

asynctest documentation

The package asynctest is built on top of the standard unittest [https://docs.python.org/3/library/unittest.html#module-unittest] module
and cuts down boilerplate code when testing libraries for asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio].

asynctest imports the standard unittest package, overrides some of its features
and adds new ones. A test author can import asynctest in place of
unittest [https://docs.python.org/3/library/unittest.html#module-unittest] safely.

It is divided in submodules, but they are all imported at the top level,
so asynctest.case.TestCase is equivalent to asynctest.TestCase.

Currently, asynctest targets the “selector” model. Hence, some features will
not (yet) work with Windows’ proactor.

This documentation contains the reference of the classes and functions defined
by asynctest, and an introduction guide.

Reference

	Module asynctest.case

	class-level set-up
	TestCases

	Decorators

	Mock objects
	Mock classes

	Patch

	Helpers

	Mocking of Selector
	Mocking file-like objects

	Mocking the selector

	Helpers

Contribute

Development of asynctest is on github:
Martiusweb/asynctest [https://www.github.com/Martiusweb/asynctest].
Patches, feature requests and bug reports are welcome.

Documentation indices and tables

	Index

	Module Index

	Search Page

Module asynctest.case

Enhance unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]:

	a new loop is issued and set as the default loop before each test, and
closed and disposed after,

	if the loop uses a selector, it will be wrapped with
asynctest.TestSelector,

	a test method in a TestCase identified as a coroutine function or returning
a coroutine will run on the loop,

	setUp() and tearDown() methods can be
coroutine functions,

	cleanup functions registered with addCleanup() can be
coroutine functions,

	a test fails if the loop did not run during the test.

class-level set-up

Since each test runs in its own loop, it is not possible to run
setUpClass() and tearDownClass() as
coroutines.

If one needs to perform set-up actions at the class level (meaning
once for all tests in the class), it should be done using a loop created for
this sole purpose and that is not shared with the tests. Ideally, the loop
shall be closed in the method which creates it.

If one really needs to share a loop between tests,
TestCase.use_default_loop can be set to True (as a class
attribute). The test case will use the loop returned by
asyncio.get_event_loop() instead of creating a new loop for each test.
This way, the event loop or event loop policy can be set during class-level
set-up and tear down.

TestCases

	
class asynctest.TestCase(methodName='runTest')

	A test which is a coroutine function or which returns a coroutine will run
on the loop.

Once the test returned, one or more assertions are checked. For instance,
a test fails if the loop didn’t run. These checks can be enabled or
disabled using the fail_on() decorator.

By default, a new loop is created and is set as the default loop before
each test. Test authors can retrieve this loop with
loop.

If use_default_loop is set to True, the
current default event loop is used instead. In this case, it is up to the
test author to deal with the state of the loop in each test: the loop might
be closed, callbacks and tasks may be scheduled by previous tests. It is
also up to the test author to close the loop and dispose the related
resources.

If forbid_get_event_loop is set to True,
a call to asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] will raise an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]. Since Python 3.6, calling
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] from a callback or a coroutine will return
the running loop (instead of raising an exception).

These behaviors should be configured when defining the test case class:

class With_Reusable_Loop_TestCase(asynctest.TestCase):
 use_default_loop = True

 forbid_get_event_loop = False

 def test_something(self):
 pass

If setUp() and tearDown() are coroutine functions, they
will run on the loop. Note that setUpClass() and
tearDownClass() can not be coroutines.

New in version 0.5: attribute use_default_loop.

New in version 0.7: attribute forbid_get_event_loop.
In any case, the default loop is now reset to its original state
outside a test function.

New in version 0.8: ignore_loop has been deprecated in favor of the extensible
fail_on() decorator.

	
setUp()

	Method or coroutine called to prepare the test fixture.

see unittest.TestCase.setUp() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp]

	
tearDown()

	Method called immediately after the test method has been called and
the result recorded.

see unittest.TestCase.tearDown() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown]

	
addCleanup(function, *args, **kwargs)

	Add a function, with arguments, to be called when the test is
completed. If function is a coroutine function, it will run on the loop
before it’s cleaned.

	
assertAsyncRaises(exception, awaitable)

	Test that an exception of type exception is raised when an
exception is raised when awaiting awaitable, a future or coroutine.

	See

	unittest.TestCase.assertRaises() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises]

	
assertAsyncRaisesRegex(exception, regex, awaitable)

	Like assertAsyncRaises() but also tests that regex matches
on the string representation of the raised exception.

	See

	unittest.TestCase.assertRaisesRegex() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex]

	
assertAsyncWarns(warning, awaitable)

	Test that a warning is triggered when awaiting awaitable, a future
or a coroutine.

	See

	unittest.TestCase.assertWarns() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarns]

	
assertAsyncWarnsRegex(warning, regex, awaitable)

	Like assertAsyncWarns() but also tests that regex matches
on the message of the triggered warning.

	See

	unittest.TestCase.assertWarnsRegex() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarnsRegex]

	
doCleanups()

	Execute all cleanup functions. Normally called for you after tearDown.

	
forbid_get_event_loop = False

	If true, the value returned by asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] will be
set to None during the test. It allows to ensure that tested code
use a loop object explicitly passed around.

	
loop = None

	Event loop created and set as default event loop during the test.

	
use_default_loop = False

	If true, the loop used by the test case is the current default event
loop returned by asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop]. The loop will not be
closed and recreated between tests.

	
class asynctest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)

	Enables the same features as TestCase, but for
FunctionTestCase.

	
class asynctest.ClockedTestCase(methodName='runTest')

	Subclass of TestCase with a controlled loop clock,
useful for testing timer based behaviour without slowing test run time.

	
advance(seconds)

	Fast forward time by a number of seconds.

Callbacks scheduled to run up to the destination clock time will be
executed on time:

>>> self.loop.call_later(1, print_time)
>>> self.loop.call_later(2, self.loop.call_later, 1, print_time)
>>> await self.advance(3)
1
3

In this example, the third callback is scheduled at t = 2 to be
executed at t + 1. Hence, it will run at t = 3. The callback as
been called on time.

Decorators

	
@asynctest.fail_on(**checks)

	Enable checks on the loop state after a test ran to help testers to
identify common mistakes.

Enable or disable a check using a keywork argument with a boolean
value:

@asynctest.fail_on(unused_loop=True)
class TestCase(asynctest.TestCase):
 ...

Available checks are:

	unused_loop: disabled by default, checks that the loop ran at
least once during the test. This check can not fail if the test
method is a coroutine. This allows to detect cases where a test
author assume its test will run tasks or callbacks on the loop,
but it actually didn’t.

	active_selector_callbacks: enabled by default, checks that
any registered reader or writer callback on a selector loop (with
add_reader() or add_writer()) is later explicitly
unregistered (with remove_reader() or remove_writer())
before the end of the test.

	active_handles: disabled by default, checks that there is not
scheduled callback left to be executed on the loop at the end of
the test. The helper
exhaust_callbacks() can help to give
a chance to the loop to run pending callbacks.

The decorator of a method has a greater priority than the decorator of
a class. When fail_on() decorates a class and one of
its methods with conflicting arguments, those of the class are
overriden.

Subclasses of a decorated TestCase inherit of the
checks enabled on the parent class.

New in version 0.8.

New in version 0.9: active_handles

New in version 0.12: unused_loop is now deactivated by default to maintain
compatibility with non-async test inherited from
unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]. This check is especially useful to track
missing @asyncio.coroutine decorators in a codebase that must be
compatbible with Python 3.4.

	
@asynctest.case.strict

	Activate strict checking of the state of the loop after a test ran.

It is a shortcut to fail_on() with all checks set to
True.

Note that by definition, the behavior of strict() will change in
the future when new checks will be added, and may break existing tests
with new errors after an update of the library.

New in version 0.8.

	
@asynctest.case.lenient

	Deactivate all checks performed after a test ran.

It is a shortcut to fail_on() with all checks set to
False.

New in version 0.8.

	
@asynctest.ignore_loop

	By default, a test fails if the loop did not run during the test
(including set up and tear down), unless the
TestCase class or test function is decorated by
ignore_loop().

Deprecated since version 0.8: Use fail_on() with unused_loop=False instead.

Mock objects

Wrapper to unittest.mock reducing the boilerplate when testing asyncio powered
code.

A mock can behave as a coroutine, as specified in the documentation of
Mock.

Mock classes

	
class asynctest.Mock(spec=None, side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)

	Enhance unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] so it returns
a CoroutineMock object instead of
a Mock object where a method on a spec or
spec_set object is a coroutine.

For instance:

>>> class Foo:
... @asyncio.coroutine
... def foo(self):
... pass
...
... def bar(self):
... pass

>>> type(asynctest.mock.Mock(Foo()).foo)
<class 'asynctest.mock.CoroutineMock'>

>>> type(asynctest.mock.Mock(Foo()).bar)
<class 'asynctest.mock.Mock'>

The test author can also specify a wrapped object with wraps. In this
case, the Mock object behavior is the same as with an
unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] object: the wrapped object may have methods
defined as coroutine functions.

If you want to mock a coroutine function, use CoroutineMock
instead.

See NonCallableMock for details about asynctest
features, and unittest.mock [https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock] for the comprehensive documentation
about mocking.

	
class asynctest.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None, is_coroutine=None, parent=None, **kwargs)

	Enhance unittest.mock.NonCallableMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.NonCallableMock] with features allowing to
mock a coroutine function.

If is_coroutine is set to True, the NonCallableMock
object will behave so asyncio.iscoroutinefunction() [https://docs.python.org/3/library/asyncio-task.html#asyncio.iscoroutinefunction] will return
True with mock as parameter.

If spec or spec_set is defined and an attribute is get,
CoroutineMock is returned instead of
Mock when the matching spec attribute is a coroutine
function.

The test author can also specify a wrapped object with wraps. In this
case, the Mock object behavior is the same as with an
unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] object: the wrapped object may have methods
defined as coroutine functions.

See unittest.mock.NonCallableMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.NonCallableMock]

	
is_coroutine

	True if the object mocked is a coroutine

	
class asynctest.MagicMock(*args, **kwargs)

	Enhance unittest.mock.MagicMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.MagicMock] so it returns
a CoroutineMock object instead of
a Mock object where a method on a spec or
spec_set object is a coroutine.

If you want to mock a coroutine function, use CoroutineMock
instead.

MagicMock allows to mock __aenter__, __aexit__,
__aiter__ and __anext__.

When mocking an asynchronous iterator, you can set the
return_value of __aiter__ to an iterable to define the list of
values to be returned during iteration.

You can not mock __await__. If you want to mock an object implementing
__await__, CoroutineMock will likely be sufficient.

see Mock.

New in version 0.11: support of asynchronous iterators and asynchronous context managers.

	
class asynctest.CoroutineMock(*args, **kwargs)

	Enhance Mock with features allowing to mock
a coroutine function.

The CoroutineMock object will behave so the object is
recognized as coroutine function, and the result of a call as a coroutine:

>>> mock = CoroutineMock()
>>> asyncio.iscoroutinefunction(mock)
True
>>> asyncio.iscoroutine(mock())
True

The result of mock() is a coroutine which will have the outcome of
side_effect or return_value:

	if side_effect is a function, the coroutine will return the result
of that function,

	if side_effect is an exception, the coroutine will raise the
exception,

	if side_effect is an iterable, the coroutine will return the next
value of the iterable, however, if the sequence of result is exhausted,
StopIteration is raised immediately,

	if side_effect is not defined, the coroutine will return the value
defined by return_value, hence, by default, the coroutine returns
a new CoroutineMock object.

If the outcome of side_effect or return_value is a coroutine, the
mock coroutine obtained when the mock object is called will be this
coroutine itself (and not a coroutine returning a coroutine).

The test author can also specify a wrapped object with wraps. In this
case, the Mock object behavior is the same as with an
unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] object: the wrapped object may have methods
defined as coroutine functions.

	
assert_any_await(*args, **kwargs)

	Assert the mock has ever been awaited with the specified arguments.

New in version 0.12.

	
assert_awaited()

	Assert that the mock was awaited at least once.

New in version 0.12.

	
assert_awaited_once(*args, **kwargs)

	Assert that the mock was awaited exactly once.

New in version 0.12.

	
assert_awaited_once_with(*args, **kwargs)

	Assert that the mock was awaited exactly once and with the specified arguments.

New in version 0.12.

	
assert_awaited_with(*args, **kwargs)

	Assert that the last await was with the specified arguments.

New in version 0.12.

	
assert_has_awaits(calls, any_order=False)

	Assert the mock has been awaited with the specified calls.
The await_args_list list is checked for the awaits.

If any_order is False (the default) then the awaits must be
sequential. There can be extra calls before or after the
specified awaits.

If any_order is True then the awaits can be in any order, but
they must all appear in await_args_list.

New in version 0.12.

	
assert_not_awaited()

	Assert that the mock was never awaited.

New in version 0.12.

	
await_args

	

	
await_args_list

	

	
await_count

	Number of times the mock has been awaited.

New in version 0.12.

	
awaited

	Property which is set when the mock is awaited. Its wait and
wait_next coroutine methods can be used to synchronize execution.

New in version 0.12.

	
reset_mock(*args, **kwargs)

	See unittest.mock.Mock.reset_mock()

Patch

	
asynctest.GLOBAL = <PatchScope.GLOBAL: 2>

	An enumeration.

	
asynctest.LIMITED = <PatchScope.LIMITED: 1>

	An enumeration.

	
asynctest.patch(target, new=sentinel.DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, scope=<PatchScope.GLOBAL: 2>, **kwargs)

	A context manager, function decorator or class decorator which patches the
target with the value given by the new argument.

new specifies which object will replace the target when the patch
is applied. By default, the target will be patched with an instance of
CoroutineMock if it is a coroutine, or
a MagicMock object.

It is a replacement to unittest.mock.patch() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch], but using
asynctest.mock objects.

When a generator or a coroutine is patched using the decorator, the patch
is activated or deactivated according to the scope argument value:

	asynctest.GLOBAL: the default, enables the patch until the
generator or the coroutine finishes (returns or raises an exception),

	asynctest.LIMITED: the patch will be activated when the
generator or coroutine is being executed, and deactivated when it
yields a value and pauses its execution (with yield, yield from
or await).

The behavior differs from unittest.mock.patch() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch] for generators.

When used as a context manager, the patch is still active even if the
generator or coroutine is paused, which may affect concurrent tasks:

@asyncio.coroutine
def coro():
 with asynctest.mock.patch("module.function"):
 yield from asyncio.get_event_loop().sleep(1)

@asyncio.coroutine
def independent_coro():
 assert not isinstance(module.function, asynctest.mock.Mock)

asyncio.create_task(coro())
asyncio.create_task(independent_coro())
this will raise an AssertionError(coro() is scheduled first)!
loop.run_forever()

	Parameters

	scope – asynctest.GLOBAL or asynctest.LIMITED,
controls when the patch is activated on generators and coroutines

When used as a decorator with a generator based coroutine, the order of
the decorators matters. The order of the @patch() decorators is in
the reverse order of the parameters produced by these patches for the
patched function. And the @asyncio.coroutine decorator should be
the last since @patch() conceptually patches the coroutine, not
the function:

@patch("module.function2")
@patch("module.function1")
@asyncio.coroutine
def test_coro(self, mock_function1, mock_function2):
 yield from asyncio.get_event_loop().sleep(1)

see unittest.mock.patch() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch].

New in version 0.6: patch into generators and coroutines with
a decorator.

	
asynctest.patch.object(target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, scope=asynctest.GLOBAL, **kwargs)

	Patch the named member (attribute) on an object (target) with
a mock object, in the same fashion as patch().

See patch() and unittest.mock.patch.object() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.object].

	
asynctest.patch.multiple(target, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, scope=asynctest.global, **kwargs)

	Perform multiple patches in a single call. It takes the object to be
patched (either as an object or a string to fetch the object by
importing) and keyword arguments for the patches.

See patch() and unittest.mock.patch.multiple() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.multiple].

	
asynctest.patch.dict(in_dict, values=(), clear=False, scope=asynctest.GLOBAL, **kwargs)

	Patch a dictionary, or dictionary like object, and restore the
dictionary to its original state after the test.

Its behavior can be controlled on decorated generators and coroutines with
scope.

New in version 0.8: patch into generators and coroutines with
a decorator.

	Parameters

	
	in_dict – dictionary like object, or string referencing the
object to patch.

	values – a dictionary of values or an iterable of (key, value)
pairs to set in the dictionary.

	clear – if True, in_dict will be cleared before the new
values are set.

	scope – asynctest.GLOBAL or asynctest.LIMITED,
controls when the patch is activated on generators and coroutines

	See

	patch() (details about scope) and
unittest.mock.patch.dict() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.dict].

Helpers

	
asynctest.mock_open(mock=None, read_data='')

	A helper function to create a mock to replace the use of open() [https://docs.python.org/3/library/functions.html#open]. It
works for open() [https://docs.python.org/3/library/functions.html#open] called directly or used as a context manager.

	Parameters

	
	mock – mock object to configure, by default
a MagicMock object is
created with the API limited to methods or attributes
available on standard file handles.

	read_data – string for the read() and readlines() of
the file handle to return. This is an empty string by
default.

	
asynctest.return_once(value, then=None)

	Helper to use with side_effect, so a mock will return a given value
only once, then return another value.

When used as a side_effect value, if one of value or then is an
Exception [https://docs.python.org/3/library/exceptions.html#Exception] type, an instance of this exception will be raised.

>>> mock.recv = Mock(side_effect=return_once(b"data"))
>>> mock.recv()
b"data"
>>> repr(mock.recv())
'None'
>>> repr(mock.recv())
'None'

>>> mock.recv = Mock(side_effect=return_once(b"data", then=BlockingIOError))
>>> mock.recv()
b"data"
>>> mock.recv()
Traceback BlockingIOError

	Parameters

	
	value – value to be returned once by the mock when called.

	then – value returned for any subsequent call.

New in version 0.4.

Mocking of Selector

Mock of selectors [https://docs.python.org/3/library/selectors.html#module-selectors] and compatible objects performing asynchronous IO.

This module provides classes to mock objects performing IO (files, sockets,
etc). These mocks are compatible with TestSelector, which
can simulate the behavior of a selector on the mock objects, or forward actual
work to a real selector.

Mocking file-like objects

	
class asynctest.FileMock(*args, **kwargs)

	Mock a file-like object.

A FileMock is an intelligent mock which can work with TestSelector to
simulate IO events during tests.

	
fileno()

	Return a FileDescriptor object.

	
class asynctest.SocketMock(side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, **kwargs)

	Bases: asynctest.selector.FileMock

Mock a socket.

See FileMock.

	
class asynctest.SSLSocketMock(side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, **kwargs)

	Bases: asynctest.selector.SocketMock

Mock a socket wrapped by the ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module.

See FileMock.

New in version 0.5.

	
class asynctest.FileDescriptor

	Bases: int [https://docs.python.org/3/library/functions.html#int]

A subclass of int which allows to identify the virtual file-descriptor of a
FileMock.

If FileDescriptor() without argument, its value will be
the value of next_fd.

When an object is created, next_fd is set to the
highest value for a FileDescriptor object + 1.

	
next_fd = 0

	

Helpers

	
asynctest.fd(fileobj)

	Return the FileDescriptor value of fileobj.

If fileobj is a FileDescriptor, fileobj is
returned, else fileobj.fileno() is returned instead.

Note that if fileobj is an int, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if fileobj is not a FileMock,
a file-like object or
a FileDescriptor.

	
asynctest.isfilemock(obj)

	Return True if the obj or obj.fileno() is
a asynctest.FileDescriptor.

Mocking the selector

	
class asynctest.TestSelector(selector=None)

	A selector which supports IOMock objects.

It can wrap an actual implementation of a selector, so the selector will
work both with mocks and real file-like objects.

A common use case is to patch the selector loop:

loop._selector = asynctest.TestSelector(loop._selector)

	Parameters

	selector – optional, if provided, this selector will be used to work
with real file-like objects.

	
close()

	Close the selector.

Close the actual selector if supplied, unregister all mocks.

See selectors.BaseSelector.close() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.close].

	
modify(fileobj, events, data=None)

	Shortcut when calling TestSelector.unregister() then
TestSelector.register() to update the registration of a an object
to the selector.

See selectors.BaseSelector.modify() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.modify].

	
register(fileobj, events, data=None)

	Register a file object or a FileMock.

If a real selector object has been supplied to the
TestSelector object and fileobj is not
a FileMock or a FileDescriptor
returned by FileMock.fileno(), the object will be registered to
the real selector.

See selectors.BaseSelector.register() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.register].

	
select(timeout=None)

	Perform the selection.

This method is a no-op if no actual selector has been supplied.

See selectors.BaseSelector.select() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.select].

	
unregister(fileobj)

	Unregister a file object or a FileMock.

See selectors.BaseSelector.unregister() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.unregister].

Helpers

	
asynctest.set_read_ready(fileobj, loop)

	Schedule callbacks registered on loop as if the selector notified that
data is ready to be read on fileobj.

	Parameters

	
	fileobj – file object or FileMock on which the
event is mocked.

	loop – asyncio.SelectorEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop] watching for events on
fileobj.

mock = asynctest.SocketMock()
mock.recv.return_value = b"Data"

def read_ready(sock):
 print("received:", sock.recv(1024))

loop.add_reader(mock, read_ready, mock)

set_read_ready()

loop.run_forever() # prints received: b"Data"

New in version 0.4.

	
asynctest.set_write_ready(fileobj, loop)

	Schedule callbacks registered on loop as if the selector notified that
data can be written to fileobj.

	Parameters

	
	fileobj – file object or FileMock on which th
event is mocked.

	loop – asyncio.SelectorEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop] watching for events on
fileobj.

New in version 0.4.

Helpers

Helper functions and coroutines for asynctest.

	
asynctest.helpers.exhaust_callbacks(loop)

	Run the loop until all ready callbacks are executed.

The coroutine doesn’t wait for callbacks scheduled in the future with
call_at() or
call_later().

	Parameters

	loop – event loop

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 asynctest	

 	
 	
 asynctest.case	

 	
 	
 asynctest.helpers	

 	
 	
 asynctest.mock	

 	
 	
 asynctest.selector	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	addCleanup() (asynctest.TestCase method)

 	advance() (asynctest.ClockedTestCase method)

 	assert_any_await() (asynctest.CoroutineMock method)

 	assert_awaited() (asynctest.CoroutineMock method)

 	assert_awaited_once() (asynctest.CoroutineMock method)

 	assert_awaited_once_with() (asynctest.CoroutineMock method)

 	assert_awaited_with() (asynctest.CoroutineMock method)

 	assert_has_awaits() (asynctest.CoroutineMock method)

 	assert_not_awaited() (asynctest.CoroutineMock method)

 	assertAsyncRaises() (asynctest.TestCase method)

 	assertAsyncRaisesRegex() (asynctest.TestCase method)

 	assertAsyncWarns() (asynctest.TestCase method)

 	assertAsyncWarnsRegex() (asynctest.TestCase method)

 	
 	asynctest (module)

 	asynctest.case (module)

 	asynctest.fail_on() (in module asynctest.case)

 	asynctest.helpers (module)

 	asynctest.ignore_loop() (in module asynctest.case)

 	asynctest.mock (module)

 	asynctest.patch.dict() (in module asynctest.mock)

 	asynctest.patch.multiple() (in module asynctest.mock)

 	asynctest.patch.object() (in module asynctest.mock)

 	asynctest.selector (module)

 	await_args (asynctest.CoroutineMock attribute)

 	await_args_list (asynctest.CoroutineMock attribute)

 	await_count (asynctest.CoroutineMock attribute)

 	awaited (asynctest.CoroutineMock attribute)

C

 	
 	ClockedTestCase (class in asynctest)

 	
 	close() (asynctest.TestSelector method)

 	CoroutineMock (class in asynctest)

D

 	
 	doCleanups() (asynctest.TestCase method)

E

 	
 	exhaust_callbacks() (in module asynctest.helpers)

F

 	
 	fd() (in module asynctest)

 	FileDescriptor (class in asynctest)

 	FileMock (class in asynctest)

 	
 	fileno() (asynctest.FileMock method)

 	forbid_get_event_loop (asynctest.TestCase attribute)

 	FunctionTestCase (class in asynctest)

G

 	
 	GLOBAL (in module asynctest)

I

 	
 	is_coroutine (asynctest.NonCallableMock attribute)

 	
 	isfilemock() (in module asynctest)

L

 	
 	lenient() (in module asynctest.case)

 	
 	LIMITED (in module asynctest)

 	loop (asynctest.TestCase attribute)

M

 	
 	MagicMock (class in asynctest)

 	Mock (class in asynctest)

 	
 	mock_open() (in module asynctest)

 	modify() (asynctest.TestSelector method)

N

 	
 	next_fd (asynctest.FileDescriptor attribute)

 	
 	NonCallableMock (class in asynctest)

P

 	
 	patch() (in module asynctest)

R

 	
 	register() (asynctest.TestSelector method)

 	
 	reset_mock() (asynctest.CoroutineMock method)

 	return_once() (in module asynctest)

S

 	
 	select() (asynctest.TestSelector method)

 	set_read_ready() (in module asynctest)

 	set_write_ready() (in module asynctest)

 	
 	setUp() (asynctest.TestCase method)

 	SocketMock (class in asynctest)

 	SSLSocketMock (class in asynctest)

 	strict() (in module asynctest.case)

T

 	
 	tearDown() (asynctest.TestCase method)

 	
 	TestCase (class in asynctest)

 	TestSelector (class in asynctest)

U

 	
 	unregister() (asynctest.TestSelector method)

 	
 	use_default_loop (asynctest.TestCase attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 asynctest documentation

 		
 Module asynctest.case

 		
 class-level set-up

 		
 TestCases

 		
 Decorators

 		
 Mock objects

 		
 Mock classes

 		
 Patch

 		
 Helpers

 		
 Mocking of Selector

 		
 Mocking file-like objects

 		
 Helpers

 		
 Mocking the selector

 		
 Helpers

 		
 Helpers

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

