑖 + 𝑍0.23

𝑗

𝜑(𝑥) =

0.18175 exp(−3.19980𝑥)

+0.50986 exp(−0.94229𝑥)

+0.28022 exp(−0.40290𝑥)

+0.02817 exp(−0.20162𝑥)

Where 𝑍𝑖 and 𝑍𝑗 are the atomic numbers of two species.

potable signature as.zbl 𝑍𝑖 𝑍𝑗

Features potential-form, potential-function, deriv, deriv2

90 Chapter 2. Contents

atsim_potentials Documentation

2.4.2 potable input format

[EAM-ADP-Dipole]

Added in: 0.4.0

Section defining the dipole functions for angular dependent (ADP) EAM models. See ADP Style EAM Models.

Potential forms are defined between pairs of species in the same way as in the [Pair] section:

SPECIES_A-SPECIES_B : POTENTIAL_FORM PARM_1 PARAM_2 ... PARAM_N

Where:

• SPECIES_A-SPECIESB gives the pair of species for which the dipole function is defined. e.g. Al-Cu would
define a function for aluminium and copper.

• POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N defines the potential form in the same way as in
the [Pair] section.

[EAM-ADP-Quadrupole]

Added in: 0.4.0

Section defining the quadrupole functions for angular dependent (ADP) EAM models. See ADP Style EAM Models.

Potential forms are defined between pairs of species in the same way as in the [Pair] section:

SPECIES_A-SPECIES_B : POTENTIAL_FORM PARM_1 PARAM_2 ... PARAM_N

Where:

• SPECIES_A-SPECIESB gives the pair of species for which the dipole function is defined. e.g. Al-Cu would
define a function for aluminium and copper.

• POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N defines the potential form in the same way as in
the [Pair] section.

[EAM-Density]

The density functions for embedded atom models are specified in this section. The input takes different forms depend-
ing on whether the standard embedded atom model or Finnis-Sinclair variant are being used.

Both standards have the following general form:

INTERACTION : POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N

Where:

• POTENTIAL_FORM PARAM_1 ... : density functions use the same rules to instantiate potential forms as in
the [Pair] section.

• INTERACTION specifies the density this potential-form represents:

– Standard EAM: standard EAM uses the same function for the density surrounding any central
atom of any given species. Consequently in these cases INTERACTION is a single species label.
So the density function of aluminium would take the form:

2.4. Reference 91

atsim_potentials Documentation

[EAM-Density]
Al : POTENIAL_FORM ...

– Finnis-Sinclair: in this variant of EAM density functions change depending on types of the
cental atom and surrounding atom to be embedded. Consequently the following form is used:

[EAM-Density]
A->B : POTENTIAL_FORM ...

– Where A is the central atom type and B is the type of the embedding atom. To define a density
function for the density of nickel being embedded at an aluminium site this would be used:

[EAM-Density]
Al->Ni : POTENTIAL_FORM ...

– It should be noted that A->B and B->A must be specified separately even if the same density
function is used for both. If not given null (i.e. as.zero) density functions are implicitly
defined for missing interactions.

See also:

• Many body models

[EAM-Embed]

Embedding functions for many-body models are defined in this section.

Entries have the following form:

SPECIES : POTENTIAL_FORM PARAM_1 PARAM_2 ... PARAM_N

Where:

• SPECIES is atomic type at which the surrounding electron density will be embedded using the specified poten-
tial form.

• POTENTIAL_FORM PARAM_1 ... : embedding functions instantiate potential forms in the same way as in
the [Pair] section.

Note: Embedding functions are tabulated using rho values. The resolution and extent of functions in rho are defined
by drho, nrho and cutoff_rho in the [Tabulation] section.

See also:

• Many body models

[Pair]

Pair-potentials are defined in this section of the file. See [Pair] section for full description.

See also:

See also:

• Potential-forms are parametrised in this section:

– List of Potential Forms - reference list of pre-defined potential forms.

92 Chapter 2. Contents

atsim_potentials Documentation

– Custom functions are defined in the [Potential-Form] section:

* [Potential-Form] section - custom potential-forms are introduced here.

* [Potential-Form] - reference information for [Potential-Form] section.

• Potential-modifiers are described in thiese sections:

– Potential modifiers - are introduced here.

– List of Potential Modifiers - list of potential-modifiers.

[Potential-Form]

Custom functional forms are defined in this section. See [Potential-Form] section where it is introduced.

See also:

• The syntax used by the mathematical expressions defined in the [Potential-Form] is defined here.

Python maths functions supported in mathematical expressions

The mathematical expressions used in the [Potential-Form] section of potable input allow a subset of func-
tions from the math module to be used. These are accesible via the pymath.* namespace prefix. An example of this
is provided here: Formula syntax

The list of functions accessible through pymath.* are below. In general, functions that return multiple values do not
appear:

• acos(x)

• acosh(x)

• asinh(x)

• atan(x)

• atan2(x,y)

• atanh(x)

• cos(x)

• cosh(x)

• degrees(x)

• exp(x)

• factorial(x)

• fsum(*args)

– This function is called slightly differently than in native Python.

– In Python you pass in a single iterable to this function. This expression: math.fsum([1,2,3,4])
would be written pymath.fsum(1,2,3,4) in a potable formula.

• gcd(a,b)

• hypot(x,y)

• ldexp(a,b)

• log(*args)

2.4. Reference 93

http://www.partow.net/programming/exprtk/index.html
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html#math.acos
https://docs.python.org/3/library/math.html#math.acosh
https://docs.python.org/3/library/math.html#math.asinh
https://docs.python.org/3/library/math.html#math.atan
https://docs.python.org/3/library/math.html#math.atan2
https://docs.python.org/3/library/math.html#math.atanh
https://docs.python.org/3/library/math.html#math.cos
https://docs.python.org/3/library/math.html#math.cosh
https://docs.python.org/3/library/math.html#math.degrees
https://docs.python.org/3/library/math.html#math.exp
https://docs.python.org/3/library/math.html#math.factorial
https://docs.python.org/3/library/math.html#math.fsum
https://docs.python.org/3/library/math.html#math.gcd
https://docs.python.org/3/library/math.html#math.hypot
https://docs.python.org/3/library/math.html#math.ldexp
https://docs.python.org/3/library/math.html#math.log

atsim_potentials Documentation

• log10(x)

• log1p(x)

• log2(x)

• pow(x,a)

• radians(x)

• sin(x)

• sinh(x)

• sqrt(x)

• sqrt(x)

• tan(x)

• tanh(x)

• trunc(x)

[Tabulation]

The section of the input file which defines how a model should be tabulated.

Fields

cutoff

Item cutoff

Format float

Description Defines upper bound of functions tabulated in terms of separation. This is used in a pair
with ns tabulated in terms of separation. This directive is used together with nr (number of rows) or
dr (step size) to give the extent and resolution of a tabulated function.

cutoff_rho

Item cutoff_rho

Format float

Description Used to define cutoff for functions tabulated in terms of electron density (rho) e.g. for [EAM-
Embed] functions. This option defines the upper bound of rho values included in the tabulation of
these functions. This directive is used together with nrho or cutoff_rho to define resolution and
extent of density functions.

dr

Item dr

Format float

94 Chapter 2. Contents

https://docs.python.org/3/library/math.html#math.log10
https://docs.python.org/3/library/math.html#math.log1p
https://docs.python.org/3/library/math.html#math.log2
https://docs.python.org/3/library/math.html#math.pow
https://docs.python.org/3/library/math.html#math.radians
https://docs.python.org/3/library/math.html#math.sin
https://docs.python.org/3/library/math.html#math.sinh
https://docs.python.org/3/library/math.html#math.sqrt
https://docs.python.org/3/library/math.html#math.sqrt
https://docs.python.org/3/library/math.html#math.tan
https://docs.python.org/3/library/math.html#math.tanh
https://docs.python.org/3/library/math.html#math.trunc

atsim_potentials Documentation

Description Defines the step size between rows of functions tabulated in terms of separation. This direc-
tive is used together with nr or cutoff to define resolution and extent of these functions.

drho

Item drho

Format float

Description Used to define resolution of functions tabulated in terms of electron density (rho) e.g. for
[EAM-Embed] functions. This option defines the rho increment for such functions. This directive is
used together with nrho or cutoff_rho to define resolution and extent of these functions.

nr

Item nr

Format int

Description Defines the number of rows when functions are tabulated in terms of separation. This direc-
tive is used either with dr or cutoff to give the range and resolution of the tabulated function.

nrho

Item nrho

Format int

Description Used to define cutoff (in conjunction with drho) for functions tabulated in terms of elec-
tron density (rho) e.g. for [EAM-Embed] functions. This option defines the number of rho values
included in the tabulation of these functions. This directive is used together with nrho or cutoff_rho
to define resolution and extent of density functions.

target

Item target

Format str

Valid Options DL_POLY|DLPOLY, DL_POLY_EAM_fs, DL_POLY_EAM, eam_adp, excel,
excel_eam, excel_eam_fs, GULP, LAMMPS_eam_alloy|setfl, LAMMPS, setfl_fs

Description Specifies the format that tabulation will be written in.

[Table-Form]

The [Table-Form] section is used to define functions from pre-tabulated data that may be used in the same way as
a custom [Potentia-Form]. Data is specified using the x and y options or the xy option.

To provide a continuous function interpolation is performed between data points, the interpolation method is set using
the interpolation option.

2.4. Reference 95

atsim_potentials Documentation

Naming Table Form

To allow a [Table-Form] to be used in sections such as [Pair], [EAM-Embed] and [EAM-Density] it is
necessary to give it a unique label. This is done by including it in the section header following a colon:

[Table-Form:NAME]

Therefore to create a [Table-Form] named tabulated the following definition could be used:

[Table-Form:tabulated]
interpolation: cubic_spline
x : 0.0 1.0 2.0 3.0
y : 0.0 2.0 3.0 4.0

This could then be referenced in another section using this name. e.g.

[Pair]
Si-O : tabulated

Fields

interpolation

Item interpolation

Format Currently this option only accepts cubic_spline

Description Sets interpolation type.

x

Item x

Format List of space separated float values.

Description Define x values of tabulated data. Must be used with y option.

Example To define a linear function the following could be used:

[Table-Form:linear]
interpolation: cubic_spline
x : 0.0 1.0 2.0 3.0
y : 0.0 2.0 3.0 4.0

xy

Item xy

Format List of space separated float values.

Description Allows x and y values of data to be specified as series of pairs.

Example To define a linear function the following could be used:

96 Chapter 2. Contents

atsim_potentials Documentation

[Table-Form:linear]
interpolation: cubic_spline
xy: 0.0 0.0

1.0 2.0
2.0 3.0
3.0 4.0

y

Item y

Format List of space separated float values.

Description Define y values of tabulated data. Must be used with x option.

Example See documentation for x option.

[Variables]

Added in: 0.4.0

This section allows values to be specified for use in multiple places in the potable file. Values are actually string
snippets with variable place-holders replaced throughout the file before potential tabulation is performed. Variables
are specified like this:

[Variables]
VARIABLE_NAME_1 : VARIABLE_VALUE_1
VARIABLE_NAME_2 : VARIABLE_VALUE_2
...
VARIABLE_NAME_N : VARIABLE_VALUE_N

These values may then be referenced elsewhere in the file through place-holders with the this form
${VARIABLE_NAME}. With the place-holder replaced with the value from the [Variables] section before tabu-
lation is performed.

This feature makes use of the string interpolation from Python’s configparser module using the extended inter-
polation syntax. This allows values from other sections in the file to be referenced using this placeholder format:
${SECTION:NAME}.

Example

[Variables]
nsteps : 10000
rho : 0.32

[Tabulation]
target : LAMMPS
nr : ${nsteps}
dr : 0.1

[Species]
Gd.atomic_number : 64
O.atomic_number : 8

(continues on next page)

2.4. Reference 97

https://docs.python.org/3/library/configparser.html#configparser.ExtendedInterpolation
https://docs.python.org/3/library/configparser.html#configparser.ExtendedInterpolation

atsim_potentials Documentation

(continued from previous page)

[Pair]
Gd-O : spline(

as.zbl ${Species:Gd.atomic_number} ${Species:O.atomic_number}
>=0.8

as.buck 1000.0 ${rho} 0.0)
O-O : as.buck 500 ${rho} 32.0

2.4.3 List of Potential Modifiers

Potential modifiers are described here: Potential modifiers.

A list of available potential modifiers is provided here.

pow()

Modifier that raises each potential-form to the power of the next.

If the potentials provide analytical derivatives, the pow() modifier will combine these correctly.

Example:

To take the square of the sum() of a series of potential forms you could use:

[Pair]
This would evaluate to 0.16
A-B : pow(sum(as.constant -1, as.constant 0.1, as.constant 0.5),

as.constant 2)

pow() can take more than two potential forms as its arguments:

[Pair]
This would evaluate to 2^(2^3) = 256
A-B : pow(as.constant 2, as.constant 3, as.constant 2)

You aren’t restricted to using constant values as arguments:

[Pair]
This is equivalent to 2^(0.5r + r^2)
A-B : pow(as.constant 2, as.polynomial 0 0.5 1)

product()

Modifier that takes the product of the potential-forms provided to it as arguments.

If the potentials provide analytical derivatives the product() modifier will combine these correctly.

Example:

Any number of potential instances can be multiplied by each other:

98 Chapter 2. Contents

atsim_potentials Documentation

[Pair]
Evaluates to 16
A-A : product(as.constant 2.0, as.constant 2.0, as.constant 4.0)

Apply a soft-cutoff at 2.5 Angs to a Buckingham potential
This defines a custom function in the [Potential-Form] section
based on the complementary error function for this purpose.
B-B : product(as.buck 1000.0 0.2 32.0,

truncate 2.5)

[Potential-Form]
truncate(rij, cutoff) = erfc(4*(rij-cutoff))/2.0

spline()

Modifier that smoothly splines between two potential forms by linking them with an intermediate spline.

spline() takes a single argument which is defined as a multi-range potential. This must define three ranges:

1. Start potential

2. Interpolating spline

3. End potential

The Interpolating spline section has the form:

SPLINE_LABEL SPLINE_PARAMETERS

Where the SPLINE_LABEL defines the type of spline to be used and the (optional) SPLINE_PARAMETERS is a list
of space separated options taken by the spline function.

A list of spline types usable with SPLINE_LABEL is now given:

buck4_spline

Spline Signature buck4_spline 𝑟min

Description Combination of a fifth and third order polynomial joined by a stationary point at 𝑟min. This
is the spline used in the well-known four-range Buckingham potential form.

See also

• Buckingham-4 Spline buck4_spline

• Buckingham-4 (buck4)

exp_spline

Spline Signature exp_spline

Description Exponential of fifth order polynomial.

See also

• Exponential Spline exp_spline

• Exponential Spline (exp_spline)

2.4. Reference 99

atsim_potentials Documentation

Example:

A configuration string might be defined as:

[Pair]

Si-O : spline(>0 as.zbl 14 8 >=0.8 exp_spline >=1.4 as.buck 180003 0.3 32.0)

This would create a zbl and Buckingham potential connected by an exponential spline when r is between 0.8 and 1.4.

See also:

• Splining is introduced in more detail here: Splining.

• List of examples:

– Example: splining to the zbl potential form using exp_spline.

– Example: redefining the Morelon model using buck4_spline.

sum()

Modifier that sums all the potentials given as arguments.

If the potentials provide analytical derivatives the sum() modifier will combine these correctly.

Example:

Any number of potential instances can be summed:

[Pair]
Evaluates to 3
A-A : sum(as.constant 1.0, as.constant 2.0)
Evaluates to 6
B-B : sum(as.constant 1.0, as.constant 2.0, as.constant 3.0)

See also:

• This modifier is used in the following examples:

– Quick-Start

– Example: using custom-potential forms to define Basak potential

trans()

Modifier that applies the following transformation to a given potential function:

potential(r+X)

Where X is the transformation value.

This modifier takes two arguments, the first is a potential form instance. The second must be an instance of as.
constant that takes X as its argument.

100 Chapter 2. Contents

atsim_potentials Documentation

Example

To shift a Buckingham paair potential two angstroms to the left the trans() modifier could be used like this:

[Pair]
A-B : trans(as.buck 1000.0 0.1 32.0, as.constant 2)

2.4.4 Command Line Tools

potable

The potable tool is the interface for working with potential definition files. In addition to converting a potential
model definition into a tabulation it allows their contents to be queried, filtered, overridden and plotted.

Usage

potable [-h]
[--list-items | --list-item-labels | --item-value SECTION_NAME:KEY]
[--include-species [SPECIES [SPECIES ...]] | --exclude-species
[SPECIES [SPECIES ...]]]
[--override-item [SECTION_NAME:KEY=VALUE [SECTION_NAME:KEY=VALUE ...]]]
[--add-item [SECTION_NAME:KEY=VALUE [SECTION_NAME:KEY=VALUE ...]]]
[--remove-item [SECTION_NAME:KEY [SECTION_NAME:KEY ...]]]
POTENTIAL_DEFN_FILE [OUTPUT_FILE]

Tabulate potential models for common atomistic simulation codes. This is part of the atsim.potentials package.

Positional Arguments:

• POTENTIAL_DEFN_FILE File containing definition of potential model.

• OUTPUT_FILE File into which data will be tabulated.

Optional Arguments:

-h, --help
show this help message and exit

Query

Query items in the configuration file

--list-items, -l
List items in configuration file to STD_OUT. One is listed per line with format SECTION_NAME:KEY=VALUE

--list-item-labels
List item in configuration file to STD_OUT. One item per line with format SECTION_NAME:KEY

--item-value SECTION_NAME:KEY
Return the value for given item in configuration file

2.4. Reference 101

atsim_potentials Documentation

Filter

Filter items from the configuration file

--include-species [SPECIES [SPECIES ...]]
If specified, only those SPECIES provided will be included in tabulation.

--exclude-species [SPECIES [SPECIES ...]]
SPECIES provided to this option will NOT be included in tabulation.

Override

Add or override values in the configuration file

--override-item [SECTION_NAME:KEY=VALUE [SECTION_NAME:KEY=VALUE ...]], -e [SECTION_NAME:KEY=VALUE [SECTION_NAME:KEY=VALUE ...]]
Use VALUE for item SECTION_NAME:KEY instead of value contained in the configuration file

--add-item [SECTION_NAME:KEY=VALUE [SECTION_NAME:KEY=VALUE ...]], -a [SECTION_NAME:KEY=VALUE [SECTION_NAME:KEY=VALUE ...]]
Add item to configuration file

--remove-item [SECTION_NAME:KEY [SECTION_NAME:KEY ...]], -r [SECTION_NAME:KEY [SECTION_NAME:KEY ...]]
Remove item from configuration file

Examples:

Various examples of the use of this tool are given throughout the documentation:

• Quick-Start.

• Quick Start: Generating Basak Tabulation for DL_POLY .

• Quick Start: Generating Basak Tabulation for LAMMPS.

• Quick Start: Generating Basak Tabulation for GULP. This provides an example of the --override-item
option.

• User Guide: Making and Testing the Tabulation - Sutton Ag Example.

• Troubleshooting Potable Input Files: provides an example of the --override-item option.

2.4.5 API Reference

This page contains auto-generated API reference documentation1.

atsim

Subpackages

atsim.potentials

A collection of classes and functions related to defining potentials

1 Created with sphinx-autoapi

102 Chapter 2. Contents

https://github.com/readthedocs/sphinx-autoapi

atsim_potentials Documentation

Subpackages

atsim.potentials.config

Package Contents

Classes

ConfigParser(fp, overrides=[], additional=[]) Performs initial stage (tokenizing) of generating a potential
model

FilteredConfigParser(config_parser, exclude=[],
include=[])

Class that wraps around ConfigParser instances and

Potential_Form_Registry(cfg, regis-
ter_standard=False, register_pymath_functions=False)

Factory class that takes [Potential-Form] and [Table-Form]
definitions

Modifier_Registry() Registry of factories for potential modifiers
Configuration() Factory class that allows Tabulation objects to be built from

.ini files

class atsim.potentials.config.ConfigParser(fp, overrides=[], additional=[])
Bases: object

Performs initial stage (tokenizing) of generating a potential model suitable for tabulation functions.

pair
Returns the contents of the config file’s [Pair] section.

Returns List of tuples of (SpeciesPair, potential_form_label, params) Where params = [p1, p2,
. . . , pn] and p1 etc are the potential parameters

potential_form
Return the contents of the config file’s [Potential-Form] section.

Returns List of (PotentialFormSignature, formula_string) pairs.

tabulation
Return the parsed contents of the config file’s [Tabulation] section.

This defines what type of model (pair, EAM) the config file contains and also how the model should be
tabulated.

Returns _Tabulation_Section object

table_form
Returns parsed content of config file’s [Table-Form] section.

This allows pre-tabulated data to be used within atsim.potentials.

Returns List of TableFormTuple instance tuples.

eam_embed
Return the parsed contents of the configuration file’s [EAM-Embed] section.

Returns List of (SPECIES, potential_form_label, params) Where params = [p1, p2, . . . , pn] and
p1 etc are the embedding function parameters)

eam_density
Return the parsed contents of the configuration file’s [EAM-Density] section.

2.4. Reference 103

atsim_potentials Documentation

Returns List of (SPECIES, potential_form_label, params) Where params = [p1, p2, . . . , pn] and
p1 etc are the density function parameters)

eam_density_fs
Return the parsed contents of the configuration file’s [EAM-Density] section.

This assumes Finnis-Sinclair parsing rules. This means that SPECIES (below) is parsed as a EAMFSDen-
sitySpeciesTuple with from_species and to_species attributes.

Returns List of (SPECIES, potential_form_label, params) Where params = [p1, p2, . . . , pn] and
p1 etc are the density function parameters)

parsed_sections
Returns a list of relevant sections found inside configuration file.

Names are returned as the ConfigParser attribute names which could be used to access each parsed section.
So [Pair] becomes pair and [EAM-Density] is eam_density.

Returns List of attribute names representing parseable sections of the configuration file

orphan_sections
Returns list of section keys, in current configuration file, that are not relevant to the ConfigParser
class.property

Returns List of section labels.

raw_config_parser

species
Return reference data for atomic species.

Data is returned as a dictionary relating each species label to a dictionary mapping property name to
propety value.

Returns Dictionary of dictionaries.

parse_pair_like(self, section_name)
Parse a section as if it contains pair potentials.

Parameters section_name – Name of section that should be parsed in the same way as the
[Pair] section.

Returns List of tuples of (SpeciesPair, potential_form_label, params) Where params = [p1, p2,
. . . , pn] and p1 etc are the potential parameters

atsim.potentials.config.ConfigParserOverrideTuple

exception atsim.potentials.config.ConfigOverrideException
Bases: atsim.potentials.config._common.ConfigParserException

Common base class for all non-exit exceptions.

class atsim.potentials.config.FilteredConfigParser(config_parser, exclude=[], in-
clude=[])

Bases: wrapt.ObjectProxy

Class that wraps around ConfigParser instances and filters out entries for particular, unwanted species

pair

eam_embed

eam_density

eam_density_fs

104 Chapter 2. Contents

atsim_potentials Documentation

class atsim.potentials.config.Potential_Form_Registry(cfg, regis-
ter_standard=False, regis-
ter_pymath_functions=False)

Bases: object

Factory class that takes [Potential-Form] and [Table-Form] definitions from ConfigParser and turns them into
Potential_Form objects

registered
Returns the labels for the potentials registered here.

__getitem__(self, k)

class atsim.potentials.config.Modifier_Registry
Bases: object

Registry of factories for potential modifiers

__getitem__(self, k)

class atsim.potentials.config.Configuration
Bases: object

Factory class that allows Tabulation objects to be built from .ini files

read(self, fp)
Read potential data from the file object fp and return a PairTabulation or EAMTabulation object.

Params fp File like object containing potential information.

Returns Tabulation object

read_from_parser(self, cp)
Read potential data from the ConfigParser object cp and return a PairTabulation or EAMTabulation in-
stance.

Parameters cp – atsim.potentials.config.ConfigParser instance.

Returns Tabulation object

exception atsim.potentials.config.ConfigParserException
Bases: atsim.potentials.config._common.ConfigurationException

Common base class for all non-exit exceptions.

exception atsim.potentials.config.Potential_Form_Registry_Exception
Bases: atsim.potentials.config._common.ConfigurationException

Common base class for all non-exit exceptions.

exception atsim.potentials.config.Potential_Form_Exception
Bases: atsim.potentials.config._common.ConfigurationException

Common base class for all non-exit exceptions.

atsim.potentials.referencedata

Package Contents

Classes

2.4. Reference 105

atsim_potentials Documentation

Reference_Data(extra_data={}) Class providing data about atomic species

class atsim.potentials.referencedata.Reference_Data(extra_data={})
Bases: object

Class providing data about atomic species

get(self, species, property_name)
Get a property value for a given species.

Parameters

• species – Species label.

• property_name – Propety identifier.

Returns Property value for given combination of species and property name.

exception atsim.potentials.referencedata.Unknown_Species_Exception
Bases: atsim.potentials.referencedata._reference_data.
Reference_Data_Exception

Common base class for all non-exit exceptions.

exception atsim.potentials.referencedata.Unknown_Property_Exception
Bases: atsim.potentials.referencedata._reference_data.
Reference_Data_Exception

Common base class for all non-exit exceptions.

exception atsim.potentials.referencedata.Reference_Data_Exception
Bases: Exception

Common base class for all non-exit exceptions.

atsim.potentials.spline

Package Contents

Classes

Spline_Point(potential_function, r) Class for the attachment and detachment points of potential
objects and region to be splined

Exp_Spline(detach_point, attach_point) Class for represention splines of the form:
Buck4_Spline(detach_point, attach_point, r_min) Class for representing the splined part of the four ranged

Buckingham potential.
Custom_SplinePotential(spline) Callable to allow splining of one potential to another
SplinePotential(startPotential, endPotential, detach-
mentX, attachmentX)

Callable to allow splining of one potential to another using
an exponential spline

Buck4_SplinePotential(startPotential, endPoten-
tial, detachmentX, attachmentX, r_min)

Callable to allow splining of one potential to another using
the Buck4 spline type

Functions

106 Chapter 2. Contents

atsim_potentials Documentation

gradient(func, h=1e-06) Function wrapper that returns derivative of func.

atsim.potentials.spline.gradient(func, h=1e-06)
Function wrapper that returns derivative of func.

If the callable, func provides a .deriv(r) method this will be used to evaluate the derivative of the function, if not
the returned function will use num_deriv() in gradient evaluation.

If the callable additionally provides a .deriv2(r) method, representing its second derivative, the function returned
by this routine will have a deriv() method which will delegate to func.deriv2() when called.

By providing .deriv() and .deriv2() on the func callable analytical descriptions of a potential’s first and second
derivatives may be specified.

Parameters

• func – Function to be wrapped

• h – Step size used when performing numerical differentiation

Returns Function that returns derivative of func

atsim.potentials.spline.polynomial

atsim.potentials.spline.exp_spline

class atsim.potentials.spline.Spline_Point(potential_function, r)
Bases: object

Class for the attachment and detachment points of potential objects and region to be splined

potential_function
Potential function

r
Value at which splining takes place

v
Value of potential_function at r

deriv
First derivative of potential_function: dv/dr(r)

deriv2
Second derivative of potential_function: d2v/dr^2(r)

deriv_callable

deriv2_callable

class atsim.potentials.spline.Exp_Spline(detach_point, attach_point)
Bases: object

Class for represention splines of the form:

𝑈(𝑟𝑖𝑗) = exp
(︀
𝐵0 +𝐵1𝑟𝑖𝑗 +𝐵2𝑟

2
𝑖𝑗 +𝐵3𝑟

3
𝑖𝑗 +𝐵4𝑟

4
𝑖𝑗 +𝐵5𝑟

5
𝑖𝑗

)︀
+ 𝐶

The spline coefficients 𝐵0...5 and C can be obtained using the spline_coefficients() property.

detach_point
Spline_Point giving start of splined region

attach_point
Spline_Point giving end of splined region

2.4. Reference 107

atsim_potentials Documentation

spline_coefficients
Coefficients for spline_function

__call__(self, r)

deriv(self, r)

deriv2(self, r)

class atsim.potentials.spline.Buck4_Spline(detach_point, attach_point, r_min)
Bases: object

Class for representing the splined part of the four ranged Buckingham potential.

Between the detachment point and r_min this is a 5th order polynomial:

𝑈(𝑟𝑖𝑗) = 𝐴0 +𝐴1𝑟𝑖𝑗 +𝐴2𝑟
2
𝑖𝑗 +𝐴3𝑟

3
𝑖𝑗 +𝐴4𝑟

4
𝑖𝑗 +𝐴5𝑟

5
𝑖𝑗

and between r_min and the re-attachment point a 3rd order spline is used:

𝑈(𝑟𝑖𝑗) = 𝐵0 +𝐵1𝑟𝑖𝑗 +𝐵2𝑟
2
𝑖𝑗 +𝐵3𝑟

3
𝑖𝑗

The spline coefficients 𝐴0..5 and 𝐵0..3 are solved such that the the spline values match with the potential func-
tions at the detach and re-attachment points and r_min. They are continuous in their first and second derivatives
across these points and where the two splines meet at r_min. Finally, the derivative at r_min is set to be 0 with
the aim of creating a minimum.

detach_point
Spline_Point giving start of splined region

attach_point
Spline_Point giving end of splined region

r_min
Position of minimum

spline_coefficients
Spline coefficients as list of form [A_0, A_1, A_2, A_3, A_4, A_5, B_0, B_1, B_2, B_3]

spline5
Callable (atsim.potentials.potentialfunctions.polynomial) object representing the fifth order section of the
buck4 spline - between detach_point and r_min

spline3
Callable (atsim.potentials.potentialfunctions.polynomial) object representing the fifth order section of the
buck4 spline - between detach_point and r_min

__call__(self, r)

deriv(self, r)

deriv2(self, r)

class atsim.potentials.spline.Custom_SplinePotential(spline)
Bases: object

Callable to allow splining of one potential to another

startPotential

Returns Function defining potential for separations < detachmentX

endPotential

Returns Function defining potential for separations > attachmentX

108 Chapter 2. Contents

atsim_potentials Documentation

interpolationFunction

Returns Spline object connecting startPotential and endPotential for separations
detachmentX < rij < attachmentX

detachmentX

Returns Point at which spline should start

attachmentX

Returns Point at which spline should end

splineCoefficients

Returns Tuple containing the seven coefficients of the spline polynomial

__call__(self, rij)

Parameters rij – separation at which to evaluate splined potential

Returns spline value

class atsim.potentials.spline.SplinePotential(startPotential, endPotential, detachmentX,
attachmentX)

Bases: atsim.potentials.spline.Custom_SplinePotential

Callable to allow splining of one potential to another using an exponential spline

class atsim.potentials.spline.Buck4_SplinePotential(startPotential, endPotential, de-
tachmentX, attachmentX, r_min)

Bases: atsim.potentials.spline.Custom_SplinePotential

Callable to allow splining of one potential to another using the Buck4 spline type

atsim.potentials.tools

Subpackages

atsim.potentials.tools.potable

Front-end script for atsim.potentials. Allows potentials to be tabulated using simple .ini based configuration files

Package Contents

Classes

ConfigParser(fp, overrides=[], additional=[]) Performs initial stage (tokenizing) of generating a potential
model

FilteredConfigParser(config_parser, exclude=[],
include=[])

Class that wraps around ConfigParser instances and

Functions

main()

2.4. Reference 109

atsim_potentials Documentation

atsim.potentials.tools.potable.ConfigParserOverrideTuple

class atsim.potentials.tools.potable.ConfigParser(fp, overrides=[], additional=[])
Bases: object

Performs initial stage (tokenizing) of generating a potential model suitable for tabulation functions.

pair
Returns the contents of the config file’s [Pair] section.

Returns List of tuples of (SpeciesPair, potential_form_label, params) Where params = [p1, p2,
. . . , pn] and p1 etc are the potential parameters

potential_form
Return the contents of the config file’s [Potential-Form] section.

Returns List of (PotentialFormSignature, formula_string) pairs.

tabulation
Return the parsed contents of the config file’s [Tabulation] section.

This defines what type of model (pair, EAM) the config file contains and also how the model should be
tabulated.

Returns _Tabulation_Section object

table_form
Returns parsed content of config file’s [Table-Form] section.

This allows pre-tabulated data to be used within atsim.potentials.

Returns List of TableFormTuple instance tuples.

eam_embed
Return the parsed contents of the configuration file’s [EAM-Embed] section.

Returns List of (SPECIES, potential_form_label, params) Where params = [p1, p2, . . . , pn] and
p1 etc are the embedding function parameters)

eam_density
Return the parsed contents of the configuration file’s [EAM-Density] section.

Returns List of (SPECIES, potential_form_label, params) Where params = [p1, p2, . . . , pn] and
p1 etc are the density function parameters)

eam_density_fs
Return the parsed contents of the configuration file’s [EAM-Density] section.

This assumes Finnis-Sinclair parsing rules. This means that SPECIES (below) is parsed as a EAMFSDen-
sitySpeciesTuple with from_species and to_species attributes.

Returns List of (SPECIES, potential_form_label, params) Where params = [p1, p2, . . . , pn] and
p1 etc are the density function parameters)

parsed_sections
Returns a list of relevant sections found inside configuration file.

Names are returned as the ConfigParser attribute names which could be used to access each parsed section.
So [Pair] becomes pair and [EAM-Density] is eam_density.

Returns List of attribute names representing parseable sections of the configuration file

orphan_sections
Returns list of section keys, in current configuration file, that are not relevant to the ConfigParser
class.property

110 Chapter 2. Contents

atsim_potentials Documentation

Returns List of section labels.

raw_config_parser

species
Return reference data for atomic species.

Data is returned as a dictionary relating each species label to a dictionary mapping property name to
propety value.

Returns Dictionary of dictionaries.

parse_pair_like(self, section_name)
Parse a section as if it contains pair potentials.

Parameters section_name – Name of section that should be parsed in the same way as the
[Pair] section.

Returns List of tuples of (SpeciesPair, potential_form_label, params) Where params = [p1, p2,
. . . , pn] and p1 etc are the potential parameters

class atsim.potentials.tools.potable.FilteredConfigParser(config_parser, ex-
clude=[], include=[])

Bases: wrapt.ObjectProxy

Class that wraps around ConfigParser instances and filters out entries for particular, unwanted species

pair

eam_embed

eam_density

eam_density_fs

exception atsim.potentials.tools.potable.ConfigurationException
Bases: Exception

Common base class for all non-exit exceptions.

atsim.potentials.tools.potable.main()

Submodules

atsim.potentials.eam_tabulation

Module Contents

Classes

SetFL_EAMTabulation(potentials, eam_potentials,
cutoff, nr, cutoff_rho, nrho)

Class for tabulating setfl formatted embedded atom poten-
tials suitable

SetFL_FS_EAMTabulation(potentials,
eam_potentials, cutoff, nr, cutoff_rho, nrho)

Class for tabulating setfl Finnis-Sinclair formatted embed-
ded atom potentials suitable

TABEAM_EAMTabulation(potentials, eam_potentials,
cutoff, nr, cutoff_rho, nrho)

Class for tabulating TABEAM formatted embedded atom
potentials for the DL_POLY code.

Continued on next page

2.4. Reference 111

atsim_potentials Documentation

Table 2.13 – continued from previous page
TABEAM_FinnisSinclair_EAMTabulation(potentials,
eam_potentials, cutoff, nr, cutoff_rho, nrho)

Class for tabulating EEAM TABEAM formatted Finnis-
Sinclair style embedded atom potentials for the DL_POLY
code.

Excel_EAMTabulation(potentials, eam_potentials,
cutoff, nr, cutoff_rho, nrho)

Class for dumping EAM model into a spreadsheet

Excel_FinnisSinclair_EAMTabulation(potentials,
eam_potentials, cutoff, nr, cutoff_rho, nrho)

Class for dumping EAM model into a spreadsheet

ADP_EAMTabulation(potentials, eam_potentials,
dipole_potentials, quadrupole_potentials, cutoff, nr,
cutoff_rho, nrho)

Class for tabulating setfl formatted embedded atom poten-
tials with the ADP, angular dependent extension,

class atsim.potentials.eam_tabulation.SetFL_EAMTabulation(potentials,
eam_potentials, cutoff,
nr, cutoff_rho, nrho)

Bases: atsim.potentials.eam_tabulation._EAMTabulationAbstractbase

Class for tabulating setfl formatted embedded atom potentials suitable for use with LAMMPS’ pair_style
eam/alloy

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

class atsim.potentials.eam_tabulation.SetFL_FS_EAMTabulation(potentials,
eam_potentials,
cutoff, nr, cut-
off_rho, nrho)

Bases: atsim.potentials.eam_tabulation._EAMTabulationAbstractbase

Class for tabulating setfl Finnis-Sinclair formatted embedded atom potentials suitable for use with LAMMPS’
pair_style eam/fs

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

class atsim.potentials.eam_tabulation.TABEAM_EAMTabulation(potentials,
eam_potentials,
cutoff, nr, cutoff_rho,
nrho)

Bases: atsim.potentials.eam_tabulation._EAMTabulationAbstractbase

Class for tabulating TABEAM formatted embedded atom potentials for the DL_POLY code.

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

class atsim.potentials.eam_tabulation.TABEAM_FinnisSinclair_EAMTabulation(potentials,
eam_potentials,
cut-
off,
nr,
cut-
off_rho,
nrho)

Bases: atsim.potentials.eam_tabulation._EAMTabulationAbstractbase

112 Chapter 2. Contents

atsim_potentials Documentation

Class for tabulating EEAM TABEAM formatted Finnis-Sinclair style embedded atom potentials for the
DL_POLY code.

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

class atsim.potentials.eam_tabulation.Excel_EAMTabulation(potentials,
eam_potentials, cutoff,
nr, cutoff_rho, nrho)

Bases: atsim.potentials.eam_tabulation._EAMTabulationAbstractbase

Class for dumping EAM model into a spreadsheet

workbook

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

classmethod open_fp(cls, filename)
Creates a file object with a given path suitable for writing potential data to.

Parameters filename – Filename of output file object.

Returns File object suitable for passing to write() method

class atsim.potentials.eam_tabulation.Excel_FinnisSinclair_EAMTabulation(potentials,
eam_potentials,
cut-
off,
nr,
cut-
off_rho,
nrho)

Bases: atsim.potentials.eam_tabulation.Excel_EAMTabulation

Class for dumping EAM model into a spreadsheet

class atsim.potentials.eam_tabulation.ADP_EAMTabulation(potentials, eam_potentials,
dipole_potentials,
quadrupole_potentials,
cutoff, nr, cutoff_rho,
nrho)

Bases: atsim.potentials.eam_tabulation.SetFL_EAMTabulation

Class for tabulating setfl formatted embedded atom potentials with the ADP, angular dependent extension, suit-
able for use with LAMMPS’ pair_style adp

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

atsim.potentials.pair_tabulation

Module Contents

2.4. Reference 113

atsim_potentials Documentation

Classes

PairTabulation_AbstractBase(potentials, cutoff,
nr, target)

Base class for PairTabulation objects.

LAMMPS_PairTabulation(potentials, cutoff, nr) Class for tabulating pair-potential models for LAMMPS
DLPoly_PairTabulation(potentials, cutoff, nr) Class for tabulating pair-potential models for DLPOLY
GULP_PairTabulation(potentials, cutoff, nr) Class for tabulating pair-potential models for the GULP

code.
Excel_PairTabulation(potentials, cutoff, nr) Class for dumping pair-potential models into an Excel for-

matted spreadsheet

class atsim.potentials.pair_tabulation.PairTabulation_AbstractBase(potentials,
cutoff, nr,
target)

Bases: object

Base class for PairTabulation objects.

Child classes must implement: write() method

type

target

nr

cutoff

potentials

dr

classmethod open_fp(self, filename)
Creates a file object with a given path suitable for writing potential data to.

Parameters filename – Filename of output file object.

Returns File object suitable for passing to write() method

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

class atsim.potentials.pair_tabulation.LAMMPS_PairTabulation(potentials, cutoff,
nr)

Bases: atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

Class for tabulating pair-potential models for LAMMPS

write(self, fp)
Write the tabulation to the file object fp.

Parameters fp – File object into which data should be written.

class atsim.potentials.pair_tabulation.DLPoly_PairTabulation(potentials, cutoff,
nr)

Bases: atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

Class for tabulating pair-potential models for DLPOLY

write(self, fp)
Write tabulation to the file object fp.

114 Chapter 2. Contents

atsim_potentials Documentation

Parameters fp – File object into which data should be written.

class atsim.potentials.pair_tabulation.GULP_PairTabulation(potentials, cutoff, nr)
Bases: atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

Class for tabulating pair-potential models for the GULP code.

write(self, fp)
Write tabulation to the file object fp.

Parameters fp – File object into which data should be written.

class atsim.potentials.pair_tabulation.Excel_PairTabulation(potentials, cutoff,
nr)

Bases: atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

Class for dumping pair-potential models into an Excel formatted spreadsheet

workbook
Property which returns an openpyxl.Workbook instance containing potential data

write(self, fp)
Write tabulation to the file object fp (note: fp should be opened in binary mode).

Parameters fp – File object into which data should be written.

classmethod open_fp(self, filename)
Creates a file object with a given path suitable for writing potential data to.

Parameters filename – Filename of output file object.

Returns File object suitable for passing to write() method

atsim.potentials.potentialforms

Functions representing different potential forms.

The functions contained herein are function factories returning a function that takes separation as its sole argument.

See List of Potential Forms for descriptions of these potential forms.

Module Contents

Functions

potential(func) Decorator for callables that should be tagged as potential-
forms or potential-functions

is_potential(obj) Identifies if an object is a potential-form or potential-
function

buck4(A, rho, C, r_detach, r_min, r_attach) Returns a potential form describing the four-range Buck-
ingham potential.

atsim.potentials.potentialforms.potential(func)
Decorator for callables that should be tagged as potential-forms or potential-functions

atsim.potentials.potentialforms.is_potential(obj)
Identifies if an object is a potential-form or potential-function

atsim.potentials.potentialforms.buck4(A, rho, C, r_detach, r_min, r_attach)

2.4. Reference 115

atsim_potentials Documentation

Returns a potential form describing the four-range Buckingham potential.

The potential form is:

𝑉 (𝑟𝑖𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴 exp(−𝑟𝑖𝑗/𝜌), 0 ≤ 𝑟𝑖𝑗 ≤ 𝑟detach

𝑎0 + 𝑎1𝑟𝑖𝑗 + 𝑎2𝑟
2
𝑖𝑗 + 𝑎3𝑟

3
𝑖𝑗 + 𝑎4𝑟

4
𝑖𝑗 + 𝑎5𝑟

5
𝑖𝑗 , 𝑟detach < 𝑟𝑖𝑗 < 𝑟min

𝑏0 + 𝑏1 * 𝑟𝑖𝑗 + 𝑏2 * 𝑟2𝑖𝑗 + 𝑏3 * 𝑟3𝑖𝑗 , 𝑟min ≤ 𝑟𝑖𝑗 < 𝑟attach

− 𝐶
𝑟6𝑖𝑗

, 𝑟𝑖𝑗 ≥ 𝑟attach

In other words this is a Buckingham potential in which the Born-Mayer component acts at small separations and
the disprsion term acts at larger separation. These two parts are linked by a fifth then third order polynomial
(with a minimum formed in the spline at 𝑟𝑒𝑥𝑡𝑚𝑖𝑛).

The spline parameters are subject to the constraints that 𝑉 (𝑟𝑖𝑗), first and second derivatives must be equal at the
boundary points and the function must have a stationary point at r_min.

See also:

• atsim.potentials.Buck4_Spline

• atsim.potentials.Buck4_SplinePotential

Note: Due to the complexity of calculating the spline-coefficients this potential form does not have an equiva-
lent in the atsim.potentials.potentialfunctions module.

Parameters

• A – A potential parameter.

• rho – potential parameter.

• C – C parameter.

• r_detach – Separation where spline starts.

• r_min – Location of stationary point.

• r_attach – End of splined region.

Returns Splined potential.

atsim.potentials.potentialforms.buck

atsim.potentials.potentialforms.bornmayer

atsim.potentials.potentialforms.coul

atsim.potentials.potentialforms.constant

atsim.potentials.potentialforms.exponential

atsim.potentials.potentialforms.hbnd

atsim.potentials.potentialforms.lj

atsim.potentials.potentialforms.morse

atsim.potentials.potentialforms.polynomial

atsim.potentials.potentialforms.sqrt

atsim.potentials.potentialforms.tang_toennies

116 Chapter 2. Contents

atsim_potentials Documentation

atsim.potentials.potentialforms.zbl

atsim.potentials.potentialforms.zero

atsim.potentials.potentialforms.exp_spline

atsim.potentials.potentialfunctions

Functions for different potential forms.

Most of the potentials in this module are implemented as callable _Potential_Function_Bases. The potential energy
is evaluated by calling one of these objects. By convention the first argument of each is the atomic separation r, with
other potential parameters following after. For instance, to evaluate a Buckingham potential at r = 2.0 the following
could be called for A, rho and C values 1000.0, 0.2 and 32.0 respectively:

atsim.potentialfunctions.buck(2.0, 1000.0, 0.2, 32.0)

The callable objects also have other useful methods. Perhaps most importantly is the .deriv() method this returns the
first derivative of the given potential (force). Again using the Buckingham potential as an example its derivative can
be evaluated for r = 2.0 as follows:

atsim.potentialfunctions.buck.deriv(2.0, 1000.0, 0.2, 32.0)

See List of Potential Forms for descriptions of these potential forms.

Module Contents

atsim.potentials.potentialfunctions.buck

atsim.potentials.potentialfunctions.bornmayer

atsim.potentials.potentialfunctions.coul

atsim.potentials.potentialfunctions.constant

atsim.potentials.potentialfunctions.exponential

atsim.potentials.potentialfunctions.hbnd

atsim.potentials.potentialfunctions.lj

atsim.potentials.potentialfunctions.morse

atsim.potentials.potentialfunctions.polynomial

atsim.potentials.potentialfunctions.sqrt

atsim.potentials.potentialfunctions.tang_toennies

atsim.potentials.potentialfunctions.zbl

atsim.potentials.potentialfunctions.zero

atsim.potentials.potentialfunctions.exp_spline

atsim.potentials.tableforms

Module Contents

2.4. Reference 117

atsim_potentials Documentation

Classes

Cubic_Spline_Table_Form(x_data, y_data) Potential form that takes tabulated data and returns interpo-
lated values.

class atsim.potentials.tableforms.Cubic_Spline_Table_Form(x_data, y_data)
Bases: object

Potential form that takes tabulated data and returns interpolated values.

This potential uses cubic spline interpolation. It is simply a wrapper around the
scipy.interpolate.InterpolatedUnivariateSpline class

config_label = cubic_spline

is_potential = True

interpolant
This class is a wrapper around instances of scipy.interpolate.InterpolatedUnivariateSpline This property
returns the scipy object used internally

__call__(self, x)

Returns interpolated value at x

deriv(self, x)

Returns derivative of potential form at x

deriv2(self, x)

Returns second derivative of potential form at x

Package Contents

Classes

Potential(speciesA, speciesB, potentialFunction,
h=1e-06)

Class used to describe a potential to the
writePotentials() function.

EAMPotential(species, atomicNumber, mass, em-
beddingFunction, electronDensityFunction, latticeCon-
stant=0.0, latticeType=’fcc’)

Class used to describe a particular species within EAM po-
tential models.

SplinePotential(startPotential, endPotential, detach-
mentX, attachmentX)

Callable to allow splining of one potential to another using
an exponential spline

Multi_Range_Defn(range_type, start, potential_form,
**kwargs)
TableReader(fileobject) Callable that allows pretabulated data to be used with a Po-

tential object.

Functions

gradient(func, h=1e-06) Function wrapper that returns derivative of func.
num_deriv(r, func, h=1e-06) Returns numerical derivative of the callable func

Continued on next page

118 Chapter 2. Contents

atsim_potentials Documentation

Table 2.18 – continued from previous page
deriv(r, func, h=1e-06) Evaluates the derivative of a unary callable, func at a value

of r.
writeTABEAM (nrho, drho, nr, dr, eampots, pairpots,
out=sys.stdout, title=”)

Create TABEAM file for use with the DL_POLY simulation
code.

writeTABEAMFinnisSinclair(nrho, drho, nr, dr,
eampots, pairpots, out=sys.stdout, title=”)

Create Exended EAM variant of DL_POLY TABEAM file.

writeFuncFL(nrho, drho, nr, dr, eampots, pairpots,
out=sys.stdout, title=”)

Creates a DYNAMO funcfl formatted file suitable for
use with lammps pair_style eam

writeSetFL(nrho, drho, nr, dr, eampots, pairpots,
out=sys.stdout, comments=[‘’, ‘’, ‘’], cutoff=None)

Creates EAM potential in the DYNAMO setfl format.
This format is suitable for

writeSetFLFinnisSinclair(nrho, drho, nr, dr,
eampots, pairpots, out=sys.stdout, comments=[‘’, ‘’, ‘’],
cutoff=None)

Creates Finnis-Sinclar EAM potential in the DYNAMO
setfl format. The format should be used with the

potential(func) Decorator for callables that should be tagged as potential-
forms or potential-functions

is_potential(obj) Identifies if an object is a potential-form or potential-
function

buck4(A, rho, C, r_detach, r_min, r_attach) Returns a potential form describing the four-range Buck-
ingham potential.

create_Multi_Range_Potential_Form(*range_tuples,
**kwargs)

Creates Multi_Range_Potential_Form or sub-class in-
stance, from list of Multi_Range_Defn

plus(a, b) Takes two functions and returns a third which when evalu-
ated returns the result of a(r) + b(r)

product(a, b) Takes two callables and returns a third which when evalu-
ated returns the result of a(r) * b(r)

pow(a, b) Takes two callables and returns a third which when evalu-
ated returns the result of a(r)**b(r)

plotToFile(fileobj, lowx, highx, func, steps=10000) Convenience function for plotting the potential functions
contained herein.

plot(filename, lowx, highx, func, steps=10000) Convenience function for plotting the potential functions
contained herein.

plotPotentialObject(filename, lowx, highx, poten-
tialObject, steps=10000)

Convenience function for plotting energy of pair interac-
tions

plotPotentialObjectToFile(fileobj, lowx, highx,
potentialObject, steps=10000)

Convenience function for plotting energy of pair interac-
tions

writePotentials(outputType, potentialList, cutoff,
gridPoints, out=sys.stdout)

Tabulates pair-potentials in formats suitable for multiple
simulation codes.

class atsim.potentials.Potential(speciesA, speciesB, potentialFunction, h=1e-06)
Bases: object

Class used to describe a potential to the writePotentials() function.

Potential objects encapsulate a python function or callable which is used by the energy() method to calculate
potential energy.

The force() method returns −𝑑𝑈
𝑑𝑟 . If the energy callable provides .deriv() and .deriv2() methods these are

used for evaluating the first and second derivatives of energy with respect to sepration. This allows analytical
derivatives to be defined to the Potential object. When not defined, numerical derivatives are used instead.

The gradient() function is used to wrap the energy callable so that the correct derivative implementation is
used.

speciesA

2.4. Reference 119

http://lammps.sandia.gov/doc/pair_eam.html

atsim_potentials Documentation

speciesB

potentialFunction

energy(self, r)

Parameters r – Separation

Returns Energy for given separation

force(self, r)
Calculate force for this potential at a given separation.

If this object’s potentialFunction has a .deriv() method this will be used to calculate force (allowing ana-
lytical derivatives to be specified).

If potentialFunction doesn’t have a deriv method then a numerical derivative of the potential function will
be returned instead.

Parameters r (float) – Separation

Returns -dU/dr at given separation

Return type float

class atsim.potentials.EAMPotential(species, atomicNumber, mass, embeddingFunction,
electronDensityFunction, latticeConstant=0.0, lattice-
Type=’fcc’)

Bases: object

Class used to describe a particular species within EAM potential models.

This class is a container for the functions and attributes necesary for describing the many-body component of
an Embedded Atom potential Model.

embeddingValue(self, density)
Method that returns energy for given electron density.

This method simply passes density to the callable stored in the embeddingFunction and returns
its value.

Parameters density (float) – Electron density.

Returns Energy for given density (as given by self.embeddingFunction).

Return type float

electronDensity(self, separation)
Gives the ‘electron’ density for an atom separated from current species by separation.

This is a pass-through method to callable stored in current instance’s electronDensityFunction
attribute.

Parameters separation (float.) – Separation (in angstroms) between atom represented
by this object and another atom.

Returns Contribution to electron density due to given pair separation.

Return type float.

class atsim.potentials.SplinePotential(startPotential, endPotential, detachmentX, attach-
mentX)

Bases: atsim.potentials.spline.Custom_SplinePotential

Callable to allow splining of one potential to another using an exponential spline

120 Chapter 2. Contents

atsim_potentials Documentation

atsim.potentials.gradient(func, h=1e-06)
Function wrapper that returns derivative of func.

If the callable, func provides a .deriv(r) method this will be used to evaluate the derivative of the function, if not
the returned function will use num_deriv() in gradient evaluation.

If the callable additionally provides a .deriv2(r) method, representing its second derivative, the function returned
by this routine will have a deriv() method which will delegate to func.deriv2() when called.

By providing .deriv() and .deriv2() on the func callable analytical descriptions of a potential’s first and second
derivatives may be specified.

Parameters

• func – Function to be wrapped

• h – Step size used when performing numerical differentiation

Returns Function that returns derivative of func

atsim.potentials.num_deriv(r, func, h=1e-06)
Returns numerical derivative of the callable func

Parameters

• r – Value at which derivative of func should be evaluated.

• func – Function whose gradient is to be evaluated.

• h – Step size used when performing numerical differentiation.

Returns Numerical derivative of func at r.

atsim.potentials.deriv(r, func, h=1e-06)
Evaluates the derivative of a unary callable, func at a value of r.

If the object func has a unary method deriv(r), this will be used to evauluate the derivative (allowing analytical
derivatives to be used).

If func does not have a specific deriv(r) method then its numerical-derivative of will be taken by calling
num_deriv()

Parameters

• r – Value at which derivative of func should be evaluated.

• func – Function whose derivative is to be evaluated.

• h – Step size used when performing numerical differentiation.

Returns Derivative of func at r.

atsim.potentials.writeTABEAM(nrho, drho, nr, dr, eampots, pairpots, out=sys.stdout, title=”)
Create TABEAM file for use with the DL_POLY simulation code.

See also:

For a working example using this function see Example 2b: Tabulate Al-Cu Alloy Potentials Using
writeTABEAM() for DL_POLY

Parameters

• nrho (int) – Number of entries in tabulated embedding functions

• drho (float) – Step size between consecutive embedding function entries

• nr (int) – Number of entries in tabulated pair potentials and density functions

2.4. Reference 121

atsim_potentials Documentation

• dr (float) – Step size between entries in tabulated pair potentials and density functions

• eampots – Potentials List of potentials.EAMPotential objects

• pair – Potentials List of potentials.Potential objects

• out (file object) – Python file object to which TABEAM data should be written

• title (str) – Title of TABEAM file

atsim.potentials.writeTABEAMFinnisSinclair(nrho, drho, nr, dr, eampots, pairpots,
out=sys.stdout, title=”)

Create Exended EAM variant of DL_POLY TABEAM file.

The EAMPotential instances within the eampots list are expected to provide individual density functions
for each species pair in the species being tabulated. See __init__() for how these are specified to the
EAMPotential constructor.

Note: The Extended EAM variant for which this function creates TABEAM files (i.e. metal potential type =
eeam) is only supported in DL_POLY versions >= 4.05.

See also:

For a working example using this function see Example 3b: Tabulate Al-Fe Finnis-Sinclair Potentials Using
writeTABEAMFinnisSinclair() for DL_POLY

Parameters

• nrho (int) – Number of entries in tabulated embedding functions

• drho (float) – Step size between consecutive embedding function entries

• nr (int) – Number of entries in tabulated pair potentials and density functions

• dr (float) – Step size between entries in tabulated pair potentials and density functions

• eampots – Potentials List of atsim.potentials.EAMPotential objects

• pairpots (list) – Potentials List of atsim.potentials.Potential objects

• out (file object) – Python file object to which TABEAM data should be written

• title (str) – Title of TABEAM file

atsim.potentials.writeFuncFL(nrho, drho, nr, dr, eampots, pairpots, out=sys.stdout, title=”)
Creates a DYNAMO funcfl formatted file suitable for use with lammps pair_style eam potential form. For
the pair_style eam/alloy see writeSetFL().

See also:

For a working example using this function see Example 1: Using writeFuncFL() to Tabulate Ag Potential for
LAMMPS

Parameters

• nrho (int) – Number of points used to describe embedding function

• drho (float) – Step size between rho values used to describe embedding function

• nr (int) – Number of points used for the pair-potential, and density functions

• dr (float) – Step size between r values in effective charge and density functions

122 Chapter 2. Contents

http://lammps.sandia.gov/doc/pair_eam.html
http://lammps.sandia.gov/doc/pair_eam.html

atsim_potentials Documentation

• eampots (list) – List containing a single EAMPotential instance for species to be
tabulated.

• pairpots (list) – List containing a single PairPotential instance for the X-X
interaction (where X is the species represented by EAMPotential in eampots list)

• out (file object) – Python file object to which eam table file will be written

• title (str) – Title to be written as table file header

atsim.potentials.writeSetFL(nrho, drho, nr, dr, eampots, pairpots, out=sys.stdout, comments=[”,
”, ”], cutoff=None)

Creates EAM potential in the DYNAMO setfl format. This format is suitable for use with the LAMMPS
pair_style eam/alloy.

See also:

For a working example using this function see Example 2a: Tabulate Al-Cu Alloy Potentials Using writeSetFL()
for LAMMPS

Parameters

• nrho (int) – Number of points used to describe embedding function

• drho (float) – Increment used when tabulating embedding function

• nr (int) – Number of points used to describe density and pair potentials

• dr (float) – Separation increment used when tabulating density function and pair poten-
tials

• eampots (list) – Instances of lammps.writeEAMTable.EAMPotential() which encapsu-
late information about each species

• pairpots (list) – Instance of potentials.Potential, these describe repulsive pair potential
component of EAM potential

• out (file object) – Python file object into which EAM potential data should be written

• comments (list) – List containing three strings, these form the header of the created file

• cutoff (float) – Pair potential and density cutoff, if None then value of nr * dr is used.

atsim.potentials.writeSetFLFinnisSinclair(nrho, drho, nr, dr, eampots, pairpots,
out=sys.stdout, comments=[”, ”, ”], cut-
off=None)

Creates Finnis-Sinclar EAM potential in the DYNAMO setfl format. The format should be used with the
LAMMPS eam/fs pair_style.

The EAMPotential instances within the eampots list are expected to provide individual density func-
tions for each species pair in the species being tabulated. See atsim.potentials.EAMPotential.
__init__() for how these are specified to the atsim.potentials.EAMPotential constructor.

See also:

For a working example using this function see Example 3a: Tabulate Al-Fe Finnis-Sinclair Potentials Using
writeSetFLFinnisSinclair() for LAMMPS

Parameters

• nrho (int) – Number of points used to describe embedding function

• drho (float) – Increment used when tabulating embedding function

2.4. Reference 123

http://lammps.sandia.gov/doc/pair_eam.html
http://lammps.sandia.gov/doc/pair_eam.html

atsim_potentials Documentation

• nr (int) – Number of points used to describe density and pair potentials

• dr (float) – Separation increment used when tabulating density function and pair poten-
tials

• eampots (list) – Instances of lammps.writeEAMTable.EAMPotential() which encapsu-
late information about each species

• pairpots (list) – Instance of potentials.Potential, these describe repulsive pair potential
component of EAM potential

• out (file object) – Python file object into which EAM potential data should be written

• comments (list) – List containing three strings, these form the header of the created file

• cutoff (float) – Pair potential and density cutoff. If None then value of nr * dr is
used.

atsim.potentials.potential(func)
Decorator for callables that should be tagged as potential-forms or potential-functions

atsim.potentials.is_potential(obj)
Identifies if an object is a potential-form or potential-function

atsim.potentials.buck4(A, rho, C, r_detach, r_min, r_attach)
Returns a potential form describing the four-range Buckingham potential.

The potential form is:

𝑉 (𝑟𝑖𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴 exp(−𝑟𝑖𝑗/𝜌), 0 ≤ 𝑟𝑖𝑗 ≤ 𝑟detach

𝑎0 + 𝑎1𝑟𝑖𝑗 + 𝑎2𝑟
2
𝑖𝑗 + 𝑎3𝑟

3
𝑖𝑗 + 𝑎4𝑟

4
𝑖𝑗 + 𝑎5𝑟

5
𝑖𝑗 , 𝑟detach < 𝑟𝑖𝑗 < 𝑟min

𝑏0 + 𝑏1 * 𝑟𝑖𝑗 + 𝑏2 * 𝑟2𝑖𝑗 + 𝑏3 * 𝑟3𝑖𝑗 , 𝑟min ≤ 𝑟𝑖𝑗 < 𝑟attach

− 𝐶
𝑟6𝑖𝑗

, 𝑟𝑖𝑗 ≥ 𝑟attach

In other words this is a Buckingham potential in which the Born-Mayer component acts at small separations and
the disprsion term acts at larger separation. These two parts are linked by a fifth then third order polynomial
(with a minimum formed in the spline at 𝑟𝑒𝑥𝑡𝑚𝑖𝑛).

The spline parameters are subject to the constraints that 𝑉 (𝑟𝑖𝑗), first and second derivatives must be equal at the
boundary points and the function must have a stationary point at r_min.

See also:

• atsim.potentials.Buck4_Spline

• atsim.potentials.Buck4_SplinePotential

Note: Due to the complexity of calculating the spline-coefficients this potential form does not have an equiva-
lent in the atsim.potentials.potentialfunctions module.

Parameters

• A – A potential parameter.

• rho – potential parameter.

• C – C parameter.

• r_detach – Separation where spline starts.

124 Chapter 2. Contents

atsim_potentials Documentation

• r_min – Location of stationary point.

• r_attach – End of splined region.

Returns Splined potential.

atsim.potentials.buck

atsim.potentials.bornmayer

atsim.potentials.coul

atsim.potentials.constant

atsim.potentials.exponential

atsim.potentials.hbnd

atsim.potentials.lj

atsim.potentials.morse

atsim.potentials.polynomial

atsim.potentials.sqrt

atsim.potentials.tang_toennies

atsim.potentials.zbl

atsim.potentials.zero

atsim.potentials.exp_spline

atsim.potentials.create_Multi_Range_Potential_Form(*range_tuples, **kwargs)
Creates Multi_Range_Potential_Form or sub-class instance, from list of Multi_Range_Defn instances in
range_tuples.

If any Multi_Range_Defn object’s .has_deriv2 are True then an instance of
Multi_Range_Potential_Form_Deriv2 is returned.

If any Multi_Range_Defn object’s .has_deriv property is True but all .has_deriv2 are False then an instance of
Multi_Range_Potential_Form_Deriv is returned.

If non of the Multi_Range_Defn objects provide analytical deriv or deriv2 methods, return
Multi_Range_Potential_Form.

Parameters

• range_tuples – List of Multi_Range_Defn instances.

• kwargs – Keyword arguments passed to Multi_Range_Potential_Form constructor.

Returns See above

class atsim.potentials.Multi_Range_Defn(range_type, start, potential_form, **kwargs)
Bases: object

range_type

start

potential_form

has_deriv
Returns True if the potential callable provides an analytical derivative through a .deriv() method.

2.4. Reference 125

atsim_potentials Documentation

has_deriv2
Returns True if the potential callable provides an analytical derivative through a .deriv2() method.

deriv(self, r)

deriv2(self, r)

atsim.potentials.plus(a, b)
Takes two functions and returns a third which when evaluated returns the result of a(r) + b(r)

This function is useful for combining existing potentials.

Derivatives:

If either of the potential callables (a and b) provide a .deriv() method the function returned by plus() will also
have a .deriv() method. This allows analytical derivatives to be specified. If only one of a or b provide .deriv()
then the derivative of the other callable will be evaluated numerically.

If neither function has a .deriv() method then the function returned here will also not have a .deriv() method.

Example:

To combine buck() and hbnd() functions from the atsim.potentials.
potentialforms module to give:

A*(-r/rho) + C/r**6 + D/r**12 - E/r**10

this function can then be used as follows:

plus(buck(A,rho,C), hbnd(D,E))

Parameters

• a – First callable

• b – Second callable

Returns Function that when evaulated returns a(r) + b(r)

atsim.potentials.product(a, b)
Takes two callables and returns a third which when evaluated returns the result of a(r) * b(r)

This function is useful for combining existing potentials.

Derivatives:

If either of the potential callables (a and b) provide a .deriv() method the function returned by product() will also
have a .deriv() method. This allows analytical derivatives to be specified. If only one of a or b provide .deriv()
then the derivative of the other callable will be evaluated numerically.

If neither function has a .deriv() method then the function returned here will also not have a .deriv() method.

Parameters

• a – First callable

• b – Second callable

Returns Function that when evaulated returns a(r) * b(r)

atsim.potentials.pow(a, b)
Takes two callables and returns a third which when evaluated returns the result of a(r)**b(r)

This function is useful for combining existing potentials.

126 Chapter 2. Contents

atsim_potentials Documentation

Derivatives:

If either of the potential callables (a and b) provide a .deriv() method the function returned by pow() will also
have a .deriv() method. This allows analytical derivatives to be specified. If only one of a or b provide .deriv()
then the derivative of the other callable will be evaluated numerically.

If neither function has a .deriv() method then the function returned here will also not have a .deriv() method.

Parameters

• a – First callable

• b – Second callable

Returns Function that when evaulated returns a(r)**b(r) (a to the power of b)

class atsim.potentials.TableReader(fileobject)
Bases: object

Callable that allows pretabulated data to be used with a Potential object.

datReader

Returns _tablereaders.DatReader associated with this callable

__call__(self, separation)

atsim.potentials.plotToFile(fileobj, lowx, highx, func, steps=10000)
Convenience function for plotting the potential functions contained herein.

Data is written to a text file as two columns (r and E) separated by spaces with no header.

Parameters

• fileobj – Python file object into which data should be plotted

• lowx – X-axis lower value

• highx – X-axis upper value

• func – Function to be plotted

• steps – Number of data points to be plotted

atsim.potentials.plot(filename, lowx, highx, func, steps=10000)
Convenience function for plotting the potential functions contained herein.

Data is written to a text file as two columns (r and E) separated by spaces with no header.

Parameters

• filename – File into which data should be plotted

• lowx – X-axis lower value

• highx – X-axis upper value

• func – Function to be plotted

• steps – Number of data points to be plotted

atsim.potentials.plotPotentialObject(filename, lowx, highx, potentialObject, steps=10000)
Convenience function for plotting energy of pair interactions given by instances of atsim.potentials.
Potential obtained by calling potential .energy() method.

Data is written to a text file as two columns (r and E) separated by spaces with no header.

Parameters

2.4. Reference 127

atsim_potentials Documentation

• filename – File into which data should be plotted

• lowx – X-axis lower value

• highx – X-axis upper value

• func – atsim.potentials.Potential object.

• steps – Number of data points to be plotted

atsim.potentials.plotPotentialObjectToFile(fileobj, lowx, highx, potentialObject,
steps=10000)

Convenience function for plotting energy of pair interactions given by instances of atsim.potentials.
Potential obtained by calling potential .energy() method.

Data is written to a text file as two columns (r and E) separated by spaces with no header.

Parameters

• fileobj – Python file object into which data should be plotted

• lowx – X-axis lower value

• highx – X-axis upper value

• func – atsim.potentials.Potential object.

• steps – Number of data points to be plotted

exception atsim.potentials.UnsupportedTabulationType
Bases: Exception

Exception thrown by writePotentials() when unknown tabulation type specified

atsim.potentials.writePotentials(outputType, potentialList, cutoff, gridPoints, out=sys.stdout)
Tabulates pair-potentials in formats suitable for multiple simulation codes.

• The outputType parameter can be one of the following:

– DL_POLY:

* This function creates output that can be written to a TABLE and used within DL_POLY.

* for a working example see Quick-Start: DL_POLY .

– GULP:

* Creates output for the GULP code

* Output is in the form of a series of spline potential forms

* The generated file can be loaded into GULP using the library command

– LAMMPS:

* Creates files readable by LAMMPS pair_style table

* Each file can contain multiple potentials:

· the block representing each potential has a title formed from the speciesA and speciesB
attributes of the Potential instance represented by the block. These are sorted into their
natural order and separated by a hyphen to form the title.

· Example:

· For a Potential where speciesA = Xe and speciesB = O the block title would be:
O-Xe.

· If speciesA = B and speciesB = O the block title would be: B-O.

128 Chapter 2. Contents

https://nanochemistry.curtin.edu.au/gulp/
https://nanochemistry.curtin.edu.au/gulp/help/new_help_40_txt.html#spline
https://nanochemistry.curtin.edu.au/gulp/help/new_help_40_txt.html#library
http://lammps.sandia.gov/doc/pair_table.html

atsim_potentials Documentation

· within LAMMPSthe block title is used as the keyword argument to the pair_style table
pair_coeff directive.

Parameters

• outputType (str) – The type of output that should be created can be one of:
DL_POLY or LAMMPS

• potentialList (list) – List of Potential objects to be tabulated.

• cutoff (float) – Largest separation to be tabulated.

• gridPoints (int) – Number of rows in tabulation.

• out (file) – Python file like object to which tabulation should be written

2.5 List of Examples

The following page gives a list of the examples that are distributed across the documentation:

2.5. List of Examples 129

http://lammps.sandia.gov/doc/pair_table.html

atsim_potentials Documentation

Description Link
Quick-Start: Tabulating Basak Potentials for DL_POLY

potable
Python API

Quick-Start: Tabulating Basak Potentials for LAMMPS

potable
Python API

[Potential-Form] Using custom-potential forms to de-
fine Basak potential

potable

Splining ZBL Potential on to Buckingham Potential

potable
Python API

Defining the Morelon model using the Buck4 spline potable
Parametrising a model using published spline coeffi-
cients

potable

Truncating a potential (describing LAMMPS pair_style
soft)

potable

Truncating a potential using if() (describing LAMMPS
pair_style soft)

potable

[Table-Form] pair-potential. | Including pre-tabulated
data in a model.

potable

Instantiating atsim.potentials.Potential
Objects

Python API

Tabulating EAM Ag model for LAMMPS

potable,
Python API (object oriented)
Python API (procedural)

Tabulate Al-Cu EAM Alloy Potentials

Python API (LAMMPS object oriented)
Python API (LAMMPS procedural)
Python API (DL_POLY object oriented)
Python API (DL_POLY procedural)

Tabulate Al-Fe Finnis-Sinclair EAM potentials

Python API (LAMMPS object oriented)
Python API (LAMMPS procedural)
Python API (DL_POLY object oriented)
Python API (DL_POLY procedural)

Finnis-Sinclair Tabulation using potable potable
Working with potable files in Python Python API

Working with potable files in Python
Overriding and adding items

Python API

130 Chapter 2. Contents

atsim_potentials Documentation

2.6 Credits

atsim.potentials is developed and maintained by Michael Rushton. It was intially developed to support the
activities of the Atomistic Simulation Group located in the Department of Materials at Imperial College London.
Thanks go to Prof. Robin Grimes and the rest of the group. Particular thanks must goes to:

• Michael Cooper who helped test and debug the Embedded Atom Method tabulation methods whilst we devel-
oped our actinide potential model for the following:

– M.W.D. Cooper, M.J.D. Rushton and R. W. Grimes, “A many-body potential approach to modelling
the thermomechanical properties of actinide oxides”, J. Phys. Condens. Matter, 2014 26 105401.
doi:10.1088/0953-8984/26/10/105401

• Dr. Clare Bishop for providing an early implementation of the spline interpolation method implemented within
atsim.potentials.spline.SplinePotential.

2.7 Changes

2.7.1 0.4.0

New Features

• Added support for angular dependent potential (ADP) models (LAMMPS pair_style adp). See ADP Style
EAM Models.

• Support for [Variables] section in potable files which allows use of string snippets and string interpola-
tion. See [Variables].

2.7.2 0.3.0 (2020-8-24)

New Features

• Introduced the new potable tool to allow tabulation without needing to write a python script.

• Revamped python api.

Bug-Fixs

• The order that the density functions were specified to the writeSetFLFinnisSinclair() function was the reverse of
what would be expected. This has been fixed.

2.7.3 0.2.1 (2018-05-19)

Bug-Fixes

• Fix to the plot functions. Previously all x-axis values were being set to the lowx value given to the function.

2.6. Credits 131

http://abulafia.mt.ic.ac.uk/groupmembers/michael
http://abulafia.mt.ic.ac.uk/
http://www.imperial.ac.uk/materials
http://imperial.ac.uk
https://scholar.google.co.uk/citations?user=gpYY_wsAAAAJ&hl=en&oi=ao
https://atomsim.org/potentials/actinides
http://dx.doi.org/10.1088/0953-8984/26/10/105401

atsim_potentials Documentation

2.7.4 0.2.0 (2018-05-01)

New Features

• Support for Python 3

2.7.5 0.1.1 (2014-03-25)

• Initial Release

2.8 License

atsim.potentials is released under the terms of the Apache License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work (an
example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this Li-
cense, Derivative Works shall not include works that remain separable from, or merely link (or bind
by name) to the interfaces of, the Work and Derivative Works thereof.

132 Chapter 2. Contents

http://www.apache.org/licenses/

atsim_potentials Documentation

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally sub-
mitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition,
“submitted” means any form of electronic, verbal, or written communication sent to the Licensor or
its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licen-
sor for the purpose of discussing and improving the Work, but excluding communication that is
conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contri-
bution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License;
and

(b) You must cause any modified files to carry prominent notices stating that You changed the
files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to the NOTICE
text from the Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,

2.8. License 133

atsim_potentials Documentation

or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions
of this License, without any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t
include the brackets!) The text should be enclosed in the appropriate comment syntax for
the file format. We also recommend that a file or class name and description of purpose be
included on the same “printed page” as the copyright notice for easier identification within
third-party archives.

Copyright 2019 M.J.D. Rushton

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

134 Chapter 2. Contents

http://www.apache.org/licenses/LICENSE-2.0

atsim_potentials Documentation

2.9 References

2.9. References 135

atsim_potentials Documentation

136 Chapter 2. Contents

CHAPTER 3

Contact

atsim.potentials was developed by Michael Rushton, if you have any problems, suggestions or queries please
get in touch at m.j.d.rushton@gmail.com

137

mailto:m.j.d.rushton@gmail.com

atsim_potentials Documentation

138 Chapter 3. Contact

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

139

atsim_potentials Documentation

140 Chapter 4. Indices and tables

Bibliography

[Basak2003] C.Basak, “Classical molecular dynamics simulation of UO2 to predict thermophysical properties”, Jour-
nal of Alloys and Compounds, 360 (2003) 210. http://doi.org/doi:10.1016/S0925-8388(03)00350-5

[VanBeest1990] B.W.H. van Beest, G.J. Kramer, R.A. van Santen, “Force fields for silicas and aluminophosphates
based on ab initio calculations”, Phys. Rev. Lett. 64 (1990) 1955. http://doi.org/10.1103/PhysRevLett.64.
1955

[Buckingham1938] R. A. Buckingham, “The Classical Equation of State of Gaseous Helium, Neon and Argon”,
Proc. R. Soc. London. Ser. A, Math. Phys. Sci., 168 (1938) 264. http://doi.org/10.1098/rspa.
1938.0173

[Lennard-Jones1924] J.E. Lennard-Jones, “On the Determination of Molecular Fields. — II. From the Equation of
State of a Gas”, Proc. R. Soc. Lond. A, 106 (1924) 463. http://10.1098/rspa.1924.0082

[Morelon2003] N.-D. Morelon, D. Ghaleb, J.-M. Delaye, L. Van Brutzel, “A new empirical potential for simulating
the formation of defects and their mobility in uranium dioxide”, Philos. Mag. 83 (2003) 1533. http://doi.
org/10.1080/1478643031000091454

[Potashnikov2011] S.I. Potashnikov, A.S. Boyarchenkov, K.A. Nekrasov, A.Y. Kupryazhkin, “High-precision molec-
ular dynamics simulation of UO2–PuO2: Pair potentials comparison in UO2”, J. Nucl. Mater. 419 (2011)
217. http://doi.org/10.1016/j.jnucmat.2011.08.033

[Tang2003] K.T. Tang, J.P. Toennies, “The van der Waals potentials between all the rare gas atoms from He to Rn”,
J. Chem. Phys. 118 (2003) 4976. https://doi.org/10.1063/1.1543944

[Vessal1989] B. Vessal, M. Amini, D. Fincham, C.R.A Catlow, “Water-like melting behaviour of SiO2 investigated
by the molecular dynamics simulation technique”, Philos. Mag. B 60 (1989) 753. http://doi.org/10.
1080/13642818908209741

[Vessal1993] B. Vessal, M. Amini, C.R.A. Catlow, “Computer simulation of the structure of silica glass”, J. Non.
Cryst. Solids. 159 (1993) 184. http://doi.org/10.1016/0022-3093(93)91295-E

[Ziegler2015] J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM - The Stopping and Range of Ions in Matter, 15th ed.,
IIT Co., 2015. http://www.lulu.com/shop/james-ziegler/srim-the-stopping-and-range-of-ions-in-matter/
hardcover/product-22155781.html

141

http://doi.org/doi:10.1016/S0925-8388(03)00350-5
http://doi.org/10.1103/PhysRevLett.64.1955
http://doi.org/10.1103/PhysRevLett.64.1955
http://doi.org/10.1098/rspa.1938.0173
http://doi.org/10.1098/rspa.1938.0173
http://10.1098/rspa.1924.0082
http://doi.org/10.1080/1478643031000091454
http://doi.org/10.1080/1478643031000091454
http://doi.org/10.1016/j.jnucmat.2011.08.033
https://doi.org/10.1063/1.1543944
http://doi.org/10.1080/13642818908209741
http://doi.org/10.1080/13642818908209741
http://doi.org/10.1016/0022-3093(93)91295-E
http://www.lulu.com/shop/james-ziegler/srim-the-stopping-and-range-of-ions-in-matter/hardcover/product-22155781.html
http://www.lulu.com/shop/james-ziegler/srim-the-stopping-and-range-of-ions-in-matter/hardcover/product-22155781.html

atsim_potentials Documentation

142 Bibliography

Python Module Index

a
atsim, 102
atsim.potentials, 102
atsim.potentials.config, 103
atsim.potentials.eam_tabulation, 111
atsim.potentials.pair_tabulation, 113
atsim.potentials.potentialforms, 115
atsim.potentials.potentialfunctions, 117
atsim.potentials.referencedata, 105
atsim.potentials.spline, 106
atsim.potentials.tableforms, 117
atsim.potentials.tools, 109
atsim.potentials.tools.potable, 109

143

atsim_potentials Documentation

144 Python Module Index

Index

Symbols
-add-item [SECTION_NAME:KEY=VALUE

[SECTION_NAME:KEY=VALUE ...]]
, -a [SECTION_NAME:KEY=VALUE
[SECTION_NAME:KEY=VALUE ...]]

command line option, 102
-exclude-species [SPECIES [SPECIES

...]]
command line option, 102

-include-species [SPECIES [SPECIES
...]]

command line option, 102
-item-value SECTION_NAME:KEY

command line option, 101
-list-item-labels

command line option, 101
-list-items, -l

command line option, 101
-override-item [SECTION_NAME:KEY=VALUE

[SECTION_NAME:KEY=VALUE ...]]
, -e [SECTION_NAME:KEY=VALUE
[SECTION_NAME:KEY=VALUE ...]]

command line option, 102
-remove-item [SECTION_NAME:KEY

[SECTION_NAME:KEY ...]]
, -r [SECTION_NAME:KEY
[SECTION_NAME:KEY ...]]

command line option, 102
-h, -help

command line option, 101
__call__() (atsim.potentials.TableReader method),

127
__call__() (atsim.potentials.spline.Buck4_Spline

method), 108
__call__() (atsim.potentials.spline.Custom_SplinePotential

method), 109
__call__() (atsim.potentials.spline.Exp_Spline

method), 108
__call__() (atsim.potentials.tableforms.Cubic_Spline_Table_Form

method), 118
__getitem__() (at-

sim.potentials.config.Modifier_Registry
method), 105

__getitem__() (at-
sim.potentials.config.Potential_Form_Registry
method), 105

A
ADP_EAMTabulation (class in at-

sim.potentials.eam_tabulation), 113
atsim (module), 102
atsim.potentials (module), 102
atsim.potentials.config (module), 103
atsim.potentials.eam_tabulation (module),

111
atsim.potentials.pair_tabulation (mod-

ule), 113
atsim.potentials.potentialforms (module),

115
atsim.potentials.potentialfunctions

(module), 117
atsim.potentials.referencedata (module),

105
atsim.potentials.spline (module), 106
atsim.potentials.tableforms (module), 117
atsim.potentials.tools (module), 109
atsim.potentials.tools.potable (module),

109
attach_point (atsim.potentials.spline.Buck4_Spline

attribute), 108
attach_point (atsim.potentials.spline.Exp_Spline at-

tribute), 107
attachmentX (atsim.potentials.spline.Custom_SplinePotential

attribute), 109

B
bornmayer (in module atsim.potentials), 125
bornmayer (in module at-

sim.potentials.potentialforms), 116

145

atsim_potentials Documentation

bornmayer (in module at-
sim.potentials.potentialfunctions), 117

buck (in module atsim.potentials), 125
buck (in module atsim.potentials.potentialforms), 116
buck (in module atsim.potentials.potentialfunctions),

117
buck4() (in module atsim.potentials), 124
buck4() (in module atsim.potentials.potentialforms),

115
Buck4_Spline (class in atsim.potentials.spline), 108
Buck4_SplinePotential (class in at-

sim.potentials.spline), 109

C
command line option

-add-item [SECTION_NAME:KEY=VALUE
[SECTION_NAME:KEY=VALUE ...]]
, -a [SECTION_NAME:KEY=VALUE
[SECTION_NAME:KEY=VALUE ...]],
102

-exclude-species [SPECIES [SPECIES
...]], 102

-include-species [SPECIES [SPECIES
...]], 102

-item-value SECTION_NAME:KEY, 101
-list-item-labels, 101
-list-items, -l, 101
-override-item

[SECTION_NAME:KEY=VALUE
[SECTION_NAME:KEY=VALUE ...]]
, -e [SECTION_NAME:KEY=VALUE
[SECTION_NAME:KEY=VALUE ...]],
102

-remove-item [SECTION_NAME:KEY
[SECTION_NAME:KEY ...]]
, -r [SECTION_NAME:KEY
[SECTION_NAME:KEY ...]], 102

-h, -help, 101
config_label (atsim.potentials.tableforms.Cubic_Spline_Table_Form

attribute), 118
ConfigOverrideException, 104
ConfigParser (class in atsim.potentials.config), 103
ConfigParser (class in at-

sim.potentials.tools.potable), 110
ConfigParserException, 105
ConfigParserOverrideTuple (in module at-

sim.potentials.config), 104
ConfigParserOverrideTuple (in module at-

sim.potentials.tools.potable), 110
Configuration (class in atsim.potentials.config), 105
ConfigurationException, 111
constant (in module atsim.potentials), 125
constant (in module atsim.potentials.potentialforms),

116

constant (in module at-
sim.potentials.potentialfunctions), 117

coul (in module atsim.potentials), 125
coul (in module atsim.potentials.potentialforms), 116
coul (in module atsim.potentials.potentialfunctions),

117
create_Multi_Range_Potential_Form() (in

module atsim.potentials), 125
Cubic_Spline_Table_Form (class in at-

sim.potentials.tableforms), 118
Custom_SplinePotential (class in at-

sim.potentials.spline), 108
cutoff (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

attribute), 114

D
datReader (atsim.potentials.TableReader attribute),

127
deriv (atsim.potentials.spline.Spline_Point attribute),

107
deriv() (atsim.potentials.Multi_Range_Defn method),

126
deriv() (atsim.potentials.spline.Buck4_Spline

method), 108
deriv() (atsim.potentials.spline.Exp_Spline method),

108
deriv() (atsim.potentials.tableforms.Cubic_Spline_Table_Form

method), 118
deriv() (in module atsim.potentials), 121
deriv2 (atsim.potentials.spline.Spline_Point attribute),

107
deriv2() (atsim.potentials.Multi_Range_Defn

method), 126
deriv2() (atsim.potentials.spline.Buck4_Spline

method), 108
deriv2() (atsim.potentials.spline.Exp_Spline method),

108
deriv2() (atsim.potentials.tableforms.Cubic_Spline_Table_Form

method), 118
deriv2_callable (at-

sim.potentials.spline.Spline_Point attribute),
107

deriv_callable (at-
sim.potentials.spline.Spline_Point attribute),
107

detach_point (atsim.potentials.spline.Buck4_Spline
attribute), 108

detach_point (atsim.potentials.spline.Exp_Spline at-
tribute), 107

detachmentX (atsim.potentials.spline.Custom_SplinePotential
attribute), 109

DLPoly_PairTabulation (class in at-
sim.potentials.pair_tabulation), 114

146 Index

atsim_potentials Documentation

dr (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase
attribute), 114

E
eam_density (atsim.potentials.config.ConfigParser

attribute), 103
eam_density (atsim.potentials.config.FilteredConfigParser

attribute), 104
eam_density (atsim.potentials.tools.potable.ConfigParser

attribute), 110
eam_density (atsim.potentials.tools.potable.FilteredConfigParser

attribute), 111
eam_density_fs (at-

sim.potentials.config.ConfigParser attribute),
104

eam_density_fs (at-
sim.potentials.config.FilteredConfigParser
attribute), 104

eam_density_fs (at-
sim.potentials.tools.potable.ConfigParser
attribute), 110

eam_density_fs (at-
sim.potentials.tools.potable.FilteredConfigParser
attribute), 111

eam_embed (atsim.potentials.config.ConfigParser at-
tribute), 103

eam_embed (atsim.potentials.config.FilteredConfigParser
attribute), 104

eam_embed (atsim.potentials.tools.potable.ConfigParser
attribute), 110

eam_embed (atsim.potentials.tools.potable.FilteredConfigParser
attribute), 111

EAMPotential (class in atsim.potentials), 120
electronDensity() (atsim.potentials.EAMPotential

method), 120
embeddingValue() (atsim.potentials.EAMPotential

method), 120
endPotential (atsim.potentials.spline.Custom_SplinePotential

attribute), 108
energy() (atsim.potentials.Potential method), 120
energy() (PotentialInterface method), 48
Excel_EAMTabulation (class in at-

sim.potentials.eam_tabulation), 113
Excel_FinnisSinclair_EAMTabulation (class

in atsim.potentials.eam_tabulation), 113
Excel_PairTabulation (class in at-

sim.potentials.pair_tabulation), 115
Exp_Spline (class in atsim.potentials.spline), 107
exp_spline (in module atsim.potentials), 125
exp_spline (in module at-

sim.potentials.potentialforms), 117
exp_spline (in module at-

sim.potentials.potentialfunctions), 117
exp_spline (in module atsim.potentials.spline), 107

exponential (in module atsim.potentials), 125
exponential (in module at-

sim.potentials.potentialforms), 116
exponential (in module at-

sim.potentials.potentialfunctions), 117

F
FilteredConfigParser (class in at-

sim.potentials.config), 104
FilteredConfigParser (class in at-

sim.potentials.tools.potable), 111
force() (atsim.potentials.Potential method), 120
force() (PotentialInterface method), 48

G
get() (atsim.potentials.referencedata.Reference_Data

method), 106
gradient() (in module atsim.potentials), 120
gradient() (in module atsim.potentials.spline), 107
GULP_PairTabulation (class in at-

sim.potentials.pair_tabulation), 115

H
has_deriv (atsim.potentials.Multi_Range_Defn

attribute), 125
has_deriv2 (atsim.potentials.Multi_Range_Defn at-

tribute), 125
hbnd (in module atsim.potentials), 125
hbnd (in module atsim.potentials.potentialforms), 116
hbnd (in module atsim.potentials.potentialfunctions),

117

I
interpolant (atsim.potentials.tableforms.Cubic_Spline_Table_Form

attribute), 118
interpolationFunction (at-

sim.potentials.spline.Custom_SplinePotential
attribute), 108

is_potential (atsim.potentials.tableforms.Cubic_Spline_Table_Form
attribute), 118

is_potential() (in module atsim.potentials), 124
is_potential() (in module at-

sim.potentials.potentialforms), 115

L
LAMMPS_PairTabulation (class in at-

sim.potentials.pair_tabulation), 114
lj (in module atsim.potentials), 125
lj (in module atsim.potentials.potentialforms), 116
lj (in module atsim.potentials.potentialfunctions), 117

M
main() (in module atsim.potentials.tools.potable), 111

Index 147

atsim_potentials Documentation

Modifier_Registry (class in at-
sim.potentials.config), 105

morse (in module atsim.potentials), 125
morse (in module atsim.potentials.potentialforms), 116
morse (in module atsim.potentials.potentialfunctions),

117
Multi_Range_Defn (class in atsim.potentials), 125

N
nr (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

attribute), 114
num_deriv() (in module atsim.potentials), 121

O
open_fp() (atsim.potentials.eam_tabulation.Excel_EAMTabulation

class method), 113
open_fp() (atsim.potentials.pair_tabulation.Excel_PairTabulation

class method), 115
open_fp() (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

class method), 114
orphan_sections (at-

sim.potentials.config.ConfigParser attribute),
104

orphan_sections (at-
sim.potentials.tools.potable.ConfigParser
attribute), 110

P
pair (atsim.potentials.config.ConfigParser attribute),

103
pair (atsim.potentials.config.FilteredConfigParser at-

tribute), 104
pair (atsim.potentials.tools.potable.ConfigParser at-

tribute), 110
pair (atsim.potentials.tools.potable.FilteredConfigParser

attribute), 111
PairTabulation_AbstractBase (class in at-

sim.potentials.pair_tabulation), 114
parse_pair_like() (at-

sim.potentials.config.ConfigParser method),
104

parse_pair_like() (at-
sim.potentials.tools.potable.ConfigParser
method), 111

parsed_sections (at-
sim.potentials.config.ConfigParser attribute),
104

parsed_sections (at-
sim.potentials.tools.potable.ConfigParser
attribute), 110

plot() (in module atsim.potentials), 127
plotPotentialObject() (in module at-

sim.potentials), 127

plotPotentialObjectToFile() (in module at-
sim.potentials), 128

plotToFile() (in module atsim.potentials), 127
plus() (in module atsim.potentials), 126
polynomial (in module atsim.potentials), 125
polynomial (in module at-

sim.potentials.potentialforms), 116
polynomial (in module at-

sim.potentials.potentialfunctions), 117
polynomial (in module atsim.potentials.spline), 107
Potential (class in atsim.potentials), 119
potential() (in module atsim.potentials), 124
potential() (in module at-

sim.potentials.potentialforms), 115
potential_form (at-

sim.potentials.config.ConfigParser attribute),
103

potential_form (at-
sim.potentials.Multi_Range_Defn attribute),
125

potential_form (at-
sim.potentials.tools.potable.ConfigParser
attribute), 110

Potential_Form_Exception, 105
Potential_Form_Registry (class in at-

sim.potentials.config), 104
Potential_Form_Registry_Exception, 105
potential_function (at-

sim.potentials.spline.Spline_Point attribute),
107

potentialFunction (atsim.potentials.Potential at-
tribute), 120

PotentialInterface (built-in class), 48
potentials (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

attribute), 114
pow() (in module atsim.potentials), 126
product() (in module atsim.potentials), 126

R
r (atsim.potentials.spline.Spline_Point attribute), 107
r_min (atsim.potentials.spline.Buck4_Spline attribute),

108
range_type (atsim.potentials.Multi_Range_Defn at-

tribute), 125
raw_config_parser (at-

sim.potentials.config.ConfigParser attribute),
104

raw_config_parser (at-
sim.potentials.tools.potable.ConfigParser
attribute), 111

read() (atsim.potentials.config.Configuration method),
105

read_from_parser() (at-
sim.potentials.config.Configuration method),

148 Index

atsim_potentials Documentation

105
Reference_Data (class in at-

sim.potentials.referencedata), 106
Reference_Data_Exception, 106
registered (atsim.potentials.config.Potential_Form_Registry

attribute), 105

S
SetFL_EAMTabulation (class in at-

sim.potentials.eam_tabulation), 112
SetFL_FS_EAMTabulation (class in at-

sim.potentials.eam_tabulation), 112
species (atsim.potentials.config.ConfigParser at-

tribute), 104
species (atsim.potentials.tools.potable.ConfigParser

attribute), 111
speciesA (atsim.potentials.Potential attribute), 119
speciesA (PotentialInterface attribute), 48
speciesB (atsim.potentials.Potential attribute), 119
speciesB (PotentialInterface attribute), 48
spline3 (atsim.potentials.spline.Buck4_Spline at-

tribute), 108
spline5 (atsim.potentials.spline.Buck4_Spline at-

tribute), 108
spline_coefficients (at-

sim.potentials.spline.Buck4_Spline attribute),
108

spline_coefficients (at-
sim.potentials.spline.Exp_Spline attribute),
107

Spline_Point (class in atsim.potentials.spline), 107
splineCoefficients (at-

sim.potentials.spline.Custom_SplinePotential
attribute), 109

SplinePotential (class in atsim.potentials), 120
SplinePotential (class in atsim.potentials.spline),

109
sqrt (in module atsim.potentials), 125
sqrt (in module atsim.potentials.potentialforms), 116
sqrt (in module atsim.potentials.potentialfunctions),

117
start (atsim.potentials.Multi_Range_Defn attribute),

125
startPotential (at-

sim.potentials.spline.Custom_SplinePotential
attribute), 108

T
TABEAM_EAMTabulation (class in at-

sim.potentials.eam_tabulation), 112
TABEAM_FinnisSinclair_EAMTabulation

(class in atsim.potentials.eam_tabulation), 112
table_form (atsim.potentials.config.ConfigParser at-

tribute), 103

table_form (atsim.potentials.tools.potable.ConfigParser
attribute), 110

TableReader (class in atsim.potentials), 127
tabulation (atsim.potentials.config.ConfigParser at-

tribute), 103
tabulation (atsim.potentials.tools.potable.ConfigParser

attribute), 110
tang_toennies (in module atsim.potentials), 125
tang_toennies (in module at-

sim.potentials.potentialforms), 116
tang_toennies (in module at-

sim.potentials.potentialfunctions), 117
target (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

attribute), 114
type (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

attribute), 114

U
Unknown_Property_Exception, 106
Unknown_Species_Exception, 106
UnsupportedTabulationType, 128

V
v (atsim.potentials.spline.Spline_Point attribute), 107

W
workbook (atsim.potentials.eam_tabulation.Excel_EAMTabulation

attribute), 113
workbook (atsim.potentials.pair_tabulation.Excel_PairTabulation

attribute), 115
write() (atsim.potentials.eam_tabulation.ADP_EAMTabulation

method), 113
write() (atsim.potentials.eam_tabulation.Excel_EAMTabulation

method), 113
write() (atsim.potentials.eam_tabulation.SetFL_EAMTabulation

method), 112
write() (atsim.potentials.eam_tabulation.SetFL_FS_EAMTabulation

method), 112
write() (atsim.potentials.eam_tabulation.TABEAM_EAMTabulation

method), 112
write() (atsim.potentials.eam_tabulation.TABEAM_FinnisSinclair_EAMTabulation

method), 113
write() (atsim.potentials.pair_tabulation.DLPoly_PairTabulation

method), 114
write() (atsim.potentials.pair_tabulation.Excel_PairTabulation

method), 115
write() (atsim.potentials.pair_tabulation.GULP_PairTabulation

method), 115
write() (atsim.potentials.pair_tabulation.LAMMPS_PairTabulation

method), 114
write() (atsim.potentials.pair_tabulation.PairTabulation_AbstractBase

method), 114
writeFuncFL() (in module atsim.potentials), 122

Index 149

atsim_potentials Documentation

writePotentials() (in module atsim.potentials),
128

writeSetFL() (in module atsim.potentials), 123
writeSetFLFinnisSinclair() (in module at-

sim.potentials), 123
writeTABEAM() (in module atsim.potentials), 121
writeTABEAMFinnisSinclair() (in module at-

sim.potentials), 122

Z
zbl (in module atsim.potentials), 125
zbl (in module atsim.potentials.potentialforms), 116
zbl (in module atsim.potentials.potentialfunctions), 117
zero (in module atsim.potentials), 125
zero (in module atsim.potentials.potentialforms), 117
zero (in module atsim.potentials.potentialfunctions),

117

150 Index

	Features
	Contents
	Quick-Start
	Installation
	User Guide
	Reference
	List of Examples
	Credits
	Changes
	License
	References

	Contact
	Indices and tables
	Bibliography
	Python Module Index
	Index

