

atasker

Python library for modern thread / multiprocessing pooling and task
processing via asyncio.

No matter how your code is written, atasker automatically detects
blocking functions and coroutines and launches them in a proper way, in
a thread, asynchronous loop or in multiprocessing pool.

Tasks are grouped into pools. If there’s no space in pool, task is being
placed into waiting queue according to their priority. Pool also has
“reserve” for the tasks with priorities “normal” and higher. Tasks with
“critical” priority are always executed instantly.

This library is useful if you have a project with many similar tasks
which produce approximately equal CPU/memory load, e.g. API responses,
scheduled resource state updates etc.

Install

pip3 install atasker

Sources: https://github.com/alttch/atasker

Documentation: https://atasker.readthedocs.io/

Why

	asynchronous programming is a perfect way to make your code fast and
reliable

	multithreading programming is a perfect way to run blocking code in
the background

atasker combines advantages of both ways: atasker tasks run in
separate threads however task supervisor and workers are completely
asynchronous. But all their public methods are thread-safe.

Why not standard Python thread pool?

	threads in a standard pool don’t have priorities

	workers

Why not standard asyncio loops?

	compatibility with blocking functions

	async workers

Why not concurrent.futures?

concurrent.futures is a great standard Python library which allows
you to execute specified tasks in a pool of workers.

atasker method background_task solves the same problem but in
slightly different way, adding priorities to the tasks, while atasker
workers do absolutely different job:

	in concurrent.futures worker is a pool member which executes the
single specified task.

	in atasker worker is an object, which continuously generates new
tasks with the specified interval or on external event, and executes
them in thread or multiprocessing pool.

Code examples

Start/stop

from atasker import task_supervisor

set pool size
task_supervisor.set_thread_pool(pool_size=20, reserve_normal=5, reserve_high=5)
task_supervisor.start()
...
start workers, other threads etc.
...
optionally block current thread
task_supervisor.block()

stop from any thread
task_supervisor.stop()

Background task

from atasker import background_task, TASK_LOW, TASK_HIGH, wait_completed

with annotation
@background_task
def mytask():
 print('I am working in the background!')
 return 777

task = mytask()

optional
result = wait_completed(task)

print(task.result) # 777
print(result) # 777

with manual decoration
def mytask2():
 print('I am working in the background too!')

task = background_task(mytask2, priority=TASK_HIGH)()

Async tasks

new asyncio loop is automatically created in own thread
a1 = task_supervisor.create_aloop('myaloop', default=True)

async def calc(a):
 print(a)
 await asyncio.sleep(1)
 print(a * 2)
 return a * 3

call from sync code

put coroutine
task = background_task(calc)(1)

wait_completed(task)

run coroutine and wait for result
result = a1.run(calc(1))

Worker examples

from atasker import background_worker, TASK_HIGH

@background_worker
def worker1(**kwargs):
 print('I am a simple background worker')

@background_worker
async def worker_async(**kwargs):
 print('I am async background worker')

@background_worker(interval=1)
def worker2(**kwargs):
 print('I run every second!')

@background_worker(queue=True)
def worker3(task, **kwargs):
 print('I run when there is a task in my queue')

@background_worker(event=True, priority=TASK_HIGH)
def worker4(**kwargs):
 print('I run when triggered with high priority')

worker1.start()
worker_async.start()
worker2.start()
worker3.start()
worker4.start()

worker3.put('todo1')
worker4.trigger()

from atasker import BackgroundIntervalWorker

class MyWorker(BackgroundIntervalWorker):

 def run(self, **kwargs):
 print('I am custom worker class')

worker5 = MyWorker(interval=0.1, name='worker5')
worker5.start()

	Task supervisor

	Tasks

	Async jobs

	Workers

	Task collections

	Thread local proxy

	Locker helper/decorator

	Debugging

Task supervisor

Task supervisor is a component which manages task thread pool and run task
schedulers (workers).

Contents

	Task supervisor

	Usage

	Task priorities

	Pool size

	Poll delay

	Blocking

	Timeouts

	Stopping task supervisor

	aloops: async executors and tasks

	Create

	Using with workers

	Executing own coroutines

	Other supervisor methods

	Multiprocessing

	Custom task supervisor

	Putting own tasks

	Putting own tasks in multiprocessing pool

	Creating own schedulers

Usage

When atasker package is imported, default task supervisor is automatically
created.

from atasker import task_supervisor

thread pool
task_supervisor.set_thread_pool(
 pool_size=20, reserve_normal=5, reserve_high=5)
task_supervisor.start()

Warning

Task supervisor must be started before any scheduler/worker or task.

Task priorities

Task supervisor supports 4 task priorities:

	TASK_LOW

	TASK_NORMAL (default)

	TASK_HIGH

	TASK_CRITICAL

from atasker import TASK_HIGH

def test():
 pass

background_task(test, name='test', priority=TASK_HIGH)()

Pool size

Parameter pool_size for task_supervisor.set_thread_pool defines size of
the task (thread) pool.

Pool size means the maximum number of the concurrent tasks which can run. If
task supervisor receive more tasks than pool size has, they will wait until
some running task is finished.

Actually, parameter pool_size defines pool size for the tasks, started with
TASK_LOW priority. Tasks with higher priority have “reserves”: pool_size=20,
reserve_normal=5 means create pool for 20 tasks but reserve 5 more places for
the tasks with TASK_NORMAL priority. In this example, when task supervisor
receives such task, pool is “extended”, up to 5 places.

For TASK_HIGH pool size can be extended up to pool_size + reserve_normal +
reserve_high, so in the example above: 20 + 5 + 5 = 30.

Tasks with priority TASK_CRITICAL are always started instantly, no matter how
busy task pool is, and thread pool is being extended for them with no limits.
Multiprocessing critical tasks are started as soon as multiprocessing.Pool
object has free space for the task.

To make pool size unlimited, set pool_size=0.

Parameters min_size and max_size set actual system thread pool size. If
max_size is not specified, it’s set to pool_size + reserve_normal +
reserve_high. It’s recommended to set max_size slightly larger manually to
have a space for critical tasks.

By default, max_size is CPU count * 5. You may use argument min_size=’max’
to automatically set minimal pool size to max.

Note

pool size can be changed while task supervisor is running.

Poll delay

Poll delay is a delay (in seconds), which is used by task queue manager, in
workers and some other methods like start/stop.

Lower poll delay = higher CPU usage, higher poll delay = lower reaction time.

Default poll delay is 0.1 second. Can be changed with:

task_supervisor.poll_delay = 0.01 # set poll delay to 10ms

Blocking

Task supervisor is started in its own thread. If you want to block current
thread, you may use method

task_supervisor.block()

which will just sleep while task supervisor is active.

Timeouts

Task supervisor can log timeouts (when task isn’t launched within a specified
number of seconds) and run timeout handler functions:

def warning(t):
 # t = task thread object
 print('Task thread {} is not launched yet'.format(t))

def critical(t):
 print('All is worse than expected')

task_supervisor.timeout_warning = 5
task_supervisor.timeout_warning_func = warn
task_supervisor.timeout_critical = 10
task_supervisor.timeout_critical_func = critical

Stopping task supervisor

task_supervisor.stop(wait=True, stop_schedulers=True, cancel_tasks=False)

Params:

	wait wait until tasks and scheduler coroutines finish. If
wait=<number>, task supervisor will wait until coroutines finish for the
max. wait seconds. However if requested to stop schedulers (workers) or
task threads are currently running, method stop wait until they finish for
the unlimited time.

	stop_schedulers before stopping the main event loop, task scheduler will
call stop method of all schedulers running.

	cancel_tasks if specified, task supervisor will try to forcibly cancel
all scheduler coroutines.

aloops: async executors and tasks

Usually it’s unsafe to run both schedulers (workers) executors
and custom tasks in supervisor’s event loop. Workers use event loop by default
and if anything is blocked, the program may be freezed.

To avoid this, it’s strongly recommended to create independent async loops for
your custom tasks. atasker supervisor has built-in engine for async loops,
called “aloops”, each aloop run in a separated thread and doesn’t interfere
with supervisor event loop and others.

Create

If you plan to use async worker executors, create aloop:

a = task_supervisor.create_aloop('myworkers', default=True, daemon=True)
the loop is instantly started by default, to prevent add param start=False
and then use
task_supervisor.start_aloop('myworkers')

To determine in which thread executor is started, simply get its name. aloop
threads are called “supervisor_aloop_<name>”.

Using with workers

Workers automatically launch async executor function in default aloop, or aloop
can be specified with loop= at init or _loop= at startup.

Executing own coroutines

aloops have 2 methods to execute own coroutines:

put coroutine to loop
task = aloop.background_task(coro(args))

blocking wait for result from coroutine
result = aloop.run(coro(args))

Other supervisor methods

Note

It’s not recommended to create/start/stop aloops without supervisor

set default aloop
task_supervisor.set_default_aloop(aloop):

get aloop by name
task_supervisor.get_aloop(name)

stop aloop (not required, supervisor stops all aloops at shutdown)
task_supervisor.stop_aloop(name)

get aloop async event loop object for direct access
aloop.get_loop()

Multiprocessing

Multiprocessing pool may be used by workers and background tasks to execute a
part of code.

To create multiprocessing pool, use method:

from atasker import task_supervisor

task_supervisor.create_mp_pool(<args for multiprocessing.Pool>)
e.g.
task_supervisor.create_mp_pool(processes=8)

use custom mp Pool

from multiprocessing import Pool

pool = Pool(processes=4)
task_supervisor.mp_pool = pool

set mp pool size. if pool wasn't created before, it will be initialized
with processes=(pool_size+reserve_normal+reserve_high)
task_supervisor.set_mp_pool(
 pool_size=20, reserve_normal=5, reserve_high=5)

Custom task supervisor

from atasker import TaskSupervisor

my_supervisor = TaskSupervisor(
 pool_size=100, reserve_normal=10, reserve_high=10)

class MyTaskSupervisor(TaskSupervisor):
 #

my_supervisor2 = MyTaskSupervisor()

Putting own tasks

If you can not use background tasks for some reason, you may
put own tasks manually and put it to task supervisor to launch:

task = task_supervisor.put_task(target=myfunc, args=(), kwargs={},
 priority=TASK_NORMAL, delay=None)

If delay is specified, the thread is started after the corresponding delay
(seconds).

After the function thread is finished, it should notify task supervisor:

task_supervisor.mark_task_completed(task=task) # or task_id = task.id

If no task_id specified, current thread ID is being used:

note: custom task targets always get _task_id in kwargs
 def mytask(**kwargs):
 # ... perform calculations
 task_supervisor.mark_task_completed(task_id=kwargs['_task_id'])

 task_supervisor.put_task(target=mytask)

Note

If you need to know task id, before task is put (e.g. for task callback),
you may generate own and call put_task with task_id=task_id parameter.

Putting own tasks in multiprocessing pool

To put own task into multiprocessing pool, you must create tuple object which
contains:

	unique task id

	task function (static method)

	function args

	function kwargs

	result callback function

import uuid

from atasker import TT_MP

task = task_supervisor.put_task(
 target=<somemodule.staticmethod>, callback=<somefunc>, tt=TT_MP)

After the function is finished, you should notify task supervisor:

task_supervisor.mark_task_completed(task_id=<task_id>, tt=TT_MP)

Creating own schedulers

Own task scheduler (worker) can be registered in task supervisor with:

task_supervisor.register_scheduler(scheduler)

Where scheduler = scheduler object, which should implement at least stop
(regular) and loop (async) methods.

Task supervisor can also register synchronous schedulers/workers, but it can
only stop them when stop method is called:

task_supervisor.register_sync_scheduler(scheduler)

To unregister schedulers from task supervisor, use unregister_scheduler and
unregister_sync_scheduler methods.

Tasks

Task is a Python function which will be launched in the separate thread.

Defining task with annotation

from atasker import background_task

@background_task
def mytask():
 print('I am working in the background!')

task = mytask()

It’s not required to notify task supervisor about task completion,
background_task will do this automatically as soon as task function is
finished.

All start parameters (args, kwargs) are passed to task functions as-is.

Task function without annotation

To start task function without annotation, you must manually decorate it:

from atasker import background_task, TASK_LOW

def mytask():
 print('I am working in the background!')

task = background_task(mytask, name='mytask', priority=TASK_LOW)()

Multiprocessing task

Run as background task

To put task into multiprocessing pool, append parameter
tt=TT_MP:

from atasker import TASK_HIGH, TT_MP

task = background_task(
 tests.mp.test, priority=TASK_HIGH, tt=TT_MP)(1, 2, 3, x=2)

Optional parameter callback can be used to specify function which handles
task result.

Note

Multiprocessing target function always receives _task_id param.

Run in async way

You may put task from your coroutine, without using callback, example:

from atasker import co_mp_apply, TASK_HIGH

async def f1():
 result = await co_mp_apply(
 tests.mp.test, args=(1,2,3), kwargs={'x': 2},
 priority=TASK_HIGH)

Task object

If you saved only task.id but not the whole object, you may later obtain Task
object again:

from atasker import task_supervisor

task = task_supervisor.get_task(task.id)

Task info object fields:

	id task id

	task task object

	tt task type (TT_THREAD, TT_MP)

	priority task priority

	time_queued time when task was queued

	time_started time when task was started

	result task result

	
	status task status

	0 queued
2 delayed
100 started
200 completed
-1 canceled

If task info is None, consider the task is completed and supervisor destroyed
information about it.

Note

As soon as task is marked as completed, supervisor no longer stores
information about it

Wait until completed

You may wait until pack of tasks is completed with the following method:

from atasker import wait_completed

wait_completed([task1, task2, task3], timeout=None)

The method return list of task results if all tasks are finished, or raises
TimeoutError if timeout was specified but some tasks are not finished.

If you call method with a single task instead of list or tuple, single result
is returned.

Async jobs

atasker has built-in integration with aiosched [https://github.com/alttch/aiosched] - simple and fast async job scheduler.

aiosched schedulers can be automatically started inside
aloop:

async def test1():
 print('I am lightweight async job')

task_supervisor.create_aloop('jobs')
if aloop id not specified, default aloop is used
task_supervisor.create_async_job_scheduler('default', aloop='jobs',
 default=True)
create async job
job1 = task_supervisor.create_async_job(target=test1, interval=0.1)
cancel async job
task_supervisor.cancel_async_job(job=job1)

Note

aiosched jobs are lightweight, don’t report any statistic data and don’t
check is the job already running.

Workers

Worker is an object which runs specified function (executor) in a loop.

Contents

	Workers

	Common

	Worker parameters

	Methods

	Overriding parameters at startup

	Executor function

	Asynchronous executor function

	Multiprocessing executor function

	Workers

	BackgroundWorker

	BackgroundAsyncWorker

	BackgroundQueueWorker

	BackgroundEventWorker

	BackgroundIntervalWorker

Common

Worker parameters

All workers support the following initial parameters:

	name worker name (default: name of executor function if specified,
otherwise: auto-generated UUID)

	func executor function (default: worker.run)

	priority worker thread priority

	o special object, passed as-is to executor (e.g. object worker is running
for)

	on_error a function which is called, if executor raises an exception

	on_error_kwargs kwargs for on_error function

	supervisor alternative task supervisor

	poll_delay worker poll delay (default: task supervisor poll delay)

Methods

Overriding parameters at startup

Initial parameters name, priority and o can be overriden during
worker startup (first two - as _name and _priority)

myworker.start(_name='worker1', _priority=atasker.TASK_LOW)

Executor function

Worker executor function is either specified with annotation or named run
(see examples below). The function should always have **kwargs param.

Executor function gets in args/kwargs:

	all parameters worker.start has been started with.

	_worker current worker object

	_name current worker name

	_task_id if executor function is started in multiprocessing pool - ID of
current task (for thread pool, task id = thread name).

Note

If executor function return False, worker stops itself.

Asynchronous executor function

Executor function can be asynchronous, in this case it’s executed inside
task supervisor loop, no new thread is started and
priority is ignored.

When background_worker decorator detects asynchronous function, class
BackgroundAsyncWorker is automatically used instead of BackgroundWorker
(BackgroundQueueWorker, BackgroundEventWorker and
BackgroundIntervalWorker support synchronous functions out-of-the-box).

Additional worker parameter loop (_loop at startup) may be specified to put
executor function inside external async loop.

Note

To prevent interference between supervisor event loop and executors, it’s
strongly recommended to specify own async event loop or create
aloop.

Multiprocessing executor function

To use multiprocessing, task supervisor mp pool must be
created.

If executor method run is defined as static, workers automatically detect
this and use multiprocessing pool of task supervisor to launch executor.

Note

As executor is started in separate process, it doesn’t have an access to
self object.

Additionally, method process_result must be defined in worker class to
process executor result. The method can stop worker by returning False value.

Example, let’s define BackgroundQueueWorker. Python multiprocessing module
can not pick execution function defined via annotation, so worker class is
required. Create it in separate module as Python multiprocessing can not pick
methods from the module where the worker is started:

Warning

Multiprocessing executor function should always finish correctly, without
any exceptions otherwise callback function is never called and task become
“freezed” in pool.

myworker.py

class MyWorker(BackgroundQueueWorker):

 # executed in another process via task_supervisor
 @staticmethod
 def run(task, *args, **kwargs):
 # .. process task
 return '<task result>'

 def process_result(self, result):
 # process result

main.py

from myworker import MyWorker

worker = MyWorker()
worker.start()
.....
worker.put_threadsafe('task')
.....
worker.stop()

Workers

BackgroundWorker

Background worker is a worker which continuously run executor function in a
loop without any condition. Loop of this worker is synchronous and is started
in separate thread instantly.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker
def myfunc(*args, **kwargs):
 print('I am background worker')

with class
from atasker import BackgroundWorker

class MyWorker(BackgroundWorker):

 def run(self, *args, **kwargs):
 print('I am a worker too')

myfunc.start()

myworker2 = MyWorker()
myworker2.start()

............

stop first worker
myfunc.stop()
stop 2nd worker, don't wait until it is really stopped
myworker2.stop(wait=False)

BackgroundAsyncWorker

Similar to BackgroundWorker but used for async executor functions. Has
additional parameter loop= (_loop in start function) to specify either
async event loop or aloop object. By default either task
supervisor event loop or task supervisor default aloop is used.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker
async def async_worker(**kwargs):
 print('I am async worker')

async_worker.start()

with class
from atasker import BackgroundAsyncWorker

class MyWorker(BackgroundAsyncWorker):

 async def run(self, *args, **kwargs):
 print('I am async worker too')

worker = MyWorker()
worker.start()

BackgroundQueueWorker

Background worker which gets data from asynchronous queue and passes it to
synchronous or Asynchronous executor.

Queue worker is created as soon as annotator detects q=True or queue=True
param. Default queue is asyncio.queues.Queue. If you want to use e.g.
priority queue, specify its class instead of just True.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker(q=True)
def f(task, **kwargs):
 print('Got task from queue: {}'.format(task))

@background_worker(q=asyncio.queues.PriorityQueue)
def f2(task, **kwargs):
 print('Got task from queue too: {}'.format(task))

with class
from atasker import BackgroundQueueWorker

class MyWorker(BackgroundQueueWorker):

 def run(self, task, *args, **kwargs):
 print('my task is {}'.format(task))

f.start()
f2.start()
worker3 = MyWorker()
worker3.start()
f.put_threadsafe('task 1')
f2.put_threadsafe('task 2')
worker3.put_threadsafe('task 3')

put method is used to put task into worker’s queue. The method is
thread-safe.

BackgroundEventWorker

Background worker which runs asynchronous loop waiting for the event and
launches synchronous or asynchronous executor when it’s happened.

Event worker is created as soon as annotator detects e=True or event=True
param.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker(e=True)
def f(task, **kwargs):
 print('happened')

with class
from atasker import BackgroundEventWorker

class MyWorker(BackgroundEventWorker):

 def run(self, *args, **kwargs):
 print('happened')

f.start()
worker3 = MyWorker()
worker3.start()
f.trigger_threadsafe()
worker3.trigger_threadsafe()

trigger_threadsafe method is used to put task into worker’s queue. The
method is thread-safe. If worker is triggered from the same asyncio loop,
trigger method can be used instead.

BackgroundIntervalWorker

Background worker which runs synchronous or asynchronous executor function with
the specified interval or delay.

Worker initial parameters:

	interval run executor with a specified interval (in seconds)

	delay delay between executor launches

	delay_before delay before executor launch

Parameters interval and delay can not be used together. All parameters can
be overriden during startup by adding _ prefix (e.g.
worker.start(_interval=1))

Background interval worker is created automatically, as soon as annotator
detects one of the parameters above:

@background_worker(interval=1)
def myfunc(**kwargs):
 print('I run every second!')

@background_worker(interval=1)
async def myfunc2(**kwargs):
 print('I run every second and I am async!')

myfunc.start()
myfunc2.start()

As well as event worker, BackgroundIntervalWorker supports manual executor
triggering with worker.trigger() and worker.trigger_threadsafe()

Task collections

Task collections are useful when you need to run a pack of tasks e.g. on
program startup or shutdown. Currently collections support running task
functions only either in a foreground (one-by-one) or as the threads.

Function priority can be specified either as TASK_* (e.g. TASK_NORMAL) or
as a number (lower = higher priority).

FunctionCollection

Simple collection of functions.

from atasker import FunctionCollection, TASK_LOW, TASK_HIGH

def error(**kwargs):
 import traceback
 traceback.print_exc()

startup = FunctionCollection(on_error=error)

@startup
def f1():
 return 1

@startup(priority=TASK_HIGH)
def f2():
 return 2

@startup(priority=TASK_LOW)
def f3():
 return 3

result, all_ok = startup.execute()

TaskCollection

Same as function collection, but stored functions are started as tasks in
threads.

Methods execute() and run() return result when all tasks in collection are
finished.

Thread local proxy

from atasker import g

if not g.has('db'):
 g.set('db', <new_db_connection>)

Supports methods:

Locker helper/decorator

from atasker import Locker

def critical_exception():
 # do something, e.g. restart/kill myself
 import os, signal
 os.kill(os.getpid(), signal.SIGKILL)

lock1 = Locker(mod='main', timeout=5)
lock1.critical = critical_exception

use as decorator
@lock1
def test():
 # thread-safe access to resources locked with lock1

with
with lock1:
 # thread-safe access to resources locked with lock1

Supports methods:

Debugging

The library uses logger “atasker” to log all events.

Additionally, for debug messages, method atasker.set_debug() should be called.

Index

atasker

Python library for modern thread / multiprocessing pooling and task
processing via asyncio.

No matter how your code is written, atasker automatically detects
blocking functions and coroutines and launches them in a proper way, in
a thread, asynchronous loop or in multiprocessing pool.

Tasks are grouped into pools. If there’s no space in pool, task is being
placed into waiting queue according to their priority. Pool also has
“reserve” for the tasks with priorities “normal” and higher. Tasks with
“critical” priority are always executed instantly.

This library is useful if you have a project with many similar tasks
which produce approximately equal CPU/memory load, e.g. API responses,
scheduled resource state updates etc.

Install

pip3 install atasker

Sources: https://github.com/alttch/atasker

Documentation: https://atasker.readthedocs.io/

Why

	asynchronous programming is a perfect way to make your code fast and
reliable

	multithreading programming is a perfect way to run blocking code in
the background

atasker combines advantages of both ways: atasker tasks run in
separate threads however task supervisor and workers are completely
asynchronous. But all their public methods are thread-safe.

Why not standard Python thread pool?

	threads in a standard pool don’t have priorities

	workers

Why not standard asyncio loops?

	compatibility with blocking functions

	async workers

Why not concurrent.futures?

concurrent.futures is a great standard Python library which allows
you to execute specified tasks in a pool of workers.

atasker method background_task solves the same problem but in
slightly different way, adding priorities to the tasks, while atasker
workers do absolutely different job:

	in concurrent.futures worker is a pool member which executes the
single specified task.

	in atasker worker is an object, which continuously generates new
tasks with the specified interval or on external event, and executes
them in thread or multiprocessing pool.

Code examples

Start/stop

from atasker import task_supervisor

set pool size
task_supervisor.set_thread_pool(pool_size=20, reserve_normal=5, reserve_high=5)
task_supervisor.start()
...
start workers, other threads etc.
...
optionally block current thread
task_supervisor.block()

stop from any thread
task_supervisor.stop()

Background task

from atasker import background_task, TASK_LOW, TASK_HIGH, wait_completed

with annotation
@background_task
def mytask():
 print('I am working in the background!')
 return 777

task = mytask()

optional
result = wait_completed(task)

print(task.result) # 777
print(result) # 777

with manual decoration
def mytask2():
 print('I am working in the background too!')

task = background_task(mytask2, priority=TASK_HIGH)()

Async tasks

new asyncio loop is automatically created in own thread
a1 = task_supervisor.create_aloop('myaloop', default=True)

async def calc(a):
 print(a)
 await asyncio.sleep(1)
 print(a * 2)
 return a * 3

call from sync code

put coroutine
task = background_task(calc)(1)

wait_completed(task)

run coroutine and wait for result
result = a1.run(calc(1))

Worker examples

from atasker import background_worker, TASK_HIGH

@background_worker
def worker1(**kwargs):
 print('I am a simple background worker')

@background_worker
async def worker_async(**kwargs):
 print('I am async background worker')

@background_worker(interval=1)
def worker2(**kwargs):
 print('I run every second!')

@background_worker(queue=True)
def worker3(task, **kwargs):
 print('I run when there is a task in my queue')

@background_worker(event=True, priority=TASK_HIGH)
def worker4(**kwargs):
 print('I run when triggered with high priority')

worker1.start()
worker_async.start()
worker2.start()
worker3.start()
worker4.start()

worker3.put('todo1')
worker4.trigger()

from atasker import BackgroundIntervalWorker

class MyWorker(BackgroundIntervalWorker):

 def run(self, **kwargs):
 print('I am custom worker class')

worker5 = MyWorker(interval=0.1, name='worker5')
worker5.start()

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 atasker

 		
 Task supervisor

 		
 Usage

 		
 Task priorities

 		
 Pool size

 		
 Poll delay

 		
 Blocking

 		
 Timeouts

 		
 Stopping task supervisor

 		
 aloops: async executors and tasks

 		
 Create

 		
 Using with workers

 		
 Executing own coroutines

 		
 Other supervisor methods

 		
 Multiprocessing

 		
 Custom task supervisor

 		
 Putting own tasks

 		
 Putting own tasks in multiprocessing pool

 		
 Creating own schedulers

 		
 Tasks

 		
 Defining task with annotation

 		
 Task function without annotation

 		
 Multiprocessing task

 		
 Run as background task

 		
 Run in async way

 		
 Task object

 		
 Wait until completed

 		
 Async jobs

 		
 Workers

 		
 Common

 		
 Worker parameters

 		
 Methods

 		
 Overriding parameters at startup

 		
 Executor function

 		
 Asynchronous executor function

 		
 Multiprocessing executor function

 		
 Workers

 		
 BackgroundWorker

 		
 BackgroundAsyncWorker

 		
 BackgroundQueueWorker

 		
 BackgroundEventWorker

 		
 BackgroundIntervalWorker

 		
 Task collections

 		
 FunctionCollection

 		
 TaskCollection

 		
 Thread local proxy

 		
 Locker helper/decorator

 		
 Debugging

_static/up-pressed.png

_static/up.png

_static/plus.png

