
asynctest Documentation
Release 0.12.3

Martin Richard

Apr 19, 2019

Contents

1 Reference 3
1.1 Module asynctest.case . 3
1.2 class-level set-up . 3
1.3 Mock objects . 6
1.4 Mocking of Selector . 11
1.5 Helpers . 14

2 Contribute 15

3 Documentation indices and tables 17

Python Module Index 19

i

ii

asynctest Documentation, Release 0.12.3

The package asynctest is built on top of the standard unittest module and cuts down boilerplate code when testing
libraries for asyncio.

asynctest imports the standard unittest package, overrides some of its features and adds new ones. A test author can
import asynctest in place of unittest safely.

It is divided in submodules, but they are all imported at the top level, so asynctest.case.TestCase is equivalent
to asynctest.TestCase.

Currently, asynctest targets the “selector” model. Hence, some features will not (yet) work with Windows’ proactor.

This documentation contains the reference of the classes and functions defined by asynctest, and an introduction guide.

Contents 1

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/unittest.html#module-unittest

asynctest Documentation, Release 0.12.3

2 Contents

CHAPTER 1

Reference

1.1 Module asynctest.case

Enhance unittest.TestCase:

• a new loop is issued and set as the default loop before each test, and closed and disposed after,

• if the loop uses a selector, it will be wrapped with asynctest.TestSelector,

• a test method in a TestCase identified as a coroutine function or returning a coroutine will run on the loop,

• setUp() and tearDown() methods can be coroutine functions,

• cleanup functions registered with addCleanup() can be coroutine functions,

• a test fails if the loop did not run during the test.

1.2 class-level set-up

Since each test runs in its own loop, it is not possible to run setUpClass() and tearDownClass() as coroutines.

If one needs to perform set-up actions at the class level (meaning once for all tests in the class), it should be done using
a loop created for this sole purpose and that is not shared with the tests. Ideally, the loop shall be closed in the method
which creates it.

If one really needs to share a loop between tests, TestCase.use_default_loop can be set to True (as a class
attribute). The test case will use the loop returned by asyncio.get_event_loop() instead of creating a new
loop for each test. This way, the event loop or event loop policy can be set during class-level set-up and tear down.

1.2.1 TestCases

class asynctest.TestCase(methodName=’runTest’)
A test which is a coroutine function or which returns a coroutine will run on the loop.

3

https://docs.python.org/3/library/unittest.html#unittest.TestCase

asynctest Documentation, Release 0.12.3

Once the test returned, one or more assertions are checked. For instance, a test fails if the loop didn’t run. These
checks can be enabled or disabled using the fail_on() decorator.

By default, a new loop is created and is set as the default loop before each test. Test authors can retrieve this
loop with loop.

If use_default_loop is set to True, the current default event loop is used instead. In this case, it is up to
the test author to deal with the state of the loop in each test: the loop might be closed, callbacks and tasks may
be scheduled by previous tests. It is also up to the test author to close the loop and dispose the related resources.

If forbid_get_event_loop is set to True, a call to asyncio.get_event_loop() will raise an
AssertionError. Since Python 3.6, calling asyncio.get_event_loop() from a callback or a corou-
tine will return the running loop (instead of raising an exception).

These behaviors should be configured when defining the test case class:

class With_Reusable_Loop_TestCase(asynctest.TestCase):
use_default_loop = True

forbid_get_event_loop = False

def test_something(self):
pass

If setUp() and tearDown() are coroutine functions, they will run on the loop. Note that setUpClass()
and tearDownClass() can not be coroutines.

New in version 0.5: attribute use_default_loop.

New in version 0.7: attribute forbid_get_event_loop. In any case, the default loop is now reset to its
original state outside a test function.

New in version 0.8: ignore_loop has been deprecated in favor of the extensible fail_on() decorator.

setUp()
Method or coroutine called to prepare the test fixture.

see unittest.TestCase.setUp()

tearDown()
Method called immediately after the test method has been called and the result recorded.

see unittest.TestCase.tearDown()

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. If function is a coroutine function,
it will run on the loop before it’s cleaned.

assertAsyncRaises(exception, awaitable)
Test that an exception of type exception is raised when an exception is raised when awaiting
awaitable, a future or coroutine.

See unittest.TestCase.assertRaises()

assertAsyncRaisesRegex(exception, regex, awaitable)
Like assertAsyncRaises() but also tests that regex matches on the string representation of the
raised exception.

See unittest.TestCase.assertRaisesRegex()

assertAsyncWarns(warning, awaitable)
Test that a warning is triggered when awaiting awaitable, a future or a coroutine.

See unittest.TestCase.assertWarns()

4 Chapter 1. Reference

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarns

asynctest Documentation, Release 0.12.3

assertAsyncWarnsRegex(warning, regex, awaitable)
Like assertAsyncWarns() but also tests that regex matches on the message of the triggered warn-
ing.

See unittest.TestCase.assertWarnsRegex()

doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.

forbid_get_event_loop = False
If true, the value returned by asyncio.get_event_loop() will be set to None during the test. It
allows to ensure that tested code use a loop object explicitly passed around.

loop = None
Event loop created and set as default event loop during the test.

use_default_loop = False
If true, the loop used by the test case is the current default event loop returned by asyncio.
get_event_loop(). The loop will not be closed and recreated between tests.

class asynctest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)
Enables the same features as TestCase, but for FunctionTestCase.

class asynctest.ClockedTestCase(methodName=’runTest’)
Subclass of TestCase with a controlled loop clock, useful for testing timer based behaviour without slowing
test run time.

advance(seconds)
Fast forward time by a number of seconds.

Callbacks scheduled to run up to the destination clock time will be executed on time:

>>> self.loop.call_later(1, print_time)
>>> self.loop.call_later(2, self.loop.call_later, 1, print_time)
>>> await self.advance(3)
1
3

In this example, the third callback is scheduled at t = 2 to be executed at t + 1. Hence, it will run at
t = 3. The callback as been called on time.

1.2.2 Decorators

@asynctest.fail_on(**checks)
Enable checks on the loop state after a test ran to help testers to identify common mistakes.

Enable or disable a check using a keywork argument with a boolean value:

@asynctest.fail_on(unused_loop=True)
class TestCase(asynctest.TestCase):

...

Available checks are:

• unused_loop: disabled by default, checks that the loop ran at least once during the test. This check can
not fail if the test method is a coroutine. This allows to detect cases where a test author assume its test will
run tasks or callbacks on the loop, but it actually didn’t.

1.2. class-level set-up 5

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarnsRegex
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop

asynctest Documentation, Release 0.12.3

• active_selector_callbacks: enabled by default, checks that any registered reader or writer call-
back on a selector loop (with add_reader() or add_writer()) is later explicitly unregistered (with
remove_reader() or remove_writer()) before the end of the test.

• active_handles: disabled by default, checks that there is not scheduled callback left to be executed
on the loop at the end of the test. The helper exhaust_callbacks() can help to give a chance to the
loop to run pending callbacks.

The decorator of a method has a greater priority than the decorator of a class. When fail_on() decorates a
class and one of its methods with conflicting arguments, those of the class are overriden.

Subclasses of a decorated TestCase inherit of the checks enabled on the parent class.

New in version 0.8.

New in version 0.9: active_handles

New in version 0.12: unused_loop is now deactivated by default to maintain compatibility with non-async
test inherited from unittest.TestCase. This check is especially useful to track missing @asyncio.
coroutine decorators in a codebase that must be compatbible with Python 3.4.

@asynctest.case.strict
Activate strict checking of the state of the loop after a test ran.

It is a shortcut to fail_on() with all checks set to True.

Note that by definition, the behavior of strict() will change in the future when new checks will be added,
and may break existing tests with new errors after an update of the library.

New in version 0.8.

@asynctest.case.lenient
Deactivate all checks performed after a test ran.

It is a shortcut to fail_on() with all checks set to False.

New in version 0.8.

@asynctest.ignore_loop
By default, a test fails if the loop did not run during the test (including set up and tear down), unless the
TestCase class or test function is decorated by ignore_loop().

Deprecated since version 0.8: Use fail_on() with unused_loop=False instead.

1.3 Mock objects

Wrapper to unittest.mock reducing the boilerplate when testing asyncio powered code.

A mock can behave as a coroutine, as specified in the documentation of Mock.

1.3.1 Mock classes

class asynctest.Mock(spec=None, side_effect=None, return_value=sentinel.DEFAULT,
wraps=None, name=None, spec_set=None, parent=None, _spec_state=None,
_new_name=”, _new_parent=None, **kwargs)

Enhance unittest.mock.Mock so it returns a CoroutineMock object instead of a Mock object where a
method on a spec or spec_set object is a coroutine.

For instance:

6 Chapter 1. Reference

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock

asynctest Documentation, Release 0.12.3

>>> class Foo:
... @asyncio.coroutine
... def foo(self):
... pass
...
... def bar(self):
... pass

>>> type(asynctest.mock.Mock(Foo()).foo)
<class 'asynctest.mock.CoroutineMock'>

>>> type(asynctest.mock.Mock(Foo()).bar)
<class 'asynctest.mock.Mock'>

The test author can also specify a wrapped object with wraps. In this case, the Mock object behavior is the
same as with an unittest.mock.Mock object: the wrapped object may have methods defined as coroutine
functions.

If you want to mock a coroutine function, use CoroutineMock instead.

See NonCallableMock for details about asynctest features, and unittest.mock for the comprehen-
sive documentation about mocking.

class asynctest.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None,
is_coroutine=None, parent=None, **kwargs)

Enhance unittest.mock.NonCallableMock with features allowing to mock a coroutine function.

If is_coroutine is set to True, the NonCallableMock object will behave so asyncio.
iscoroutinefunction() will return True with mock as parameter.

If spec or spec_set is defined and an attribute is get, CoroutineMock is returned instead of Mock when
the matching spec attribute is a coroutine function.

The test author can also specify a wrapped object with wraps. In this case, the Mock object behavior is the
same as with an unittest.mock.Mock object: the wrapped object may have methods defined as coroutine
functions.

See unittest.mock.NonCallableMock

is_coroutine
True if the object mocked is a coroutine

class asynctest.MagicMock(*args, **kwargs)
Enhance unittest.mock.MagicMock so it returns a CoroutineMock object instead of a Mock object
where a method on a spec or spec_set object is a coroutine.

If you want to mock a coroutine function, use CoroutineMock instead.

MagicMock allows to mock __aenter__, __aexit__, __aiter__ and __anext__.

When mocking an asynchronous iterator, you can set the return_value of __aiter__ to an iterable to
define the list of values to be returned during iteration.

You can not mock __await__. If you want to mock an object implementing __await__, CoroutineMock
will likely be sufficient.

see Mock.

New in version 0.11: support of asynchronous iterators and asynchronous context managers.

class asynctest.CoroutineMock(*args, **kwargs)
Enhance Mock with features allowing to mock a coroutine function.

1.3. Mock objects 7

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.NonCallableMock
https://docs.python.org/3/library/asyncio-task.html#asyncio.iscoroutinefunction
https://docs.python.org/3/library/asyncio-task.html#asyncio.iscoroutinefunction
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.NonCallableMock
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.MagicMock

asynctest Documentation, Release 0.12.3

The CoroutineMock object will behave so the object is recognized as coroutine function, and the result of a
call as a coroutine:

>>> mock = CoroutineMock()
>>> asyncio.iscoroutinefunction(mock)
True
>>> asyncio.iscoroutine(mock())
True

The result of mock() is a coroutine which will have the outcome of side_effect or return_value:

• if side_effect is a function, the coroutine will return the result of that function,

• if side_effect is an exception, the coroutine will raise the exception,

• if side_effect is an iterable, the coroutine will return the next value of the iterable, however, if the
sequence of result is exhausted, StopIteration is raised immediately,

• if side_effect is not defined, the coroutine will return the value defined by return_value, hence,
by default, the coroutine returns a new CoroutineMock object.

If the outcome of side_effect or return_value is a coroutine, the mock coroutine obtained when the
mock object is called will be this coroutine itself (and not a coroutine returning a coroutine).

The test author can also specify a wrapped object with wraps. In this case, the Mock object behavior is the
same as with an unittest.mock.Mock object: the wrapped object may have methods defined as coroutine
functions.

assert_any_await(*args, **kwargs)
Assert the mock has ever been awaited with the specified arguments.

New in version 0.12.

assert_awaited()
Assert that the mock was awaited at least once.

New in version 0.12.

assert_awaited_once(*args, **kwargs)
Assert that the mock was awaited exactly once.

New in version 0.12.

assert_awaited_once_with(*args, **kwargs)
Assert that the mock was awaited exactly once and with the specified arguments.

New in version 0.12.

assert_awaited_with(*args, **kwargs)
Assert that the last await was with the specified arguments.

New in version 0.12.

assert_has_awaits(calls, any_order=False)
Assert the mock has been awaited with the specified calls. The await_args_list list is checked for
the awaits.

If any_order is False (the default) then the awaits must be sequential. There can be extra calls before or
after the specified awaits.

If any_order is True then the awaits can be in any order, but they must all appear in await_args_list.

New in version 0.12.

8 Chapter 1. Reference

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock

asynctest Documentation, Release 0.12.3

assert_not_awaited()
Assert that the mock was never awaited.

New in version 0.12.

await_args

await_args_list

await_count
Number of times the mock has been awaited.

New in version 0.12.

awaited
Property which is set when the mock is awaited. Its wait and wait_next coroutine methods can be
used to synchronize execution.

New in version 0.12.

reset_mock(*args, **kwargs)
See unittest.mock.Mock.reset_mock()

1.3.2 Patch

asynctest.GLOBAL = <PatchScope.GLOBAL: 2>
An enumeration.

asynctest.LIMITED = <PatchScope.LIMITED: 1>
An enumeration.

asynctest.patch(target, new=sentinel.DEFAULT, spec=None, create=False, spec_set=None, au-
tospec=None, new_callable=None, scope=<PatchScope.GLOBAL: 2>, **kwargs)

A context manager, function decorator or class decorator which patches the target with the value given by the
new argument.

new specifies which object will replace the target when the patch is applied. By default, the target will be
patched with an instance of CoroutineMock if it is a coroutine, or a MagicMock object.

It is a replacement to unittest.mock.patch(), but using asynctest.mock objects.

When a generator or a coroutine is patched using the decorator, the patch is activated or deactivated according
to the scope argument value:

• asynctest.GLOBAL: the default, enables the patch until the generator or the coroutine finishes (returns
or raises an exception),

• asynctest.LIMITED: the patch will be activated when the generator or coroutine is being executed,
and deactivated when it yields a value and pauses its execution (with yield, yield from or await).

The behavior differs from unittest.mock.patch() for generators.

When used as a context manager, the patch is still active even if the generator or coroutine is paused, which may
affect concurrent tasks:

@asyncio.coroutine
def coro():

with asynctest.mock.patch("module.function"):
yield from asyncio.get_event_loop().sleep(1)

@asyncio.coroutine
def independent_coro():

(continues on next page)

1.3. Mock objects 9

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch

asynctest Documentation, Release 0.12.3

(continued from previous page)

assert not isinstance(module.function, asynctest.mock.Mock)

asyncio.create_task(coro())
asyncio.create_task(independent_coro())
this will raise an AssertionError(coro() is scheduled first)!
loop.run_forever()

Parameters scope – asynctest.GLOBAL or asynctest.LIMITED, controls when the
patch is activated on generators and coroutines

When used as a decorator with a generator based coroutine, the order of the decorators matters. The order of the
@patch() decorators is in the reverse order of the parameters produced by these patches for the patched func-
tion. And the @asyncio.coroutine decorator should be the last since @patch() conceptually patches
the coroutine, not the function:

@patch("module.function2")
@patch("module.function1")
@asyncio.coroutine
def test_coro(self, mock_function1, mock_function2):

yield from asyncio.get_event_loop().sleep(1)

see unittest.mock.patch().

New in version 0.6: patch into generators and coroutines with a decorator.

asynctest.patch.object(target, attribute, new=DEFAULT, spec=None, create=False,
spec_set=None, autospec=None, new_callable=None,
scope=asynctest.GLOBAL, **kwargs)

Patch the named member (attribute) on an object (target) with a mock object, in the same fashion as
patch().

See patch() and unittest.mock.patch.object().

asynctest.patch.multiple(target, spec=None, create=False, spec_set=None, autospec=None,
new_callable=None, scope=asynctest.global, **kwargs)

Perform multiple patches in a single call. It takes the object to be patched (either as an object or a string to fetch
the object by importing) and keyword arguments for the patches.

See patch() and unittest.mock.patch.multiple().

asynctest.patch.dict(in_dict, values=(), clear=False, scope=asynctest.GLOBAL, **kwargs)
Patch a dictionary, or dictionary like object, and restore the dictionary to its original state after the test.

Its behavior can be controlled on decorated generators and coroutines with scope.

New in version 0.8: patch into generators and coroutines with a decorator.

Parameters

• in_dict – dictionary like object, or string referencing the object to patch.

• values – a dictionary of values or an iterable of (key, value) pairs to set in the dictionary.

• clear – if True, in_dict will be cleared before the new values are set.

• scope – asynctest.GLOBAL or asynctest.LIMITED, controls when the patch is
activated on generators and coroutines

See patch() (details about scope) and unittest.mock.patch.dict().

10 Chapter 1. Reference

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.object
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.multiple
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.dict

asynctest Documentation, Release 0.12.3

1.3.3 Helpers

asynctest.mock_open(mock=None, read_data=”)
A helper function to create a mock to replace the use of open(). It works for open() called directly or used
as a context manager.

Parameters

• mock – mock object to configure, by default a MagicMock object is created with the API
limited to methods or attributes available on standard file handles.

• read_data – string for the read() and readlines() of the file handle to return. This
is an empty string by default.

asynctest.return_once(value, then=None)
Helper to use with side_effect, so a mock will return a given value only once, then return another value.

When used as a side_effect value, if one of value or then is an Exception type, an instance of this
exception will be raised.

>>> mock.recv = Mock(side_effect=return_once(b"data"))
>>> mock.recv()
b"data"
>>> repr(mock.recv())
'None'
>>> repr(mock.recv())
'None'

>>> mock.recv = Mock(side_effect=return_once(b"data", then=BlockingIOError))
>>> mock.recv()
b"data"
>>> mock.recv()
Traceback BlockingIOError

Parameters

• value – value to be returned once by the mock when called.

• then – value returned for any subsequent call.

New in version 0.4.

1.4 Mocking of Selector

Mock of selectors and compatible objects performing asynchronous IO.

This module provides classes to mock objects performing IO (files, sockets, etc). These mocks are compatible with
TestSelector, which can simulate the behavior of a selector on the mock objects, or forward actual work to a real
selector.

1.4.1 Mocking file-like objects

class asynctest.FileMock(*args, **kwargs)
Mock a file-like object.

A FileMock is an intelligent mock which can work with TestSelector to simulate IO events during tests.

1.4. Mocking of Selector 11

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/selectors.html#module-selectors

asynctest Documentation, Release 0.12.3

fileno()
Return a FileDescriptor object.

class asynctest.SocketMock(side_effect=None, return_value=sentinel.DEFAULT, wraps=None,
name=None, spec_set=None, parent=None, **kwargs)

Bases: asynctest.selector.FileMock

Mock a socket.

See FileMock.

class asynctest.SSLSocketMock(side_effect=None, return_value=sentinel.DEFAULT,
wraps=None, name=None, spec_set=None, parent=None,
**kwargs)

Bases: asynctest.selector.SocketMock

Mock a socket wrapped by the ssl module.

See FileMock.

New in version 0.5.

class asynctest.FileDescriptor
Bases: int

A subclass of int which allows to identify the virtual file-descriptor of a FileMock.

If FileDescriptor() without argument, its value will be the value of next_fd.

When an object is created, next_fd is set to the highest value for a FileDescriptor object + 1.

next_fd = 0

Helpers

asynctest.fd(fileobj)
Return the FileDescriptor value of fileobj.

If fileobj is a FileDescriptor, fileobj is returned, else fileobj.fileno() is returned instead.

Note that if fileobj is an int, ValueError is raised.

Raises ValueError – if fileobj is not a FileMock, a file-like object or a
FileDescriptor.

asynctest.isfilemock(obj)
Return True if the obj or obj.fileno() is a asynctest.FileDescriptor.

1.4.2 Mocking the selector

class asynctest.TestSelector(selector=None)
A selector which supports IOMock objects.

It can wrap an actual implementation of a selector, so the selector will work both with mocks and real file-like
objects.

A common use case is to patch the selector loop:

loop._selector = asynctest.TestSelector(loop._selector)

Parameters selector – optional, if provided, this selector will be used to work with real file-like
objects.

12 Chapter 1. Reference

https://docs.python.org/3/library/ssl.html#module-ssl
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

asynctest Documentation, Release 0.12.3

close()
Close the selector.

Close the actual selector if supplied, unregister all mocks.

See selectors.BaseSelector.close().

modify(fileobj, events, data=None)
Shortcut when calling TestSelector.unregister() then TestSelector.register() to up-
date the registration of a an object to the selector.

See selectors.BaseSelector.modify().

register(fileobj, events, data=None)
Register a file object or a FileMock.

If a real selector object has been supplied to the TestSelector object and fileobj is not a
FileMock or a FileDescriptor returned by FileMock.fileno(), the object will be registered
to the real selector.

See selectors.BaseSelector.register().

select(timeout=None)
Perform the selection.

This method is a no-op if no actual selector has been supplied.

See selectors.BaseSelector.select().

unregister(fileobj)
Unregister a file object or a FileMock.

See selectors.BaseSelector.unregister().

Helpers

asynctest.set_read_ready(fileobj, loop)
Schedule callbacks registered on loop as if the selector notified that data is ready to be read on fileobj.

Parameters

• fileobj – file object or FileMock on which the event is mocked.

• loop – asyncio.SelectorEventLoop watching for events on fileobj.

mock = asynctest.SocketMock()
mock.recv.return_value = b"Data"

def read_ready(sock):
print("received:", sock.recv(1024))

loop.add_reader(mock, read_ready, mock)

set_read_ready()

loop.run_forever() # prints received: b"Data"

New in version 0.4.

asynctest.set_write_ready(fileobj, loop)
Schedule callbacks registered on loop as if the selector notified that data can be written to fileobj.

Parameters

1.4. Mocking of Selector 13

https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.close
https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.modify
https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.register
https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.select
https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.unregister
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop

asynctest Documentation, Release 0.12.3

• fileobj – file object or FileMock on which th event is mocked.

• loop – asyncio.SelectorEventLoop watching for events on fileobj.

New in version 0.4.

1.5 Helpers

Helper functions and coroutines for asynctest.

asynctest.helpers.exhaust_callbacks(loop)
Run the loop until all ready callbacks are executed.

The coroutine doesn’t wait for callbacks scheduled in the future with call_at() or call_later().

Parameters loop – event loop

14 Chapter 1. Reference

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop

CHAPTER 2

Contribute

Development of asynctest is on github: Martiusweb/asynctest. Patches, feature requests and bug reports are
welcome.

15

https://www.github.com/Martiusweb/asynctest

asynctest Documentation, Release 0.12.3

16 Chapter 2. Contribute

CHAPTER 3

Documentation indices and tables

• genindex

• modindex

• search

17

asynctest Documentation, Release 0.12.3

18 Chapter 3. Documentation indices and tables

Python Module Index

a
asynctest, ??
asynctest.case, 3
asynctest.helpers, 14
asynctest.mock, 6
asynctest.selector, 11

19

asynctest Documentation, Release 0.12.3

20 Python Module Index

Index

A
addCleanup() (asynctest.TestCase method), 4
advance() (asynctest.ClockedTestCase method), 5
assert_any_await() (asynctest.CoroutineMock

method), 8
assert_awaited() (asynctest.CoroutineMock

method), 8
assert_awaited_once()

(asynctest.CoroutineMock method), 8
assert_awaited_once_with()

(asynctest.CoroutineMock method), 8
assert_awaited_with()

(asynctest.CoroutineMock method), 8
assert_has_awaits() (asynctest.CoroutineMock

method), 8
assert_not_awaited() (asynctest.CoroutineMock

method), 8
assertAsyncRaises() (asynctest.TestCase

method), 4
assertAsyncRaisesRegex() (asynctest.TestCase

method), 4
assertAsyncWarns() (asynctest.TestCase method),

4
assertAsyncWarnsRegex() (asynctest.TestCase

method), 4
asynctest (module), 1
asynctest.case (module), 3
asynctest.fail_on() (in module asynctest.case),

5
asynctest.helpers (module), 14
asynctest.ignore_loop() (in module

asynctest.case), 6
asynctest.mock (module), 6
asynctest.patch.dict() (in module

asynctest.mock), 10
asynctest.patch.multiple() (in module

asynctest.mock), 10
asynctest.patch.object() (in module

asynctest.mock), 10

asynctest.selector (module), 11
await_args (asynctest.CoroutineMock attribute), 9
await_args_list (asynctest.CoroutineMock at-

tribute), 9
await_count (asynctest.CoroutineMock attribute), 9
awaited (asynctest.CoroutineMock attribute), 9

C
ClockedTestCase (class in asynctest), 5
close() (asynctest.TestSelector method), 13
CoroutineMock (class in asynctest), 7

D
doCleanups() (asynctest.TestCase method), 5

E
exhaust_callbacks() (in module

asynctest.helpers), 14

F
fd() (in module asynctest), 12
FileDescriptor (class in asynctest), 12
FileMock (class in asynctest), 11
fileno() (asynctest.FileMock method), 11
forbid_get_event_loop (asynctest.TestCase at-

tribute), 5
FunctionTestCase (class in asynctest), 5

G
GLOBAL (in module asynctest), 9

I
is_coroutine (asynctest.NonCallableMock at-

tribute), 7
isfilemock() (in module asynctest), 12

L
lenient() (in module asynctest.case), 6
LIMITED (in module asynctest), 9

21

asynctest Documentation, Release 0.12.3

loop (asynctest.TestCase attribute), 5

M
MagicMock (class in asynctest), 7
Mock (class in asynctest), 6
mock_open() (in module asynctest), 11
modify() (asynctest.TestSelector method), 13

N
next_fd (asynctest.FileDescriptor attribute), 12
NonCallableMock (class in asynctest), 7

P
patch() (in module asynctest), 9

R
register() (asynctest.TestSelector method), 13
reset_mock() (asynctest.CoroutineMock method), 9
return_once() (in module asynctest), 11

S
select() (asynctest.TestSelector method), 13
set_read_ready() (in module asynctest), 13
set_write_ready() (in module asynctest), 13
setUp() (asynctest.TestCase method), 4
SocketMock (class in asynctest), 12
SSLSocketMock (class in asynctest), 12
strict() (in module asynctest.case), 6

T
tearDown() (asynctest.TestCase method), 4
TestCase (class in asynctest), 3
TestSelector (class in asynctest), 12

U
unregister() (asynctest.TestSelector method), 13
use_default_loop (asynctest.TestCase attribute), 5

22 Index

	Reference
	Module asynctest.case
	class-level set-up
	Mock objects
	Mocking of Selector
	Helpers

	Contribute
	Documentation indices and tables
	Python Module Index

