

asyncio-cancel-token

Task cancellation pattern for asyncio applications.

Inspired by https://vorpus.org/blog/timeouts-and-cancellation-for-humans/

Contents

	Cancel Token
	Introduction

	Quick Start

	Basic Usage
	Loop exit condition

	Waiting for an external signal

	Chaining Tokens

	Integration with other async APIs

	API
	Cancel Token

	Exceptions

	Release Notes
	v0.2.0

	v0.1.0-alpha.1

Indices and tables

	Index

	Module Index

Cancel Token

Introduction

A ~cancel_token.CancelToken is used to trigger cancellation of async
operations. This is useful for asyncio based python applications which
need a sane pattern for cancelling or timing out.

Quick Start

>>> import asyncio
>>> from cancel_token import CancelToken, OperationCancelled
>>> async def run_and_cancel_task():
... async def some_task(token):
... print("started task")
... await token.wait()
... print('task cancelled')
... token = CancelToken('demo')
... asyncio.ensure_future(some_task(token))
... # give the task a moment to start
... await asyncio.sleep(0.01)
... # trigger the cancel token
... token.trigger()
... # give the task a moment to complete
... await asyncio.sleep(0.01)
...
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(run_and_cancel_task())
started task
task cancelled

Basic Usage

Creation of a ~cancel_token.CancelToken simply requires providing a name.

>>> CancelToken('demo')
<CancelToken: demo>

Cancel tokens are triggered by calling the
trigger() method. Triggering a cancel token
causes the following behaviors.

	The property triggered will return True

	Any calls to the coroutine wait() will return.

	Any calls to the method raise_if_triggered() will raise an ~cancel_token.OperationCancelled exception.

From within your application, you might use the cancel token any number of
ways.

Loop exit condition

The property triggered can be useful as the
conditional for a while loop.

async def my_task(token):
 while not token.triggered:
 ... # do something

Or you may want to break out of the loop in a less gracefull manner by raising
the ~cancel_token.OperationCancelled exception.

async def my_task(token):
 while True:
 token.raise_if_triggered()
 ... # do something

Waiting for an external signal

async def main():
 token = CancelToken('worker')

 asyncio.ensure_future(do_work(token))
 # wait for work to be completed before proceeding
 await token.wait()

Chaining Tokens

One of the more useful patterns is token chaining. Chaining can be used to
create a single token which will trigger if any of the tokens it is chained to
are triggered,

>>> token_a = CancelToken('token-a')
>>> token_b = CancelToken('token-b').chain(token_a)
>>> token_a.triggered
False
>>> token_b.triggered
False
>>> token_a.trigger()
>>> token_a.triggered
True
>>> token_b.triggered
True

In this example we create token_b which has been chained with token_a.
token_b can be triggered independently, not effecting token_a.
However, if token_a is triggered, it also causes token_b to be
triggered.

Integration with other async APIs

Within the boundaries of your own application it is easy to pass cancel tokens
around as needed. However, you will often need cancellations to apply to async
calls to apis which do not support the cancel token API.

The cancel_token.CancelToken.cancellable_wait() function can be used to enforce
cancellations and timeouts on other async APIs. It expects any number of
awaitables as positional arguments as well as an optional timeout as a
keyword argument.

>>> import asyncio
>>> from cancel_token import CancelToken
>>> loop = asyncio.get_event_loop()
>>> token = CancelToken('demo')
>>> async def some_3rd_party_api():
... await asyncio.sleep(10)
...
>>> loop.run_until_complete(token.cancellable_wait(some_3rd_party_api(), timeout=0.1))
TimeoutError

API

Cancel Token

Exceptions

Release Notes

v0.2.0

	Change to raise asyncio.TimeoutError instead of the TimeoutError from built-ins

v0.1.0-alpha.1

	Launched repository, claimed names for pip, RTD, github, etc

Index

 nav.xhtml

 Table of Contents

 		
 asyncio-cancel-token

 		
 Cancel Token

 		
 Introduction

 		
 Quick Start

 		
 Basic Usage

 		
 Loop exit condition

 		
 Waiting for an external signal

 		
 Chaining Tokens

 		
 Integration with other async APIs

 		
 API

 		
 Cancel Token

 		
 Exceptions

 		
 Release Notes

 		
 v0.2.0

 		
 v0.1.0-alpha.1

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

