

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	atactk 0.1.5 documentation

atactk: a toolkit for ATAC-seq data

	Introduction
	What’s in the box?
	Programs we’ve found useful in ATAC-seq pipelines

	A Python library you can use in your own tools for processing ATAC-seq data

	License

	Installation
	Requirements

	Usage
	Command-line applications
	Adapter trimming

	Cut matrix generation
	Discrete matrices

	Aggregate matrices

	Binning

	Creating ATAC-seq signal plots for motifs

	Using the atactk library

	Getting help

	Contributing
	Contributing knowledge

	Contributing code

	Pull Request Guidelines

	Credits

	History
	0.1.5 (2016-01-08)

	0.1.4 (2015-12-17)

	0.1.3 (2015-12-10)

	0.1.2 (2015-12-06)

	0.1.1 (2015-12-01)

	0.1.0 (2015-10-31)

Indices and tables

	Index

	Module Index

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atactk 0.1.5 documentation

Introduction

What’s in the box?

Programs we’ve found useful in ATAC-seq pipelines

	trim_adapters: based on Jason Buenrostro’s utility for trimming
Illumina adapters by aligning paired reads to each other.

	make_cut_matrix: useful in conjunction with CENTIPEDE, and in
generating plots of transcription factor binding sites.

	plot_aggregate_matrix.R: generates plots for motifs given the
aggregate output of make_cut_matrix

A Python library you can use in your own tools for processing ATAC-seq data

The code underpinning our command-line tools has allowed us to make
our pipelines shorter and faster. Our ATAC-seq scoring functions work
directly with a BAM file and run in parallel, without the overhead of
invoking external applications. Particularly if you’re trying to
produce quantitative metrics from your data, starting with your BAM
files, converting them to BED and bigWig so you can run bigWigSummary,
you might find your pipeline can be simplified too.

License

GPLv3 or any later version.

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atactk 0.1.5 documentation

Installation

At the command line:

git clone https://github.com/ParkerLab/atactk
pip install ./atactk

The dependencies should be installed automatically.

Requirements

	Python. We’ve run it successfully under versions 2.7.10 and 3.4.3.

	pysam

	python-levenshtein

	sexpdata

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atactk 0.1.5 documentation

Usage

Command-line applications

Adapter trimming

The trim_adapters utility is based on a script by Jason Buenrostro
(see the original ATAC-seq paper [http://dx.doi.org/10.1038/nmeth.2688]: Buenrostro, Jason D; Giresi, Paul
G; Zaba, Lisa C; Chang, Howard Y; Greenleaf,
William J. 2013. Transposition of native chromatin for fast and
sensitive epigenomic profiling of open chromatin, DNA-binding proteins
and nucleosome position. Nat Meth 10, 1213–1218.)

Instead of looking for known adapter sequence, it aligns paired reads
to each other and trims off sequence outside the alignment. More
precisely, it searches the forward read for the reverse complement of
a specified number of bases (20 by default) at the beginning of the
reverse read, then falls back to finding the best alignment of the two
reads, using the minimum Levenshtein distance between them.

Changes from the original script:

	The --max-edit-distance option to specify the maximum edit distance
when aligning the reads.

	The --fudge option to not trim a base from the result to satisfy
bowtie – other aligners like bwa don’t have the apparent problem
with exactly overlapping reads. The default is 1 for compatibility
with the original script.

	The --rc-length option to specify the amount of the reverse read to
reverse complement and search for in the forward read.

	The --trim-from-start option to remove extra bases from the
beginning of each read. We found this necessary with OH-seq.

	Output is gzipped.

Cut matrix generation

The make_cut_matrix script can be used to generate two types of
matrices by counting the ATAC-seq cut points (transposition sites)
around known motifs, given a BAM file of aligned reads from an
ATAC-seq experiment and a BED file of motifs.

Discrete matrices

The first type of output, which we call discrete, is intended to
produce input for CENTIPEDE. The output matrix contains a row for each
motif, representing the cut point counts at positions within and
around the motif for each fragment size bin. For each fragment size
bin and resolution you specify, the cut points at each position in the
motif and an extended region you specify are counted, and every
resolution positions in the extended area on either side of the
motif are summed. So each row will contain for each fragment size bin
a sequence of (possibly aggregated) scores in the region upstream of
the motif, a sequence of scores for each position in the motif, and a
sequence of (possibly aggregated) scores in the region downstream of
the motif.

An example invocation:

make_cut_matrix -d -b '(36-149 150-324 325-400 1)' -p 8 \
 input.bam \
 JASPAR2014_CTCF.bed.gz | \
 gzip -c > CTCF.discrete.matrix.gz

That would count any reads with lengths between 36-149, 150-324, and
325-400 from input.bam whose cut points fell in the specified
region around motifs from JASPAR2014_CTCF.bed.gz. The cut point
counts would be recorded for each fragment size bin, at nucleotide
resolution (with no score aggregation in the extended region around
each motif). Since the length of the extended region was not
specified, it would use the default. The program would use eight
concurrent scoring processes, and the output would wind up in
CTCF.discrete.matrix.gz.

Aggregate matrices

After you’ve run CENTIPEDE with the resulting discrete matrix, and
identified bound and unbound motifs (perhaps using posterior
probabilities of at least 0.95 or at most 0.5, respectively), you can
move on to generating what we call aggregate matrices. These are
designed for creating a plot of the ATAC-seq signal around a single
motif.

An aggregate matrix contains a row for each combination of position,
fragment size bin, and strand within and around the motif, with
columns representing the absolute and mean cut point counts at each
position.

An example invocation, using a BED file of bound motifs:

make_cut_matrix -a -b '(36-149 150-324 325-400 1)' -p 8 \
 input.bam \
 CTCF_bound.bed.gz | \
 gzip -c > CTCF_bound.aggregate.matrix.gz

Do the same for your unbound motifs, and you’re ready to plot.

Binning

For either matrix, we count cut points in groups of bins according to
the length of the reads’ fragments, with optional reduction of scores
in regions around motifs to a resolution you specify for each
group. This is regrettably complex to explain, so I will resort to
crude pictures.

Assume you want to count cut points from fragments with lengths in the
following ranges at different resolutions:

	Fragment bin group
	Resolution

	36-149
	1

	150-224 and 225-324
	2

	325-400
	5

The command line specification for this scenario would look like
this:

make_cut_matrix -a -b '(36-149 1) (150-224 225-324 2) (325-400 5)' ...

Pretend you’re scoring a motif 5 bases long, with a 10-base extended
region on either side, and for simplicity, pretend that each template
length bin had the same counts of cut points around the motif, shown
here:

extended region motif extended region
------------------- --------- -------------------
0 1 2 3 3 4 4 4 4 5 9 2 0 2 7 5 4 4 4 4 3 3 2 1 0

The matrix would contain scores for each position in the first bin
group, (36-149 1):

extended region motif extended region
------------------- --------- -------------------
0 1 2 3 3 4 4 4 4 5 9 2 0 2 7 5 4 4 4 4 3 3 2 1 0

The second bin group, (150-224 225-324 2) would contain sums of
every two scores in the extended region, plus every score in the motif
itself:

extended region motif extended region
------------------------------- --------- ------------------------------
(0+1) (2+3) (3+4) (4+4) (4 + 5) 9 2 0 2 7 (5+4) (4+4) (4+3) (3+2) (1+ 0)

resulting in:

e.r. motif e.r.
--------- --------- ---------
1 5 7 8 9 9 2 0 2 7 9 8 7 5 1

Furthermore, since this group contains two bins, what ultimately goes
into the output matrix would be the entrywise sum of each bin’s scores.

The scores for the last bin group, (325-400 5), after adding every
five scores in the extended region:

e.r. motif e.r.
---- --------- ----
9 21 9 2 0 2 7 21 9

Creating ATAC-seq signal plots for motifs

The output of make_cut_matrix --aggregate-output can be plotted
with plot_aggregate_matrix.R. Pass it the aggregate output for a
bound motif, the aggregate output for an unbound motif, a title for
the plot and the name of the PDF file in which to save the plot.

An example of the output produced by:

plot_aggregate_matrix.R CTCF_bound.aggregate.matrix CTCF_unbound.aggregate.matrix "CTCF regions with motifs oriented by strand" CTCF.pdf

[image: _images/CTCF.png]

Using the atactk library

There are several modules in the atactk package that you might
find useful in processing ATAC-seq data, particularly atactk.data
and atactk.metrics.

The atactk.data module simplifies reading and manipulating
features from BED files. It handles gzipped or uncompressed files
automatically, and makes it simple to filter aligned segments from a
BAM file using standard SAM flags. It also makes it easy to read two
FASTQ files simultaneously, producing a sequence of paired reads.

The atactk.metrics module makes it easy to measure ATAC-seq cut
points around a feature.

There are also the atactk.command and atactk.util modules,
which support parsing of our interval specifications and provide some
generic functional tools used in the other modules.

We’ve made an effort to ensure the library is completely documented
(see the Module Index). If you find the documentation incomplete or
unclear, please file a bug report.

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atactk 0.1.5 documentation

Getting help

If you have questions about installing or using atactk, please visit
the project’s Google Group at:

https://groups.google.com/forum/#!forum/atactk/

If you’ve found a bug, please file a report at GitHub:

https://github.com/ParkerLab/atactk/issues/

If you’d prefer to contact us privately, send mail to:

parkerlab-software@umich.edu

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atactk 0.1.5 documentation

Contributing

Contributing knowledge

If you’ve found a bug, or have a suggestion for improving the toolkit,
please let us know by creating a GitHub issue at:

https://github.com/ParkerLab/atactk/issues

Contributing code

We welcome contributions of code, too. Here’s how to get started.

	Fork the repo on GitHub: https://github.com/ParkerLab/atactk/

	Set up a Python virtualenv. Assuming you have virtualenvwrapper
installed, this is how you set up your fork for local development:

$ mkvirtualenv atactk
$ git clone git@github.com:your_name_here/atactk.git
$ cd atactk/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	(Optional, but much appreciated.) When you’re done making changes,
check that your changes pass flake8 and the tests, including
testing other Python versions with tox:

$ flake8 atactk tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	If the pull request adds functionality, please update the
documentation, especially docstrings and script help text.

	If you have time to write tests too, great, but we understand
you’re volunteering your time to help our project, and we will
take care of making sure changes are tested.

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atactk 0.1.5 documentation

Credits

The atactk package was built by the Parker Lab at the University of
Michigan, with contributions from:

	John Hensley

	Ricardo D’Oliveira Albanus

	Stephen Parker

The trim_adapters utility is based on a script by Jason Buenrostro
(see the original ATAC-seq paper [http://dx.doi.org/10.1038/nmeth.2688]: Buenrostro, Jason D; Giresi, Paul
G; Zaba, Lisa C; Chang, Howard Y; Greenleaf,
William J. 2013. Transposition of native chromatin for fast and
sensitive epigenomic profiling of open chromatin, DNA-binding proteins
and nucleosome position. Nat Meth 10, 1213–1218.)

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	atactk 0.1.5 documentation

History

0.1.5 (2016-01-08)

Fix bug in score_feature introduced in 0.1.2: careless use of a
generator expression caused aligned_segments_in_bin to be consumed
when gathering forward_aligned_segments, so reverse_aligned_segments
was always empty, resulting in low cut point counts.

Change bin key construction to ensure the R script treated bins as
characters.

Stop insisting motif input files match an official BED format; as long
as the first six fields work, ignore the rest and get on with it.

0.1.4 (2015-12-17)

When generating an aggregate matrix, ensure that there is always a
line for each position, fragment size bin, and strand, even if there
is no signal there.

Support reading motifs from standard input, which required removing
time estimates, and returning the motif from
atactk.metrics.score_feature.

Remove option for reverse feature shift.

0.1.3 (2015-12-10)

Speed up scoring.

Open the alignment file once in each worker process, instead of in each
call to score_feature. There’s a surprising amount of overhead in
pysam’s opening of BAM files. The actual fetch calls are really quick.

The AlignmentFile instances are not supposed to be safe to share between
processes, so each worker still has to have its own, but it’s a big
reduction in overhead; things are roughly twice as fast now.

Also refactor make_cut_matrix, mainly to enable profiling.

0.1.2 (2015-12-06)

Fix an overlooked realization of the list of motifs, which would be
copied into all processes. Use a generator expression for the results
when using only one process.

Convert a couple of other list comprehensions to generator expressions.

Change –parallel default to 1.

Improve logging.

0.1.1 (2015-12-01)

Arbitrary cut point location.

Now you can specify where (or whether) the cut point happens relative to
the ends of reads. We’re using this to compare our footprinting with
DNase-seq data.

0.1.0 (2015-10-31)

	First release.

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	atactk 0.1.5 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 atactk	

 	
 	
 atactk.command	

 	
 	
 atactk.data	

 	
 	
 atactk.metrics	

 	
 	
 atactk.util	

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	atactk 0.1.5 documentation

Index

 A
 | C
 | E
 | F
 | M
 | N
 | O
 | P
 | R
 | S
 | T

A

 	

 	add_cut_points_to_region_tree() (in module atactk.metrics)

 	add_lists() (in module atactk.util)

 	aggregate_scores() (in module atactk.metrics)

 	atactk (module)

 	

 	atactk.command (module)

 	atactk.data (module)

 	atactk.metrics (module)

 	atactk.util (module)

C

 	

 	check_bins_for_overlap() (in module atactk.command)

 	complement() (in module atactk.data)

 	

 	count_cut_points() (in module atactk.metrics)

 	count_features() (in module atactk.data)

E

 	

 	ExtendedFeature (class in atactk.data)

F

 	

 	feature_end (atactk.data.ExtendedFeature attribute)

 	feature_length (atactk.data.ExtendedFeature attribute)

 	feature_start (atactk.data.ExtendedFeature attribute)

 	

 	filter_aligned_segments() (in module atactk.data)

 	find_cut_point() (in module atactk.metrics)

M

 	

 	make_fastq_pair_reader() (in module atactk.data)

N

 	

 	name (atactk.data.ExtendedFeature attribute)

O

 	

 	open_alignment_file() (in module atactk.data)

 	

 	open_maybe_gzipped() (in module atactk.data)

P

 	

 	parse_bins() (in module atactk.command)

 	

 	partition() (in module atactk.util)

R

 	

 	read_features() (in module atactk.data)

 	reduce_scores() (in module atactk.metrics)

 	reference (atactk.data.ExtendedFeature attribute)

 	

 	region_length (atactk.data.ExtendedFeature attribute)

 	reverse_complement() (in module atactk.data)

S

 	

 	score (atactk.data.ExtendedFeature attribute)

 	score_feature() (in module atactk.metrics)

 	

 	strand (atactk.data.ExtendedFeature attribute)

T

 	

 	take() (in module atactk.util)

 Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

 All modules for which code is available

		atactk.command

		atactk.data

		atactk.metrics

		atactk.util

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_static/img/CTCF.png
ATAC-seq average signal per region

i

0.6 -

0.4-

0.2-

0.0-

0.15 -

0.10 -

0.05 -

0.00 -

0.04 -

0.03 -

0.02 -

0.01 -

0.00 -

CTCF regions with motifs oriented by strand

Unbound

bt s

| 1 1
-500 -250 0 250 500 -500 -250

Relative Position

2 6v1'9€

vee'see vee oSt

0ov'see

Strand
—F
~— R

_images/CTCF.png
ATAC-seq average signal per region

i

0.6 -

0.4-

0.2-

0.0-

0.15 -

0.10 -

0.05 -

0.00 -

0.04 -

0.03 -

0.02 -

0.01 -

0.00 -

CTCF regions with motifs oriented by strand

Unbound

bt s

| 1 1
-500 -250 0 250 500 -500 -250

Relative Position

2 6v1'9€

vee'see vee oSt

0ov'see

Strand
—F
~— R

_modules/atactk/metrics.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

 		Module code »

 Source code for atactk.metrics

#
atactk: ATAC-seq toolkit
#
Copyright 2015 The Parker Lab at the University of Michigan
#
Licensed under Version 3 of the GPL or any later version
#

"""
Code for making quantitative observations about ATAC-seq experiments.
"""

import collections
import functools

import atactk.data
import atactk.util

[docs]def reduce_scores(scores, resolution):
 """
 Reduce a sequence of scores by summing every `resolution` values.

 Called with `scores` of [0, 1, 1, 4, 2], you'd get the following
 results at various resolutions:

 ========== ======
 Resolution Result
 ========== ======
 1 [0, 1, 1, 4, 2]
 2 [1, 5, 2]
 3 [2, 6]
 4 [6, 2]
 10 [8]
 ========== ======
 """
 if resolution == 1:
 return scores
 return [sum(chunk) for chunk in atactk.util.partition(resolution, scores)]

[docs]def aggregate_scores(scores, extension, resolution):
 """
 Adjust scores in the extended region around a feature.

 Given a sequence containing the score at each base in a region,
 the size of the extended region around the feature, and the
 desired resolution in that extended region, reduce the extended
 scores.

 Parameters

 scores: list
 A list containing a score for each base in a region around a feature.
 extension: int
 The number of bases at the beginning and end of the list considered the extended region.
 resolution: int
 The desired scoring resolution in the extended region.

 See Also

 reduce_scores: Reduce scores by summing every `resolution` values.

 """
 return (
 reduce_scores(scores[:extension], resolution) +
 scores[extension:-extension] +
 reduce_scores(scores[-extension:], resolution)
)

[docs]def find_cut_point(aligned_segment, cut_point_offset=4):
 """Return the position of the given aligned segment's ATAC-seq cut point.

 Parameters

 aligned_segment: :class:`pysam.AlignedSegment`
 https://pysam.readthedocs.org/en/latest/api.html#pysam.AlignedSegment

 Returns

 int
 Position of the ATAC-seq cut point.
 """
 if aligned_segment.is_reverse:
 # the cut point is the reference_end minus (cut_point_offset + 1)
 # (pysam's reference_end is one past the last aligned residue)
 cut_point = aligned_segment.reference_end - (cut_point_offset + 1)
 else:
 cut_point = aligned_segment.reference_start + cut_point_offset # start of the read plus offset
 return cut_point

[docs]def count_cut_points(aligned_segments, start, end, cut_point_offset=4):
 """
 Return any cut points in the region from the aligned segments.

 Parameters

 aligned_segments: list
 A list of :class:`pysam.AlignedSegment`.
 start: int
 The start of the region of interest.
 end: int
 The end of the region of interest.

 Returns

 list
 A list of counts, one for each position from `start` to `end`, of cut points in the aligned segments that fell between
 the `start` and `end`..
 """

 cut_points_in_region = []
 for segment in aligned_segments:
 cut_point = find_cut_point(segment, cut_point_offset)
 if start <= cut_point < end:
 cut_points_in_region.append(cut_point)

 # initialize the region with zero counts
 counts = {p: 0 for p in range(start, end)}

 # add the cut points
 counts.update(collections.Counter(cut_points_in_region))

 cut_point_counts = [counts[position] for position in sorted(counts.keys())]
 return cut_point_counts

[docs]def add_cut_points_to_region_tree(region_tree, group_key, strand, cut_points):
 """
 Record cut points by position, template size, and strand.

 The tree consists of nested dictionaries. The first level keys are
 positions in a region. The second level keys are the names of
 template size groups. The third level keys are the strand, and the
 values are the cut point counts for that position, template size
 group, and strand.

 Parameters

 region_tree: dict
 The tree to which the cut point counts will be added.
 group_key: str
 The key corresponding to the template size group.
 strand: str
 The strand of the cut point's aligned segment: ``+`` or ``-``.
 cut_points: list
 The count of cut points at each position in the region that matched the template size group and strand.

 Notes

 Only positive counts are recorded. It takes a lot of time and
 space to record so many zeroes, and it's better to produce them on
 demand via :class:`collections.defaultdict`. So instead, collect
 all the scores, and after that work is done, update a tree built
 with :class:`collections.defaultdict`, then work with that. See
 the ``make_cut_matrix`` script included with ``atactk`` for an
 example.
 """

 for position, count in enumerate(cut_points, 0 - (len(cut_points) // 2)):
 if count > 0:
 if position not in region_tree:
 region_tree[position] = {}
 if group_key not in region_tree[position]:
 region_tree[position][group_key] = {}
 if strand not in region_tree[position][group_key]:
 region_tree[position][group_key][strand] = count
 else:
 region_tree[position][group_key][strand] += count

[docs]def score_feature(alignment_filename, bin_groups, include_flags, exclude_flags, quality, cut_point_offset, feature):
 """
 Count the number of transposition events around the given feature.

 Parameters

 alignment_filename: str
 The BAM file containing aligned reads.
 bin_groups: iterable
 A sequence of iterables containing bins and the resolution with which they should be scored.
 include_flags: iterable
 The SAM flags to use when selecting aligned segments to score.
 exclude_flags: iterable
 The SAM flags to use when excluding aligned segments to score; any flag present on a read excludes it.
 quality: int
 The minimum mapping quality a read must have to be scored.
 feature: ExtendedFeature
 The feature to score.

 Returns

 tuple
 A tuple of `(row, tree)` where

 * `row` is a tab-separated list of scores in the region around the feature
 * `tree` is a three-level dict holding a score for each position, in each of the template size bins given, on each strand, e.g.::

 >>> tree[0]['36_149']['F']
 22
 >>> tree[0]['36_149']['R']
 15

 See Also

 add_cut_points_to_region_tree: Where the tree for the aggregate matrix is described more fully.

 """

 alignment_file = atactk.data.open_alignment_file(alignment_filename)

 aligned_segments = alignment_file.fetch(feature.reference, max(0, feature.region_start), feature.region_end)
 aligned_segments = atactk.data.filter_aligned_segments(aligned_segments, include_flags, exclude_flags, quality)

 row = []
 tree = {}

 for group in bin_groups:
 group_rows = []
 group_key = ','.join('%s_%s' % (bin[0], bin[1]) for bin in group)
 for (minimum_length, maximum_length, resolution) in group:
 bin_scores = []
 aligned_segments_in_bin = [a for a in aligned_segments if minimum_length <= abs(a.isize) <= maximum_length]
 forward_aligned_segments = [a for a in aligned_segments_in_bin if not a.is_reverse]
 reverse_aligned_segments = [a for a in aligned_segments_in_bin if a.is_reverse]

 forward_cut_points = count_cut_points(forward_aligned_segments, feature.region_start, feature.region_end, cut_point_offset)
 reverse_cut_points = count_cut_points(reverse_aligned_segments, feature.region_start, feature.region_end, cut_point_offset)

 if feature.is_reverse:
 # need to orient the cut point positions to the motif in the matrix
 forward_cut_points, reverse_cut_points = list(reversed(reverse_cut_points)), list(reversed(forward_cut_points))

 # for the discrete matrix: scores for each feature
 bin_scores.extend(aggregate_scores(forward_cut_points, feature.extension, resolution))
 bin_scores.extend(aggregate_scores(reverse_cut_points, feature.extension, resolution))
 group_rows.append(bin_scores)

 # for the aggregate matrix: scores for the entire region
 add_cut_points_to_region_tree(tree, group_key, 'F', forward_cut_points)
 add_cut_points_to_region_tree(tree, group_key, 'R', reverse_cut_points)

 if len(group) == 1:
 row.extend(group_rows[0])
 else:
 row.extend(functools.reduce(atactk.util.add_lists, group_rows))

 row = '\t'.join(str(score) for score in row)
 return feature, row, tree

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_modules/atactk/command.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

 		Module code »

 Source code for atactk.command

#
atactk: ATAC-seq toolkit
#
Copyright 2015 The Parker Lab at the University of Michigan
#
Licensed under Version 3 of the GPL or any later version
#

"""
Code used in command-line applications.
"""

from __future__ import print_function

import argparse
import sys

import sexpdata

[docs]def check_bins_for_overlap(bins):
 """
 Make sure bins don't overlap.

 Parameters

 bins: list
 A list of tuples containing (start, end, resolution).

 Raises

 argparse.ArgumentTypeError
 If any of the bins overlap.

 """

 last_start, last_end = 0, 0
 for bin in bins:
 start, end, resolution = bin
 if start <= last_end:
 raise argparse.ArgumentTypeError("Bin %d-%d overlaps %d-%d." % (start, end, last_start, last_end))
 last_start, last_end = start, end

[docs]def parse_bins(bins_string):
 """
 Parse the string representing template size groups.

 The bins are specified as a list of groups, each group comprising
 one or more bins, and ending with a resolution value, which
 controls how many individual cuts in the extended region around
 the feature are aggregated. Within the feature itself, we always
 count the cut points for each base. A complete example:

 (36-149 1) (150-224 225-324 2) (325-400 5)

 With a resolution of 1, every base in the extended region
 around motifs overlapping templates of length 36-149 would be
 scored independently; each base's cut count would be added to
 the matrix.

 The second group, for templates of length 150-224 or 225-324,
 with a resolution of 2, would result in every two bases in the
 extended region around motifs being added together. Then the
 aggregate scores of the two bins in the group would be summed,
 and the result would be added to the matrix.

 The last bin group, (325-400 5), with a resolution of 5, would
 also produce aggregate scores in the extended region, each
 being the sum of five bases' cut counts.

 To illustrate, assume these settings and an imaginary motif 5
 bases long, with a 10-base extended region on either side, and
 for the sake of example pretend that each template length bin
 had the same counts of cut points around the motif, shown
 here::

 extended region motif extended region
 ------------------- --------- -------------------
 0 1 2 3 3 4 4 4 4 5 9 2 0 2 7 5 4 4 4 4 3 3 2 1 0

 The scores for the first bin group, (36-149 1):

 extended region motif extended region
 ------------------- --------- -------------------
 0 1 2 3 3 4 4 4 4 5 9 2 0 2 7 5 4 4 4 4 3 3 2 1 0

 The scores for the first bin group, (150-224 225-324 2):

 e.r. motif e.r.
 --------- --------- ---------
 1 5 7 8 9 9 2 0 2 7 9 8 7 5 1

 The scores for the last bin group, (325-400 5):

 e.r. motif e.r.
 ---- --------- ----
 9 21 9 2 0 2 7 21 9

 Parameters

 bins_string: str
 A list of S-expressions representing groups of bin start and end positions and resolutions.

 Returns

 list
 A list of lists of tuples of (start, end, resolution).
 """

 bin_groups = sexpdata.loads('(' + bins_string + ')')

 groups = []
 for g, bin_group in enumerate(bin_groups):
 group = []
 try:
 resolution = int(bin_group.pop())
 if resolution < 1:
 raise ValueError
 except ValueError:
 raise argparse.ArgumentTypeError("Resolution in bin group %s is not a positive integer." % g)

 for i, bin_string in enumerate(bin_group):
 bin_string = bin_string.value()
 bin = bin_string.split('-')
 try:
 if len(bin) != 2:
 raise ValueError
 start, end = [int(s) for s in bin]
 if start > end:
 start, end = end, start
 print("Bin %s specified backward; corrected to %d-%d" % (bin_string, start, end), file=sys.stderr)

 group.append((start, end, resolution))
 except ValueError:
 raise argparse.ArgumentTypeError("Bin %s in group %s is malformed." % (i, g))
 groups.append(group)

 # flatten groups to just a list of bins, sort, check for overlaps
 bins = sorted([b for bins in groups for b in bins])
 check_bins_for_overlap(bins)
 return groups

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_modules/atactk/data.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

 		Module code »

 Source code for atactk.data

#
atactk: ATAC-seq toolkit
#
Copyright 2015 The Parker Lab at the University of Michigan
#
Licensed under Version 3 of the GPL or any later version
#

"""
Code for reading and manipulating data commonly used in ATAC-seq pipelines.
"""

from __future__ import print_function

import csv
import gzip
import pysam
import sys

FEATURE_FIELDNAMES = [
 'reference',
 'start',
 'end',
 'name',
 'score',
 'strand',
]

NUCLEOTIDE_COMPLEMENTS = {
 "A": "T",
 "C": "G",
 "G": "C",
 "N": "N",
 "T": "A",
 "a": "t",
 "c": "g",
 "g": "c",
 "n": "n",
 "t": "a",
}

[docs]class ExtendedFeature(object):
 """
 A feature plus a fixed extended region.

 You can define the region by passing the `extension` parameter to the constructor, e.g.::

 feature = ExtendedFeature(extension=100, **bed_record)

 Most of :class:`ExtendedFeature`'s attributes map to the first six
 fields in a BED file. Where our names for the fields differ, the
 BED format name from https://genome.ucsc.edu/FAQ/FAQformat.html is
 included in parentheses below.

 Attributes

 reference: str
 The reference sequence on which the feature is located. (``chrom``)
 feature_start: int
 The starting position of the feature in the reference sequence, zero-based. (``chromStart``)
 feature_end: int
 The ending position of the feature in the reference sequence, which is one past the last base in the feature. (``chromEnd``)
 name: str
 The name of the feature.
 score: float
 A numeric score.
 strand: str
 Either ``+`` or ``-``.
 """

 def __init__(self, reference=None, start=None, end=None, name=None, score=0, strand=None, extension=100):

 # required BED fields
 self.reference = reference
 self.feature_start = int(start)
 self.feature_end = int(end)

 # optional BED fields
 self.name = name
 self.score = float(score)
 self.strand = strand

 # region adjustments
 self.extension = int(extension)
 self.is_reverse = strand == '-'
 self.region_start = self.feature_start - self.extension
 self.region_end = self.feature_end + self.extension

 def __str__(self):
 return '\t'.join(str(attribute or '') for attribute in [
 self.reference,
 self.feature_start,
 self.feature_end,
 self.name,
 self.score,
 self.strand,
 self.extension,
])

 @property
 def feature_length(self):
 return self.feature_end - self.feature_start

 @property
 def region_length(self):
 return self.region_end - self.region_start

[docs]def complement(seq):
 """
 Return the complement of the supplied nucleic sequence.

 Nucleic of course implies that the only recognized bases are A, C,
 G, T and N. Case will be preserved.

 Parameters

 seq: str
 A nucleic sequence.

 Returns

 str
 The complement of the given sequence.
 """
 return ''.join(NUCLEOTIDE_COMPLEMENTS[base] for base in seq)

[docs]def reverse_complement(seq):
 """
 Return the reverse complement of the supplied nucleic sequence.

 Parameters

 seq: str
 A nucleic sequence.

 Returns

 str
 The reverse complement of the given sequence.

 See also

 :func:`~atactk.data.complement`
 """
 return complement(reversed(seq))

[docs]def open_maybe_gzipped(filename):
 """
 Open a possibly gzipped file.

 Parameters

 filename: str
 The name of the file to open.

 Returns

 file
 An open file object.
 """
 with open(filename, 'rb') as test_read:
 byte1, byte2 = ord(test_read.read(1)), ord(test_read.read(1))
 if byte1 == 0x1f and byte2 == 0x8b:
 f = gzip.open(filename, mode='rt')
 else:
 f = open(filename, 'rt')
 return f

[docs]def count_features(filename):
 count = 0
 for line in open_maybe_gzipped(filename):
 count += 1
 return count

[docs]def read_features(filename, extension=100, feature_class=ExtendedFeature):
 """
 Return a generator of :class:`ExtendedFeature` instances from the named tab-separated value file.

 Most BED-like files should work; we read the three required and
 first three optional BED fields to get coordinates, and any extra
 fields are ignored.

 Parameters

 filename: str
 The (optionally gzipped) tab-separated value file from which to read features. Use '-' to read from standard input.
 extension: int
 The number of bases to score on either side of each feature.
 feature_class: class
 Each row of the file will be instantiated with this class.

 Yields

 feature
 An :class:`ExtendedFeature` instance for each row of the file.
 """

 if filename == '-':
 source = sys.stdin
 else:
 source = open_maybe_gzipped(filename)
 reader = csv.DictReader(source, fieldnames=FEATURE_FIELDNAMES, restkey='extra_fields', dialect='excel-tab')
 for row in reader:
 del row['extra_fields']
 yield feature_class(extension=extension, **row)

ALIGNMENT_FILE_CACHE = {}

[docs]def open_alignment_file(alignment_filename):
 if alignment_filename in ALIGNMENT_FILE_CACHE:
 return ALIGNMENT_FILE_CACHE[alignment_filename]

 alignment_file = pysam.AlignmentFile(alignment_filename, 'rb')
 try:
 alignment_file.check_index()
 except AttributeError:
 raise AttributeError('The alignments file {} is not in BAM format. Please supply an indexed BAM file.'.format(alignment_filename))
 except ValueError:
 raise ValueError('The alignment file {} is not usable. Please supply an indexed BAM file.'.format(alignment_filename))
 ALIGNMENT_FILE_CACHE[alignment_filename] = alignment_file
 return alignment_file

[docs]def filter_aligned_segments(aligned_segments, include_flags, exclude_flags, quality):
 """
 Filter aligned segments using SAM flags and mapping quality.

 Parameters

 aligned_segments: list
 Aligned reads to filter.
 include_flags: list
 Reads matching any include flag will be returned.
 exclude_flags: list
 Reads matching any exclude flag will not be returned.
 quality: int
 Only reads with at least this mapping quality will be returned.

 Returns

 filtered_aligned_segments: list
 The set of the aligned segments supplied to the function which
 meet the specified criteria.

 Examples

 You probably want `include_flags` of [83, 99, 147, 163] and
 `exclude_flags` of [4, 8].

 Flag 4 means the read is unmapped, 8 means the mate is unmapped.

 Properly paired and mapped forward aligned segments have flags in [99, 163]

 99:
 - 1: read paired
 - 2: read mapped in proper pair
 - 32: mate reverse strand
 - 64: first in pair

 163:
 - 1: read paired
 - 2: read mapped in proper pair
 - 32: mate reverse strand
 - 128: second in pair

 Properly paired and mapped reverse aligned segments have flags in [83, 147].

 83:
 - 1: read paired
 - 2: read mapped in proper pair
 - 16: read reverse strand
 - 64: first in pair

 147:
 - 1: read paired
 - 2: read mapped in proper pair
 - 16: read reverse strand
 - 128: second in pair
 """

 filtered_aligned_segments = [a for a in aligned_segments if all([
 a.mapping_quality >= quality,
 any(map(lambda f: (a.flag & f) == f, include_flags)),
 all(map(lambda f: (a.flag & f) == 0, exclude_flags))
])]
 return filtered_aligned_segments

[docs]def make_fastq_pair_reader(fastq_file1, fastq_file2):
 """
 Return a generator producing pairs of records from two FASTQ files.

 The intent is to produce read pairs from paired-end sequence data.

 Parameters

 fastq_file1: str
 The name of the first FASTQ file.

 fastq_file2: str
 The name of the second FASTQ file.

 Yields

 tuple
 A tuple containing two 4-element lists, one for each FASTQ
 record, representing the ID, sequence, comment, and quality lines.
 """

 f1 = open_maybe_gzipped(fastq_file1)
 f2 = open_maybe_gzipped(fastq_file2)
 while True:
 yield (
 [
 next(f1).strip(), # name
 next(f1).strip(), # sequence
 next(f1).strip(), # comment ('+' line)
 next(f1).strip() # quality
],
 [
 next(f2).strip(), # name
 next(f2).strip(), # sequence
 next(f2).strip(), # comment ('+' line)
 next(f2).strip() # quality
],
)

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_modules/atactk/util.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

 		Module code »

 Source code for atactk.util

#
atactk: ATAC-seq toolkit
#
Copyright 2015 The Parker Lab at the University of Michigan
#
Licensed under Version 3 of the GPL or any later version
#

"""
Utility code used in atactk.
"""

import collections
import operator

[docs]def add_lists(l1, l2):
 """
 Adds the values of two lists, entrywise.

 >>> add_lists([0, 1, 2], [3, 4, 5])
 [3, 5, 7]

 Parameters

 l1: list
 The first list.
 l2: list
 The second list.

 Returns

 sum: list
 The list of the entrywise sums of the two lists' elements.

 """
 return map(operator.add, l1, l2)

[docs]def take(count, seq):
 """
 Return a list of up to `count` elements from the iterable `seq`.

 Parameters

 count: int
 The number of elements to take from `seq`.
 seq: iterator-or-iterable
 An iterator or iterable from which to take elements.

 Returns

 list
 A list of up to `count` elements. There may be fewer if `seq` has been exhausted.

 """
 if not isinstance(seq, collections.Iterator):
 seq = iter(seq)
 l = []
 try:
 for i in range(count):
 l.append(next(seq))
 except StopIteration:
 pass
 return l

[docs]def partition(count, seq):
 """
 Create a generator of lists of `count` elements from `seq`.

 >>> list(partition(3, range(1, 10)))
 [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

 If `seq` isn't a multiple of `count`, the last list will contain
 the remaining items.

 >>> list(partition(3, range(1, 9)))
 [[1, 2, 3], [4, 5, 6], [7, 8]]

 Parameters

 count: int
 The number of elements of `seq` to put in each partition.
 seq: iterator-or-iterable
 An iterator or iterable to be partitioned.

 Yields

 list
 A list representing a partition of `count` elements.
 """

 if not isinstance(seq, collections.Iterator):
 seq = iter(seq)
 partition = take(count, seq)
 while partition:
 yield partition
 partition = take(count, seq)

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/comment.png

atactk.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

atactk package

Submodules

atactk.command module

Code used in command-line applications.

		
atactk.command.check_bins_for_overlap(bins)[source]

		Make sure bins don’t overlap.

		Parameters:		bins (list) – A list of tuples containing (start, end, resolution).

		Raises:		argparse.ArgumentTypeError –
If any of the bins overlap.

		
atactk.command.parse_bins(bins_string)[source]

		Parse the string representing template size groups.

The bins are specified as a list of groups, each group comprising
one or more bins, and ending with a resolution value, which
controls how many individual cuts in the extended region around
the feature are aggregated. Within the feature itself, we always
count the cut points for each base. A complete example:

(36-149 1) (150-224 225-324 2) (325-400 5)

With a resolution of 1, every base in the extended region
around motifs overlapping templates of length 36-149 would be
scored independently; each base’s cut count would be added to
the matrix.

The second group, for templates of length 150-224 or 225-324,
with a resolution of 2, would result in every two bases in the
extended region around motifs being added together. Then the
aggregate scores of the two bins in the group would be summed,
and the result would be added to the matrix.

The last bin group, (325-400 5), with a resolution of 5, would
also produce aggregate scores in the extended region, each
being the sum of five bases’ cut counts.

To illustrate, assume these settings and an imaginary motif 5
bases long, with a 10-base extended region on either side, and
for the sake of example pretend that each template length bin
had the same counts of cut points around the motif, shown
here:

extended region motif extended region
------------------- --------- -------------------
0 1 2 3 3 4 4 4 4 5 9 2 0 2 7 5 4 4 4 4 3 3 2 1 0

The scores for the first bin group, (36-149 1):

extended region motif extended region
------------------- --------- -------------------
0 1 2 3 3 4 4 4 4 5 9 2 0 2 7 5 4 4 4 4 3 3 2 1 0

The scores for the first bin group, (150-224 225-324 2):

e.r. motif e.r.
--------- --------- ---------
1 5 7 8 9 9 2 0 2 7 9 8 7 5 1

The scores for the last bin group, (325-400 5):

e.r. motif e.r.
---- --------- ----
9 21 9 2 0 2 7 21 9

		Parameters:		bins_string (str) – A list of S-expressions representing groups of bin start and end positions and resolutions.

		Returns:		A list of lists of tuples of (start, end, resolution).

		Return type:		list

atactk.data module

Code for reading and manipulating data commonly used in ATAC-seq pipelines.

		
class atactk.data.ExtendedFeature(reference=None, start=None, end=None, name=None, score=0, strand=None, extension=100)[source]

		Bases: object

A feature plus a fixed extended region.

You can define the region by passing the extension parameter to the constructor, e.g.:

feature = ExtendedFeature(extension=100, **bed_record)

Most of ExtendedFeature‘s attributes map to the first six
fields in a BED file. Where our names for the fields differ, the
BED format name from https://genome.ucsc.edu/FAQ/FAQformat.html is
included in parentheses below.

		
reference

		str

The reference sequence on which the feature is located. (chrom)

		
feature_start

		int

The starting position of the feature in the reference sequence, zero-based. (chromStart)

		
feature_end

		int

The ending position of the feature in the reference sequence, which is one past the last base in the feature. (chromEnd)

		
name

		str

The name of the feature.

		
score

		float

A numeric score.

		
strand

		str

Either + or -.

		
feature_length

		

		
region_length

		

		
atactk.data.complement(seq)[source]

		Return the complement of the supplied nucleic sequence.

Nucleic of course implies that the only recognized bases are A, C,
G, T and N. Case will be preserved.

		Parameters:		seq (str) – A nucleic sequence.

		Returns:		The complement of the given sequence.

		Return type:		str

		
atactk.data.count_features(filename)[source]

		

		
atactk.data.filter_aligned_segments(aligned_segments, include_flags, exclude_flags, quality)[source]

		Filter aligned segments using SAM flags and mapping quality.

		Parameters:		
		aligned_segments (list) – Aligned reads to filter.

		include_flags (list) – Reads matching any include flag will be returned.

		exclude_flags (list) – Reads matching any exclude flag will not be returned.

		quality (int) – Only reads with at least this mapping quality will be returned.

		Returns:		filtered_aligned_segments –
The set of the aligned segments supplied to the function which
meet the specified criteria.

		Return type:		list

Examples

You probably want include_flags of [83, 99, 147, 163] and
exclude_flags of [4, 8].

Flag 4 means the read is unmapped, 8 means the mate is unmapped.

Properly paired and mapped forward aligned segments have flags in [99, 163]

		99:

		
		1: read paired

		2: read mapped in proper pair

		32: mate reverse strand

		64: first in pair

		163:

		
		1: read paired

		2: read mapped in proper pair

		32: mate reverse strand

		128: second in pair

Properly paired and mapped reverse aligned segments have flags in [83, 147].

		83:

		
		1: read paired

		2: read mapped in proper pair

		16: read reverse strand

		64: first in pair

		147:

		
		1: read paired

		2: read mapped in proper pair

		16: read reverse strand

		128: second in pair

		
atactk.data.make_fastq_pair_reader(fastq_file1, fastq_file2)[source]

		Return a generator producing pairs of records from two FASTQ files.

The intent is to produce read pairs from paired-end sequence data.

		Parameters:		
		fastq_file1 (str) – The name of the first FASTQ file.

		fastq_file2 (str) – The name of the second FASTQ file.

		Yields:		tuple –
A tuple containing two 4-element lists, one for each FASTQ
record, representing the ID, sequence, comment, and quality lines.

		
atactk.data.open_alignment_file(alignment_filename)[source]

		

		
atactk.data.open_maybe_gzipped(filename)[source]

		Open a possibly gzipped file.

		Parameters:		filename (str) – The name of the file to open.

		Returns:		An open file object.

		Return type:		file

		
atactk.data.read_features(filename, extension=100, feature_class=<class 'atactk.data.ExtendedFeature'>)[source]

		Return a generator of ExtendedFeature instances from the named tab-separated value file.

Most BED-like files should work; we read the three required and
first three optional BED fields to get coordinates, and any extra
fields are ignored.

		Parameters:		
		filename (str) – The (optionally gzipped) tab-separated value file from which to read features. Use ‘-‘ to read from standard input.

		extension (int) – The number of bases to score on either side of each feature.

		feature_class (class) – Each row of the file will be instantiated with this class.

		Yields:		feature –
An ExtendedFeature instance for each row of the file.

		
atactk.data.reverse_complement(seq)[source]

		Return the reverse complement of the supplied nucleic sequence.

		Parameters:		seq (str) – A nucleic sequence.

		Returns:		The reverse complement of the given sequence.

		Return type:		str

See also

complement()

atactk.metrics module

Code for making quantitative observations about ATAC-seq experiments.

		
atactk.metrics.add_cut_points_to_region_tree(region_tree, group_key, strand, cut_points)[source]

		Record cut points by position, template size, and strand.

The tree consists of nested dictionaries. The first level keys are
positions in a region. The second level keys are the names of
template size groups. The third level keys are the strand, and the
values are the cut point counts for that position, template size
group, and strand.

		Parameters:		
		region_tree (dict) – The tree to which the cut point counts will be added.

		group_key (str) – The key corresponding to the template size group.

		strand (str) – The strand of the cut point’s aligned segment: + or -.

		cut_points (list) – The count of cut points at each position in the region that matched the template size group and strand.

Notes

Only positive counts are recorded. It takes a lot of time and
space to record so many zeroes, and it’s better to produce them on
demand via collections.defaultdict. So instead, collect
all the scores, and after that work is done, update a tree built
with collections.defaultdict, then work with that. See
the make_cut_matrix script included with atactk for an
example.

		
atactk.metrics.aggregate_scores(scores, extension, resolution)[source]

		Adjust scores in the extended region around a feature.

Given a sequence containing the score at each base in a region,
the size of the extended region around the feature, and the
desired resolution in that extended region, reduce the extended
scores.

		Parameters:		
		scores (list) – A list containing a score for each base in a region around a feature.

		extension (int) – The number of bases at the beginning and end of the list considered the extended region.

		resolution (int) – The desired scoring resolution in the extended region.

See also

		reduce_scores()

		Reduce scores by summing every resolution values.

		
atactk.metrics.count_cut_points(aligned_segments, start, end, cut_point_offset=4)[source]

		Return any cut points in the region from the aligned segments.

		Parameters:		
		aligned_segments (list) – A list of pysam.AlignedSegment.

		start (int) – The start of the region of interest.

		end (int) – The end of the region of interest.

		Returns:		A list of counts, one for each position from start to end, of cut points in the aligned segments that fell between
the start and end..

		Return type:		list

		
atactk.metrics.find_cut_point(aligned_segment, cut_point_offset=4)[source]

		Return the position of the given aligned segment’s ATAC-seq cut point.

		Parameters:		aligned_segment (pysam.AlignedSegment) – https://pysam.readthedocs.org/en/latest/api.html#pysam.AlignedSegment

		Returns:		Position of the ATAC-seq cut point.

		Return type:		int

		
atactk.metrics.reduce_scores(scores, resolution)[source]

		Reduce a sequence of scores by summing every resolution values.

Called with scores of [0, 1, 1, 4, 2], you’d get the following
results at various resolutions:

		Resolution
		Result

		1
		[0, 1, 1, 4, 2]

		2
		[1, 5, 2]

		3
		[2, 6]

		4
		[6, 2]

		10
		[8]

		
atactk.metrics.score_feature(alignment_filename, bin_groups, include_flags, exclude_flags, quality, cut_point_offset, feature)[source]

		Count the number of transposition events around the given feature.

		Parameters:		
		alignment_filename (str) – The BAM file containing aligned reads.

		bin_groups (iterable) – A sequence of iterables containing bins and the resolution with which they should be scored.

		include_flags (iterable) – The SAM flags to use when selecting aligned segments to score.

		exclude_flags (iterable) – The SAM flags to use when excluding aligned segments to score; any flag present on a read excludes it.

		quality (int) – The minimum mapping quality a read must have to be scored.

		feature (ExtendedFeature) – The feature to score.

		Returns:		

A tuple of (row, tree) where

		row is a tab-separated list of scores in the region around the feature

		tree is a three-level dict holding a score for each position, in each of the template size bins given, on each strand, e.g.:

>>> tree[0]['36_149']['F']
22
>>> tree[0]['36_149']['R']
15

		Return type:		tuple

See also

		add_cut_points_to_region_tree()

		Where the tree for the aggregate matrix is described more fully.

atactk.util module

Utility code used in atactk.

		
atactk.util.add_lists(l1, l2)[source]

		Adds the values of two lists, entrywise.

>>> add_lists([0, 1, 2], [3, 4, 5])
[3, 5, 7]

		Parameters:		
		l1 (list) – The first list.

		l2 (list) – The second list.

		Returns:		sum –
The list of the entrywise sums of the two lists’ elements.

		Return type:		list

		
atactk.util.partition(count, seq)[source]

		Create a generator of lists of count elements from seq.

>>> list(partition(3, range(1, 10)))
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

If seq isn’t a multiple of count, the last list will contain
the remaining items.

>>> list(partition(3, range(1, 9)))
[[1, 2, 3], [4, 5, 6], [7, 8]]

		Parameters:		
		count (int) – The number of elements of seq to put in each partition.

		seq (iterator-or-iterable) – An iterator or iterable to be partitioned.

		Yields:		list –
A list representing a partition of count elements.

		
atactk.util.take(count, seq)[source]

		Return a list of up to count elements from the iterable seq.

		Parameters:		
		count (int) – The number of elements to take from seq.

		seq (iterator-or-iterable) – An iterator or iterable from which to take elements.

		Returns:		A list of up to count elements. There may be fewer if seq has been exhausted.

		Return type:		list

Module contents

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment-close.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		atactk 0.1.5 documentation »

atactk

		atactk package
		Submodules

		atactk.command module

		atactk.data module

		atactk.metrics module

		atactk.util module

		Module contents

 © Copyright 2015, The Parker Lab at the University of Michiganc.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

