

AssemblerFlow

A NextFlow pipeline assembler for genomics.

Getting Started

	Overview

	Installation

User Guide

	Basic Usage

	Pipeline building

	Pipeline configuration

	Components

Developer Guide

	General orientation

	Process creation guidelines

	Template creation guidelines

	Dotfiles

Source API

	assemblerflow package
	Subpackages

	Submodules

	Module contents

Overview

Assemblerflow is an assembler of pipelines written in nextflow [https://www.nextflow.io/] for
analyses of genomic data. The premisse is simple:

Software are container blocks → Build your lego-like pipeline → Execute it (almost) anywhere.

What is Nextflow

If you do not know nextflow, be sure to check it out. It’s an awesome
framework based on the dataflow programming model used for building
parallelized, scalable and reproducible workflows using software containers.
It provides an abstraction layer between the execution and the logic of the
pipeline, which means that the same pipeline code can be executed on
multiple platforms, from a local laptop to clusters managed with SLURM, SGE,
etc. These are quite attractive features since genomic pipelines are
increasingly executed on large computer clusters to handle large volumes
of data and/or tasks. Moreover, portability and reproducibility are becoming
central pillars in modern data science.

What Assemblerflow does

Assemblerflow is a python engine that automatically builds nextflow pipelines
by assembling pre-made ready-to-use components. These components are modular
pieces of software or scripts, such as fastqc, trimmomatic, spades,
etc, that are written for nextflow and have a set of attributes, such as
input and output types, parameters, directives, etc. This modular nature
allows them to be freely connected as long as they respect some basic rules,
such as the input type of a component must match with the output type of
the preceding component. In this way, nextflow processes can be
written only once, and assemblerflow is the magic glue that connects them,
handling the linking and forking of channels automatically. Moreover, each
component is associated with a docker image, which means that there is no
need to install any dependencies at all and all software runs on a
transparent and reliable box. To illustrate:

	A linear genome assembly pipeline can be easily built using assemblerflow
with the following pipeline string:

trimmomatic fastqc spades

Which will generate all the necessary files to run the nextflow
pipeline on any linux system that has nextflow and a container engine.

	You can easily add more components to perform assembly polishing, in this
case, pilon:

trimmomatic fastqc spades pilon

	If a new assembler comes along and you want to switch that component in the
pipeline, its as easy as replacing spades (or any other component):

trimmomatic fastqc skesa pilon

	And you can also fork the output of a component into multiple ones. For
instance, we could annotate the resulting assemblies with multiple software:

trimmomatic fastqc spades pilon (abricate | prokka)

	Or fork the execution of a pipeline early on to compare different software:

trimmomatic fastqc (spades pilon | skesa pilon)

This will fork the output of fastqc into spades and skesa, and
the pipeline will proceed independently in these two new ‘lanes’.

	Directives for each process can be dynamically set when building the pipeline,
such as the cpu/RAM usage or the software version:

trimmomatic={'cpus':'4'} fastqc={'version':'0.11.5'} skesa={'memory':'10GB'} pilon (abricate | prokka)

	And extra input can be directly inserted in any part of the pipeline. For
example, it is possible to assemble genomes from both fastq files and SRR
accessions (downloaded from public databases) in a single workflow:

download_reads trimmomatic={'extra_input':'reads'} fastqc skesa pilon

This pipeline can be executed by providing a file with accession numbers
(--accessions parameter by default) and fastq reads, using the
--reads parameter defined with the extra_input directive.

Who is Assemblerflow for

Assemblerflow can be useful for bioinformaticians with varied levels of expertise
that need to executed genomic pipelines often and potentially in different
platforms. Building and executing pipelines requires no programming knowledge,
but familiarization with nextflow is highly recommended to take full advantage
of the generated pipelines.

At the moment, the available pre-made processes are mainly focused on
bacterial genome assembly simply because that was how we started.
However, our goal is to expand the library of existing components to other
commonly used tools in the field of genomics and to widen the applicability
and usefulness of assemblerflow pipelines.

Why not just write a Nextflow pipeline?

In many cases, building a static nextflow pipeline is sufficient for our goals.
However, when building our own pipelines, we often felt the need to add
dynamism to this process, particularly if we take into account how fast new
tools arise and existing ones change. Our biological goals also change over
time and we might need different pipelines to answer different questions.
Assemblerflow makes this very easy by having a set of pre-made and ready-to-use
components that can be freely assembled. By using components (fastqc,
trimmomatic) as its atomic elements, very complex pielines that take
full advantage of nextflow can be built with little effort. Moreover,
these components have explicit and standardized
input and output types, which means that the addition of new modules does not
require any changes in the existing code base. They just need to take into
account how data will be received by the process and how data may be emitted
from the process, to ensure that it can link with other components.

However, why not both?

Assemblerflow generates a complete Nextflow pipeline file, which ca be used
as a starting point for your customized processes!

Installation

User installation

Assemblerflow is available as a bioconda package, which already comes with
nextflow:

conda install assemblerflow

Alternatively, you can install only Assemblerflow, via pip:

pip install assemblerflow

You will also need a container engine (see Container engine below)

Container engine

All components of assemblerflow are executed in docker containers, which
means that you’ll need to have a container engine installed. The container
engines available are the ones supported by Nextflow:

	Docker [https://www.nextflow.io/docs/latest/docker.html],

	Singularity [https://www.nextflow.io/docs/latest/singularity.html]

	Shifter (undocumented)

If you already have any one of these installed, you are good to go. If not,
you’ll need to install one. We recommend singularity because it does not
require the processes to run on a separate root daemon.

Singularity

Singularity is available as a bioconda package. Simply install it, and it’s
ready to use:

conda install singularity

Docker

Docker can be installed following the instructions on the website:
https://www.docker.com/community-edition#/download.
To run docker as anon-root user, you’ll need to following the instructions
on the website: https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user

Developer installation

If you are looking to contribute to assemblerflow or simply interested in
tweaking it, clone the github repository and its submodule and then run
setup.py:

git clone https://github.com/ODiogoSilva/assemblerflow.git
cd assemblerflow
git submodule update --init --recursive
python3 setup.py install

Basic Usage

Assemblerflow has currently one execution mode, build, that is used to
build the nextflow pipeline. However, more execution modes are slated for
release.

Assembling a pipeline

Pipelines can be generated using the build execution mode of assemblerflow
and the -t parameter to specify the components inside quotes:

assemblerflow build -t "trimmomatic fastqc spades" -o my_pipe.nf

All components should be written inside quotes and be space separated.
This command will generate a linear pipeline with three components on the
current working directory (for more features and tips on how pipelines can be
built, see the pipeline building section). A linear pipeline means that
there are no bifurcations between components, and the input data will flow
linearly. In this particular case, the input data of the
pipeline will be paired-end fastq files, since that is the input data type
of the first component, trimmomatic.

The rationale of how the data flows across the pipeline is simple and intuitive.
Data enters a component and is processed in some way, which may result on the
creation of results (stored in the results directory) and reports (stored
in the reports directory) (see Results and reports below). If that
component has an output_type, it will feed the processed data into the
next component (or components) and this will repeated until the end of the
pipeline.

If you are interesting in checking the pipeline DAG tree, open the
my_pipe.html file (same name as the pipeline with the html extension)
in any browser.

[image: ../_images/fork_4.png]
The integrity_coverage component is a dependency of trimmomatic, so
it was automatically added to the pipeline.

Note

Not all pipeline variations will work. You always need to ensure
that the output type of a component matches the input type of the next
component, otherwise assemblerflow will exit with an error.

Pipeline directory

In addition to the main nextflow pipeline file (my_pipe.nf),
assemblerflow will write several auxiliary files that are necessary for
the pipeline to run. The contents of the directory should look something like
this:

$ ls
bin lib my_pipe.nf params.config templates
containers.config my_pipe.html nextflow.config profiles.config resources.config user.config

You do not have to worry about most of these files. However, the
*.config files can be modified to change several aspects of the pipeline run
(see Pipeline configuration for more details). Briefly:

	params.config: Contains all the available parameters of the pipeline (see
Parameters below). These can be changed here, or provided directly on
run-time (e.g.: nextflow run --fastq value).

	resources.config: Contains the resource directives of the pipeline processes,
such as cpus, allocated RAM and other nextflow process directives.

	containers.config: Specifies the container and version tag of each process
in the pipeline.

	profiles.config: Contains a number of predefined profiles of executor and
container engine.

	user.config: Empty configuration file that is not over-written if you build
another pipeline in the same directory. Used to set persistent configurations
across different pipelines.

Parameters

The parameters of the pipeline can be viewed by running the pipeline file
with nextflow and using the --help option:

$ nextflow my_pipe.nf --help

N E X T F L O W ~ version 0.28.0
Launching `my_pipe.nf` [stupefied_booth] - revision: 504208431f

==
 A S S E M B L E R F L O W
==
Built using assemblerflow v1.0.2

Usage:
 nextflow run my_pipe.nf

 --fastq Path expression to paired-end fastq files. (default: fastq/*_{1,2}.*) (integrity_coverage)
 --genomeSize Genome size estimate for the samples. It is used to estimate the coverage and other assembly parameters andchecks (default: 2.1) (integrity_coverage)
 --minCoverage Minimum coverage for a sample to proceed. Can be set to0 to allow any coverage (default: 15) (integrity_coverage)
 --adapters Path to adapters files, if any (default: None) (trimmomatic;fastqc)
 --trimSlidingWindow Perform sliding window trimming, cutting once the average quality within the window falls below a threshold (default: 5:20) (trimmomatic)
 --trimLeading Cut bases off the start of a read, if below a threshold quality (default: 3 (trimmomatic)
 --trimTrailing Cut bases of the end of a read, if below a threshold quality (default: 3) (trimmomatic)
 --trimMinLength Drop the read if it is below a specified length (default: 55) (trimmomatic)
 --spadesMinCoverage The minimum number of reads to consider an edge in the de Bruijn graph during the assembly (default: 2) (spades)
 --spadesMinKmerCoverage Minimum contigs K-mer coverage. After assembly only keep contigs with reported k-mer coverage equal or above this value (default: 2) (spades)
 --spadesKmers If 'auto' the SPAdes k-mer lengths will be determined from the maximum read length of each assembly. If 'default', SPAdes will use the default k-mer lengths. (default: auto) (spades)

All these parameters are related to the components of the pipeline. However,
the main input parameter (or parameters) of the pipeline is always available.
Since this pipeline started with fastq paired-end files as the main input,
the --fastq parameter is available. If the pipeline started with any other
input type or with more than one input type, the appropriate parameters would
appear. These parameters can be provided on run-time or edited in the
params.config file.

Executing the pipeline

Most parameters in assemblerflow’s components already come with sensible
defaults, which means that usually you’ll only need to provide a small number
of arguments. In the example above, the --fastq is the only parameter
required. I have placed fastq files on the data directory:

$ ls data
sample_1.fastq.gz sample_2.fastq.gz

We’ll need to provide the pattern to the fastq files. This pattern is perhaps
a bit confusing at first, but it’s necessary for the correct inference of the
paired:

nextflow run my_pipe.nf --fastq "data/*_{1,2}.*"

In this case, the pairs are separated by the “_1.” or “_2.” substring, which leads
to the pattern *_{1,2}.*. Another common nomenclature for paired fastq
files is something like sample_R1_L001.fastq.gz. In this case, an
acceptable pattern would be *_R{1,2}_*.

Important

Note the quotes around the fastq path pattern. These quotes are necessary
to allow nextflow to resolve the pattern, otherwise your shell might try
to resolve it and provide the wrong input to nextflow.

Changing executor and container engine

The default run mode of an assemblerflow pipeline is to be executed locally
and using the singularity container engine. In nextflow terms, this is
equivalent to have executor = "local" and singularity.enabled = true.
If you want to change these settings, you can modify the
nextflow.config file, or use one of the available profiles in the
profiles.config file. These profiles provide a combination of common
<executor>_<container_engine> that are supported by nextflow [https://www.nextflow.io/docs/latest/executor.html]. Therefore,
if you want to run the pipeline on a cluster with SLURM and shifter, you’ll
just need to specify the `` slurm_shifter`` profile:

nextflow run my_pipe.nf --fastq "data/*_{1,2}.*" -profile slurm_shifter

Common executors include:

	slurm

	sge

	lsf

	pbs

Other container engines are:

	docker

	singularity

	shifter

Docker images

All components of assemblerflow are executed in containers, which means that
the first time they are executed in a machine, the corresponding image will have
to be downloaded. In the case of docker, images are pulled and stored in
var/lib/docker by default. In the case of singularity, the
nextflow.config generated by assemblerflow sets the cache dir for the
images at $HOME/.singularity_cache. Note that when an image is downloading,
nextflow does not display any informative message, except for singularity where you’ll
get something like:

Pulling Singularity image docker://ummidock/trimmomatic:0.36-2 [cache /home/diogosilva/.singularity_cache/ummidock-trimmomatic-0.36-2.img]

So, if a process seems to take too long to run the first time, it’s probably
because the image is being downloaded.

Results and reports

As the pipeline runs, processes may write result and report files to the
results and reports directories, respectively. For example, the
reports of the pipeline above, would look something like this:

reports
├── coverage_1_1
│ └── estimated_coverage_initial.csv
├── fastqc_1_3
│ ├── FastQC_2run_report.csv
│ ├── run_2
│ │ ├── sample_1_0_summary.txt
│ │ └── sample_1_1_summary.txt
│ ├── sample_1_1_trim_fastqc.html
│ └── sample_1_2_trim_fastqc.html
└── status
 ├── master_fail.csv
 ├── master_status.csv
 └── master_warning.csv

The estimated_coverage_initial.csv file contains a very rough coverage
estimation for each sample, the fastqc* directory contains the html
reports and summary files of FastQC for each sample, and the status
directory contains a log of the status, warnings and fails of each process for
each sample.

The actual results for each process that produces them, are stored in the
results directory:

results
├── assembly
│ └── spades_1_4
│ └── sample_1_trim_spades3111.fasta
└── trimmomatic_1_2
 ├── sample_1_1_trim.fastq.gz
 └── sample_1_2_trim.fastq.gz

If you are interested in checking the actual environment where the execution
of a particular process occurred for any given sample, you can inspected the
pipeline_stats.txt file in the root of the pipeline directory. This file
contains rich information about the execution of each process, including
the working directory:

task_id hash process tag status exit start container cpus duration realtime queue %cpu %mem rss vmem
5 7c/cae270 trimmomatic_1_2 sample_1 COMPLETED 0 2018-04-12 11:42:29.599 docker:ummidock/trimmomatic:0.36-2 2 1m 25s 1m 17s - 329.3% 1.1% 1.5 GB 33.3 GB

The hash column contains the start of the current working directory of that
process. In the example below, the directory would be:

work/7c/cae270*

Pipeline building

Assemblerflow offers a few extra features when building pipelines using the
build execution mode.

Raw input types

Forks

The output of any component in an assemblerflow pipeline can be forked into
two or more components, using the following fork syntax:

trimmomatic fastqc (spades | skesa)

[image: ../_images/fork_1.png]
In this example, the output of fastqc will be fork into two new lanes,
which will proceed independently from each other. In this syntax, a fork is
triggered by the (symbol (and the corresponding closing)) and each
lane will be separated by a | symbol. There is no limitation to the number
of forks or lanes that a pipeline has. For instance, we could add more
components after the skesa module, including another fork:

trimmomatic fastqc (spades | skesa pilon (abricate | prokka | chewbbaca))

[image: ../_images/fork_2.png]
In this example, data will be forked after fastqc into two new lanes,
processed by spades and skesa. In the skesa lane, data will continue
to flow into the pilon component and its output will fork into three new
lanes.

It is also possible to start a fork at the beggining of the pipeline, which
basically means that the pipeline will have multiple starting points. If we
want to provide the raw input two multiple process, the fork syntax can start
at the beginning of the pipeline:

(seq_typing | trimmomatic fastqc (spades | skesa))

[image: ../_images/fork_3.png]
In this case, since both initial components (seq_typing and
integrity_coverage) received fastq files as input, the data provided
via the --fastq parameter will be forked and provided to both processes.

Note

Some components have dependencies which need to be included previously
in the pipeline. For instance, trimmomatic requires
integrity_coverage and pilon requires assembly_mapping. By
default, assemblerflow will insert any missing dependencies right before
the process, which is why these components appear in the figures above.

Warning

Pay special attention to the syntax of the pipeline string when using
forks. However, when unable to parse it, assemblerflow will do its best
to inform you where the parsing error occurred.

Directives

Several directives with information on cpu usage, RAM, version, etc. can be
specified for each individual component when building the pipeline using the
={} notation. These
directives are written to the resources.config and
containers.config files that are generated in the pipeline directory. You
can pass any of the directives already supported by nextflow (https://www.nextflow.io/docs/latest/process.html#directives),
but the most commonly used include:

	cpus

	memory

	queue

In addition, you can also pass the container and version directives
which are parsed by assemblerflow to dynamically change the container and/or
version tag of any process.

Here is an example where we specify cpu usage, allocated memory and container
version in the pipeline string:

assemblerflow build -t "fastqc={'version':'0.11.5'} \
 trimmomatic={'cpus':'2'} \
 spades={'memory':'\'10GB\''}" -o my_pipeline.nf

When a directive is not specified, it will assume the default value of the
nextflow directive.

Warning

Take special care not to include any white space characters inside the
directives field. Common mistakes occur when specifying directives like
fastqc={'version': '0.11.5'}.

Note

The values specified in these directives are placed in the
respective config files exactly as they are. For instance,
spades={'memory':'10GB'}" will appear in the config as
spades.memory = 10Gb, which will raise an error in nextflow because
10Gb should be a string. Therefore, if you want a string you’ll need to add
the ' as in this example: spades={'memory':'\'10GB\''}". The
reason why these directives are not automatically converted is to allow
the specification of dynamic computing resources, such as
spades={'memory':'{10.Gb*task.attempt}'}"

Extra inputs

By default, only the first process (or processes) in a pipeline will receive
the raw input data provided by the user. However, the extra_input special
directive allows one or more processes to receive input from an additional parameter
that is provided by the user:

reads_download integrity_coverage={'extra_input':'local'} trimmomatic spades

The default main input of this pipeline is a text file with accession numbers
for the reads_download component. The extra_input creates
a new parameter, named local in this example, that allows us to provide
additional input data to the integrity_coverage component directly:

nextflow run pipe.nf --accessions accession_list.txt --local "fastq/*_{1,2}.*"

What will happen in this pipeline, is that the fastq files provided to the
integrity_coverage component will be mixed with the ones provided by the
reads_download component. Therefore, if we provide 10 accessions and 10
fastq samples, we’ll end up with 20 samples being processed by the end of the
pieline.

It is important to note that the extra input parameter expected data
compliant with the input type of the process. If files other than fastq files
would be provided in the pipeline above, this would result in a pipeline error.

If the extra_input directive is used on a component that has a different
input type from the first component in the pipeline, it is possible to use
the default value:

trimmomatic spades abricate={'extra_input':'default'}

In this case, the input type of the first component if fastq and the input
type of abricate is fasta. The default value will make available the
default parameter for fasta raw input, which is fasta:

nextflow run pipe.nf --fastq "fastq/*_{1,2}.*" --fasta "fasta/*.fasta"

Pipeline file

Instead of providing the pipeline components via the command line, you can
specify them in a text file:

my_pipe.txt
trimmomatic fastqc spades

And then provide the pipeline file to the -t parameter:

assemblerflow build -t my_pipe.txt -o my_pipe.nf

Pipeline files are usually more readable, particularly when they become more
complex. Consider the following example:

integrity_coverage (
 spades={'memory':'\'50GB\''} |
 skesa={'memory':'\'40GB\'','cpus':'4'} |
 trimmomatic fastqc (
 spades pilon (abricate={'extra_input':'default'} | prokka) |
 skesa pilon (abricate | prokka)
)
)

In addition to be more readable, it is also easier to edit, re-use and share.

Pipeline configuration

When a nextflow pipeline is built with assemblerflow, a number of configuration
files are automatically generated in the same directory. They are all imported
at the end of the nextflow.config file and are sorted by their configuration
role. All configuration files are overwritten if you build another pipeline
in the same directory, with the exception of the user.config file, which
is meant to be a persistent configuration file.

Parameters

The params.config file includes all available paramenters for the pipeline
and their respective default values. Most of these parameters already contain
sensible defaults.

Resources

The resources.config file includes the majority of the directives provided
for each process, including cpus and memory. You’ll note that each
process name has a suffix like _1_1, which is a unique process identifier
composed of <lane>_<process_number>. This ensures that even when the same
component is specified multiple times in a pipeline, you’ll still be able to
set directives for each one individually.

Containers

The containers.config file includes the container directive for each
process in the pipeline. These containers are retrieved from dockerhub, if they
do not exist locally yet. You can change the container string to any other
value, but it should point to an image that exist on dockerhub or locally.

Profiles

The profiles.config file includes a set of pre-made profiles with all
possible combinations of executors and container engines. You can add new ones
or modify existing one.

User configutations

The user.config file is configuration file that is not overwritten when a
new pipeline is build in the same directory. It can contain any configuration
that is supported by nextflow and will overwrite all other configuration files.

Components

These are the currently available assemblerflow components with a short
description of their tasks. For a more detailed information, follow the
links of each component.

Read Quality Control

	Integrity_coverage: Tests the integrity
of the provided FastQ files, provides the option to filter FastQ files
based on the expected assembly coverage and provides information about
the maximum read length and sequence encoding.

	FastQC: Runs FastQC on paired-end FastQ files.

	Trimmomatic: Runs Trimmomatic on paired-end FastQ files.

	Fastqc_trimmomatic: Runs Trimmomatic on
paired-end FastQ files informed by the FastQC report.

	Check_coverage: Estimates the coverage for each sample and
filters FastQ files according to a specified minimum coverage threshold.

Assembly

	Spades: Assembles paired-end FastQ files
using SPAdes.

	Skesa: Assembles paired-end FastQ files using
skesa.

Post-assembly

	Process_spades: Processes the assembly output
from Spades and performs filtering base on quality criteria of GC content
k-mer coverage and read length.

	Process_skesa: Processes the assembly output
from Skesa and performs filtering base on quality criteria of GC content
k-mer coverage and read length.

	Assembly_mapping: Performs a mapping
procedure of FastQ files into a their assembly and performs filtering
based on quality criteria of read coverage and genome size.

	Pilon: Corrects and filters assemblies using Pilon.

Annotation

	Prokka: Performs assembly annotation using prokka.

	Abricate: Performs anti-microbial gene screening using
abricate.

MLST

	MLST: Checks the ST of an assembly using
mlst.

	Chewbbaca: Performs a cg/wgMLST analysis using ChewBBACA.

Reads typing

	Seq_typing: Determines the type of a given sample frm a set
of reference sequences.

	Patho_typing: In silico pathogenic typing from raw
illumina reads.

Plasmids

	mapping_patlas: Performs read mapping and generates a JSON
input file for pATLAS.

	mash_screen: Performs mash screen against a reference index
plasmid database and generates a JSON input file for pATLAS. This component
searches for containment of a given sequence in read sequencing data.
However if a different
database is provided it can use mash screen for other purporses.

	mash_dist: Executes mash distance against a reference index
plasmid database and generates a JSON for pATLAS. This component calculates
pairwise distances between sequences (one from the database and the query
sequence). However if a
different database is provided it can use mash dist for other purposes.

General orientation

Codebase structure

The most important elements of assemblerflow’s directory structure are:

	
	generator:

	
	components: Contains the Process classes for each component

	templates: Contains the nextflow jinja template files for each component

	engine.py: The engine of assemblerflow that builds the pipeline

	process.py: Contains the abstract Process class that is inherited

	by all component classes

	pipeline_parser.py: Functions that parse and check the pipeline string

	recipe.py: Class responsible for creating recipes

	templates: A git submodule of the templates [https://github.com/ODiogoSilva/templates] repository that contain
the template scripts for the components.

Code style

	Style: the code base of assemblerflow should adhere (the best it can) to
the PEP8 [https://www.python.org/dev/peps/pep-0008/] style guidelines.

	Docstrings: code should be generally well documented following the
numpy docstring [https://numpydoc.readthedocs.io/en/latest/format.html] style.

	Quality: there is also an integration with the codacy [https://app.codacy.com/app/o.diogosilva/assemblerflow/dashboard] service to
evaluate code quality, which is useful for detecting several coding
issues that may appear.

Testing

Tests are performed using pytest [https://docs.pytest.org/en/latest/] and the source files are stored in the
assemblerflow/tests directory. Tests must be executed on the root directory
of the repository

Documentation

Documentation source files are stored in the docs directory. The general
configuration file is found in docs/conf.py and the entry
point to the documentation is docs/index.html.

Process creation guidelines

Basic process creation

The addition of a new process to assemblerflow requires three main steps:

	Create process template: Create a jinja2 template in assemblerflow.generator.templates with the
nextflow code.

	Create Process class: Create a Process subclass in
assemblerflow.generator.process with
information about the process (e.g., expected input/output, secondary inputs,
etc.).

	Add to available processes: Add the process class to the
dictionary of available process in
assemblerflow.generator.engine.process_map.

Create process template

First, create the nextflow template that will be integrated into the pipeline
as a process. This file must be placed in assemblerflow.generator.templates
and have the .nf extension. In order to allow the template to be
dynamically added to a pipeline file, we use the jinja2 [http://jinja.pocoo.org/docs/2.10/] template language to
substitute key variables in the process, such as input/output channels.

A minimal example created as a my_process.nf file is as follows:

process myProcess_{{ pid }} {

{% include "post.txt" ignore missing %}

input:
set sample_id, <data> from {{ input_channel }}

// The output is optional
output:
set sample_id, <data> into {{ output_channel }}
{% with task_name="abricate" %}
{%- include "compiler_channels.txt" ignore missing -%}
{% endwith %}

"""
<process code/commands>
"""

}

{{ forks }}

The fields surrounded by curly brackets are jinja placeholders that will be
dynamically interpolated when building the pipeline, ensuring that the
processes and potential forks correctly link with each other. This example
contains all placeholder variables that are currently supported by
assemblerflow:

	pid (Mandatory): This placeholder is used as a unique process
identifier that prevent issues from process duplication in the pipeline.
It is also important for for unique secondary output channels, such as
those that send run status information (see Status channels).

	include "post.txt" (Mandatory): Inserts
beforeScript and afterScript statements to the process that setup
environmental variables and a series of dotfiles for the process to
log their status, warnings, fails and reports (see Dotfiles for
more information). It also includes scripts for sending requests to
REST APIs (only when certain pipeline parameters are used).

	input_channel (Mandatory): All processes must include one and only
one input channel. In most cases, this channel should be defined with
a two element tuple that contains the sample ID and then
the actual data file/stream. We suggest the sample ID variable to be named
sample_id as a standard. If other name variable name is specified and
you include the compiler_channels.txt in the process, you’ll need to
change the sample ID variable (see Sample ID variable).

	output_channel (Optional): Terminal processes may skip the output
channel entirely. However, if you want to link the main output of this
process with subsequent ones, this placeholder must be used only once.
Like in the input channel, this channel should be defined with a two element
tuple with the sample ID and the data. The sample ID must match the one
specified in the input_channel.

	include "compiler_channels.txt" (Mandatory): This will include the
special channels that will compile the status/logging of the processes
throughout the pipeline. You must include the
whole block (see Status channels):

{% with task_name="abricate" %}
{%- include "compiler_channels.txt" ignore missing -%}
{% endwith %}

	forks (Conditional): Inserts potential forks of the main output
channel. It is mandatory if the output_channel is set.

As an example of a complete process, this is the template of spades.nf:

process spades_{{ pid }} {

 // Send POST request to platform
 {% include "post.txt" ignore missing %}

 tag { fastq_id + " getStats" }
 publishDir 'results/assembly/spades/', pattern: '*_spades.assembly.fasta', mode: 'copy'

 input:
 set fastq_id, file(fastq_pair), max_len from {{ input_channel }}.join(SIDE_max_len_{{ pid }})
 val opts from IN_spades_opts
 val kmers from IN_spades_kmers

 output:
 set fastq_id, file('*_spades.assembly.fasta') optional true into {{ output_channel }}
 set fastq_id, val("spades"), file(".status"), file(".warning"), file(".fail") into STATUS_{{ pid }}
 file ".report.json"

 when:
 params.stopAt != "spades"

 script:
 template "spades.py"

}

{{ forks }}

Create Process class

The process class will contain the information that assemblerflow
will use to build the pipeline and assess potential conflicts/dependencies
between process. This class should be created in one the category files in the
assemblerflow.generator.components module (e.g.: assembly.py). If
the new component does not fit in any of the existing categories, create a
new one that imports assemblerflow.generator.process.Process and add
your new class. This class should inherit from the
Process base
class:

class MyProcess(Process):

 def __init__(self, **kwargs):

 super().__init__(**kwargs)

 self.input_type = "fastq"
 self.output_type = "fasta"

This is the simplest working example of a process class, which basically needs
to inherit the parent class attributes (the super part).
Then we only need to define the expected input
and output types of the process. There are no limitations to the
input/output types.
However, a pipeline will only build successfully when all processes correctly
link the output with the input type.

Depending on the process, other attributes may be required:

	Parameters: Parameters provided by the user to be used in the process.

	Secondary inputs: Channels created from parameters provided by the
user.

	Secondary Link start and Link end: Secondary links that connect
secondary information between two processes.

	Dependencies: List of other processes that may be required for
the current process.

	Directives: Default information for RAM/CPU/Container directives
and more.

Add to available processes

The final step is to add your new process to the list of available processes.
This list is defined in assemblerflow.generator.engine.process_map
module, which is a dictionary
mapping the process template name to the corresponding template class:

process_map = {
<other_process>
"my_process_template": process.MyProcess
}

Note that the template string does not include the .nf extension.

Process attributes

This section describes the main attributes of the
Process class: what they
do and how do they impact the pipeline generation.

Input/Output types

The input_type and
output_type attributes
set the expected type of input and output of the process. There are no
limitations to the type of input/output that are provided. However, processes
will only link when the output of one process matches the input of the
subsequent process (unless the
ignore_type attribute is set
to True). Otherwise, assemblerflow will raise an exception stating that
two processes could not be linked.

Note

The input/ouput types that are currently used are fastq, fasta.

Parameters

The params attribute sets
the parameters that can be used by the process. For each parameter, a default
value and a description should be provided. The default value will be set
in the params.config file in the pipeline directory and the description
will be used to generated the custom help message of the pipeline:

self.params = {
 "genomeSize": {
 "default": 2.1,
 "description": "Expected genome size (default: params.genomeSiz)
 },
 "minCoverage": {
 "default": 15,
 "description": "Minimum coverage to proceed (default: params.minCoverage)"
 }
}

These parameters can be simple values that are not feed into
any channel, or can be automatically set to a secondary input channel via
Secondary inputs (see below).

They can be specified when running the pipeline like any nextflow parameter
(e.g.: --genomeSize 5) and used in the nextflow process as usual
(e.g.: params.genomeSize).

Note

These pairs are then used to populate the params.config file that is
generated in the pipeline directory. Note that the values are replaced
literally in the config file. For instance, "genomeSize": 2.1, will appear
as genomeSize = 2.1, whereas "adapters": "'None'" will appear as
adapters = 'None'. If you want a value to appear as a string, the double
and single quotes are necessary.

Secondary inputs

Any process can receive one or more input channels in addition to the main
channel. These are particularly useful when the process needs to receive
additional options from the parameters scope of nextflow.
These additional inputs can be specified via the
secondary_inputs attribute,
which should store a list of dictionaries (a dictionary for each input). Each dictionary should
contains a key:value pair with the name of the parameter (params) and the
definition of the nextflow channel (channel). Consider the example below:

self.secondary_inputs = [
 {
 "params": "genomeSize",
 "channel": "IN_genome_size = Channel.value(params.genomeSize)"
 },
 {
 "params": "minCoverage",
 "channel": "IN_min_coverage = Channel.value(params.minCoverage)"
 }
]

This process will receive two secondary inputs that are given by the
genomeSize and minCoverage parameters. These should be also specified
in the params attribute
(See Parameters above).

For each of these parameters, the dictionary
also stores how the channel should be defined at the beginning of the pipeline
file. Note that this channel definition mentions the parameters (e.g.
params.genomeSize). An additional best practice for channel definition
is to include one or more sanity checks to ensure that the provided arguments
are correct. These checks can be added in the nextflow template file, or
literally in the channel string:

self.secondary_inputs = [
 {
 "params": "genomeSize",
 "channel":
 "IN_genome_size = Channel.value(params.genomeSize)"
 "map{it -> it.toString().isNumber() ? it : exit(1, \"The genomeSize parameter must be a number or a float. Provided value: '${params.genomeSize}'\")}"
 }

Extra input

The extra_input attribute
is mostly a user specified directive that allows the injection of additional
input data from a parameter into the main input channel of the process.
When a pipeline is defined as:

process1 process2={'extra_input':'var'}

assemblerflow will expose a new var parameter, setup an extra input
channel and mix it with process2 main input channel. A more detailed
explanation follows below.

First, assemblerflow will create a nextflow channel from the parameter name
provided via the extra_input directive. The channel string will depend
on the input type of the process (this string is fetched from the
RAW_MAPPING attribute).
For instance, if the input type of
process2 is fastq, the new extra channel will be:

IN_var_extraInput = Channel.fromFilePairs(params.var)

Since the same extra input parameter may be used by more than one process,
the IN_var_extraInput channel will be automatically forked into the
final destination channels:

// When there is a single destination channel
IN_var_extraInput.set{ EXTRA_process2_1_2 }
// When there are multiple destination channels for the same parameter
IN_var_extraInput.into{ EXTRA_process2_1_2; EXTRA_process3_1_3 }

The destination channels are the ones that will be actually mixed with
the main input channels:

process process2 {
 input:
 (...) main_channel.mix(EXTRA_process2_1_2)
}

In these cases, the processes that receive the extra input will process the
data provided by the preceding channel AND by the parameter. The data
provided via the extra input parameter does not have to wait for the
main_channel, which means that they can run in parallel, if there are
enough resources.

Compiler

The compiler attribute
allows one or more channels of the process to be fed into a compiler process
(See Compiler processes). These are special processes that collect
information from one or more processes to execute a given task. Therefore,
this parameter can only be used when there is an appropriate compiler process
available (the available compiler processes are set in the
compilers dictionary). In order to
provide one or more channels to a compiler process, simply add a key:value to the
attribute, where the key is the id of the compiler process present in the
compilers dictionary and the value
is the list of channels:

self.compiler["patlas_consensus"] = ["mappingOutputChannel"]

Link start

The link_start attribute
stores a list of strings of channel names that can be used as secondary
channels in the pipeline (See the Secondary links between process section).
By default, this attribute contains the main output channel, which means
that every process can fork the main channel to one or more receiving
processes.

Link end

The link_end attribute
stores a list of dictionaries with channel names that are meant to be
received by the process as secondary channel if the corresponding
Link start exists in the pipeline. Each dictionary in this list will define
one secondary channel and requires two key:value pairs:

self.link_end({
 "link": "SomeChannel",
 "alias": "OtherChannel")
})

If another process exists in the pipeline with
self.link_start.extend(["SomeChannel"]), assemblerflow will automatically
establish a secondary channel between the two processes. If there are multiple
processes receiving from a single one, the channel from the later will
for into any number of receiving processes.

Dependencies

If a process depends on the presence of one or more processes upstream in the
pipeline, these can be specific via the
dependencies attribute.
When building the pipeline if at least one of the dependencies is absent,
assemblerflow will raise an exception informing of a missing dependency.

Directives

The directives attribute
allows for information about cpu/RAM usage and container to be specified
for each nextflow process in the template file. For instance, considering
the case where a Process has a template with two nextflow processes:

process proc_A_{{ pid }} {
 // stuff
}

process proc_B_{{ pid }} {
 // stuff
}

Then, information about each process can be specified individually in the
directives attribute:

class myProcess(Process):
 (...)
 self.directives = {
 "proc_A": {
 "cpus": 1
 "memory": "4GB"
 },
 "proc_B": {
 "cpus": 4
 "container": "my/container"
 "version": "1.0.0"
 }
 }

The information in this attribute will then be used to build the
resources.config (containing the information about cpu/RAM) and
containers.config (containing the container images) files. Whenever a
directive is missing, such as the container and version from proc_A
and memory from proc_B, nothing about them will be written into the
config files and they will use the default pipeline values:

	cpus: 1

	memory: 1GB

	container: assemblerflow_base [https://hub.docker.com/r/ummidock/assemblerflow_base/~/dockerfile/] image

Ignore type

The ignore_type attribute,
controls whether a match between the input of the current process and the
output of the previous one is enforced or not. When there are multiple
terminal processes that fork from the main channel, there is no need to
enforce the type match and in that case this attribute can be set to False.

Process ID

The process ID, set via the
pid attribute, is an
arbitrarily and incremental number that is awarded to each process depending
on its position in the pipeline. It is mainly used to ensure that there are
no duplicated channels even when the same process is used multiple times
in the same pipeline.

Template

The template attribute
is used to fetch the jinja2 template file that corresponds to the current
process. The path to the template file is determined as follows:

join(<template directory>, template + ".nf")

Status channels

The status channels are special channels dedicated to passing information
regarding the status, warnings, fails and logging from each process
(see Dotfiles for more information). They are used only when the
nextflow template file contains the appropriate jinja2 placeholder:

output:
{% with task_name="<nextflow_template_name>" %}
{%- include "compiler_channels.txt" ignore missing -%}
{% endwith %}

By default,
every Process class contains a
status_channels list
attribute that contains the
template string:

self.status_channels = ["STATUS_{}".format(template)]

If there is only one nextflow process in the template and the task_name
variable in the template matches the
template attribute, then
it’s all automatically set up.

If the template file contains more than one nextflow process
definition, multiple placeholders can be provided in the template:

process A {
 (...)
 output:
 {% with task_name="A" %}
 {%- include "compiler_channels.txt" ignore missing -%}
 {% endwith %}
}

process B {
 (...)
 output:
 {% with task_name="B" %}
 {%- include "compiler_channels.txt" ignore missing -%}
 {% endwith %}
}

In this case, the
status_channels attribute
would need to be changed to:

self.status_channels = ["A", "B"]

Sample ID variable

In case you change the standard nextflow variable that stores the sample ID
in the input of the process (sample_id), you also need to change it for
the compiler_channels placeholder:

process A {

input:
set other_id, data from {{ input_channel }}

output:
{% with task_name="B", sample_id="other_id" %}
{%- include "compiler_channels.txt" ignore missing -%}
{% endwith %}

}

Advanced use cases

Compiler processes

Compilers are special processes that collect data from one or more processes
and perform a given task with that compiled data. They are automatically
included in the pipeline when at least one of the source channels is present.
In the case there are multiple source channels, they are merged according
to a specified operator.

Creating a compiler process

The creation of the compiler process is simpler than that of a regular process
but follows the same three steps.

	Create a nextflow template file in assemblerflow.generator.templates:

process fullConsensus {

 input:
 set id, file(infile_list) from {{ compile_channels }}

 output:
 <output channels>

 script:
 """
 <commands/code/template>
 """

}

The only requirement is the inclusion of a compiler_channels jinja
placeholder in the main input channel.

	Create a Compiler class in the assemblerflow.generator.process
module:

class PatlasConsensus(Compiler):

 def __init__(self, **kwargs):

 super().__init__(**kwargs)

This class must inherit from
Compiler and does not require any
more changes.

3. Map the compiler template file to the class in
compilers attribute:

self.compilers = {
"patlas_consensus": {
 "cls": pc.PatlasConsensus,
 "template": "patlas_consensus",
 "operator": "join"
 }
}

Each compiler should contain a key:value entry. The key is the compiler
id that is then specified in the compiler
attribute of the component classes. The value is a json/dict object that
species the compiler class in the cls key, the template string in the
template string and the operator used to join the channels into the
compiler via the operator key.

How a compiler process works

Consider the case where you have a compiler process named compiler_1 and
two processes, process_1 and process_2, both of which feed a single
channel to compiler_1. This means that the class definition of these
processes include:

class Process_1(Process):
 (...)
 self.compiler["compiler_1"] = ["channel1"]

class Process_2(Process):
 (...)
 self.compiler["compiler_1"] = ["channel2"]

If a pipeline is built with at least one of these process, the compiler_1
process will be automatically included in the pipeline. If more than one
channel is provided to the compiler, they will be merged with the specified
operator:

process compiler_1 {

 input:
 set sample_id, file(infile_list) from channel2.join(channel1)

}

This will allow the output of multiple separate process to be processed by
a single process in the pipeline, and it automatically adjusts according
to the channels provided to the compiler.

Secondary links between process

In some cases, it might be necessary to perform additional links between
two or more processes.
For example, the maximum read length might be gathered in one process, and
that information may be required by a subsequent process. These secondary
channels allow this information to be passed between theses channels.

These additional links are called secondary channels and
they may be explicitly or implicitly declared.

Explicit secondary channels

To create an explicit secondary channel, the origin or source of this channel
must be declared in the nextflow process that sends it:

// secondary channels can be created inside the process
output:
<main output> into {{ output_channel }}
<secondary output> into SIDE_max_read_len_{{ pid }}

// or outside
SIDE_phred_{{ pid }} = Channel.create()

Then, we add the information that this process has a secondary channel start
via the link_start list attribute in the corresponding
assemblerflow.generator.process.Process class:

class MyProcess(Process):

 (...)

 self.link_start.extend(["SIDE_max_read_len", "SIDE_phred"])

Notice that we extend the link_start list, instead of simply assigning.
This is because all processes already have the main channel as an implicit
link start (See Implicit secondary channels).

Now, any process that is executed after this one can receive this secondary
channel.

For another process to receive this channel, it will be necessary to add this
information to the process class(es) via the link_end list attribute:

class OtherProcess(Process):

 (...)

 self.link_end.append({
 "link": "SIDE_phred",
 "alias": "OtherName"
 })

Notice that now we append a dictionary with two key:values. The first, link
must match a string from the link_start list (in this case, SIDE_phred).
The second, alias, will be the channel name in the receiving process nextflow
template (which can be the same as the link value).

Now, we only need to add the secondary channel to the nextflow template, as in
the example below:

input:
<main_input> from {{ input_channel }}.mix(OtherName_{{ pid}})

Implicit secondary channels

By default, the main output of the channels is declared as a secondary channel
start. This means that any process can receive the main output channel as a
a secondary channel of a subsequent process. This can be useful in situations
were a post-assembly process (has assembly as expected input and output)
needs to receive the last channel with fastq files:

class AssemblyMapping(Process):

 (...)

 self.link_end.append({
 "link": "MAIN_fq",
 "alias": "_MAIN_assembly"
 })

In this example, the AssemblyMapping process will receive a secondary
channel with from the last process that output fastq files into a channel
called _MAIN_assembly. Then, this channel is received in the nextflow
template like this:

input:
<main input> from {{ input_channel }}.join(_{{ input_channel }})

Implicit secondary channels can also be used to
fork the last output channel into multiple terminal processes:

class Abricate(Process):

 (...)

 self.link_end.append({
 "link": "MAIN_assembly",
 "alias": "MAIN_assembly"
 })

In this case, since MAIN_assembly is already the prefix of the main
output channel of this process, there is no need for changes in the process
template:

input:
<main input> from {{ input_channel }}

Template creation guidelines

Though none of these guidelines are mandatory nor required, their usage is
highly recommended for several reasons:

	Consistency in the outputs of the templates throughout the pipeline,
particularly the status and report dotfiles (see Dotfiles section);

	Debugging purposes;

	Versioning;

	Proper documentation of the template scripts.

Preface header

After the script shebang, a header with a brief description of the purpose and
expected inputs and outputs should be provided. A complete example of such
description can be viewed in assemblerflow.templates.integrity_coverage.

Purpose

Purpose section contains a brief description of the script’s objective. E.g.:

Purpose

This module is intended parse the results of FastQC for paired end FastQ \
samples.

Expected input

Expected input section contains a description of the variables that are
provided to the main function of the template script. These variables are
defined in the input channels of the process in which the template is supposed
to be executed. E.g.:

Expected input

The following variables are expected whether using NextFlow or the
:py:func:`main` executor.

- ``mash_output`` : String with the name of the mash screen output file.
 - e.g.: ``'sortedMashScreenResults_SampleA.txt'``

This means that the process that will execute this channel will have the input
defined as:

input:
file(mash_output) from <channel>

Generated output

Generated output section contains a description of the output files that the
template script is intended to generated. E.g.:

Generated output

The generated output are output files that contain an object, usually a string.

- ``fastqc_health`` : Stores the health check for the current sample. If it
 passes all checks, it contains only the string 'pass'. Otherwise, contains
 the summary categories and their respective results

These can then be passed to the output channel(s) in the nextflow process:

output:
file(fastqc_health) into <channel>

Note

Since templates can be re-used by multiple processes, not all generated
outputs need to be passed to output channels. Depending on the job of
the nextflow process, it may catch none or all of the output files
generated by the template.

Versioning and logging

Assemblerflow has a specific logger
(get_logger()) and
versioning system that can be imported from
assemblerflow.templates.utils:

the module that imports the logger and the decorator class for versioning
of the script itself and other software used in the script
from utils.assemblerflow_base import get_logger, MainWrapper

Logger

A logger function is also required to add logs to the script. The logs
are written to the .command.log file in the work directory of each process.

First, the logger must be called, for example, after the imports as follows:

logger = get_logger(__file__)

Then, it may be used at will, using the default logging levels [https://docs.python.org/3.6/library/logging.html#levels] . E.g.:

logger.debug("Information tha may be important for debugging")
logger.info("Information related to the normal execution steps")
logger.warning("Events that may require the attention of the developer")
logger.error("Module exited unexpectedly with error:\\n{}".format(
 traceback.format_exc()))

MainWrapper decorator

This MainWrapper
class decorator allows the program to fetch information on the script version,
build and template name. For example:

This can also be declared after the imports
__version__ = "1.0.0"
__build__ = "15012018"
__template__ = "process_abricate-nf"

The MainWrapper
should decorate the main function of the script.
E.g.:

@MainWrapper
def main():
 #some awesome code
 ...

Besides searching for the script’s version, build and template name this decorator
will also search for a specific set of functions that start with the
substring __get_version. For example:

def __get_version_fastqc():

 try:

 cli = ["fastqc", "--version"]
 p = subprocess.Popen(cli, stdout=PIPE, stderr=PIPE)
 stdout, _ = p.communicate()

 version = stdout.strip().split()[1][1:].decode("utf8")

 except Exception as e:
 logger.debug(e)
 version = "undefined"

 # Note that it returns a dictionary that will then be written to the .versions
 # dotfile
 return {
 "program": "FastQC",
 "version": version,
 # some programs may also contain build.
 }

These functions are used to fetch the version, name and other relevant
information from third-party software and the only requirement is that they
return a dictionary with at least two key:value pairs:

	program: String with the name of the program.

	version: String with the version of the program.

For more information, refer to the
build_versions()
method.

Nextflow .command.sh

When these templates are used as a Nextflow template [https://www.nextflow.io/docs/latest/process.html#template]
they are executed as a .command.sh file in the work directory of each
process. In this case, we recommended the inclusion of
an if statement to parse the arguments sent from nextflow to the python
template. For example, imagine we have a path to a file name to pass as
argument between nextflow and the required template:

code check for nextflow execution
if __file__.endswith(".command.sh"):
 FILE_NAME = '$Nextflow_file_name'
 # logger output can also be included here, for example:
 logger.debug("Running {} with parameters:".format(
 os.path.basename(__file__)))
 logger.debug("FILE_NAME: {}".format(FILE_NAME))

Then, we could use this variable as the argument of a function, such as:

def main(FILE_NAME):
 #some awesome code
 ...

This way, we can use this function with nextflow arguments or without them,
as is the case when the templates are used as standalone modules.

Use numpy docstrings

Assemblerflow uses numpy docstrings to document code.
Use
this link [http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html]
for reference.

Dotfiles

Several dotfiles (files prefixed by a single ., as in .status) are
created at the beginning of every nextflow process that has the following
placeholder (see Create process template):

process myProcess {
 {% include "post.txt" ignore missing %}
 (...)
}

The actual script that creates the dotfiles is found in
assemblerflow/bin, is called set_dotfiles.sh and executes the
following command:

touch .status .warning .fail .report.json .versions

Status

The .status file simply stores a string with the run status of the process.
The supported status are:

	pass: The process finished successfully

	fail: The process ran without unexpected issues but failed due to some
quality control check

	error: The process exited with an unexpected error.

Warning

The .warning file stores any warnings that may occur during the execution
of the process. There is no particular format for the warning messages other
than that each individual warning should be in a separate line.

Fail

The .fail file stores any fail messages that may occur during the
execution of the process. When this occurs, the .status channel must have
the fail string as well. As in the warning dotfile, there is no
particular format for the fail message.

Report JSON

The .report.json file stores any information from a given process that is
deemed worthy of being reported and displayed at the end of the pipeline.
Any information can be stored in this file, as long as it is in JSON format,
but there are a couple of recommendations that are necessary to follow
for them to be processed by a reporting web app (Currently hosted at
report-nf [https://github.com/ODiogoSilva/report-nf]). However, if
data processing will be performed with custom scripts, feel free to specify
your own format.

Information for tables

Information meant to be displayed in tables should be in the following
format:

json_dic = {
 "tableRow": [
 {"header": "Raw BP",
 "value": chars,
 "table": "assembly",
 "columnBar": True},
}

This means that the chars variable that is created during the execution
of the process should appear as a table entry with the specified header
and value. The table key specifies in which table of the reports
it will appear and the columnBar key informs the report generator to
create a bar column in that particular cell.

Information for plots

Information meant to be displayed in plots should be in the following format:

json_dic = {
 "plotData": {
 "size_dist": size_dist
 }
}

This is a simple key:value pair, where the key is the ID of the plot in the
reports and the size_dist contains the plot data that was gathered
for a particular process.

Other information

Other than tables and plots, which have a somewhat predefined format, there
is not particular format for other information. They will simply store the
data of interest to report and it will be the job of a downstream report app
to process that data into an actual visual report.

Versions

The .version dotfile should contain a list of JSON objects with the
version information of the programs used in any given process. There are
only two required key:value pairs:

	program: String with the name of the software/script/template

	version: String with the version of said software.

As an example:

version = {
 "program": "abricate"
 "version": "0.3.7"
}

Key:value pairs with other metadata can be included at will for downstream
processing.

assemblerflow package

Subpackages

	assemblerflow.generator package
	assemblerflow.generator.components package
	Submodules
	assemblerflow.generator.components.annotation module

	assemblerflow.generator.components.assembly module

	assemblerflow.generator.components.assembly_processing module

	assemblerflow.generator.components.distance_estimation module

	assemblerflow.generator.components.downloads module

	assemblerflow.generator.components.mapping module

	assemblerflow.generator.components.reads_quality_control module

	Module contents

	Submodules
	assemblerflow.generator.engine module

	assemblerflow.generator.error_handling module

	assemblerflow.generator.header_skeleton module

	assemblerflow.generator.pipeline_parser module

	assemblerflow.generator.process module

	assemblerflow.generator.process_details module

	Module contents

	assemblerflow.templates package
	Subpackages
	assemblerflow.templates.utils package
	Submodules
	assemblerflow.templates.utils.assemblerflow_base module

	Module contents

	Submodules
	assemblerflow.templates.assembly_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.fastqc module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.fastqc_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.integrity_coverage module
	Purpose

	Expected input

	Generated output

	Notes

	Code documentation

	assemblerflow.templates.mapping2json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.mashdist2json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.mashscreen2json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.pATLAS_consensus_json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.pipeline_status module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.process_abricate module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.process_assembly_mapping module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.process_spades module

	assemblerflow.templates.spades module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.trimmomatic module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.trimmomatic_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	Module contents

	assemblerflow.tests package
	Submodules
	assemblerflow.tests.test_processes module

	assemblerflow.tests.test_sanity module

	Module contents

Submodules

	assemblerflow.assemblerflow module

Module contents

assemblerflow.generator package

	assemblerflow.generator.components package
	Submodules
	assemblerflow.generator.components.annotation module

	assemblerflow.generator.components.assembly module

	assemblerflow.generator.components.assembly_processing module

	assemblerflow.generator.components.distance_estimation module

	assemblerflow.generator.components.downloads module

	assemblerflow.generator.components.mapping module

	assemblerflow.generator.components.reads_quality_control module

	Module contents

Submodules

	assemblerflow.generator.engine module

	assemblerflow.generator.error_handling module

	assemblerflow.generator.header_skeleton module

	assemblerflow.generator.pipeline_parser module

	assemblerflow.generator.process module

	assemblerflow.generator.process_details module

Module contents

Placeholder for Process creation docs

assemblerflow.generator.components package

Submodules

	assemblerflow.generator.components.annotation module

	assemblerflow.generator.components.assembly module

	assemblerflow.generator.components.assembly_processing module

	assemblerflow.generator.components.distance_estimation module

	assemblerflow.generator.components.downloads module

	assemblerflow.generator.components.mapping module

	assemblerflow.generator.components.reads_quality_control module

Module contents

assemblerflow.generator.components.annotation module

	
class assemblerflow.generator.components.annotation.Abricate(**kwargs)

	Bases: assemblerflow.generator.process.Process

Abricate mapping process template interface

This process is set with:

	input_type: assembly

	output_type: None

	ptype: post_assembly

It contains one secondary channel link end:

	MAIN_assembly (alias: MAIN_assembly): Receives the last

assembly.

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.annotation.Prokka(**kwargs)

	Bases: assemblerflow.generator.process.Process

Prokka mapping process template interface

This process is set with:

	input_type: assembly

	output_type: None

	ptype: post_assembly

It contains one secondary channel link end:

	MAIN_assembly (alias: MAIN_assembly): Receives the last

assembly.

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

assemblerflow.generator.components.assembly module

	
class assemblerflow.generator.components.assembly.Spades(**kwargs)

	Bases: assemblerflow.generator.process.Process

Spades process template interface

This process is set with:

	input_type: fastq

	output_type: assembly

	ptype: assembly

It contains one secondary channel link end:

	SIDE_max_len (alias: SIDE_max_len): Receives max read length

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.assembly.Skesa(**kwargs)

	Bases: assemblerflow.generator.process.Process

Skesa process template interface

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

assemblerflow.generator.components.assembly_processing module

	
class assemblerflow.generator.components.assembly_processing.ProcessSkesa(**kwargs)

	Bases: assemblerflow.generator.process.Process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.assembly_processing.ProcessSpades(**kwargs)

	Bases: assemblerflow.generator.process.Process

Process spades process template interface

This process is set with:

	input_type: assembly

	output_type: assembly

	ptype: post_assembly

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.assembly_processing.AssemblyMapping(**kwargs)

	Bases: assemblerflow.generator.process.Process

Assembly mapping process template interface

This process is set with:

	input_type: assembly

	output_type: assembly

	ptype: post_assembly

It contains one secondary channel link end:

	MAIN_fq (alias: _MAIN_assembly): Receives the FastQ files

from the last process with fastq output type.

It contains two status channels:

	STATUS_am: Status for the assembly_mapping process

	STATUS_amp: Status for the process_assembly_mapping process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.assembly_processing.Pilon(**kwargs)

	Bases: assemblerflow.generator.process.Process

Pilon mapping process template interface

This process is set with:

	input_type: assembly

	output_type: assembly

	ptype: post_assembly

It contains one dependency process:

	assembly_mapping: Requires the BAM file generated by the

assembly mapping process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

assemblerflow.generator.components.distance_estimation module

	
class assemblerflow.generator.components.distance_estimation.PatlasMashDist(**kwargs)

	Bases: assemblerflow.generator.process.Process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.distance_estimation.PatlasMashScreen(**kwargs)

	Bases: assemblerflow.generator.process.Process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

assemblerflow.generator.components.downloads module

	
class assemblerflow.generator.components.downloads.DownloadReads(**kwargs)

	Bases: assemblerflow.generator.process.Process

Process template interface for reads downloading from SRA and NCBI

This process is set with:

	input_type: accessions

	output_type fastq

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

assemblerflow.generator.components.mapping module

assemblerflow.generator.components.reads_quality_control module

	
class assemblerflow.generator.components.reads_quality_control.IntegrityCoverage(**kwargs)

	Bases: assemblerflow.generator.process.Process

Process template interface for first integrity_coverage process

This process is set with:

	input_type: fastq

	output_type: fastq

	ptype: pre_assembly

It contains two secondary channel link starts:

	SIDE_phred: Phred score of the FastQ files

	SIDE_max_len: Maximum read length

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.reads_quality_control.CheckCoverage(**kwargs)

	Bases: assemblerflow.generator.process.Process

Process template interface for additional integrity_coverage process

This process is set with:

	input_type: fastq

	output_type: fastq

	ptype: pre_assembly

It contains one secondary channel link start:

	SIDE_max_len: Maximum read length

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.reads_quality_control.TrueCoverage(**kwargs)

	Bases: assemblerflow.generator.process.Process

TrueCoverage process template interface

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.reads_quality_control.FastQC(**kwargs)

	Bases: assemblerflow.generator.process.Process

FastQC process template interface

This process is set with:

	input_type: fastq

	output_type: fastq

	ptype: pre_assembly

It contains two status channels:

	STATUS_fastqc: Status for the fastqc process

	STATUS_report: Status for the fastqc_report process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
status_channels = None

	list: Setting status channels for FastQC execution and FastQC report

	
class assemblerflow.generator.components.reads_quality_control.Trimmomatic(**kwargs)

	Bases: assemblerflow.generator.process.Process

Trimmomatic process template interface

This process is set with:

	input_type: fastq

	output_type: fastq

	ptype: pre_assembly

It contains one secondary channel link end:

	SIDE_phred (alias: SIDE_phred): Receives FastQ phred score

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.components.reads_quality_control.FastqcTrimmomatic(**kwargs)

	Bases: assemblerflow.generator.process.Process

Fastqc + Trimmomatic process template interface

This process executes FastQC only to inform the trim range for trimmomatic,
not for QC checks.

This process is set with:

	input_type: fastq

	output_type: fastq

	ptype: pre_assembly

It contains one secondary channel link end:

	SIDE_phred (alias: SIDE_phred): Receives FastQ phred score

It contains three status channels:

	STATUS_fastqc: Status for the fastqc process

	STATUS_report: Status for the fastqc_report process

	STATUS_trim: Status for the trimmomatic process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

assemblerflow.generator.engine module

	
assemblerflow.generator.engine.process_map = {'seq_typing': <class 'assemblerflow.generator.components.typing.SeqTyping'>, 'integrity_coverage': <class 'assemblerflow.generator.components.reads_quality_control.IntegrityCoverage'>, 'process_spades': <class 'assemblerflow.generator.components.assembly_processing.ProcessSpades'>, 'fastqc_trimmomatic': <class 'assemblerflow.generator.components.reads_quality_control.FastqcTrimmomatic'>, 'true_coverage': <class 'assemblerflow.generator.components.reads_quality_control.TrueCoverage'>, 'chewbbaca': <class 'assemblerflow.generator.components.mlst.Chewbbaca'>, 'mlst': <class 'assemblerflow.generator.components.mlst.Mlst'>, 'reads_download': <class 'assemblerflow.generator.components.downloads.DownloadReads'>, 'mash_screen': <class 'assemblerflow.generator.components.distance_estimation.PatlasMashScreen'>, 'fastqc': <class 'assemblerflow.generator.components.reads_quality_control.FastQC'>, 'prokka': <class 'assemblerflow.generator.components.annotation.Prokka'>, 'process_skesa': <class 'assemblerflow.generator.components.assembly_processing.ProcessSkesa'>, 'abricate': <class 'assemblerflow.generator.components.annotation.Abricate'>, 'spades': <class 'assemblerflow.generator.components.assembly.Spades'>, 'pilon': <class 'assemblerflow.generator.components.assembly_processing.Pilon'>, 'mapping_patlas': <class 'assemblerflow.generator.components.patlas_mapping.PatlasMapping'>, 'skesa': <class 'assemblerflow.generator.components.assembly.Skesa'>, 'check_coverage': <class 'assemblerflow.generator.components.reads_quality_control.CheckCoverage'>, 'patho_typing': <class 'assemblerflow.generator.components.typing.PathoTyping'>, 'trimmomatic': <class 'assemblerflow.generator.components.reads_quality_control.Trimmomatic'>, 'assembly_mapping': <class 'assemblerflow.generator.components.assembly_processing.AssemblyMapping'>, 'mash_dist': <class 'assemblerflow.generator.components.distance_estimation.PatlasMashDist'>}

	dict: Maps the process ids to the corresponding template interface class wit
the format:

{
 "<template_string>": module.TemplateClass
}

	
class assemblerflow.generator.engine.NextflowGenerator(process_connections, nextflow_file, pipeline_name='assemblerflow', ignore_dependencies=False, auto_dependency=True)

	Bases: object

Methods

	build()

	Main pipeline builder

	render_pipeline()

	Write pipeline attributes to json

	write_configs(project_root)

	Wrapper method that writes all configuration files to the pipeline

	
processes = None

	list: Stores the process interfaces in the specified order

	
_fork_tree = None

	dict: A dictionary with the fork tree of the pipeline, which consists
on the the paths of each lane. For instance, a single fork with two
sinks is represented as: {1: [2,3]}. Subsequent forks are then added
sequentially: {1:[2,3], 2:[3,4,5]}. This allows the path upstream
of a process in a given lane to be traversed until the start of the
pipeline.

	
lanes = None

	int: Stores the number of lanes in the pipelines

	
nf_file = None

	str: Path to file where the pipeline will be generated

	
pipeline_name = None

	str: Name of the pipeline, for customization and help purposes.

	
template = None

	str: String that will harbour the pipeline code

	
secondary_channels = None

	dict: Stores secondary channel links

	
main_raw_inputs = None

	list: Stores the main raw inputs from the user parameters into the
first process(es).

	
secondary_inputs = None

	dict: Stores the secondary input channels that may be required by
some processes. The key is the params variable and the key is the
channel definition for nextflow:

{"genomeSize": "IN_genome_size = Channel.value(params.genomeSize)"}

	
extra_inputs = None

	

	
status_channels = None

	list: Stores the status channels from each process

	
skip_class = None

	list: Stores the Process classes that should be skipped when iterating
over the processes list.

	
resources = None

	str: Stores the resource directives string for each nextflow process.
See NextflowGenerator._get_resources_string().

	
containers = None

	str: Stores the container directives string for each nextflow process.
See NextflowGenerator._get_container_string().

	
params = None

	str: Stores the params directives string for the nextflow pipeline.
See NextflowGenerator._get_params_string()

	
user_config = None

	str: Stores the user configuration file placeholder. This is an
empty configuration file that is only added the first time to a
project directory. If the file already exists, it will not overwrite
it.

	
compilers = None

	dict: Maps the information about each available compiler process in
assemblerflow. The key of each entry is the name/signature of the
compiler process. The value is a json/dict object that contains two
key:pair values:

	cls: The reference to the compiler class object.

	template: The nextflow template file of the process.

	
static _parse_process_name(name_str)

	Parses the process string and returns the process name and its
directives

Process strings my contain directive information with the following
syntax:

proc_name={'directive':'val'}

This method parses this string and returns the process name as a
string and the directives information as a dictionary.

	Parameters

	
	name_strstr

	Raw string with process name and, potentially, directive
information

	Returns

	
	str

	Process name

	dict or None

	Process directives

	
_build_connections(process_list, ignore_dependencies, auto_dependency)

	Parses the process connections dictionaries into a process list

This method is called upon instantiation of the NextflowGenerator
class. Essentially, it sets the main input/output channel names of the
processes so that they can be linked correctly.

If a connection between two consecutive process is not possible due
to a mismatch in the input/output types, it exits with an error.

	
_get_process_names(con, pid)

	Returns the input/output process names and output process directives

	Parameters

	
	condict

	Dictionary with the connection information between two processes.

	pidint

	Arbitrary and unique process ID.

	Returns

	
	input_namestr

	Name of the input process

	output_namestr

	Name of the output process

	output_directivesdict

	Parsed directives from the output process

	
_add_dependency(p, template, inlane, outlane, pid)

	Automatically Adds a dependency of a process.

This method adds a template to the process list attribute as a
dependency. It will adapt the input lane, output lane and process
id of the process that depends on it.

	Parameters

	
	pProcess

	Process class that contains the dependency.

	templatestr

	Template name of the dependency.

	inlaneint

	Input lane.

	outlaneint

	Output lane.

	pidint

	Process ID.

	
_search_tree_backwards(template, parent_lanes)

	Searches the process tree backwards in search of a provided process

The search takes into consideration the provided parent lanes and
searches only those

	Parameters

	
	templatestr

	Name of the process template attribute being searched

	parent_laneslist

	List of integers with the parent lanes to be searched

	Returns

	
	bool

	Returns True when the template is found. Otherwise returns False.

	
static _test_connection(parent_process, child_process)

	Tests if two processes can be connected by input/output type

	Parameters

	
	parent_processassemblerflow.generator.process.Process

	Process that will be sending output.

	child_processassemblerflow.generator.process.Process

	Process that will receive output.

	
_build_header()

	Adds the header template to the master template string

	
_build_footer()

	Adds the footer template to the master template string

	
_update_raw_input(p, sink_channel=None, input_type=None)

	Given a process, this method updates the
main_raw_inputs attribute with the corresponding
raw input channel of that process. The input channel and input type
can be overridden if the input_channel and input_type arguments
are provided.

	Parameters

	
	passemblerflow.generator.Process.Process

	Process instance whose raw input will be modified

	sink_channel: str

	Sets the channel where the raw input will fork into. It overrides
the process’s input_channel attribute.

	input_type: str

	Sets the type of the raw input. It overrides the process’s
input_type attribute.

	
_update_secondary_inputs(p)

	Given a process, this method updates the
secondary_inputs attribute with the corresponding
secondary inputs of that process.

	Parameters

	
	passemblerflow.Process.Process

	

	
_update_extra_inputs(p)

	Given a process, this method updates the
extra_inputs attribute with the corresponding extra
inputs of that process

	Parameters

	
	passemblerflow.Process.Process

	

	
_get_fork_tree(lane)

	Returns a list with the parent lanes from the provided lane

	Parameters

	
	laneint

	Target lage

	Returns

	
	list

	List of the lanes preceding the provided lane.

	
_set_implicit_link(p, link)

	
	Parameters

	
	p

	

	link

	

	
_update_secondary_channels(p)

	Given a process, this method updates the
secondary_channels attribute with the corresponding
secondary inputs of that channel.

The rationale of the secondary channels is the following:

	Start storing any secondary emitting channels, by checking the
link_start list attribute of each process. If there are
channel names in the link start, it adds to the secondary
channels dictionary.

	Check for secondary receiving channels, by checking the
link_end list attribute. If the link name starts with a
__ signature, it will created an implicit link with the last
process with an output type after the signature. Otherwise,
it will check is a corresponding link start already exists in
the at least one process upstream of the pipeline and if so,
it will update the secondary_channels attribute with the
new link.

	Parameters

	
	passemblerflow.Process.Process

	

	
_set_channels()

	Sets the main channels for the pipeline

This method will parse de the processes attribute
and perform the following tasks for each process:

	Sets the input/output channels and main input forks and adds
them to the process’s
assemblerflow.process.Process._context
attribute (See
set_channels()).

	Automatically updates the main input channel of the first
process of each lane so that they fork from the user provide
parameters (See
_update_raw_input()).

	Check for the presence of secondary inputs and adds them to the
secondary_inputs attribute.

	Check for the presence of secondary channels and adds them to the
secondary_channels attribute.

Notes

On the secondary channel setup: With this approach, there can only
be one secondary link start for each type of secondary link. For
instance, If there are two processes that start a secondary channel
for the SIDE_max_len channel, only the last one will be recorded,
and all receiving processes will get the channel from the latest
process. Secondary channels can only link if the source process if
downstream of the sink process in its “forking” path.

	
_set_init_process()

	Sets the main raw inputs and secondary inputs on the init process

This method will fetch the assemblerflow.process.Init process
instance and sets the raw input (
assemblerflow.process.Init.set_raw_inputs()) and the secondary
inputs (assemblerflow.process.Init.set_secondary_inputs()) for
that process. This will handle the connection of the user parameters
with channels that are then consumed in the pipeline.

	
_set_secondary_channels()

	Sets the secondary channels for the pipeline

This will iterate over the
NextflowGenerator.secondary_channels dictionary that is
populated when executing
_update_secondary_channels() method.

	
_set_compiler_channels()

	Wrapper method that calls functions related to compiler channels

	
_set_general_compilers()

	Adds compiler channels to the processes attribute.

This method will iterate over the pipeline’s processes and check
if any process is feeding channels to a compiler process. If so, that
compiler process is added to the pipeline and those channels are
linked to the compiler via some operator.

	
_set_status_channels()

	Compiles all status channels for the status compiler process

	
static _get_resources_string(res_dict, pid)

	Returns the nextflow resources string from a dictionary object

If the dictionary has at least on of the resource directives, these
will be compiled for each process in the dictionary and returned
as a string read for injection in the nextflow config file template.

This dictionary should be:

dict = {"processA": {"cpus": 1, "memory": "4GB"},
 "processB": {"cpus": 2}}

	Parameters

	
	res_dictdict

	Dictionary with the resources for processes.

	pidint

	Unique identified of the process

	Returns

	
	str

	nextflow config string

	
static _get_container_string(cont_dict, pid)

	Returns the nextflow containers string from a dictionary object

If the dictionary has at least on of the container directives, these
will be compiled for each process in the dictionary and returned
as a string read for injection in the nextflow config file template.

This dictionary should be:

dict = {"processA": {"container": "asd", "version": "1.0.0"},
 "processB": {"container": "dsd"}}

	Parameters

	
	cont_dictdict

	Dictionary with the containers for processes.

	pidint

	Unique identified of the process

	Returns

	
	str

	nextflow config string

	
_get_params_string()

	Returns the nextflow params string from a dictionary object.

The params dict should be a set of key:value pairs with the
parameter name, and the default parameter value:

self.params = {
 "genomeSize": 2.1,
 "minCoverage": 15
}

The values are then added to the string as they are. For instance,
a 2.1 float will appear as param = 2.1 and a
"'teste'" string will appear as ``param = 'teste' (Note the
string).

	Returns

	
	str

	Nextflow params configuration string

	
_get_params_help()

	

	
static _render_config(template, context)

	

	
_set_configurations()

	This method will iterate over all process in the pipeline and
populate the nextflow configuration files with the directives
of each process in the pipeline.

	
render_pipeline()

	Write pipeline attributes to json

This function writes the pipeline and their attributes to a json file,
that is intended to be read by resources/pipeline_graph.html to render
a graphical output showing the DAG.

	
write_configs(project_root)

	Wrapper method that writes all configuration files to the pipeline
directory

	
build()

	Main pipeline builder

This method is responsible for building the
NextflowGenerator.template attribute that will contain
the nextflow code of the pipeline.

First it builds the header, then sets the main channels, the
secondary inputs, secondary channels and finally the
status channels. When the pipeline is built, is writes the code
to a nextflow file.

assemblerflow.generator.error_handling module

	
exception assemblerflow.generator.error_handling.ProcessError(value)

	Bases: Exception

	
exception assemblerflow.generator.error_handling.SanityError(value)

	Bases: Exception

Class to raise a custom error for sanity checks

assemblerflow.generator.header_skeleton module

assemblerflow.generator.pipeline_parser module

	
assemblerflow.generator.pipeline_parser.remove_inner_forks(text)

	Recursively removes nested brackets

This function is used to remove nested brackets from fork strings using
regular expressions

	Parameters

	
	text: str

	The string that contains brackets with inner forks to be removed

	Returns

	
	text: str

	the string with only the processes that are not in inner forks, thus
the processes that belong to a given fork.

	
assemblerflow.generator.pipeline_parser.empty_tasks(p_string)

	Function to check if pipeline string is empty or has an empty string

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.brackets_but_no_lanes(p_string)

	Function to check if a LANE_TOKEN is provided but no fork is initiated.
Parameters
———-
p_string: str

	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.brackets_insanity_check(p_string)

	This function performs a check for different number of ‘(‘ and ‘)’
characters, which indicates that some forks are poorly constructed.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.lane_char_insanity_check(p_string)

	This function performs a sanity check for multiple ‘|’ character
between two processes.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.final_char_insanity_check(p_string)

	This function checks if lane token is the last element of the pipeline
string.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.fork_procs_insanity_check(p_string)

	This function checks if the pipeline string contains a process between
the fork start token or end token and the separator (lane) token. Checks for
the absence of processes in one of the branches of the fork [‘|)' and '(|’]
and for the existence of a process before starting a fork (in an inner fork)
[‘|(‘].

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.start_proc_insanity_check(p_string)

	This function checks if there is a starting process after the beginning of
each fork. It checks for duplicated start tokens [‘((‘].

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.late_proc_insanity_check(p_string)

	This function checks if there are processes after the close token. It
searches for everything that isn’t “|” or “)” after a “)” token.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.inner_fork_insanity_checks(pipeline_string)

	This function performs two sanity checks in the pipeline string. The first
check, assures that each fork contains a lane token ‘|’, while the second
check looks for duplicated processes within the same fork.

	Parameters

	
	pipeline_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
assemblerflow.generator.pipeline_parser.insanity_checks(pipeline_str)

	Wrapper that performs all sanity checks on the pipeline string

	Parameters

	
	pipeline_strstr

	String with the pipeline definition

	
assemblerflow.generator.pipeline_parser.parse_pipeline(pipeline_str)

	Parses a pipeline string into a dictionary with the connections between
process

	Parameters

	
	pipeline_strstr

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	Returns

	
	pipeline_linkslist

	

	
assemblerflow.generator.pipeline_parser.get_source_lane(fork_process, pipeline_list)

	Returns the lane of the last process that matches fork_process

	Parameters

	
	fork_processlist

	List of processes before the fork.

	pipeline_listlist

	List with the pipeline connection dictionaries.

	Returns

	
	int

	Lane of the last process that matches fork_process

	
assemblerflow.generator.pipeline_parser.get_lanes(lanes_str)

	From a raw pipeline string, get a list of lanes from the start
of the current fork.

When the pipeline is being parsed, it will be split at every fork
position. The string at the right of the fork position will be provided
to this function. It’s job is to retrieve the lanes that result
from that fork, ignoring any nested forks.

	Parameters

	
	lanes_strstr

	Pipeline string after a fork split

	Returns

	
	laneslist

	List of lists, with the list of processes for each lane

	
assemblerflow.generator.pipeline_parser.linear_connection(plist, lane)

	Connects a linear list of processes into a list of dictionaries

	Parameters

	
	plistlist

	List with process names. This list should contain at least two entries.

	laneint

	Corresponding lane of the processes

	Returns

	
	reslist

	List of dictionaries with the links between processes

	
assemblerflow.generator.pipeline_parser.fork_connection(source, sink, source_lane, lane)

	Makes the connection between a process and the first processes in the
lanes to wich it forks.

The lane argument should correspond to the lane of the source process.
For each lane in sink, the lane counter will increase.

	Parameters

	
	sourcestr

	Name of the process that is forking

	sinklist

	List of the processes where the source will fork to. Each element
corresponds to the start of a lane.

	source_laneint

	Lane of the forking process

	laneint

	Lane of the source process

	Returns

	
	reslist

	List of dictionaries with the links between processes

	
assemblerflow.generator.pipeline_parser.linear_lane_connection(lane_list, lane)

	
	Parameters

	
	lane_listlist

	Each element should correspond to a list of processes for a given lane

	laneint

	Lane counter before the fork start

	Returns

	
	reslist

	List of dictionaries with the links between processes

assemblerflow.generator.process module

	
class assemblerflow.generator.process.Process(template)

	Bases: object

Main interface for basic process functionality

The Process class is intended to be inherited by specific process
classes (e.g., IntegrityCoverage) and provides the basic
functionality to build the channels and links between processes.

Child classes are expected to inherit the __init__ execution, which
basically means that at least, the child must be defined as:

class ChildProcess(Process):
 def__init__(self, **kwargs):
 super().__init__(**kwargs)

This ensures that when the ChildProcess class is instantiated, it
automatically sets the attributes of the parent class.

This also means that child processes must be instantiated providing
information on the process type and jinja2 template with the nextflow code.

	Parameters

	
	templatestr

	Name of the jinja2 template with the nextflow code for that process.
Templates are stored in generator/templates.

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
RAW_MAPPING = {'accessions': {'params': 'accessions', 'default_value': 'null', 'checks': 'if (!params.{0}){{ exit 1, "\'{0}\' parameter missing" }}\n', 'description': 'Path file with accessions, one perline. (default: $params.fastq)', 'channel_str': 'Channel.fromPath(params.{0}).ifEmpty {{ exit 1, "No accessions file provided with path:\'${{params.{0}}}\'" }}', 'channel': 'IN_accessions_raw'}, 'fastq': {'params': 'fastq', 'default_value': "'fastq/*_{1,2}.*'", 'checks': 'if (params.{0} instanceof Boolean){{exit 1, "\'{0}\' must be a path pattern. Provide value:\'$params.{0}\'"}}\nif (!params.{0}){{ exit 1, "\'{0}\' parameter missing"}}', 'description': 'Path expression to paired-end fastq files. (default: $params.fastq)', 'channel_str': 'Channel.fromFilePairs(params.{0}).ifEmpty {{ exit 1, "No fastq files provided with pattern:\'${{params.{0}}}\'" }}', 'channel': 'IN_fastq_raw'}, 'fasta': {'params': 'fasta', 'default_value': "'fasta/*.fasta'", 'checks': 'if (params.{0} instanceof Boolean){{exit 1, "\'{0}\' must be a path pattern. Provide value:\'$params.{0}\'"}}\nif (!params.{0}){{ exit 1, "\'{0}\' parameter missing"}}', 'description': 'Path fasta files. (default: $params.fastq)', 'channel_str': 'Channel.fromPath(params.{0}).map{{ it -> file(it).exists() ? [it.toString().tokenize(\'/\').last().tokenize(\'.\')[0..-2].join(\'.\'), it] : null }}.ifEmpty {{ exit 1, "No fasta files provided with pattern:\'${{params.{0}}}\'" }}', 'channel': 'IN_fasta_raw'}}

	dict: Contains the mapping between the Process.input_type attribute
and the corresponding nextflow parameter and main channel definition,
e.g.:

"fastq" : {
 "params": "fastq",
 "channel: "<channel>
}

	
pid = None

	int: Process ID number that represents the order and position in the
generated pipeline

	
template = None

	str: Template name for the current process. This string will be used
to fetch the file containing the corresponding jinja2 template
in the _set_template() method

	
_template_path = None

	str: Path to the file containing the jinja2 template file. It’s
set in _set_template().

	
input_type = None

	str: Type of expected input data. Used to verify the connection between
two processes is viable.

	
output_type = None

	str: Type of output data. Used to verify the connection between
two processes is viable.

	
ignore_type = None

	boolean: If True, this process will ignore the input/output type
requirements. This attribute is set to True for terminal singleton
forks in the pipeline.

	
ignore_pid = None

	boolean: If True, this process will not make the pid advance. This
is used for terminal forks before the end of the pipeline.

	
dependencies = None

	list: Contains the dependencies of the current process in the form
of the Process.template attribute (e.g., [fastqc])

	
input_channel = None

	str: Place holder of the main input channel for the current process.
This attribute can change dynamically depending on the forks and
secondary channels in the final pipeline.

	
output_channel = None

	str: Place holder of the main output channel for the current process.
This attribute can change dynamically depending on the forks and
secondary channels in the final pipeline.

	
input_user_channel = None

	dict: Stores a dictionary of two key:value pairs containing
the raw input channel for the process. This is automatically

determined by the input_type attribute, and will

	fetch the information that is mapped in the RAW_MAPPING

	variable. It will only be used by the first process(es) defined in
a pipeline.

	
link_start = None

	list: List of strings with the starting points for secondary channels.
When building the pipeline, these strings will be matched with equal
strings in the link_end attribute of other Processes.

	
link_end = None

	list: List of dictionaries containing the a string of the ending point
for a secondary channel. Each dictionary should contain at least
two key/vals:
{"link": <link string>, "alias":<string for template>}

	
status_channels = None

	list: Name of the status channels produced by the process. By default,
it sets a single status channel. If more than one status channels
are required for the process, list each one in this attribute
(e.g., FastQC.status_channels)

	
status_strs = None

	str: Name of the status channel for the current process. These strings
will be provided to the StatusCompiler process to collect and
compile status reports

	
forks = None

	list: List of strings with the literal definition of the forks for
the current process, ready to be added to the template string.

	
main_forks = None

	list: List of the channels onto which the main output should be
forked into. They will be automatically added to the
main_forks attribute when setting the secondary
channels

	
secondary_inputs = None

	list: List of dictionaries with secondary input channels from nextflow
parameters. This dictionary should contain two key:value pairs
with the params key, containing the parameter name, and the
channel key, containing the nextflow channel definition:

{
 "params": "pathoSpecies",
 "channel": "IN_pathoSpecies = Channel
 .value(params.pathoSpecies)"
}

	
extra_input = None

	str: with the name of the params that will be used to provide
extra input into the process. This extra input will be mixed with
the main input channel using nextflow’s mix operator. Its
channel will be defined at the start of the pipeline, based on the
channel_str key of the RAW_MAPPING for the
corresponding input type.

	
params = None

	dict: Maps the parameter names to the corresponding default values.

	
_context = None

	dict: Dictionary with the keyword placeholders for the string template
of the current process.

	
directives = None

	dict: Specifies the directives (cpus, memory, container) for each
nextflow process in the template. If specified, this directives
will be added to the nextflow configuration file. Otherwise,
the default values for cpus and memory will be used. In the case
of containers, they will not run inside any container.

	The current supported directives are:

	
	cpus

	memory

	container

	container tag/version

An example of directives for two process is as follows:

self.directives = {
 "processA": {"cpus": 1, "memory": "1GB"},
 "processB": {"memory": "5GB", "container": "my/image",
 "version": "0.5.0"}
}

	
compiler = None

	dict: Specifies channels from the current process that are received
by a compiler process. Each key in this dictionary should match
a compiler process key in
compilers.
The value should be a list of the channels that will be fed to the
compiler process:

self.compiler["patlas_consensus"] = ["mashScreenOutputChannel"]

	
_set_template(template)

	Sets the path to the appropriate jinja template file

When a Process instance is initialized, this method will fetch
the location of the appropriate template file, based on the
template argument. It will raise an exception is the template
file is not found. Otherwise, it will set the
Process.template_path attribute.

	
set_main_channel_names(input_suffix, output_suffix, lane)

	Sets the main channel names based on the provide input and
output channel suffixes. This is performed when connecting processes.

	Parameters

	
	input_suffixstr

	Suffix added to the input channel. Should be based on the lane
and an arbitrary unique id

	output_suffixstr

	Suffix added to the output channel. Should be based on the lane
and an arbitrary unique id

	laneint

	Sets the lane of the process.

	
get_user_channel(input_channel, input_type=None)

	Returns the main raw channel for the process

Provided with at least a channel name, this method returns the raw
channel name and specification (the nextflow string definition)
for the process. By default, it will fork from the raw input of
the process’ input_type attribute. However, this
behaviour can be overridden by providing the input_type argument.

If the specified or inferred input type exists in the
RAW_MAPPING dictionary, the channel info dictionary
will be retrieved along with the specified input channel. Otherwise,
it will return None.

An example of the returned dictionary is:

 {"input_channel": "myChannel",
 "params": "fastq",
 "channel": "IN_fastq_raw",
 "channel_str":"IN_fastq_raw = Channel.fromFilePairs(params.fastq)"
}

	Returns

	
	dict or None

	Dictionary with the complete raw channel info. None if no
channel is found.

	
static render(template, context)

	Wrapper to the jinja2 render method from a template file

	Parameters

	
	templatestr

	Path to template file.

	contextdict

	Dictionary with kwargs context to populate the template

	
template_str

	Class property that returns a populated template string

This property allows the template of a particular process to be
dynamically generated and returned when doing Process.template_str.

	Returns

	
	xstr

	String with the complete and populated process template

	
set_channels(**kwargs)

	General purpose method that sets the main channels

This method will take a variable number of keyword arguments to
set the Process._context attribute with the information
on the main channels for the process. This is done by appending
the process ID (Process.pid) attribute to the input,
output and status channel prefix strings. In the output channel,
the process ID is incremented by 1 to allow the connection with the
channel in the next process.

The **kwargs system for setting the Process._context
attribute also provides additional flexibility. In this way,
individual processes can provide additional information not covered
in this method, without changing it.

	Parameters

	
	kwargsdict

	Dictionary with the keyword arguments for setting up the template
context

	
update_main_input(input_str)

	

	
update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	Parameters

	
	sinkstr

	Channel onto which the main input will be forked to

	
set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

This method allows a given source channel to be forked into one or
more channels and sets those forks in the Process.forks
attribute. Both the source and the channels in the channel_list
argument must be the final channel strings, which means that this
method should be called only after setting the main channels.

If the source is not a main channel, this will simply create a fork
or set for every channel in the channel_list argument list:

SOURCE_CHANNEL_1.into{SINK_1;SINK_2}

If the source is a main channel, this will apply some changes to
the output channel of the process, to avoid overlapping main output
channels. For instance, forking the main output channel for process
2 would create a MAIN_2.into{...}. The issue here is that the
MAIN_2 channel is expected as the input of the next process, but
now is being used to create the fork. To solve this issue, the output
channel is modified into _MAIN_2, and the fork is set to
the channels provided channels plus the MAIN_2 channel:

_MAIN_2.into{MAIN_2;MAIN_5;...}

	Parameters

	
	sourcestr

	String with the name of the source channel

	channel_listlist

	List of channels that will receive a fork of the secondary
channel

	
update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

This will only update the directives for processes that have been
defined in the subclass.

	Parameters

	
	attr_dictdict

	Dictionary containing the attributes that will be used to update
the process attributes and/or directives.

	
class assemblerflow.generator.process.Compiler(**kwargs)

	Bases: assemblerflow.generator.process.Process

Extends the Process methods to status-type processes

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_compiler_channels(channel_list[, operator])

	General method for setting the input channels for the status process

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
set_compiler_channels(channel_list, operator='mix')

	General method for setting the input channels for the status process

Given a list of status channels that are gathered during the pipeline
construction, this method will automatically set the input channel
for the status process. This makes use of the mix channel operator
of nextflow for multiple channels:

STATUS_1.mix(STATUS_2,STATUS_3,...)

This will set the status_channels key for the _context
attribute of the process.

	Parameters

	
	channel_listlist

	List of strings with the final name of the status channels

	operatorstr

	Specifies the operator used to join the compiler channels.
Available options are ‘mix’and ‘join’.

	
class assemblerflow.generator.process.Init(**kwargs)

	Bases: assemblerflow.generator.process.Process

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_extra_inputs(channel_dict)

	Sets the initial definition of the extra input channels.

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_raw_inputs(raw_input)

	Sets the main input channels of the pipeline and their forks.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	set_secondary_inputs(channel_dict)

	Adds secondary inputs to the start of the pipeline.

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
set_raw_inputs(raw_input)

	Sets the main input channels of the pipeline and their forks.

The raw_input dictionary input should contain one entry for each
input type (fastq, fasta, etc). The corresponding value should be a
dictionary/json with the following key:values:

	channel: Name of the raw input channel (e.g.: channel1)

	
	channel_str: The nextflow definition of the channel and

	eventual checks (e.g.: channel1 = Channel.fromPath(param))

	raw_forks: A list of channels to which the channel name will
for to.

Each new type of input parameter is automatically added to the
params attribute, so that they are automatically collected
for the pipeline description and help.

	Parameters

	
	raw_inputdict

	Contains an entry for each input type with the channel name,
channel string and forks.

	
set_secondary_inputs(channel_dict)

	Adds secondary inputs to the start of the pipeline.

This channels are inserted into the pipeline file as they are
provided in the values of the argument.

	Parameters

	
	channel_dictdict

	Each entry should be <parameter>: <channel string>.

	
set_extra_inputs(channel_dict)

	Sets the initial definition of the extra input channels.

The channel_dict argument should contain the input type and
destination channel of each parameter (which is the key):

channel_dict = {
 "param1": {
 "input_type": "fasta"
 "channels": ["abricate_2_3", "chewbbaca_3_4"]
 }
}

	Parameters

	
	channel_dictdict

	Dictionary with the extra_input parameter as key, and a dictionary
as a value with the input_type and destination channels

	
class assemblerflow.generator.process.StatusCompiler(**kwargs)

	Bases: assemblerflow.generator.process.Compiler

Status compiler process template interface

This special process receives the status channels from all processes
in the generated pipeline.

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_compiler_channels(channel_list[, operator])

	General method for setting the input channels for the status process

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.process.ReportCompiler(**kwargs)

	Bases: assemblerflow.generator.process.Compiler

Reports compiler process template interface

This special process receives the report channels from all processes
in the generated pipeline.

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_compiler_channels(channel_list[, operator])

	General method for setting the input channels for the status process

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

	
class assemblerflow.generator.process.PatlasConsensus(**kwargs)

	Bases: assemblerflow.generator.process.Compiler

Patlas consensus compiler process template interface

This special process receives the channels associated with the
patlas_consensus key.

	Attributes

	
	template_str

	Class property that returns a populated template string

Methods

	get_user_channel(input_channel[, input_type])

	Returns the main raw channel for the process

	render(template, context)

	Wrapper to the jinja2 render method from a template file

	set_channels(**kwargs)

	General purpose method that sets the main channels

	set_compiler_channels(channel_list[, operator])

	General method for setting the input channels for the status process

	set_main_channel_names(input_suffix, …)

	Sets the main channel names based on the provide input and output channel suffixes.

	set_secondary_channel(source, channel_list)

	General purpose method for setting a secondary channel

	update_attributes(attr_dict)

	Updates the directives attribute from a dictionary object.

	update_main_forks(sink)

	Updates the forks attribute with the sink channel destination

	update_main_input

	

assemblerflow.generator.process_details module

	
assemblerflow.generator.process_details.colored_print(msg, color_label='white_bold')

	
This function enables users to add a color to the print. It also enables
to pass end_char to print allowing to print several strings in the same line
in different prints.

	Parameters

	
	color_string: str

	
The color code to pass to the function, which enables color change as
well as background color change.

	msg: str

	The actual text to be printed

	end_char: str

	The character in which each print should finish. By default it will be
“

	“.

	

	
assemblerflow.generator.process_details.procs_dict_parser(procs_dict)

	This function handles the dictionary of attributes of each Process class
to print to stdout.

	Parameters

	
	procs_dict: dict

	A dictionary with the class attributes used by the argument that prints
the lists of processes, both for short_list and for detailed_list.

	
assemblerflow.generator.process_details.proc_collector(process_map, args, processes_list=None)

	Function that collects all processes available and stores a dictionary of
the required arguments of each process class to be passed to
procs_dict_parser

	Parameters

	
	process_map: dict

	The dictionary with the Processes currently available in assemblerflow
and their corresponding classes as values

	args: argparse.Namespace

	The arguments passed through argparser that will be access to check the
type of list to be printed

	processes_list: list

	List with all the available processes of a recipe. In case no recipe
is passed, the list should come empty.

assemblerflow.templates package

Subpackages

	assemblerflow.templates.utils package
	Submodules
	assemblerflow.templates.utils.assemblerflow_base module

	Module contents

Submodules

	assemblerflow.templates.assembly_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.fastqc module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.fastqc_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.integrity_coverage module
	Purpose

	Expected input

	Generated output

	Notes

	Code documentation

	assemblerflow.templates.mapping2json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.mashdist2json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.mashscreen2json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.pATLAS_consensus_json module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.pipeline_status module
	Purpose

	Expected input

	Code documentation

	assemblerflow.templates.process_abricate module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.process_assembly_mapping module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.process_spades module

	assemblerflow.templates.spades module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.trimmomatic module
	Purpose

	Expected input

	Generated output

	Code documentation

	assemblerflow.templates.trimmomatic_report module
	Purpose

	Expected input

	Generated output

	Code documentation

Module contents

Placeholder for template generation docs

assemblerflow.templates.utils package

Submodules

	assemblerflow.templates.utils.assemblerflow_base module

Module contents

assemblerflow.templates.utils.assemblerflow_base module

assemblerflow.templates.assembly_report module

Purpose

This module is intended to provide a summary report for a given assembly
in Fasta format.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_idSample Identification string.

	
	e.g.: 'SampleA'

	
	assemblyPath to assembly file in Fasta format.

	
	e.g.: 'assembly.fasta'

Generated output

	
	${fastq_id}_assembly_report.csvCSV with summary information of the assembly.

	
	e.g.: 'SampleA_assembly_report.csv'

Code documentation

	
class assemblerflow.templates.assembly_report.Assembly(assembly_file, sample_id)

	Bases: object

Class that parses and filters an assembly file in Fasta format.

This class parses an assembly file, collects a number
of summary statistics and metadata from the contigs and reports.

	Parameters

	
	assembly_filestr

	Path to assembly file.

	sample_idstr

	Name of the sample for the current assembly.

Methods

	get_coverage_sliding(coverage_file[, window])

	
	Parameters

	

	get_gc_sliding([window])

	Calculates a sliding window of the GC content for the assembly

	get_summary_stats([output_csv])

	Generates a CSV report with summary statistics about the assembly

	
summary_info = None

	OrderedDict: Initialize summary information dictionary. Contains keys:

	ncontigs: Number of contigs

	avg_contig_size: Average size of contigs

	n50: N50 metric

	total_len: Total assembly length

	avg_gc: Average GC proportion

	missing_data: Count of missing data characters

	
contigs = None

	OrderedDict: Object that maps the contig headers to the corresponding
sequence

	
contig_coverage = None

	OrderedDict: Object that maps the contig headers to the corresponding
list of per-base coverage

	
sample = None

	str: Sample id

	
contig_boundaries = None

	dict: Maps the boundaries of each contig in the genome

	
get_summary_stats(output_csv=None)

	Generates a CSV report with summary statistics about the assembly

The calculated statistics are:

	Number of contigs

	Average contig size

	N50

	Total assembly length

	Average GC content

	Amount of missing data

	Parameters

	
	output_csv: str

	Name of the output CSV file.

	
get_gc_sliding(window=500)

	Calculates a sliding window of the GC content for the assembly

	Returns

	
	gc_reslist

	List of GC proportion floats for each data point in the sliding
window

	labels: list

	List of labels for each data point

	xbarslist

	List of the ending position of each contig in the genome

	
get_coverage_sliding(coverage_file, window=500)

	
	Parameters

	
	coverage_filestr

	Path to file containing the coverage info at the per-base level
(as generated by samtools depth)

	windowint

	Size of sliding window

assemblerflow.templates.fastqc module

Purpose

This module is intended to run FastQC on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_pairPair of FastQ file paths

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

Generated output

The generated output are output files that contain an object, usually a string.

	
	pair_{1,2}_dataFile containing FastQC report at the nucleotide level for each pair

	
	e.g.: 'pair_1_data' and 'pair_2_data'

	
	pair_{1,2}_summary: File containing FastQC report for each category and for each pair

	
	e.g.: 'pair_1_summary' and 'pair_2_summary'

Code documentation

	
assemblerflow.templates.fastqc.convert_adatpers(adapter_fasta)

	Generates an adapter file for FastQC from a fasta file.

The provided adapters file is assumed to be a simple fasta file with the
adapter’s name as header and the corresponding sequence:

>TruSeq_Universal_Adapter
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
>TruSeq_Adapter_Index 1
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

	Parameters

	
	adapter_fastastr

	Path to Fasta file with adapter sequences.

	Returns

	
	adapter_outstr or None

	The path to the reformatted adapter file. Returns None if the
adapters file does not exist or the path is incorrect.

assemblerflow.templates.fastqc_report module

Purpose

This module is intended parse the results of FastQC for paired end FastQ samples. It parses two reports:

	Categorical report

	Nucleotide level report.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_idSample identification string

	
	e.g.: 'SampleA'

	
	result_p1Path to both FastQC result files for pair 1

	
	e.g.: 'SampleA_1_data SampleA_1_summary'

	
	result_p2Path to both FastQC result files for pair 2

	
	e.g.: 'SampleA_2_data SampleA_2_summary'

	
	optsSpecify additional arguments for executing fastqc_report. The arguments should be a string of command line arguments, The accepted arguments are:

	
	'--ignore-tests' : Ignores test results from FastQC categorical summary. This is used in the first run of FastQC.

Generated output

The generated output are output files that contain an object, usually a string.

	
	fastqc_healthStores the health check for the current sample. If it

	passes all checks, it contains only the string ‘pass’. Otherwise, contains
the summary categories and their respective results
- e.g.: 'pass'

	
	optimal_trimStores a tuple with the optimal trimming positions for 5’

	and 3’ ends of the reads.
- e.g.: '15 151'

Code documentation

	
assemblerflow.templates.fastqc_report.write_json_report(data1, data2)

	Writes the report

	Parameters

	
	data1

	

	data2

	

	
assemblerflow.templates.fastqc_report.get_trim_index(biased_list)

	Returns the trim index from a bool list

Provided with a list of bool elements ([False, False, True, True]),
this function will assess the index of the list that minimizes the number
of True elements (biased positions) at the extremities. To do so,
it will iterate over the boolean list and find an index position where
there are two consecutive False elements after a True element. This
will be considered as an optimal trim position. For example, in the
following list:

[True, True, False, True, True, False, False, False, False, ...]

The optimal trim index will be the 4th position, since it is the first
occurrence of a True element with two False elements after it.

If the provided bool list has no True elements, then the 0 index is
returned.

	Parameters

	
	biased_list: list

	List of bool elements, where True means a biased site.

	Returns

	
	xindex position of the biased list for the optimal trim.

	

	
assemblerflow.templates.fastqc_report.trim_range(data_file)

	Assess the optimal trim range for a given FastQC data file.

This function will parse a single FastQC data file, namely the
‘Per base sequence content’ category. It will retrieve the A/T and G/C
content for each nucleotide position in the reads, and check whether the
G/C and A/T proportions are between 80% and 120%. If they are, that
nucleotide position is marked as biased for future removal.

	Parameters

	
	data_file: str

	Path to FastQC data file.

	Returns

	
	trim_nt: list

	List containing the range with the best trimming positions for the
corresponding FastQ file. The first element is the 5’ end trim index
and the second element is the 3’ end trim index.

	
assemblerflow.templates.fastqc_report.get_sample_trim(p1_data, p2_data)

	Get the optimal read trim range from data files of paired FastQ reads.

Given the FastQC data report files for paired-end FastQ reads, this
function will assess the optimal trim range for the 3’ and 5’ ends of
the paired-end reads. This assessment will be based on the ‘Per sequence
GC content’.

	Parameters

	
	p1_data: str

	Path to FastQC data report file from pair 1

	p2_data: str

	Path to FastQC data report file from pair 2

	Returns

	
	optimal_5trim: int

	Optimal trim index for the 5’ end of the reads

	optima_3trim: int

	Optimal trim index for the 3’ end of the reads

See also

trim_range

	
assemblerflow.templates.fastqc_report.get_summary(summary_file)

	Parses a FastQC summary report file and returns it as a dictionary.

This function parses a typical FastQC summary report file, retrieving
only the information on the first two columns. For instance, a line could
be:

'PASS Basic Statistics SH10762A_1.fastq.gz'

This parser will build a dictionary with the string in the second column
as a key and the QC result as the value. In this case, the returned
dict would be something like:

{"Basic Statistics": "PASS"}

	Parameters

	
	summary_file: str

	Path to FastQC summary report.

	Returns

	
	summary_info: :py:data:`OrderedDict`

	Returns the information of the FastQC summary report as an ordered
dictionary, with the categories as strings and the QC result as values.

	
assemblerflow.templates.fastqc_report.check_summary_health(summary_file, **kwargs)

	Checks the health of a sample from the FastQC summary file.

Parses the FastQC summary file and tests whether the sample is good
or not. There are four categories that cannot fail, and two that
must pass in order for the sample pass this check. If the sample fails
the quality checks, a list with the failing categories is also returned.

Categories that cannot fail:

fail_sensitive = [
 "Per base sequence quality",
 "Overrepresented sequences",
 "Sequence Length Distribution",
 "Per sequence GC content"
]

Categories that must pass:

must_pass = [
 "Per base N content",
 "Adapter Content"
]

	Parameters

	
	summary_file: str

	Path to FastQC summary file.

	Returns

	
	xbool

	Returns True if the sample passes all tests. False if not.

	summary_infolist

	A list with the FastQC categories that failed the tests. Is empty
if the sample passes all tests.

assemblerflow.templates.integrity_coverage module

Purpose

This module receives paired FastQ files, a genome size estimate and a minimum
coverage threshold and has three purposes while iterating over the FastQ files:

	Checks the integrity of FastQ files (corrupted files).

	Guesses the encoding of FastQ files (this can be turned off in the opts argument).

	Estimates the coverage for each sample.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_idSample Identification string

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	gsizeExpected genome size

	
	e.g.: '2.5'

	
	covMinimum coverage threshold

	
	e.g.: '15'

	
	optsSpecify additional arguments for executing integrity_coverage. The arguments should be a string of command line arguments, such as ‘-e’. The accepted arguments are:

	
	'-e' : Skip encoding guess.

Generated output

The generated output are output files that contain an object, usually a string.
(Values within ${} are substituted by the corresponding variable.)

	
	${fastq_id}_encodingStores the encoding for the sample FastQ. If no encoding could be guessed, write ‘None’ to file.

	
	e.g.: 'Illumina-1.8' or 'None'

	
	${fastq_id}_phredStores the phred value for the sample FastQ. If no phred could be guessed, write ‘None’ to file.

	
	'33' or 'None'

	
	${fastq_id}_coverageStores the expected coverage of the samples, based on a given genome size.

	
	'112' or 'fail'

	
	${fastq_id}_reportStores the report on the expected coverage estimation. This string written in this file will appear in the coverage report.

	
	'${fastq_id}, 112, PASS'

	
	${fastq_id}_max_lenStores the maximum read length for the current sample.

	
	'152'

Notes

In case of a corrupted sample, all expected output files should have
'corrupt' written.

Code documentation

	
assemblerflow.templates.integrity_coverage.RANGES = {'Illumina-1.3': [64, (64, 104)], 'Solexa': [64, (59, 104)], 'Illumina-1.8': [33, (33, 74)], 'Illumina-1.5': [64, (66, 105)], 'Sanger': [33, (33, 73)]}

	dict: Dictionary containing the encoding values for several fastq formats. The
key contains the format and the value contains a list with the corresponding
phred score and a list with the range of encodings.

	
assemblerflow.templates.integrity_coverage.MAGIC_DICT = {b'\\x1f\\x8b\\x08': 'gz', b'\\x42\\x5a\\x68': 'bz2', b'\\x50\\x4b\\x03\\x04': 'zip'}

	dict: Dictionary containing the binary signatures for three compression formats
(gzip, bzip2 and zip).

	
assemblerflow.templates.integrity_coverage.guess_file_compression(file_path, magic_dict=None)

	Guesses the compression of an input file.

This function guesses the compression of a given file by checking for
a binary signature at the beginning of the file. These signatures are
stored in the MAGIC_DICT dictionary. The supported compression
formats are gzip, bzip2 and zip. If none of the signatures in this
dictionary are found at the beginning of the file, it returns None.

	Parameters

	
	file_pathstr

	Path to input file.

	magic_dictdict, optional

	Dictionary containing the signatures of the compression types. The
key should be the binary signature and the value should be the
compression format. If left None, it falls back to
MAGIC_DICT.

	Returns

	
	file_typestr or None

	If a compression type is detected, returns a string with the format.
If not, returns None.

	
assemblerflow.templates.integrity_coverage.get_qual_range(qual_str)

	Get range of the Unicode encode range for a given string of characters.

The encoding is determined from the result of the ord() built-in.

	Parameters

	
	qual_strstr

	Arbitrary string.

	Returns

	
	xtuple

	(Minimum Unicode code, Maximum Unicode code).

	
assemblerflow.templates.integrity_coverage.get_encodings_in_range(rmin, rmax)

	Returns the valid encodings for a given encoding range.

The encoding ranges are stored in the RANGES dictionary, with
the encoding name as a string and a list as a value containing the
phred score and a tuple with the encoding range. For a given encoding
range provided via the two first arguments, this function will return
all possible encodings and phred scores.

	Parameters

	
	rminint

	Minimum Unicode code in range.

	rmaxint

	Maximum Unicode code in range.

	Returns

	
	valid_encodingslist

	List of all possible encodings for the provided range.

	valid_phredlist

	List of all possible phred scores.

assemblerflow.templates.mapping2json module

Purpose

This module is intended to generate a json output for mapping results that
can be imported in pATLAS.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	depth_fileString with the name of the mash screen output file.

	
	e.g.: 'samtoolsDepthOutput_sampleA.txt'

	
	json_dictthe file that contains the dictionary with keys and values for

	
accessions and their respective lengths.

	e.g.: 'reads_sample_result_length.json'

	
	cutoffThe cutoff used to trim the unwanted matches for the minimum

	
coverage results from mapping. This value may range between 0 and 1.

	e.g.: 0.6

Code documentation

	
assemblerflow.templates.mapping2json.depthfilereader(depth_file, plasmid_length, cutoff)

	Function that parse samtools depth file and creates 3 dictionaries that
will be useful to make the outputs of this script, both the tabular file
and the json file that may be imported by pATLAS

	Parameters

	
	depth_file: str

	the path to depth file for each sample

	plasmid_length: dict

	a dictionary that stores length of all plasmids in fasta given as input

	cutoff: str

	the cutoff used to trim the unwanted matches for the minimum coverage
results from mapping. This is then converted into a float within this
function in order to compare with the value returned from the perc_value_per_ref.

	Returns

	
	percentage_basescovered: dict

	stores the percentage of the total sequence of a
reference/accession (plasmid) in a dictionary

assemblerflow.templates.mashdist2json module

Purpose

This module is intended to generate a json output for mash dist results that
can be imported in pATLAS.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	mash_outputString with the name of the mash screen output file.

	
	e.g.: 'fastaFileA_mashdist.txt'

Code documentation

	
assemblerflow.templates.mashdist2json.send_to_output(master_dict, last_seq, mash_output)

	Send dictionary to output json file
This function sends master_dict dictionary to a json file if master_dict is
populated with entries, otherwise it won’t create the file

	Parameters

	
	master_dict: dict

	dictionary that stores all entries for a specific query sequence
in multi-fasta given to mash dist as input against patlas database

	last_seq: str

	string that stores the last sequence that was parsed before writing to
file and therefore after the change of query sequence between different
rows on the input file

	mash_output: str

	the name/path of input file to main function, i.e., the name/path of
the mash dist output txt file.

assemblerflow.templates.mashscreen2json module

Purpose

This module is intended to generate a json output for mash screen results that
can be imported in pATLAS.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	mash_outputString with the name of the mash screen output file.

	
	e.g.: 'sortedMashScreenResults_SampleA.txt'

Code documentation

assemblerflow.templates.pATLAS_consensus_json module

Purpose

This module is intended to generate a json output from the consensus results from
all the approaches available through options (mapping, assembly, mash screen)

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	mapping_jsonString with the name of the json file with mapping results.

	
	e.g.: 'mapping_SampleA.json'

	
	dist_jsonString with the name of the json file with mash dist results.

	
	e.g.: 'mash_dist_SampleA.json'

	
	screen_jsonString with the name of the json file with mash screen results.

	
	e.g.: 'mash_screen_sampleA.json'

Code documentation

assemblerflow.templates.pipeline_status module

Purpose

This module is intended to collect pipeline run statistics (such as
time, cpu, RAM for each tasks) into a report JSON

Expected input

	trace_file : Trace file generated by nextflow

Code documentation

	
assemblerflow.templates.pipeline_status.get_json_info(fields, header)

	
	Parameters

	
	fields

	

	
assemblerflow.templates.pipeline_status.get_previous_stats(stats_path)

	
	Parameters

	
	workdir

	

	
assemblerflow.templates.pipeline_status.main(fastq_id, trace_file, workdir)

	Parses a nextflow trace file, searches for processes with a specific tag
and sends a JSON report with the relevant information

The expected fields for the trace file are:

0. task_id
1. process
2. tag
3. status
4. exit code
5. start timestamp
6. container
7. cpus
8. duration
9. realtime
10. queue
11. cpu percentage
12. memory percentage
13. real memory size of the process
14. virtual memory size of the process

	Parameters

	
	trace_filestr

	Path to the nextflow trace file

assemblerflow.templates.process_abricate module

Purpose

This module is intended parse the results of the Abricate for one or more
samples.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	abricate_filesPath to abricate output file.

	
	e.g.: 'abr_resfinder.tsv'

Generated output

None

Code documentation

	
class assemblerflow.templates.process_abricate.Abricate(fls)

	Bases: object

Main parser for Abricate output files.

This class parses one or more output files from Abricate, usually from
different databases. In addition to the parsing methods, it also provides
a flexible method to filter and re-format the content of the abricate
files.

	Parameters

	
	flslist

	List of paths to Abricate output files.

Methods

	get_filter(*args, **kwargs)

	Wrapper of the iter_filter method that returns a list with results

	iter_filter(filters[, databases, fields, …])

	General purpose filter iterator.

	parse_files(fls)

	Public method for parsing abricate output files.

	
storage = None

	dic: Main storage of Abricate’s file content. Each entry corresponds
to a single line and contains the keys:

- ``infile``: Input file of Abricate.
- ``reference``: Reference of the query sequence.
- ``seq_range``: Range of the query sequence in the database
 sequence.
- ``gene``: AMR gene name.
- ``accession``: The genomic source of the sequence.
- ``database``: The database the sequence came from.
- ``coverage``: Proportion of gene covered.
- ``identity``: Proportion of exact nucleotide matches.

	
parse_files(fls)

	Public method for parsing abricate output files.

This method is called at at class instantiation for the provided
output files. Additional abricate output files can be added using
this method after the class instantiation.

	Parameters

	
	flslist

	List of paths to Abricate files

	
iter_filter(filters, databases=None, fields=None, filter_behavior='and')

	General purpose filter iterator.

This general filter iterator allows the filtering of entries based
on one or more custom filters. These filters must contain
an entry of the storage attribute, a comparison operator, and the
test value. For example, to filter out entries with coverage below 80:

my_filter = ["coverage", ">=", 80]

Filters should always be provide as a list of lists:

iter_filter([["coverage", ">=", 80]])
or
my_filters = [["coverage", ">=", 80],
 ["identity", ">=", 50]]

iter_filter(my_filters)

As a convenience, a list of the desired databases can be directly
specified using the database argument, which will only report
entries for the specified databases:

iter_filter(my_filters, databases=["plasmidfinder"])

By default, this method will yield the complete entry record. However,
the returned filters can be specified using the fields option:

iter_filter(my_filters, fields=["reference", "coverage"])

	Parameters

	
	filterslist

	List of lists with the custom filter. Each list should have three
elements. (1) the key from the entry to be compared; (2) the
comparison operator; (3) the test value. Example:

[["identity", ">", 80]].

	databaseslist

	List of databases that should be reported.

	fieldslist

	List of fields from each individual entry that are yielded.

	filter_behaviorstr

	options: 'and' 'or'
Sets the behaviour of the filters, if multiple filters have been
provided. By default it is set to 'and', which means that an
entry has to pass all filters. It can be set to 'or', in which
case one one of the filters has to pass.

	Yields

	
	dicdict

	Dictionary object containing a Abricate.storage entry
that passed the filters.

	
get_filter(*args, **kwargs)

	Wrapper of the iter_filter method that returns a list with results

It should be called exactly as in the iter_filter

	Returns

	
	_list

	List of dictionary entries that passed the filters in the
iter_filter method.

See also

iter_filter

	
class assemblerflow.templates.process_abricate.AbricateReport(*args, **kwargs)

	Bases: assemblerflow.templates.process_abricate.Abricate

Report generator for single Abricate output files

This class is intended to parse an Abricate output file from a single
sample and database and generates a JSON report for the report webpage.

	Parameters

	
	flslist

	List of paths to Abricate output files.

	database(optional) str

	Name of the database for the current report. If not provided, it will
be inferred based on the first entry of the Abricate file.

Methods

	get_filter(*args, **kwargs)

	Wrapper of the iter_filter method that returns a list with results

	get_plot_data()

	Generates the JSON report to plot the gene boxes

	get_table_data()

	

	iter_filter(filters[, databases, fields, …])

	General purpose filter iterator.

	parse_files(fls)

	Public method for parsing abricate output files.

	write_report_data()

	Writes the JSON report to a json file

	
get_plot_data()

	Generates the JSON report to plot the gene boxes

Following the convention of the reports platform, this method returns
a list of JSON/dict objects with the information about each entry in
the abricate file. The information contained in this JSON is:

{contig_id: <str>,
 seqRange: [<int>, <int>],
 gene: <str>,
 accession: <str>,
 coverage: <float>,
 identity: <float>
 }

Note that the seqRange entry contains the position in the
corresponding contig, not the absolute position in the whole assembly.

	Returns

	
	json_diclist

	List of JSON/dict objects with the report data.

	
get_table_data()

	

	
write_report_data()

	Writes the JSON report to a json file

assemblerflow.templates.process_assembly_mapping module

Purpose

This module is intended to process the coverage report from the
assembly_mapping process.

TODO: Better purpose

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_idSample Identification string.

	
	e.g.: 'SampleA'

	
	assemblyFasta assembly file.

	
	e.g.: 'SH10761A.assembly.fasta'

	
	coverageTSV file with the average coverage for each assembled contig.

	
	e.g.: 'coverage.tsv'

	
	coverage_bpTSV file with the coverage for each assembled bp.

	
	e.g.: 'coverage.tsv'

	
	bam_fileBAM file with the alignment of reads to the genome.

	
	e.g.: 'sorted.bam'

	
	optsList of options for processing assembly mapping output.

	
	
	Minimum coverage for assembled contigs. Can be``auto``.

	
	e.g.: 'auto' or '10'

	
	Maximum number of contigs.

	
	e.g.: ‘100’

	
	gsize: Expected genome size.

	
	e.g.: '2.5'

Generated output

	
	${fastq_id}_filtered.assembly.fastaFiltered assembly file in Fasta format.

	
	e.g.: 'SampleA_filtered.assembly.fasta'

	
	filtered.bamBAM file with the same filtering as the assembly file.

	
	e.g.: filtered.bam

Code documentation

	
assemblerflow.templates.process_assembly_mapping.parse_coverage_table(coverage_file)

	Parses a file with coverage information into objects.

This function parses a TSV file containing coverage results for
all contigs in a given assembly and will build an OrderedDict
with the information about their coverage and length. The length
information is actually gathered from the contig header using a
regular expression that assumes the usual header produced by Spades:

contig_len = int(re.search("length_(.+?)_", line).group(1))

	Parameters

	
	coverage_filestr

	Path to TSV file containing the coverage results.

	Returns

	
	coverage_dictOrderedDict

	Contains the coverage and length information for each contig.

	total_sizeint

	Total size of the assembly in base pairs.

	total_covint

	Sum of coverage values across all contigs.

	
assemblerflow.templates.process_assembly_mapping.filter_assembly(assembly_file, minimum_coverage, coverage_info, output_file)

	Generates a filtered assembly file.

This function generates a filtered assembly file based on an original
assembly and a minimum coverage threshold.

	Parameters

	
	assembly_filestr

	Path to original assembly file.

	minimum_coverageint or float

	Minimum coverage required for a contig to pass the filter.

	coverage_infoOrderedDict or dict

	Dictionary containing the coverage information for each contig.

	output_filestr

	Path where the filtered assembly file will be generated.

	
assemblerflow.templates.process_assembly_mapping.filter_bam(coverage_info, bam_file, min_coverage, output_bam)

	Uses Samtools to filter a BAM file according to minimum coverage

Provided with a minimum coverage value, this function will use Samtools
to filter a BAM file. This is performed to apply the same filter to
the BAM file as the one applied to the assembly file in
filter_assembly().

	Parameters

	
	coverage_infoOrderedDict or dict

	Dictionary containing the coverage information for each contig.

	bam_filestr

	Path to the BAM file.

	min_coverageint

	Minimum coverage required for a contig to pass the filter.

	output_bamstr

	Path to the generated filtered BAM file.

	
assemblerflow.templates.process_assembly_mapping.check_filtered_assembly(coverage_info, coverage_bp, minimum_coverage, genome_size, contig_size, max_contigs)

	Checks whether a filtered assembly passes a size threshold

Given a minimum coverage threshold, this function evaluates whether an
assembly will pass the minimum threshold of genome_size * 1e6 * 0.8,
which means 80% of the expected genome size or the maximum threshold
of genome_size * 1e6 * 1.5, which means 150% of the expected genome
size. It will issue a warning if any of these thresholds is crossed.
In the case of an expected genome size below 80% it will return False.

	Parameters

	
	coverage_infoOrderedDict or dict

	Dictionary containing the coverage information for each contig.

	coverage_bpdict

	Dictionary containing the per base coverage information for each
contig. Used to determine the total number of base pairs in the
final assembly.

	minimum_coverageint

	Minimum coverage required for a contig to pass the filter.

	genome_sizeint

	Expected genome size.

	contig_sizedict

	Dictionary with the len of each contig. Contig headers as keys and
the corresponding lenght as values.

	max_contigsint

	Maximum threshold for contig number. A warning is issued if this
threshold is crossed.

	Returns

	
	xbool

	True if the filtered assembly size is higher than 80% of the
expected genome size.

	
assemblerflow.templates.process_assembly_mapping.get_coverage_from_file(coverage_file)

	
	Parameters

	
	coverage_file

	

	
assemblerflow.templates.process_assembly_mapping.evaluate_min_coverage(coverage_opt, assembly_coverage, assembly_size)

	Evaluates the minimum coverage threshold from the value provided in
the coverage_opt.

	Parameters

	
	coverage_optstr or int or float

	If set to “auto” it will try to automatically determine the coverage
to 1/3 of the assembly size, to a minimum value of 10. If it set
to a int or float, the specified value will be used.

	assembly_coverageint or float

	The average assembly coverage for a genome assembly. This value
is retrieved by the :py:func:parse_coverage_table function.

	assembly_sizeint

	The size of the genome assembly. This value is retrieved by the
py:func:get_assembly_size function.

	Returns

	
	x: int

	Minimum coverage threshold.

	
assemblerflow.templates.process_assembly_mapping.get_assembly_size(assembly_file)

	Returns the number of nucleotides and the size per contig for the
provided assembly file path

	Parameters

	
	assembly_filestr

	Path to assembly file.

	Returns

	
	assembly_sizeint

	Size of the assembly in nucleotides

	contig_sizedict

	Length of each contig (contig name as key and length as value)

assemblerflow.templates.process_spades module

assemblerflow.templates.spades module

Purpose

This module is intended execute Spades on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_idSample Identification string.

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths.

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	kmersSetting for Spades kmers. Can be either 'auto', 'default' or a user provided list.

	
	e.g.: 'auto' or 'default' or '55 77 99 113 127'

	
	optsList of options for spades execution.

	
	
	The minimum number of reads to consider an edge in the de Bruijn graph during the assembly.

	
	e.g.: '5'

	
	Minimum contigs k-mer coverage.

	
	e.g.: ['2' '2']

Generated output

	
	contigs.fastaMain output of spades with the assembly

	
	e.g.: contigs.fasta

	
	spades_statusStores the status of the spades run. If it was successfully executed, it stores 'pass'. Otherwise, it stores the STDERR message.

	
	e.g.: 'pass'

Code documentation

	
assemblerflow.templates.spades.set_kmers(kmer_opt, max_read_len)

	Returns a kmer list based on the provided kmer option and max read len.

	Parameters

	
	kmer_optstr

	The k-mer option. Can be either 'auto', 'default' or a
sequence of space separated integers, '23, 45, 67'.

	max_read_lenint

	The maximum read length of the current sample.

	Returns

	
	kmerslist

	List of k-mer values that will be provided to Spades.

assemblerflow.templates.trimmomatic module

Purpose

This module is intended execute trimmomatic on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_idPair of FastQ file paths.

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths.

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	trim_rangeCrop range detected using FastQC.

	
	e.g.: '15 151'

	
	optsList of options for trimmomatic

	
	e.g.: '["5:20", "3", "3", "55"]'

	e.g.: '[trim_sliding_window, trim_leading, trim_trailing, trim_min_length]'

	
	phredList of guessed phred values for each sample

	
	e.g.: '[SampleA: 33, SampleB: 33]'

Generated output

The generated output are output files that contain an object, usually a string.
(Values within ${} are substituted by the corresponding variable.)

	
	${fastq_id}_*P*: Pair of paired FastQ files generated by Trimmomatic

	
	e.g.: 'SampleA_1_P.fastq.gz SampleA_2_P.fastq.gz'

	
	trimmomatic_status: Stores the status of the trimmomatic run. If it was successfully executed, it stores ‘pass’. Otherwise, it stores the STDERR message.

	
	e.g.: 'pass'

Code documentation

	
assemblerflow.templates.trimmomatic.parse_log(log_file)

	Retrieves some statistics from a single Trimmomatic log file.

This function parses Trimmomatic’s log file and stores some trimming
statistics in an OrderedDict object. This object contains
the following keys:

	clean_len: Total length after trimming.

	total_trim: Total trimmed base pairs.

	total_trim_perc: Total trimmed base pairs in percentage.

	5trim: Total base pairs trimmed at 5’ end.

	3trim: Total base pairs trimmed at 3’ end.

	Parameters

	
	log_filestr

	Path to trimmomatic log file.

	Returns

	
	xOrderedDict

	Object storing the trimming statistics.

	
assemblerflow.templates.trimmomatic.write_report(storage_dic, output_file)

	Writes a report from multiple samples.

	Parameters

	
	storage_dicdict or OrderedDict

	Storage containing the trimming statistics. See parse_log()
for its generation.

	output_filestr

	Path where the output file will be generated.

	
assemblerflow.templates.trimmomatic.trimmomatic_log(log_file)

	

	
assemblerflow.templates.trimmomatic.clean_up()

	Cleans the working directory of unwanted temporary files

	
assemblerflow.templates.trimmomatic.merge_default_adapters()

	Merges the default adapters file in the trimmomatic adapters directory

	Returns

	
	str

	Path with the merged adapters file.

assemblerflow.templates.trimmomatic_report module

Purpose

This module is intended parse the results of the Trimmomatic log for a set
of one or more samples.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	log_files: Trimmomatic log files.

	
	e.g.: 'Sample1_trimlog.txt Sample2_trimlog.txt'

Generated output

	trimmomatic_report.csv : Summary report of the trimmomatic logs for all samples

Code documentation

	
assemblerflow.templates.trimmomatic_report.parse_log(log_file)

	Retrieves some statistics from a single Trimmomatic log file.

This function parses Trimmomatic’s log file and stores some trimming
statistics in an OrderedDict object. This object contains
the following keys:

	clean_len: Total length after trimming.

	total_trim: Total trimmed base pairs.

	total_trim_perc: Total trimmed base pairs in percentage.

	5trim: Total base pairs trimmed at 5’ end.

	3trim: Total base pairs trimmed at 3’ end.

	Parameters

	
	log_filestr

	Path to trimmomatic log file.

	Returns

	
	xOrderedDict

	Object storing the trimming statistics.

	
assemblerflow.templates.trimmomatic_report.write_report(storage_dic, output_file)

	Writes a report from multiple samples.

	Parameters

	
	storage_dicdict or OrderedDict

	Storage containing the trimming statistics. See parse_log()
for its generation.

	output_filestr

	Path where the output file will be generated.

assemblerflow.tests package

Submodules

	assemblerflow.tests.test_processes module

	assemblerflow.tests.test_sanity module

Module contents

assemblerflow.tests.test_processes module

assemblerflow.tests.test_sanity module

assemblerflow.assemblerflow module

	
assemblerflow.assemblerflow.get_args(args=None)

	

	
assemblerflow.assemblerflow.validate_build_arguments(args)

	

	
assemblerflow.assemblerflow.copy_project(path)

	
	Parameters

	
	path

	

	
assemblerflow.assemblerflow.build(args)

	

	
assemblerflow.assemblerflow.main()

	

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 assemblerflow	

 	
 	
 assemblerflow.assemblerflow	

 	
 	
 assemblerflow.generator	

 	
 	
 assemblerflow.generator.components	

 	
 	
 assemblerflow.generator.components.annotation	

 	
 	
 assemblerflow.generator.components.assembly	

 	
 	
 assemblerflow.generator.components.assembly_processing	

 	
 	
 assemblerflow.generator.components.distance_estimation	

 	
 	
 assemblerflow.generator.components.downloads	

 	
 	
 assemblerflow.generator.components.reads_quality_control	

 	
 	
 assemblerflow.generator.engine	

 	
 	
 assemblerflow.generator.error_handling	

 	
 	
 assemblerflow.generator.header_skeleton	

 	
 	
 assemblerflow.generator.pipeline_parser	

 	
 	
 assemblerflow.generator.process	

 	
 	
 assemblerflow.generator.process_details	

 	
 	
 assemblerflow.templates	

 	
 	
 assemblerflow.templates.assembly_report	

 	
 	
 assemblerflow.templates.fastqc	

 	
 	
 assemblerflow.templates.fastqc_report	

 	
 	
 assemblerflow.templates.integrity_coverage	

 	
 	
 assemblerflow.templates.mapping2json	

 	
 	
 assemblerflow.templates.mashdist2json	

 	
 	
 assemblerflow.templates.mashscreen2json	

 	
 	
 assemblerflow.templates.pATLAS_consensus_json	

 	
 	
 assemblerflow.templates.pipeline_status	

 	
 	
 assemblerflow.templates.process_abricate	

 	
 	
 assemblerflow.templates.process_assembly_mapping	

 	
 	
 assemblerflow.templates.spades	

 	
 	
 assemblerflow.templates.trimmomatic	

 	
 	
 assemblerflow.templates.trimmomatic_report	

 	
 	
 assemblerflow.tests	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_add_dependency() (assemblerflow.generator.engine.NextflowGenerator method)

 	_build_connections() (assemblerflow.generator.engine.NextflowGenerator method)

 	_build_footer() (assemblerflow.generator.engine.NextflowGenerator method)

 	_build_header() (assemblerflow.generator.engine.NextflowGenerator method)

 	_context (assemblerflow.generator.process.Process attribute)

 	_fork_tree (assemblerflow.generator.engine.NextflowGenerator attribute)

 	_get_container_string() (assemblerflow.generator.engine.NextflowGenerator static method)

 	_get_fork_tree() (assemblerflow.generator.engine.NextflowGenerator method)

 	_get_params_help() (assemblerflow.generator.engine.NextflowGenerator method)

 	_get_params_string() (assemblerflow.generator.engine.NextflowGenerator method)

 	_get_process_names() (assemblerflow.generator.engine.NextflowGenerator method)

 	_get_resources_string() (assemblerflow.generator.engine.NextflowGenerator static method)

 	_parse_process_name() (assemblerflow.generator.engine.NextflowGenerator static method)

 	_render_config() (assemblerflow.generator.engine.NextflowGenerator static method)

 	_search_tree_backwards() (assemblerflow.generator.engine.NextflowGenerator method)

 	
 	_set_channels() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_compiler_channels() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_configurations() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_general_compilers() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_implicit_link() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_init_process() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_secondary_channels() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_status_channels() (assemblerflow.generator.engine.NextflowGenerator method)

 	_set_template() (assemblerflow.generator.process.Process method)

 	_template_path (assemblerflow.generator.process.Process attribute)

 	_test_connection() (assemblerflow.generator.engine.NextflowGenerator static method)

 	_update_extra_inputs() (assemblerflow.generator.engine.NextflowGenerator method)

 	_update_raw_input() (assemblerflow.generator.engine.NextflowGenerator method)

 	_update_secondary_channels() (assemblerflow.generator.engine.NextflowGenerator method)

 	_update_secondary_inputs() (assemblerflow.generator.engine.NextflowGenerator method)

A

 	
 	Abricate (class in assemblerflow.generator.components.annotation)

 	(class in assemblerflow.templates.process_abricate)

 	AbricateReport (class in assemblerflow.templates.process_abricate)

 	assemblerflow (module)

 	assemblerflow.assemblerflow (module)

 	assemblerflow.generator (module)

 	assemblerflow.generator.components (module)

 	assemblerflow.generator.components.annotation (module)

 	assemblerflow.generator.components.assembly (module)

 	assemblerflow.generator.components.assembly_processing (module)

 	assemblerflow.generator.components.distance_estimation (module)

 	assemblerflow.generator.components.downloads (module)

 	assemblerflow.generator.components.reads_quality_control (module)

 	assemblerflow.generator.engine (module)

 	assemblerflow.generator.error_handling (module)

 	assemblerflow.generator.header_skeleton (module)

 	assemblerflow.generator.pipeline_parser (module)

 	assemblerflow.generator.process (module)

 	
 	assemblerflow.generator.process_details (module)

 	assemblerflow.templates (module)

 	assemblerflow.templates.assembly_report (module)

 	assemblerflow.templates.fastqc (module)

 	assemblerflow.templates.fastqc_report (module)

 	assemblerflow.templates.integrity_coverage (module)

 	assemblerflow.templates.mapping2json (module)

 	assemblerflow.templates.mashdist2json (module)

 	assemblerflow.templates.mashscreen2json (module)

 	assemblerflow.templates.pATLAS_consensus_json (module)

 	assemblerflow.templates.pipeline_status (module)

 	assemblerflow.templates.process_abricate (module)

 	assemblerflow.templates.process_assembly_mapping (module)

 	assemblerflow.templates.spades (module)

 	assemblerflow.templates.trimmomatic (module)

 	assemblerflow.templates.trimmomatic_report (module)

 	assemblerflow.tests (module)

 	Assembly (class in assemblerflow.templates.assembly_report)

 	AssemblyMapping (class in assemblerflow.generator.components.assembly_processing)

B

 	
 	brackets_but_no_lanes() (in module assemblerflow.generator.pipeline_parser)

 	brackets_insanity_check() (in module assemblerflow.generator.pipeline_parser)

 	
 	build() (assemblerflow.generator.engine.NextflowGenerator method)

 	(in module assemblerflow.assemblerflow)

C

 	
 	check_filtered_assembly() (in module assemblerflow.templates.process_assembly_mapping)

 	check_summary_health() (in module assemblerflow.templates.fastqc_report)

 	CheckCoverage (class in assemblerflow.generator.components.reads_quality_control)

 	clean_up() (in module assemblerflow.templates.trimmomatic)

 	colored_print() (in module assemblerflow.generator.process_details)

 	compiler (assemblerflow.generator.process.Process attribute)

 	Compiler (class in assemblerflow.generator.process)

 	
 	compilers (assemblerflow.generator.engine.NextflowGenerator attribute)

 	containers (assemblerflow.generator.engine.NextflowGenerator attribute)

 	contig_boundaries (assemblerflow.templates.assembly_report.Assembly attribute)

 	contig_coverage (assemblerflow.templates.assembly_report.Assembly attribute)

 	contigs (assemblerflow.templates.assembly_report.Assembly attribute)

 	convert_adatpers() (in module assemblerflow.templates.fastqc)

 	copy_project() (in module assemblerflow.assemblerflow)

D

 	
 	dependencies (assemblerflow.generator.process.Process attribute)

 	depthfilereader() (in module assemblerflow.templates.mapping2json)

 	
 	directives (assemblerflow.generator.process.Process attribute)

 	DownloadReads (class in assemblerflow.generator.components.downloads)

E

 	
 	empty_tasks() (in module assemblerflow.generator.pipeline_parser)

 	evaluate_min_coverage() (in module assemblerflow.templates.process_assembly_mapping)

 	
 	extra_input (assemblerflow.generator.process.Process attribute)

 	extra_inputs (assemblerflow.generator.engine.NextflowGenerator attribute)

F

 	
 	FastQC (class in assemblerflow.generator.components.reads_quality_control)

 	FastqcTrimmomatic (class in assemblerflow.generator.components.reads_quality_control)

 	filter_assembly() (in module assemblerflow.templates.process_assembly_mapping)

 	filter_bam() (in module assemblerflow.templates.process_assembly_mapping)

 	
 	final_char_insanity_check() (in module assemblerflow.generator.pipeline_parser)

 	fork_connection() (in module assemblerflow.generator.pipeline_parser)

 	fork_procs_insanity_check() (in module assemblerflow.generator.pipeline_parser)

 	forks (assemblerflow.generator.process.Process attribute)

G

 	
 	get_args() (in module assemblerflow.assemblerflow)

 	get_assembly_size() (in module assemblerflow.templates.process_assembly_mapping)

 	get_coverage_from_file() (in module assemblerflow.templates.process_assembly_mapping)

 	get_coverage_sliding() (assemblerflow.templates.assembly_report.Assembly method)

 	get_encodings_in_range() (in module assemblerflow.templates.integrity_coverage)

 	get_filter() (assemblerflow.templates.process_abricate.Abricate method)

 	get_gc_sliding() (assemblerflow.templates.assembly_report.Assembly method)

 	get_json_info() (in module assemblerflow.templates.pipeline_status)

 	get_lanes() (in module assemblerflow.generator.pipeline_parser)

 	get_plot_data() (assemblerflow.templates.process_abricate.AbricateReport method)

 	
 	get_previous_stats() (in module assemblerflow.templates.pipeline_status)

 	get_qual_range() (in module assemblerflow.templates.integrity_coverage)

 	get_sample_trim() (in module assemblerflow.templates.fastqc_report)

 	get_source_lane() (in module assemblerflow.generator.pipeline_parser)

 	get_summary() (in module assemblerflow.templates.fastqc_report)

 	get_summary_stats() (assemblerflow.templates.assembly_report.Assembly method)

 	get_table_data() (assemblerflow.templates.process_abricate.AbricateReport method)

 	get_trim_index() (in module assemblerflow.templates.fastqc_report)

 	get_user_channel() (assemblerflow.generator.process.Process method)

 	guess_file_compression() (in module assemblerflow.templates.integrity_coverage)

I

 	
 	ignore_pid (assemblerflow.generator.process.Process attribute)

 	ignore_type (assemblerflow.generator.process.Process attribute)

 	Init (class in assemblerflow.generator.process)

 	inner_fork_insanity_checks() (in module assemblerflow.generator.pipeline_parser)

 	input_channel (assemblerflow.generator.process.Process attribute)

 	
 	input_type (assemblerflow.generator.process.Process attribute)

 	input_user_channel (assemblerflow.generator.process.Process attribute)

 	insanity_checks() (in module assemblerflow.generator.pipeline_parser)

 	IntegrityCoverage (class in assemblerflow.generator.components.reads_quality_control)

 	iter_filter() (assemblerflow.templates.process_abricate.Abricate method)

L

 	
 	lane_char_insanity_check() (in module assemblerflow.generator.pipeline_parser)

 	lanes (assemblerflow.generator.engine.NextflowGenerator attribute)

 	late_proc_insanity_check() (in module assemblerflow.generator.pipeline_parser)

 	
 	linear_connection() (in module assemblerflow.generator.pipeline_parser)

 	linear_lane_connection() (in module assemblerflow.generator.pipeline_parser)

 	link_end (assemblerflow.generator.process.Process attribute)

 	link_start (assemblerflow.generator.process.Process attribute)

M

 	
 	MAGIC_DICT (in module assemblerflow.templates.integrity_coverage)

 	main() (in module assemblerflow.assemblerflow)

 	(in module assemblerflow.templates.pipeline_status)

 	
 	main_forks (assemblerflow.generator.process.Process attribute)

 	main_raw_inputs (assemblerflow.generator.engine.NextflowGenerator attribute)

 	merge_default_adapters() (in module assemblerflow.templates.trimmomatic)

N

 	
 	NextflowGenerator (class in assemblerflow.generator.engine)

 	
 	nf_file (assemblerflow.generator.engine.NextflowGenerator attribute)

O

 	
 	output_channel (assemblerflow.generator.process.Process attribute)

 	
 	output_type (assemblerflow.generator.process.Process attribute)

P

 	
 	params (assemblerflow.generator.engine.NextflowGenerator attribute)

 	(assemblerflow.generator.process.Process attribute)

 	parse_coverage_table() (in module assemblerflow.templates.process_assembly_mapping)

 	parse_files() (assemblerflow.templates.process_abricate.Abricate method)

 	parse_log() (in module assemblerflow.templates.trimmomatic)

 	(in module assemblerflow.templates.trimmomatic_report)

 	parse_pipeline() (in module assemblerflow.generator.pipeline_parser)

 	PatlasConsensus (class in assemblerflow.generator.process)

 	PatlasMashDist (class in assemblerflow.generator.components.distance_estimation)

 	PatlasMashScreen (class in assemblerflow.generator.components.distance_estimation)

 	pid (assemblerflow.generator.process.Process attribute)

 	
 	Pilon (class in assemblerflow.generator.components.assembly_processing)

 	pipeline_name (assemblerflow.generator.engine.NextflowGenerator attribute)

 	proc_collector() (in module assemblerflow.generator.process_details)

 	Process (class in assemblerflow.generator.process)

 	process_map (in module assemblerflow.generator.engine)

 	ProcessError

 	processes (assemblerflow.generator.engine.NextflowGenerator attribute)

 	ProcessSkesa (class in assemblerflow.generator.components.assembly_processing)

 	ProcessSpades (class in assemblerflow.generator.components.assembly_processing)

 	procs_dict_parser() (in module assemblerflow.generator.process_details)

 	Prokka (class in assemblerflow.generator.components.annotation)

R

 	
 	RANGES (in module assemblerflow.templates.integrity_coverage)

 	RAW_MAPPING (assemblerflow.generator.process.Process attribute)

 	remove_inner_forks() (in module assemblerflow.generator.pipeline_parser)

 	
 	render() (assemblerflow.generator.process.Process static method)

 	render_pipeline() (assemblerflow.generator.engine.NextflowGenerator method)

 	ReportCompiler (class in assemblerflow.generator.process)

 	resources (assemblerflow.generator.engine.NextflowGenerator attribute)

S

 	
 	sample (assemblerflow.templates.assembly_report.Assembly attribute)

 	SanityError

 	secondary_channels (assemblerflow.generator.engine.NextflowGenerator attribute)

 	secondary_inputs (assemblerflow.generator.engine.NextflowGenerator attribute)

 	(assemblerflow.generator.process.Process attribute)

 	send_to_output() (in module assemblerflow.templates.mashdist2json)

 	set_channels() (assemblerflow.generator.process.Process method)

 	set_compiler_channels() (assemblerflow.generator.process.Compiler method)

 	set_extra_inputs() (assemblerflow.generator.process.Init method)

 	set_kmers() (in module assemblerflow.templates.spades)

 	set_main_channel_names() (assemblerflow.generator.process.Process method)

 	set_raw_inputs() (assemblerflow.generator.process.Init method)

 	
 	set_secondary_channel() (assemblerflow.generator.process.Process method)

 	set_secondary_inputs() (assemblerflow.generator.process.Init method)

 	Skesa (class in assemblerflow.generator.components.assembly)

 	skip_class (assemblerflow.generator.engine.NextflowGenerator attribute)

 	Spades (class in assemblerflow.generator.components.assembly)

 	start_proc_insanity_check() (in module assemblerflow.generator.pipeline_parser)

 	status_channels (assemblerflow.generator.components.reads_quality_control.FastQC attribute)

 	(assemblerflow.generator.engine.NextflowGenerator attribute)

 	(assemblerflow.generator.process.Process attribute)

 	status_strs (assemblerflow.generator.process.Process attribute)

 	StatusCompiler (class in assemblerflow.generator.process)

 	storage (assemblerflow.templates.process_abricate.Abricate attribute)

 	summary_info (assemblerflow.templates.assembly_report.Assembly attribute)

T

 	
 	template (assemblerflow.generator.engine.NextflowGenerator attribute)

 	(assemblerflow.generator.process.Process attribute)

 	template_str (assemblerflow.generator.process.Process attribute)

 	
 	trim_range() (in module assemblerflow.templates.fastqc_report)

 	Trimmomatic (class in assemblerflow.generator.components.reads_quality_control)

 	trimmomatic_log() (in module assemblerflow.templates.trimmomatic)

 	TrueCoverage (class in assemblerflow.generator.components.reads_quality_control)

U

 	
 	update_attributes() (assemblerflow.generator.process.Process method)

 	update_main_forks() (assemblerflow.generator.process.Process method)

 	
 	update_main_input() (assemblerflow.generator.process.Process method)

 	user_config (assemblerflow.generator.engine.NextflowGenerator attribute)

V

 	
 	validate_build_arguments() (in module assemblerflow.assemblerflow)

W

 	
 	write_configs() (assemblerflow.generator.engine.NextflowGenerator method)

 	write_json_report() (in module assemblerflow.templates.fastqc_report)

 	
 	write_report() (in module assemblerflow.templates.trimmomatic)

 	(in module assemblerflow.templates.trimmomatic_report)

 	write_report_data() (assemblerflow.templates.process_abricate.AbricateReport method)

setup module

Recipe creation guidelines

Under construction.

Abricate

Purpose

This component performs anti-microbial gene screening using abricate. It
includes the default databases plus the virulencefinder database.

Note

Software page: https://github.com/tseemann/abricate

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	abricateDatabases: Specify the databases for abricate.

Published results

	results/annotation/abricate: Stores the results of the abricate screening
for each sample and for each specified database.

Published reports

None.

Default directives

	
	abricate:

	
	container: ummidock/abricate

	version: 0.8.0-1

	
	process_assembly_mapping:

	
	container: ummidock/abricate

	version: 0.8.0-1

Advanced

Template

assemblerflow.templates.process_abricate

Reports JSON

	tableRow:

	
	<database>: List of gene names

	plotData:

	
	
	<database>:

	
	contig: Contig ID

	seqRange: Genomic range of the contig

	gene: Gene name

	accession: Accession number

	coverage: Coverage of the match

	identity: Identity of the match

Assembly_mapping

Purpose

This component performs a mapping procedure of FastQ files using their assembly
as reference. The procedure is carried out with bowtie2 and samtools and aims
to filter the assembly based on quality criteria of read coverage
and expected genome size.

Note

	bowtie2 documentation can be found here [http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml].

	samtools documentation can be found here [http://www.htslib.org/doc/samtools-1.2.html].

Input/Output type

	Input type: Fasta and FastQ

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

	minAssemblyCoverage: In auto, the default minimum coverage for each
assembled contig is 1/3 of the assembly mean coverage or 10x, if the mean
coverage is below 10x.

	AMaxContigs: A warning is issues if the number of contigs is over
this threshold.

	genomeSize: Genome size estimate for the samples. It is used to check
the ratio of contig number per genome MB.

Published results

None.

Published reports

None.

Default directives

	
	assembly_mapping:

	
	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: ummidock/bowtie2_samtools

	version: 1.0.0-2

	
	process_assembly_mapping:

	
	cpus: 1

	memory: 5GB (dynamically increased on retry)

	container: ummidock/bowtie2_samtools

	version: 1.0.0-2

Advanced

Template

assemblerflow.templates.process_assembly_mapping

Reports JSON

warnings: Message with execution warnings
fail: Messages with execution failures

Check_coverage

Purpose

This components estimates the coverage of a given sample based on the number
of base pairs in the FastQ files of a sample and on the expected genome size:

\[\frac{\text{number of base pairs}}{(\text{genome size} \times 1e^{6})}\]

If the estimated coverage of a given sample falls bellow the provided
minimum coverage threshold, the sample is filtered and does not proceed in the
pipeline.

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	genomeSize: Genome size estimate for the samples. It is used to
estimate the coverage and other assembly parameters and
checks.

	minCoverage: Minimum coverage for a sample to proceed. Can be set to
0 to allow any coverage.

Published results

None.

Published reports

	reports/coverage: CSV table with estimated sequencing coverage for
each sample.

Default directives

None.

Advanced

Template

assemblerflow.templates.integrity_coverage

Reports JSON

	tableRow:

	
	Coverage (2nd): Estimated coverage

minCoverage: Minimum coverage specified for the module

Chewbbaca

Purpose

This components runs the allele calling operation of ChewBBACA on a set
of fasta samples to perform a cg/wgMLST analysis

Note

Software page: https://github.com/B-UMMI/chewBBACA

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	chewbbacaQueue: Specifiy a queue/partition for chewbbaca. This option
is only used for grid schedulers.

	chewbbacaTraining: Specify the full path to the prodigal training file
of the corresponding species.

	schemaPath: The path to the chewbbaca schema directory.

	schemaSelectedLoci: The path to the selection of loci in the schema
directory to be used. If not specified, all loci in the schema will be used.

	chewbbacaJson: If set to True, chewbbaca’s allele call output will be
set to JSON format.

	chewbbacaToPhyloviz: If set to True, the ExtractCgMLST module of
chewbbaca will be executed after the allele calling.

	chewbbacaProfilePercentage: Specifies the proportion of samples that
must be present in a locus to save the profile.

	chewbbacaBatch: Specifies whther a chewbbaca run will be performed on
the complete input batch (all at the same time) or one by one.

Published results

	results/chewbbaca_alleleCall: The results of the allelecall for each

sample.

	results/chewbbaca: The cg/wgMLST schema prepared for phyloviz.

Published reports

None.

Default directives

	
	chewbbaca:

	
	cpus: 4

	container: mickaelsilva/chewbbaca_py3

	version: latest

	
	chewbbaca_batch:

	
	cpus: 4

	container: mickaelsilva/chewbbaca_py3

	version: latest

	
	chewbbacaExtractMLST:

	
	container: mickaelsilva/chewbbaca_py3

	version: latest

FastQC

Purpose

This components runs FastQC on paired-end FastQ files.

Note

Software page: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	adapters: Provide a non-default fasta file containing the adapter
sequences to screen overrepresented sequences against.

Published results

None.

Published reports

	reports/fastqc: Stores the FastQC HTML reports for each sample.

	reports/fastqc/run_2/: Stores the summary text files with the category
results of FastQC for each sample.

Default directives

	cpus: 2

	memory: 4GB

	container: ummidock/fastqc

	version: 0.11.7-1

Advanced

Template

assemblerflow.templates.fastqc_report

Reports JSON

	tableRow:

	
	Contigs: Number of contigs

	Assembled BP: Number of assembled base pairs

	plotData:

	
	size_dist: Distribution of contig size.

	gcSliding: Sliding window of the GC content along the genome

	covSliding: Sliding window of the coverage along the genome

Fastqc_trimmomatic

Purpose

This component runs Trimmomatic on paired-end FastQ files but uses information
on the per-base GC content variation reported by FastQC to guide the trimming
of the FastQ reads.

Note

Software pages: FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/);
Trimmoatic (http://www.usadellab.org/cms/?page=trimmomatic)

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	adapters: Provide a non-default fasta file containing the adapter
sequences used to screen overrepresented sequences against and to filter
the FastQ files.

	trimSlidingWindow: Perform sliding window trimming, cutting once the
average quality within the window falls below a threshold.

	trimLeading: Cut bases off the start of a read, if below a threshold
quality.

	trimTrailing: Cut bases of the end of a read, if below a threshold
quality.

	trimMinLength: Drop the read if it is below a specified length.

Published results

	results/trimmomatic: The trimmed FastQ files for each sample.

Published reports

	reports/fastqc: Stores the FastQC HTML reports for each sample and a
FastQC_trim_report.csv file containing the trimming values suggested
by the analysis of the FastQC report.

	reports/fastqc/run_1/: Stores the summary text files with the category
results of FastQC for each sample.

Default directives

	
	fastqc:

	
	cpus: 2

	memory: 4GB

	container: ummidock/fastqc

	version: 0.11.7-1

	
	trimmomatic:

	
	cpus: 2

	memory: 4GB (dynamically increased on retry)

	container: ummidock/trimmomatic

	version: 0.36-2

Advanced

Template

assemblerflow.templates.fastqc_report
assemblerflow.templates.trimmomatic
assemblerflow.templates.trimmomatic_report

Reports JSON

	tableRow:

	Trimmed (%): Percentage of trimmed nucleotides

	plotData:

	sparkline: Number of nucleotides after trimming

badReads: Number of discarded reads

Integrity_coverage

Purpose

This component is intended to test the integrity of the provided FastQ files.
It does so by attempting to parse uncompressed or compressed (gz, bz2
or zip) FastQ files (paired-end or single-end). During this parse, if the
FastQ files are not corrupt, it retrieves the following information:

	sequence encoding: Estimates the sequence encoding based on the quality
scores. This information can then be passed to other components that might
required it.

	estimated coverage: Provides a rough coverage estimation for each sample
based on a user-provided genome size (see Parameters). This estimation
is essentially

\[\frac{\text{number of base pairs}}{(\text{genome size} \times 1e^{6})}\]

This information is written to the reports directory (See
Published reports)

	maximum read length.: Retrieves the maximum read length for each sample.

Important

If the minCoverage parameter value is set to higher than 0, this
component will filter samples with an estimated coverage below that
threshold.

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	genomeSize: Genome size estimate for the samples. It is used to
estimate the coverage and other assembly parameters and
checks.

	minCoverage: Minimum coverage for a sample to proceed. Can be set to
0 to allow any coverage.

Note

You can use these parameters as in the following example:
--genomeSize 3.

Published results

None.

Published reports

	reports/coverage: CSV table with estimated sequencing coverage for
each sample.

	reports/corrupted: Text file with list of corrupted samples.

Default directives

None.

Advanced

Template

assemblerflow.templates.integrity_coverage

Reports JSON

	tableRow:

	
	Raw BP: Number of nucleotides

	Reads: Number of reads

	Coverage (1st): Estimated coverage

	plotData:

	
	sparkline: Number of nucleotides

minCoverage: Minimum coverage specified for the module

mapping_patlas

Purpose

This component performs mapping (using bowtie2 and samtools) against a
plasmid database in order to find
plasmids contained in high throughoput sequencing data. Then, the resulting file
can be imported into pATLAS [http://www.patlas.site/].

Note

	pATLAs documentation can be found here [https://tiagofilipe12.gitbooks.io/patlas/content/].

	bowtie2 documentation can be found here [http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml].

	samtools documentation can be found here [http://www.htslib.org/doc/samtools-1.2.html].

Input/Output type

	Input type: FastQ

	Output type: JSON

Parameters

	max_k: Sets the k parameter for bowtie2 allowing to make multiple mappings
of the same read against several hits on the query sequence or sequences.
Default: 10949.

	trim5: Sets trim5 option for bowtie. This will become legacy with QC
integration, but it enables to trim 5’ end of reads to be mapped with bowtie2.
Default: 0

	lengthJson: A dictionary of all the lengths of reference sequences.
Default: ‘jsons/*_length.json’ (from docker image).

	refIndex: Specifies the reference indexes to be provided to bowtie2.
Default: ‘/ngstools/data/indexes/bowtie2idx/bowtie2.idx’ (from docker image).

	samtoolsIndex: Specifies the reference indexes to be provided to samtools.
Default: ‘/ngstools/data/indexes/fasta/samtools.fasta.fai’ (from docker image).

Published results

	results/mapping/: A JSON file that can be imported to pATLAS [http://www.patlas.site/]
with the results from mapping.

Published reports

None.

Default directives

	
	mappingBowtie:

	
	container: tiagofilipe12/patlasflow_mapping

	version: 1.1.2

	
	samtoolsView:

	
	container: tiagofilipe12/patlasflow_mapping

	version: 1.1.2

	
	jsonDumpingMapping:

	
	container: tiagofilipe12/patlasflow_mapping

	version: 1.1.2

mash_dist

Purpose

This component executes mash dist to find plasmids
within high throughoput sequencing data, using as inputs fasta files
(e.g. contigs). Then, the resulting file can
be imported into pATLAS [http://www.patlas.site/].
This component calculates pairwise distances between sequences
(one from the database and the query sequence).
However, this process can be user for other purposes, by providing a different
database than the default that is intended for plasmid searches.

Note

	pATLAs documentation can be found here [https://tiagofilipe12.gitbooks.io/patlas/content/].

	MASH documentation can be found here [https://mash.readthedocs.io/en/latest/].

Input/Output type

	Input type: Fasta

	Output type: JSON

Parameters

	mash_distance: Sets the maximum distance between two sequences to be
included in the output. Default: 0.1.

Note

The subtraction of 1 - mash_distance can be used as an approximation to
Average Nucleotide Identity (ANI). For instance a mash distance of 0.1 well
correlates with ANI at 0.9 (90%).

	pValue: P-value cutoff for the distance estimation between two sequences
to be included in the output. Default: 0.05.

	shared_hashes: Sets a minimum percentage of hashes shared between two
sequences in order to include its result in the output. Default: 0.8.

	refFile: Specifies the reference file to be provided to mash. It can either
be a fasta or a .msh reference sketch generated by mash.
Default: ‘/ngstools/data/patlas.msh’.

Published results

	results/mashdist/: A JSON file that can be imported to pATLAS [http://www.patlas.site/]
with the results from mash dist.

Published reports

None.

Default directives

	
	runMashDist:

	
	container: tiagofilipe12/patlasflow_mash_screen

	version: 1.1

	
	mashDistOutputJson:

	
	container: tiagofilipe12/patlasflow_mash_screen

	version: 1.1

mash_screen

Purpose

This component performes mash screen to find plasmids
contained in high throughoput sequencing data, using as inputs read files
(FastQ files). Then, the resulting file can
be imported into pATLAS [http://www.patlas.site/].
This component searches for containment of a given sequence in read sequencing
data.
However, this process can be user for other purposes, by providing a different
database than the default that is intended for plasmid searches.

Note

	pATLAs documentation can be found here [https://tiagofilipe12.gitbooks.io/patlas/content/].

	MASH documentation can be found here [https://mash.readthedocs.io/en/latest/].

Input/Output type

	Input type: FastQ

	Output type: JSON

Parameters

	noWinner: A variable that enables the use of -w option for mash screen.
Default: false.

	pValue: P-value cutoff for the distance estimation between two sequences to
be included in the output. Default: 0.05.

	identity: The percentage of identity between the reads input and the
reference sequence. Default: 0.9.

	refFile: “Specifies the reference file to be provided to mash. It can
either be a fasta or a .msh reference sketch generated by mash.
Default: ‘/ngstools/data/patlas.msh’.

Published results

	results/mashscreen/: A JSON file that can be imported to pATLAS [http://www.patlas.site/]
with the results from mash screen.

Published reports

None.

Default directives

	
	mashScreen:

	
	container: tiagofilipe12/patlasflow_mash_screen

	version: 1.1

	
	mashOutputJson:

	
	container: tiagofilipe12/patlasflow_mash_screen

	version: 1.1

MLST

Purpose

Checks the ST of an assembly using mlst.

Note

Software page: https://github.com/tseemann/mlst

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	mlstSpecies: Specifiy the expected species for MLST.

Published results

	results/annotation/mlst: Stores the results of the ST for each sample.

Published reports

None.

Default directives

	container: ummidock/mlst

Advanced

Reports JSON

expectedSpecies: Name of the expected species
species: Name of inferred species

Patho_typing

Purpose

Patho_typing is a software for in silico pathogenic typing
directly from raw Illumina reads.

Note

Software page: https://github.com/B-UMMI/patho_typing

Input/Output type

	Input type: FastQ

	Output type: None

Parameters

	species: Species name. Must be the complete species name with genus
and species, e.g.: ‘Yersinia enterocolitica’.

Published results

	results/pathotyping/<sample id>: Stores the results of patho_typing in
text and tabular format.

Published reports

None.

Default directives

	cpus: 4

	memory: 4GB

	container: ummidock/patho_typing

	version: 0.3.0-1

Advanced

Reports JSON

	typing:

	
	pathotyping: <typing result>

Pilon

Purpose

This components Performs a mapping procedure of FastQ files into a their
assembly and performs filtering based on quality criteria of read coverage
and genome size.

Note

Software page: https://github.com/broadinstitute/pilon

Input/Output type

	Input type: Fasta and FastQ

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

None.

Published results

	results/assembly/pilon: Stores the polished fasta assemblies for each
sample.

Published reports

	reports/assembly/pilon: Table with several summary statistics about the
assembly for each sample.

Default directives

	
	pilon:

	
	cpus: 4

	memory: 7GB (dynamically increased on retry)

	container: ummidock/pilon

	version: 1.22.0-2

	
	process_assembly_mapping:

	
	cpus: 1

	memory: 7GB (dynamically increased on retry)

	container: ummidock/pilon

	version: 1.22.0-2

Advanced

Template

assemblerflow.templates.assembly_report

Reports JSON

	tableRow:

	Trimmed (%): Percentage of trimmed nucleotides

	plotData:

	sparkline: Number of nucleotides after trimming

badReads: Number of discarded reads

Process_skesa

Purpose

This components processes the assembly resulting from the Skesa software and,
optionally, filters contigs based on user-provide parameters.

Input/Output type

	Input type: Fasta

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

	skesaMinKmerCoverage: Minimum contigs K-mer coverage. After assembly
only keep contigs with reported k-mer coverage equal or above this value.

	skesaMinContigLen: Filter contigs for length greater or equal than
this value.

	skesaMaxContigs: Maximum number of contigs per 1.5 Mb of expected
genome size.

Published results

None.

Published reports

	reports/assembly/skesa_filter: The filter status for each contig and
each sample. If any contig does not pass the filters, it reports which
filter type it failed and the corresponding value.

Default directives

	container: ummidock/skesa

	version: 0.2.0-3

Advanced

Template

assemblerflow.templates.process_assembly

Reports JSON

	tableRow:

	
	Contigs (<assembler>): Number of contigs

	Assembled BP (<assembler>): Number of assembled base pairs

	warnings:

	
	process_assembly: Failure messages

Process_spades

Purpose

This components processes the assembly resulting from the Spades software and,
optionally, filters contigs based on user-provide parameters.

Input/Output type

	Input type: Fasta

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

	spadesMinKmerCoverage: Minimum contigs K-mer coverage. After assembly
only keep contigs with reported k-mer coverage equal or above this value.

	spadesMinContigLen: Filter contigs for length greater or equal than
this value.

	spadesMaxContigs: Maximum number of contigs per 1.5 Mb of expected
genome size.

Published results

None.

Published reports

	reports/assembly/spades_filter: The filter status for each contig and
each sample. If any contig does not pass the filters, it reports which
filter type it failed and the corresponding value.

Default directives

	container: ummidock/spades

	version: 3.11.1-1

Advanced

Template

assemblerflow.templates.process_assembly

Reports JSON

	tableRow:

	
	Contigs (<assembler>): Number of contigs

	Assembled BP (<assembler>): Number of assembled base pairs

	warnings:

	
	process_assembly: Failure messages

Prokka

Building…

Seq_typing

Purpose

Seq_typing is a software that determines the type of a given sample using a
read mapping approach against a set of reference sequences. Sample’s reads
are mapped to the given reference sequences and, based on the length of the
sequence covered and it’s depth of coverage, seq_typing decides which reference
sequence is more likely to be present and returns the type associated with
such sequences.

Note

Software page: https://github.com/B-UMMI/seq_typing

Input/Output type

	Input type: FastQ

	Output type: None

Parameters

	referenceFileO: Fasta file containing reference sequences. If more
than one file is passed via the ‘referenceFileH parameter, a reference
sequence for each file will be determined.

	referenceFileH: Fasta file containing reference sequences. If more
than one file is passed via the ‘referenceFileO parameter, a reference
sequence for each file will be determined.

Published results

	results/seqtyping/<sample id>: Stores the results of seq_typing in
text and tabular format.

Published reports

None.

Default directives

	cpus: 4

	memory: 4GB

	container: ummidock/seq_typing

	version: 0.1.0-1

Advanced

Reports JSON

	typing:

	
	seqtyping: <typing result>

Skesa

Purpose

This components assembles paired-end FastQ files using the Skesa assembler.

Input/Output type

	Input type: FastQ

	Output type: Fasta

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

None.

Published results

	results/assembly/skesa: Stores the fasta assemblies for each sample.

Published reports

None.

Default directives

	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: ummidock/skesa

	version: 0.2.0-3

	scratch: true

Advanced

Template

assemblerflow.templates.skesa

Spades

Purpose

This components assembles paired-end FastQ files using the Spades assembler.

Note

Software page: http://bioinf.spbau.ru/spades

Input/Output type

	Input type: FastQ

	Output type: Fasta

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	spadesMinCoverage: The minimum number of reads to consider an edge in
the de Bruijn graph during the assembly

	spadesMinKmerCoverage: Minimum contigs K-mer coverage. After assembly
only keep contigs with reported k-mer coverage equal or above this value

	spadesKmers: If ‘auto’ the SPAdes k-mer lengths will be determined
from the maximum read length of each assembly. If ‘default’, SPAdes will
use the default k-mer lengths.

Published results

	results/assembly/spades: Stores the fasta assemblies for each sample.

Published reports

None.

Default directives

	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: ummidock/spades

	version: 3.11.1-1

	scratch: true

Advanced

Template

assemblerflow.templates.spades

Trimmomatic

Purpose

This component runs Trimmomatic on paired-end FastQ files.

Note

Software page: http://www.usadellab.org/cms/?page=trimmomatic

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	adapters: Provide a non-default fasta file containing the adapter
sequences used to filter the FastQ files.

	trimSlidingWindow: Perform sliding window trimming, cutting once the
average quality within the window falls below a threshold.

	trimLeading: Cut bases off the start of a read, if below a threshold
quality.

	trimTrailing: Cut bases of the end of a read, if below a threshold
quality.

	trimMinLength: Drop the read if it is below a specified length.

Published results

	results/trimmomatic: The trimmed FastQ files for each sample.

Published reports

	reports/fastqc: Stores the FastQC HTML reports for each sample.

	reports/fastqc/run_2/: Stores the summary text files with the category
results of FastQC for each sample.

Default directives

	cpus: 2

	memory: 4GB (dynamically increased on retry)

	container: ummidock/trimmomatic

	version: 0.36-2

Advanced

Template

assemblerflow.templates.trimmomatic
assemblerflow.templates.trimmomatic_report

Reports JSON

	tableRow:

	Trimmed (%): Percentage of trimmed nucleotides

	plotData:

	sparkline: Number of nucleotides after trimming

badReads: Number of discarded reads

 _static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/fork_3.png
seq_typing_1.1

o

integrity coverage 2 2

o

trimmomatic_2_3

o

spades 3.5

0]

fastqc 2.4

©

skesa 4.6

1©]

_images/fork_4.png
integrity_coverage_1_1 trimmomati fastqe_1.3 spades_1_4

o O 19} O

nav.xhtml

 Table of Contents

 		
 AssemblerFlow

 		
 Overview

 		
 What is Nextflow

 		
 What Assemblerflow does

 		
 Who is Assemblerflow for

 		
 Why not just write a Nextflow pipeline?

 		
 Installation

 		
 User installation

 		
 Container engine

 		
 Singularity

 		
 Docker

 		
 Developer installation

 		
 Basic Usage

 		
 Assembling a pipeline

 		
 Pipeline directory

 		
 Parameters

 		
 Executing the pipeline

 		
 Changing executor and container engine

 		
 Docker images

 		
 Results and reports

 		
 Pipeline building

 		
 Raw input types

 		
 Forks

 		
 Directives

 		
 Extra inputs

 		
 Pipeline file

 		
 Pipeline configuration

 		
 Parameters

 		
 Resources

 		
 Containers

 		
 Profiles

 		
 User configutations

 		
 Components

 		
 Read Quality Control

 		
 Assembly

 		
 Post-assembly

 		
 Annotation

 		
 MLST

 		
 Reads typing

 		
 Plasmids

 		
 General orientation

 		
 Codebase structure

 		
 Code style

 		
 Testing

 		
 Documentation

 		
 Process creation guidelines

 		
 Basic process creation

 		
 Create process template

 		
 Create Process class

 		
 Add to available processes

 		
 Process attributes

 		
 Input/Output types

 		
 Parameters

 		
 Secondary inputs

 		
 Extra input

 		
 Compiler

 		
 Link start

 		
 Link end

 		
 Dependencies

 		
 Directives

 		
 Ignore type

 		
 Process ID

 		
 Template

 		
 Status channels

 		
 Advanced use cases

 		
 Compiler processes

 		
 Secondary links between process

 		
 Template creation guidelines

 		
 Preface header

 		
 Purpose

 		
 Expected input

 		
 Generated output

 		
 Versioning and logging

 		
 Logger

 		
 MainWrapper decorator

 		
 Nextflow .command.sh

 		
 Use numpy docstrings

 		
 Dotfiles

 		
 Status

 		
 Warning

 		
 Fail

 		
 Report JSON

 		
 Information for tables

 		
 Information for plots

 		
 Other information

 		
 Versions

 		
 assemblerflow package

 		
 Subpackages

 		
 assemblerflow.generator package

 		
 assemblerflow.templates package

 		
 assemblerflow.tests package

 		
 Submodules

 		
 assemblerflow.assemblerflow module

 		
 Module contents

_static/up.png

_static/up-pressed.png

_images/fork_2.png
integrity_coverage 1.1

(o]

trimmomatic_1.2

©

spades 2.4

©)

fastqc 1.3

©

skesa 35

O

assembly_mapping_3_6

1o}

abricate 4.8

10}

pilon 3.7 prokka 5.9

O 19}

chewbbaca_6_10

10}

_images/fork_1.png
integrity_coverage 1.1

(o]

trimmom:

o

spades 2.4

o]

fastqe 1.3,

O

skesa 35

_static/comment-bright.png

_static/ajax-loader.gif

