

 Navigation

 	
 index

 	
 next |

 	ATS Docs and Tips 0.0.1 documentation

Welcome to ATS Docs and Tips!

I hope this to be a place where all the people in the community could contribute docs and tips to boost ATS users.

Contents:

	Installation
	Install ATS 2 from Source Code

	Features
	Function Effects

	Quantifiers

	Examples
	Creating ATS Interface for C Library

	Library Docs

	TBD
	At-View Sugar

 Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Docs and Tips 0.0.1 documentation

Installation

Install ATS 2 from Source Code

Before installing ATS 2, we need the latest version of ATS 1 first.

	Download ATS 0.2.10 from http://sourceforge.net/projects/ats-lang/files/

	Unzip it into a folder, e.g. ~/ats

	Setup environment variables

export ATSHOME=~/ats
export ATSHOMERELOC=ATS-0.2.10
export PATH=$PATH:$ATSHOME/bin

	Configure

Attention

You may need to install autoconf package first

cd ~/ats
aclocal
autoheader
automake --force-missing --add-missing
autoconf
./configure

	Make

make all

	Make sure that all the binaries are under bin, and all the libraries are under ccomp/lib and ccomp/lib64.

Next, we are building ATS 2. CMake 2.8+ is recommended.

	Download source code from GitHub, https://github.com/githwxi/ATS-Postiats/archive/master.zip

	Unzip it into a folder, e.g. ~/ats2

	Setting up environment variables

export ATSHOME=~/ats
export ATSHOMERELOC=ATS-0.2.10
export PATSHOME=~/ats2
export PATH=$PATH:$ATSHOME/bin:$PATSHOME/bin

	Make

cd ~/ats2/src/BUILD
cmake ..
make

mkdir ~/ats2/bin
cp patsopt ~/ats2/bin/

Next, build libraries and tools

	Generate source code from templates

cd ~/ats2
make -f codegen/Makefile_atslib
make -f codegen/Makefile_atscntrib

	Make C Target Compiler and Libraries

cd ~/ats2/ccomp
make

	Make utilities

cd ~/ats2/libatsyntax
make

cd ~/ats2/utils/atscc
make
cp patscc ~/ats2/bin/

cd ~/ats2/utils/atsyntax
make

 Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Docs and Tips 0.0.1 documentation

Features

Function Effects

Note

This part is taken from Chris Double’s blog [http://bluishcoder.co.nz/2010/06/13/functions-in-ats.html] and a discussion on ATS google group [https://groups.google.com/forum/#!topic/ats-lang-users/88CYxwKl0M0]. Thanks to all the contributions in the blog and group thread.

For a function like fun foo (someargs: sometype):<> sometype, the :<> part is used to describe effects of functions. There is a sort eff exclusively for function effects. You can do things like :<>, :<lin,prf> and so on. The meaning of them are as follows.

	:<>

	pure, no effects at all

	!exn

	the function possibly raises exceptions

	!ntm

	the function possibly is non-terminating

	!ref

	the function possibly updates shared memory, which means reading from or writing to a location that it knows exists but does not own.

	!wrt

	(ATS2 only) the function may write to a location it owns

	0

	the function is pure (has no effects)

	1

	the function can have all effects

	fun

	the function is an ordinary, non-closure, function

	clo

	the function is a stack allocated closure

	cloptr

	the function is a linear closure that must be explicitly freed

	cloref

	the function is a peristent closure that requires the garbage collector to be freed.

	lin

	the function i slinear and can be called only once

	prf

	the function is a proof function

Quantifiers

In ATS, [] is mostly used as extential quantifier, while {} is mostly used as universal quantifier.

For example, suppose MUL encodes the multiplication relationship as defined here [http://www.ats-lang.org/DOCUMENT/INTPROGINATS/HTML/c2829.html], we can write something like this.

prfun mutiplication_is_total {m,n:int} (): [p:int] MUL (m, n, p)

which will be interpreted as

For all integers m and n, there exists some integer p such that MUL (m, n, p) is ture.

 Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Docs and Tips 0.0.1 documentation

Examples

Creating ATS Interface for C Library

I did a zlog [https://github.com/HardySimpson/zlog] interface for ATS based on Zhiqiang Ren [http://cs-people.bu.edu/aren/]‘s work. You can access the code at GitHub [https://github.com/steinwaywhw/ats-zlog]. And here’s how I did it.

Getting Start

Download and install zlog [https://github.com/HardySimpson/zlog], read its documents [http://hardysimpson.github.io/zlog/] and interfaces [https://github.com/HardySimpson/zlog/blob/master/src/zlog.h], get familiar with it by writting some simple hello world in C.

Translate into a Minimum Workable ATS Interface

For a minimum hello world, we just write such a C program

int main () {
 zlog_init ("")
 zlog_category *c = zlog_get_category ("mycat");
 zlog (c, "%s", "hello world");
 zlog_fini ();
}

I consider the data structures first.

zlog_category * is used across interfaces, but I don’t care it’s inner structure, which means I can use an abstract type. It doesn’t need to be freed manually, instead, all resources are freed by zlog_fini (). Therefore I make it non-linear in ATS. It is a pointer in C, I then use boxed type in ATS.

Therefore, I can define zlog_category using abstype, which is abstract, non-linear, and boxed.

abstype zlog_category

For functions, we can translate them directly into ATS

fun zlog_init (config: string): int = "mac#zlog_init"
fun zlog_get_category (name: string): zlog_category = "mac#zlog_get_category"
fun zlog_fini (): void = "mac#zlog_fini"

The logging function zlog is tricky since it has variable length parameter list. What I do here is using an intermediate C function.

fun zlog {ts:types}
(c: zlog_category, level: int, fmt: string, args: ts): void =
"mac#zlog_handler"

And in the DATS file, I implement it as follows

#include "zlog.h"
#include <stdarg.h>

void zlog_handler (zlog_category *c, int level, char *fmt, ...) {
 va_list args;
 va_start (args, fmt);

 vzlog (
 c,
 __FILE__,
 sizeof(__FILE__) - 1,
 __func__,
 sizeof(__func__) - 1,
 __LINE__,
 level,
 fmt,
 args);

 va_end (args);
}

The vzlog is an alternative interface provided zlog itself. Most library interfaces will provide such an alternative besides its original variable length version.

And now we can use them to write the hello world example.

Refining Types

My initial type for zlog_category * is just workable. But now I wanna force programmers to check whether it is a null pointer before using it.

I then change the definition and interface to the followings.

 Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Docs and Tips 0.0.1 documentation

Library Docs

 Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	ATS Docs and Tips 0.0.1 documentation

TBD

At-View Sugar

#view, #sugar

fun {a:t@ype}
ptr_get {l:addr} (pf: !a @ l >> a @ l | p: ptr (l)): a

is actually a sugar for

fun {a:t@ype}
ptr_get {l:addr} (pf: a @ l | p: ptr (l)): (a @ l | a)

The de-sugar one says everything about the meaning of ! and >>.

foo (pf: !T?@l >> T@l | ptr (l))

@[T][n] Array

The #[...] in existential qualifiers means that that variable can be referenced in function parameters. Notice the ‘d’ is referenced in the type of the ‘d’ argument. Without the ‘#’ this would be an error.

may be {} is universal contifier?
https://groups.google.com/forum/#!topic/ats-lang-users/VKuV0kFysxc

https://groups.google.com/forum/#!topic/ats-lang-users/YDS58Hbs2aw

 Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	ATS Docs and Tips 0.0.1 documentation

Index

 Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

search.html

 Navigation

 		
 index

 		ATS Docs and Tips 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, ATS Community.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

