
asq Documentation
Release 1.3a

Sixty North

Dec 04, 2017

Contents

1 Contents 3
1.1 Front Matter . 3
1.2 Narrative Documentation . 4
1.3 Reference Documentation . 18
1.4 Detailed Change History . 89
1.5 Samples . 90

2 Indices and tables 93

Python Module Index 95

i

ii

asq Documentation, Release 1.3a

asq is a Python package for specifying and performing efficient queries over collections of Python objects using a
fluent interface. It is licensed under the MIT License

Contents 1

asq Documentation, Release 1.3a

2 Contents

CHAPTER 1

Contents

1.1 Front Matter

1.1.1 Copyright

asq

Copyright © 2010-2015 Sixty North

1.1.2 Official Website

https://github.com/rob-smallshire/asq

1.1.3 License

Copyright (c) 2011-2016 Sixty North AS

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3

https://github.com/rob-smallshire/asq

asq Documentation, Release 1.3a

1.2 Narrative Documentation

Read this to learn how to use asq.

1.2.1 asq Introduction

asq implements a chained declarative style queries for Python iterables. This provides an alternative to traditional
for loops or comprehensions which are ubiquitious in Python. Query methods can offer the following advantages
over loops or comprehensions:

1. Concision: asq query expressions can be to the point, especially when combining multiple queries.

2. Readability: Chained asq query operators can have superior readability to nested or chained comprehensions.
For example, multi-key sorting is much clearer with asq than with other approaches.

3. Abstraction: Query expressions in asq decouple query specification from the execution mechanism giving
more flexibility with how query results are determined, so for example queries can be executed in parallel with
minimal changes.

More complex queries tend to show greater benefits when using asq. Simple transformations are probably best left as
regular Python comprehensions. It’s easy to mix and match asq with comprehensions and indeed any other Python
function which produces or consumes iterables.

1.2.2 Installing asq

asq is available on the Python Package Index (PyPI) and can be installed with pip:

$ pip install asq

Alternatively, you can download and unpack the source distribution from the asq ‘downloads page‘_ or PyPI. You
should then unpack the source distribution into a temporary directory and run the setup script which will install asq
into the current Python environment, for example:

$ tar xzf asq-1.0.tar.gz
$ cd asq-1.0
$ python setup.py install

If you are using Python 2.6 you will also need to install the back-ported ordereddict module which was introduced in
Python 2.7.

1.2.3 Diving in

A few simple examples will help to illustrate use of asq. We’ll need some data to work with, so let’s set up a simple
list of student records, where each student is represented by a dictionary:

students = [dict(firstname='Joe', lastname='Blogs', scores=[56, 23, 21, 89]),
dict(firstname='John', lastname='Doe', scores=[34, 12, 92, 93]),
dict(firstname='Jane', lastname='Doe', scores=[33, 94, 91, 13]),
dict(firstname='Ola', lastname='Nordmann', scores=[98, 23, 98, 87]),
dict(firstname='Kari', lastname='Nordmann', scores=[86, 37, 88, 87]),
dict(firstname='Mario', lastname='Rossi', scores=[37, 95, 45, 18])]

To avoid having to type in this data structure, you can navigate to the root of the unpacked source distribution of asq
and then import it from pupils.py in the examples directory with:

4 Chapter 1. Contents

http://pypi.python.org/pypi/asq/
http://pypi.python.org/pypi/ordereddict

asq Documentation, Release 1.3a

$ cd asq/examples/
$ python
Python 2.6.2 (r262:71605, Apr 14 2009, 22:40:02) [MSC v.1500 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from pupils import students

Now we can import the query tools we need. We’ll start with the most commonly used import from asq which is the
query initiator:

>>> from asq import query

The query initiator allows us to perform queries over any Python iterable, such as the students object we imported.

Let’s start by creating a simple query to find those students who’s first names begin with a letter ‘J’:

>>> query(students).where(lambda student: student['firstname'].startswith('J'))
Queryable(<filter object at 0x00000000031D9B70>)

To dissect this line and its result left to right, we have:

1. A call to the query(students). Here query() is a query initiator - a factory function for creating a
Queryable object from, in this case, an iterable. The query() function is the key entry point into the query
system (although there are others).

2. A method call to where(). Where is one of the asq query operators and is in fact a method on the Queryable
returned by the preceding call to query(). The where() query operator accepts a single argument, which is
a callable predicate (i.e. returning either True or False) function which which each element will be tested.

3. The predicate passed to where() is defined by the expression lambda student:
student['firstname'].startswith('J') which accepts a single argument student which
is the element being tested. From the student dictionary the first name is extracted and the built-in string
method startswith() is called on the name.

4. The result of the call is a Queryable object. Note that no results have yet been produced - because the query has
not yet been executed. The Queryable object contains all the information required to execute the query when
results are required.

Initiators

All query expressions begin with query initiator. Initiators are the entry points to asq and are to be found the in
the initiators submodule. The most commonly used query initiator is also availble from the top-level asq
namespace for convenience. All initiators return Queryables on which any query method can be called. We have
already seen the query() initiator in use. The full list of available query initiators is:

Initiator Purpose
query(iterable) Make a Queryable from any iterable
integers(start, count) Make a Queryable sequence of consecutive integers
repeat(value, count) Make a Queryable from a repeating value
empty() Make a Queryable from an empty sequence

When is the query evaluated?

In order to make the query execute we need to iterate over the Queryable or chain additional calls to convert the result
to, for example, a list. We’ll do this by creating the query again, but this time assigning it to a name:

1.2. Narrative Documentation 5

asq Documentation, Release 1.3a

>>> q = query(students).where(lambda student: student['firstname'].startswith('J'))
>>> q
Queryable(<filter object at 0x00000000031D9BE0>)
>>> q.to_list()
[{'lastname': 'Blogs', 'firstname': 'Joe', 'scores': [56, 23, 21, 89]},
{'lastname': 'Doe', 'firstname': 'John', 'scores': [34, 12, 92, 93]},
{'lastname': 'Doe', 'firstname': 'Jane', 'scores': [33, 94, 91, 13]}]

Most of the asq query operators like where() use so-called deferred execution whereas others which return non-
Queryable results use immediate execution and force evaluation of any pending deferred operations.

Queries are executed when the results are realised by converting them to a concrete type such as a list, dictionary or
set, or by any of the query operators which return a single value.

Query chaining

Most of the query operators can be composed in chains to create more complex queries. For example, we could extract
and compose the full names of the three students resulting from the previous query with:

>>> query(students).where(lambda s: s['firstname'].startswith('J')) \
... .select(lambda s: s['firstname'] + ' ' + s['lastname']) \
... .to_list()
['Joe Blogs', 'John Doe', 'Jane Doe']

Note: The backslashes above are Python’s line-continuation character, used here for readability. They are not part of
the syntax of the expression.

If we would like our results sorted by the students’ minimum scores we can use the Python built-in function min()
with the order_by query operator:

>>> query(students).where(lambda s: s['firstname'].startswith('J')) \
... .order_by(lambda s: min(s['scores'])) \
... .select(lambda s: s['firstname'] + ' ' + s['lastname']) \
... .to_list()
['John Doe', 'Jane Doe', 'Joe Blogs']

Query nesting

There is nothing to stop us initiating a sub-query in the course of defining a primary query. For example, to order the
students by their average score we can invoke the query() initiator a second time and chain the average() query
operator to determine the mean score to pass to order_by():

>>> query(students).order_by(lambda s: query(s['scores']).average()) \
... .where(lambda student: student['firstname'].startswith('J')) \
... .select(lambda s: s['firstname'] + ' ' + s['lastname']) \
... .to_list()
['Joe Blogs', 'John Doe', 'Jane Doe']

Selectors

Many of the query operators, such as select(), order_by or where() accept selector callables for one or more
of their arguments. Typically such selectors are used to select or extract a value from an element of the query sequence.

6 Chapter 1. Contents

asq Documentation, Release 1.3a

Selectors can be any Python callable and examples of commonly used selectors are demonstrated below. In addition,
asq provides some selector factories as a convenience for generating commonly used forms of selectors.

Most of the selectors used in asq are unary functions, that is, they take a single positional argument which is the value
of the current element. However, some of the query operators do require selectors which take two arguments; these
cases are noted in the API documentation.

Lambdas

Lambda is probably the most frequently used mechanism for specifying selectors. This example squares each element:

>>> numbers = [1, 67, 34, 23, 56, 34, 45]
>>> query(numbers).select(lambda x: x**2).to_list()
[1, 4489, 1156, 529, 3136, 1156, 2025]

Functions

Sometime the selector you want cannot be easily expressed as a lambda, or it is already available as a function in
existing code, such as the standard library.

In this example we use the built-in len() function as the selector:

>>> words = 'The quick brown fox jumped over the lazy dog'.split()
>>> words
['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']
>>> query(words).select(len).to_list()
[3, 5, 5, 3, 6, 4, 3, 4, 3]

Unbound methods

Unbound methods are obtained by referencing the method of a class rather than the method of an instance. That is, the
self parameter passed as the first argument of a method has not yet been specified. We can pass any unbound method
which takes only a single argument including the normally implicit self as a selector.

In this example, we use an unbound method upper() of the built-in string class:

>>> words = ["the", "quick", "brown", "fox"]
>>> query(words).select(str.upper).to_list()
['THE', 'QUICK', 'BROWN', 'FOX']

This has the effect of making the method call on each element in the sequence.

Bound methods

Bound methods are obtained by referencing the method of an instance rather than the method of a class. That is, the
instance referred to by the self parameter passed as the first argument of a method has already been determined.

To illustrate, here we create a Multiplier class instances of which multiply by a factor specified at initialization when
the multiply method is called:

1.2. Narrative Documentation 7

asq Documentation, Release 1.3a

>>> numbers = [1, 67, 34, 23, 56, 34, 45]
>>>
>>> class Multiplier(object):
... def __init__(self, factor):
... self.factor = factor
... def multiply(self, value):
... return self.factor * value
...
>>> five_multiplier = Multiplier(5)
>>> times_by_five = five_multiplier.multiply
>>> times_by_five
<bound method Multiplier.multiply of <__main__.Multiplier object at
→˓0x0000000002F251D0>>
>>>
>>> query(numbers).select(times_by_five).to_list()
[5, 335, 170, 115, 280, 170, 225]

This has the effect of passing each element of the sequence in turn as an argument to the bound method.

Selector factories

Some selector patterns crop up very frequently and so asq provides some simple and concise selector factories for
these cases. Selector factories are themselves functions which return the actual selector function which can be passed
in turn to the query operator.

Selector factory Created selector function
k_(key) lambda x: x[key]
a_(name) lambda x: getattr(x, name)
m_(name, *args,

**kwargs)
lambda x: getattr(x, name)(*args,

**kwargs)

Key selector factory

For our example, we’ll create a list of employees, with each employee being represented as a Python dictionary:

>>> employees = [dict(firstname='Joe', lastname='Bloggs', grade=3),
... dict(firstname='Ola', lastname='Nordmann', grade=3),
... dict(firstname='Kari', lastname='Nordmann', grade=2),
... dict(firstname='Jane', lastname='Doe', grade=4),
... dict(firstname='John', lastname='Doe', grade=3)]

Let’s start by looking at an example without selector factories. Our query will be to order the employees by descending
grade, then by ascending last name and finally by ascending first name:

>>> query(employees).order_by_descending(lambda employee: employee['grade']) \
... .then_by(lambda employee: employee['lastname']) \
... .then_by(lambda employee: employee['firstname']).to_list()
[{'grade': 4, 'lastname': 'Doe', 'firstname': 'Jane'},
{'grade': 3, 'lastname': 'Bloggs', 'firstname': 'Joe'},
{'grade': 3, 'lastname': 'Doe', 'firstname': 'John'},
{'grade': 3, 'lastname': 'Nordmann', 'firstname': 'Ola'},
{'grade': 2, 'lastname': 'Nordmann', 'firstname': 'Kari'}]

Those lambda expressions can be a bit of a mouthful, especially given Python’s less-than-concise lambda syntax. We
can improve by using less descriptive names for the lambda arguments:

8 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> query(employees).order_by_descending(lambda e: e['grade']) \
... .then_by(lambda e: e['lastname']) \
... .then_by(lambda e: e['firstname']).to_list()
[{'grade': 4, 'lastname': 'Doe', 'firstname': 'Jane'},
{'grade': 3, 'lastname': 'Bloggs', 'firstname': 'Joe'},
{'grade': 3, 'lastname': 'Doe', 'firstname': 'John'},
{'grade': 3, 'lastname': 'Nordmann', 'firstname': 'Ola'},
{'grade': 2, 'lastname': 'Nordmann', 'firstname': 'Kari'}]

but there’s still quite a lot of syntactic noise in here. By using one of the selector factories provided by asq we can
make this example more concise. The particular selector factory we are going to use is called k_() where the k is a
mnemonic for ‘key’ and the underscore is there purely to make the name more unusual to avoid consuming a useful
single letter variable name from the importing namespace. k_() takes a single argument which is the name of the key
to be used when indexing into the element, so the expressions:

k_('foo')

and:

lambda x: x['foo']

are equivalent because in fact the first expression is in fact returning the second one. Let’s see k_() in action reducing
the verbosity and apparent complexity of the query somewhat:

>>> from asq import k_
>>> query(employees).order_by_descending(k_('grade')) \
... .then_by(k_('lastname')) \
... .then_by(k_('firstname')).to_list()
[{'grade': 4, 'lastname': 'Doe', 'firstname': 'Jane'},
{'grade': 3, 'lastname': 'Bloggs', 'firstname': 'Joe'},
{'grade': 3, 'lastname': 'Doe', 'firstname': 'John'},
{'grade': 3, 'lastname': 'Nordmann', 'firstname': 'Ola'},
{'grade': 2, 'lastname': 'Nordmann', 'firstname': 'Kari'}]

It might not be immediately obvious from it’s name, but k_() works with any object supporting indexing with square
brackets, so it can also be used with an integer ‘key’ for retrieved results from sequences such as lists and tuples.

Attribute selector factory

The attribute selector factory provided by asq is called a_() and it creates a selector which retrieves a named attribute
from each element. To illustrate its utility, we’ll re-run the key selector exercise using the attribute selector against
Employee objects rather than dictionaries. First of all, our Employee class:

>>> class Employee(object):
... def __init__(self, firstname, lastname, grade):
... self.firstname = firstname
... self.lastname = lastname
... self.grade = grade
... def __repr__(self):
... return ("Employee(" + repr(self.firstname) + ", "
... + repr(self.lastname) + ", "
... + repr(self.grade) + ")")

Now the query and its result use the lambda form for the selectors:

1.2. Narrative Documentation 9

asq Documentation, Release 1.3a

>>> query(employees).order_by_descending(lambda employee: employee.grade) \
... .then_by(lambda employee: employee.lastname) \
... .then_by(lambda employee: employee.firstname).to_list()
[Employee('Jane', 'Doe', 4), Employee('Joe', 'Bloggs', 3),
Employee('John', 'Doe', 3), Employee('Ola', 'Nordmann', 3),
Employee('Kari', 'Nordmann', 2)]

We can make this query more concise by creating our selectors using the a_ selector factory, where the a is a mnemonic
for ‘attribute’. a_() accepts a single argument which is the name of the attribute to get from each element. The
expression:

a_('foo')

is equivalent to:

lambda x: x.foo

Using this construct we can shorted our query to the more concise:

>>> query(employees).order_by_descending(a_('grade')) \
... .then_by(a_('lastname')) \
... .then_by(a_('firstname')).to_list()
[Employee('Jane', 'Doe', 4), Employee('Joe', 'Bloggs', 3),
Employee('John', 'Doe', 3), Employee('Ola', 'Nordmann', 3),
Employee('Kari', 'Nordmann', 2)]

Method selector factory

The method-call selector factory provided by asq is called m_() and it creates a selector which makes a method call
on each element, optionally passing positional or named arguments to the method. We’ll re-run the attribute selector
exercise using the method selector against a modified Employee class which incorporates a couple of methods:

>>> class Employee(object):
... def __init__(self, firstname, lastname, grade):
... self.firstname = firstname
... self.lastname = lastname
... self.grade = grade
... def __repr__(self):
... return ("Employee(" + repr(self.firstname)
... + repr(self.lastname)
... + repr(self.grade) + ")")
... def full_name(self):
... return self.firstname + " " + self.lastname
... def award_bonus(self, base_amount):
... return self.grade * base_amount

In its simplest form, the m_() selector factory takes a single argument, which is the name of the method to be called
as a string. So:

m_('foo')

is equivalent to:

lambda x: x.foo()

10 Chapter 1. Contents

asq Documentation, Release 1.3a

We can use this to easy generate a list of full names for our employees:

>>> query(employees).select(m_('full_name')).to_list()
['Joe Bloggs', 'Ola Nordmann', 'Kari Nordmann', 'Jane Doe', 'John Doe']

The m_() selector factory also accepts arbitrary number of additional positional or named arguments which will be
forwarded to the method when it is called on each element. So:

m_('foo', 42)

is equivalent to:

lambda x: x.foo(42)

For example to determine total cost of awarding bonuses to our employees on the basis of grade, we can do:

>>> query(employees).select(m_('award_bonus', 1000)).to_list()
[3000, 3000, 2000, 4000, 3000]

Default selectors and the identity selector

Any of the selector arguments to query operators in asqmay be omitted1 to allow the use of operators to be simplified.
When a selector is omitted the default is used and the documentation makes it clear how that default behaves. In most
cases, the default selector is the identity() selector. The identity selector is very simple and is equivalent to:

def identity(x):
return x

That is, it is a function that returns it’s only argument - essentially it’s a do-nothing function. This is useful because
frequently we don’t want to select an attribute or key from an element - we want to use the element value directly. For
example, to sort a list of words alphabetically, we can omit the selector passed to order_by() allowing if to default
to the identity selector:

>>> words = "the quick brown fox jumped over the lazy dog".split()
>>> query(words).order_by().to_list()
['brown', 'dog', 'fox', 'jumped', 'lazy', 'over', 'quick', 'the', 'the']

Some query operators, notably select() perform important optimisations when used with the identity operator. For
example the operator select(identity) does nothing and simply returns the Queryable on which it was invoked.

Predicates

Many of the query operators, such as where(), distinct(), skip(), accept predicates. Predicates are functions
which return True or False. As with selectors (see above) predicates can be defined with lambdas, functions,
unbound methods, bound methods or indeed any other callable that returns True or False. For convenience asq also
provides some predicate factories and combinators to concisely build predicates for common situations.

Lambdas

1 Except the single selector argument to the select() operator itself.

1.2. Narrative Documentation 11

asq Documentation, Release 1.3a

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]
>>> query(numbers).where(lambda x: x > 35).to_list()
[56, 78, 94, 56, 36, 90, 76, 67]

Functions

Here we use the bool() built-in function to remove zeros from the list:

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]
>>> query(numbers).where(bool).to_list()
[56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]

Unbound methods

Here we use an unbound method of the str class to extract only alphabetic strings from a list:

>>> a = ['zero', 'one', '2', '3', 'four', 'five', '6', 'seven', 'eight', '9']
>>> query(a).where(str.isalpha).to_list()
['zero', 'one', 'four', 'five', 'seven', 'eight']

Bound methods

Bound methods are obtained by referencing the method of an instance rather than the method of a class. That is, the
instance referred to by the self parameter passed as the first argument of a method has already been determined.

To illustrate, here we create a variation of Multiplier class earlier with a method to test whether a given number is a
multiple of the supplied factor:

>>> numbers = [1, 18, 34, 23, 56, 48, 45]
>>>
>>> class Multiplier(object):

... def __init__(self, factor):

... self.factor = factor

... def is_multiple(self, value):

... return value % self.factor == 0

...
>>> six_multiplier = Multiplier(6)
>>>
>>> is_six_a_factor = six_multiplier.is_multiple
>>> is_six_a_factor
<bound method Multiplier.is_multiple of <__main__.Multiplier object at 0x029FEDF0>>
>>>
>>> query(numbers).where(is_six_a_factor).to_list()
[18, 48]

This has the effect of passing each element of the sequence in turn as an argument to the bound method which returns
True or False.

12 Chapter 1. Contents

asq Documentation, Release 1.3a

Predicate factories

For complex predicates inline lambdas can become quite verbose and have limited readability. To mitigate this some-
what, asq provides some predicate factories and predicate combinators.

The provided predicates are:

Predicate factory Created selector function
eq_(value) lambda x: x == value
ne_(value) lambda x: x != value
lt_(value) lambda x: x < value
le_(value) lambda x: x <= value
ge_(value) lambda x: x >= value
gt_(value) lambda x: x >= value
is_(value) lambda x: x is value
contains_(value) lambda x: value in x

Predicates are available in the predicates module of the asq package:

>>> from asq.predicates import *

So given:

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]

the query expression:

>>> query(numbers).where(lambda x: x > 35).take_while(lambda x: x < 90).to_list()
[56, 78]

could be written more succinctly rendered as:

>>> query(numbers).where(gt_(35)).take_while(lt_(90)).to_list()
[56, 78]

Predicate combinator factories

Some simple combinators are provided to allow the predicate factories to be combined to form more powerful expres-
sions. These combinators are,

Combinator factory Created selector function
not_(a) lambda x: not a(x)
and_(a, b) lambda x: a(x) and b(x)
or_(a, b) lambda x: a(x) or b(x)
xor(a, b) lambda x: a(x) != b(x)

where a and b are themselves predicates.

So given:

>>> numbers = [0, 56, 23, 78, 94, 56, 12, 34, 36, 90, 23, 76, 4, 67]

the query expression:

>>> query(numbers).where(lambda x: x > 20 and x < 80).to_list()
[56, 23, 78, 56, 34, 36, 23, 76, 67]

1.2. Narrative Documentation 13

asq Documentation, Release 1.3a

could be expressed as:

>>> query(numbers).where(and_(gt_(20), lt_(80).to_list()
[56, 23, 78, 56, 34, 36, 23, 76, 67]

Although complex expressions are probably still better expressed as lambdas or separate functions altogether.

Using selector factories for predicates

A predicate is any callable that returns True or False, so any selector which returns True or False is by definition
a predicate. This means that the selector factories k_(), a_() and m_() may also be used as predicate factories so
long as they return boolean values. They may also be used with the predicate combinators. For example, consider a
sequence of Employee objects which have an intern attribute which evaluates to True or False. We can filter out
interns using this query:

>>> query(employees).where(not_(a_('intern')))

Comparers

Some of the query operators accept equality comparers. Equality comparers are callables which can be used to de-
termine whether two value should be considered equal for the purposes of a query. For example, the contains()
query operator accepts an optional equality comparer used for determining membership. To illustrate, we will use the
insensitive_eq() comparer which does a case insensitive equality test:

>>> from asq.comparers import insensitive_eq
>>> names = ['Matthew', 'Mark', 'John']
>>> query(names).contains('MARK', insensitive_eq)
True

Records

In all of the examples in this documentation so far, the data to be queried has either been represented as combinations
of built-in Python types such as lists and dictionaries, or we have needed define specific classes to represented our
data. Sometimes there’s a need for a type without the syntactic clutter of say dictionaries, but without the overhead of
creating a whole class with methods; you just want to bunch some data together. The Record type provided by asq
fulfills this need. A convenience function called new() can be used to concisely create Records. To use new, just pass
in named arguments to define the Record properties:

>>> product = new(id=5723, name="Mouse", price=33, total_revenue=23212)
>>> product
Record(id=5723, price=33, total_revenue=23212, name='Mouse')

And retrieve properties using regular Python attribute syntax:

>>> product.price
33

This can be useful when we want to carry several derived values through a query such as in this example where we
create Records containing the full names and highest score of students, we then sort the records by the high score:

>>> from pupils import students
>>> students
[{'lastname': 'Blogs', 'firstname': 'Joe', 'scores': [56, 23, 21, 89]},

14 Chapter 1. Contents

asq Documentation, Release 1.3a

{'lastname': 'Doe', 'firstname': 'John', 'scores': [34, 12, 92, 93]},
{'lastname': 'Doe', 'firstname': 'Jane', 'scores': [33, 94, 91, 13]},
{'lastname': 'Nordmann', 'firstname': 'Ola', 'scores': [98, 23, 98, 87]},
{'lastname': 'Nordmann', 'firstname': 'Kari', 'scores': [86, 37, 88, 87]},
{'lastname': 'Rossi', 'firstname': 'Mario', 'scores': [37, 95, 45, 18]}]

>>> query(students).select(lambda s: new(name="{firstname} {lastname}".format(**s),
... high_score=max(s['scores']))) \
... .order_by(a_('high_score').to_list()
[Record(high_score=88, name='Kari Nordmann'),
Record(high_score=89, name='Joe Blogs'),
Record(high_score=93, name='John Doe'),
Record(high_score=94, name='Jane Doe'),
Record(high_score=95, name='Mario Rossi'),
Record(high_score=98, name='Ola Nordmann')]

Debugging

With potentially so much deferred execution occurring, debugging asq query expressions using tools such as debug-
gers can be challenging. Furthermore, since queries are expressions use of statements such as Python 2 print can be
awkward.

To ease debugging, asq provides a logging facility which can be used to display intermediate results with an optional
ability for force full, rather than lazy, evaluation of sequences.

To demonstrate, let’s start with a bug-ridden implementation of Fizz-Buzz implemented with asq. Fizz-Buzz is a
game where the numbers 1 to 100 are read aloud but for numbers divisible by three “Fizz” is shouted, and for numbers
divisible by five, “Buzz” is shouted.

>>> from asq.initiators import integers
>>> integers(1, 100).select(lambda x: "Fizz" if x % 3 == 0 else x) \
... .select(lambda x: "Buzz" if x % 5 == 0 else x).to_list()

At a glance this looks like it should work, but when run we get:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "asq/queryables.py", line 1910, in to_list
lst = list(self)

File "<stdin>", line 1, in <lambda>
TypeError: not all arguments converted during string formatting

To investigate further it would be useful to examine the intermediate results. We can do this using the log() query
operator, which accepts any logger supporting a debug(message) method. We can get just such a logger from the
Python standard library logging module:

>>> import logging
>>> clog = logging.getLogger("clog")
>>> clog.setLevel(logging.DEBUG)

which creates a console logger we have called clog:

>>> from asq.initiators import integers
>>> integers(1, 100) \
... .select(lambda x: "Fizz" if x % 3 == 0 else x).log(clog, label="Fizz select"). \
... .select(lambda x: "Buzz" if x % 5 == 0 else x).to_list()
DEBUG:clog:Fizz select : BEGIN (DEFERRED)

1.2. Narrative Documentation 15

asq Documentation, Release 1.3a

DEBUG:clog:Fizz select : [0] yields 1
DEBUG:clog:Fizz select : [1] yields 2
DEBUG:clog:Fizz select : [2] yields 'Fizz'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "asq/queryables.py", line 1910, in to_list
lst = list(self)

File "<stdin>", line 1, in <lambda>
TypeError: not all arguments converted during string formatting

so we can see the the first select operator yields 1, 2, ‘Fizz’ before the failure. Now it’s perhaps more obvious that
when x in the second lambda is equal to ‘Fizz’ the % operator will be operating on a string on its left-hand side and so
the `% will perform string interpolation rather than modulus. This is the cause of the error we see.

We can fix this by not applying the modulus operator in the case that x is ‘Fizz’:

>>> integers(1, 100).select(lambda x: "Fizz" if x % 3 == 0 else x).log(clog, label=
→˓"Fizz select") \

.select(lambda x: "Buzz" if x != "Fizz" and x % 5 == 0 else x).to_
→˓list()
DEBUG:clog:Fizz select : BEGIN (DEFERRED)
DEBUG:clog:Fizz select : [0] yields 1
DEBUG:clog:Fizz select : [1] yields 2
DEBUG:clog:Fizz select : [2] yields 'Fizz'
DEBUG:clog:Fizz select : [3] yields 4
DEBUG:clog:Fizz select : [4] yields 5
DEBUG:clog:Fizz select : [5] yields 'Fizz'
DEBUG:clog:Fizz select : [6] yields 7
DEBUG:clog:Fizz select : [7] yields 8
DEBUG:clog:Fizz select : [8] yields 'Fizz'
DEBUG:clog:Fizz select : [9] yields 10
DEBUG:clog:Fizz select : [10] yields 11
DEBUG:clog:Fizz select : [11] yields 'Fizz'
DEBUG:clog:Fizz select : [12] yields 13
DEBUG:clog:Fizz select : [13] yields 14
DEBUG:clog:Fizz select : [14] yields 'Fizz'
DEBUG:clog:Fizz select : [15] yields 16
DEBUG:clog:Fizz select : [16] yields 17
...
DEBUG:clog2:Fizz select : [98] yields 'Fizz'
DEBUG:clog2:Fizz select : [99] yields 100
DEBUG:clog2:Fizz select : END (DEFERRED)
[1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7, 8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14,
'Fizz', 16, 17, 'Fizz', 19, 'Buzz', 'Fizz', 22, 23, 'Fizz', 'Buzz', 26,
'Fizz', 28, 29, 'Fizz', 31, 32, 'Fizz', 34, 'Buzz', 'Fizz', 37, 38, 'Fizz',
'Buzz', 41, 'Fizz', 43, 44, 'Fizz', 46, 47, 'Fizz', 49, 'Buzz', 'Fizz', 52,
53, 'Fizz', 'Buzz', 56, 'Fizz', 58, 59, 'Fizz', 61, 62, 'Fizz', 64, 'Buzz',
'Fizz', 67, 68, 'Fizz', 'Buzz', 71, 'Fizz', 73, 74, 'Fizz', 76, 77, 'Fizz',
79, 'Buzz', 'Fizz', 82, 83, 'Fizz', 'Buzz', 86, 'Fizz', 88, 89, 'Fizz', 91,
92, 'Fizz', 94, 'Buzz', 'Fizz', 97, 98, 'Fizz', 'Buzz']

That problem is solved, but inspection of the output shows that our query expression produces incorrect results for
those numbers which are multiples of both 3 and 5, such as 15, for which we should be returning ‘FizzBuzz’. For the
sake of completeness, let’s modify the expression to deal with this:

>>> integers(1, 100).select(lambda x: "FizzBuzz" if x % 15 == 0 else x) \
.select(lambda x: "Fizz" if x != "FizzBuzz" and x % 3 == 0 else

→˓x) \

16 Chapter 1. Contents

asq Documentation, Release 1.3a

.select(lambda x: "Buzz" if x != "FizzBuzz" and x != "Fizz" and x
→˓% 5 == 0 else x).to_list()
[1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7, 8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14,
'FizzBuzz', 16, 17, 'Fizz', 19, 'Buzz', 'Fizz', 22, 23, 'Fizz', 'Buzz', 26,
'Fizz', 28, 29, 'FizzBuzz', 31, 32, 'Fizz', 34, 'Buzz', 'Fizz', 37, 38,
'Fizz', 'Buzz', 41, 'Fizz', 43, 44, 'FizzBuzz', 46, 47, 'Fizz', 49, 'Buzz',
'Fizz', 52, 53, 'Fizz', 'Buzz', 56, 'Fizz', 58, 59, 'FizzBuzz', 61, 62,
'Fizz', 64, 'Buzz', 'Fizz', 67, 68, 'Fizz', 'Buzz', 71, 'Fizz', 73, 74,
'FizzBuzz', 76, 77, 'Fizz', 79, 'Buzz', 'Fizz', 82, 83, 'Fizz', 'Buzz', 86,
'Fizz', 88, 89, 'FizzBuzz', 91, 92, 'Fizz', 94, 'Buzz', 'Fizz', 97, 98,
'Fizz', 'Buzz']

Extending asq

For .NET developers

The @extend decorator described here performs the same role as C# extension methods to IEnumerable play in
Microsoft’s LINQ.

The fluent interface of asq works by chaining method calls on Queryable types, so to extend asq with new query
operators must be able to add methods to Queryable. New methods added in this way must have a particular structure
in order to be usable in the middle of a query chain.

To define a new query operator, use the @extend function decorator from the asq.extension package to decorator
a module scope function. To illustrate, let’s add a new operator which adds a separating item between existing items:

@extend(Queryable)
def separate_with(self, separator):

'''Insert a separator between items.

Note: This method uses deferred execution.

Args:
separator: The separating element to be inserted between each source

element.

Returns:
A Queryable over the separated sequence.

'''

Validate the arguments. It is important to validate the arguments
eagerly, when the operator called, rather than when the result is
evaluated to ease debugging.
if self.closed():

raise ValueError("Attempt to call separate_with() on a closed Queryable.")

In order to get deferred execution (lazy evaluation) we need to define
a generator. This generator is also a closure over the parameters to
separate_with, namely 'self' and 'separator'.
def generator():

Create an iterator over the source sequence - self is a Queryable
which is iterable.
i = iter(self)

Attempt to yield the first element, which may or may not exist;

1.2. Narrative Documentation 17

asq Documentation, Release 1.3a

next() will raise StopIteration if it does not, so we exit.
try:

yield next(i)
except StopIteration:

return

Alternately yield a separator and the next element for all
remaining elements in the source sequence.
for item in i:

yield separator
yield item

Create a new Queryable from the generator, by calling the _create()
factory function, rather than by calling the Queryable constructor
directly. This ensures that the correct subclass of Queryable is
created.
return self._create(generator())

The @extend decorator installs the new operator so it may be used immediately:

a = [1, 4, 9, 2, 3]
query(a).select(lambda x: x*x).separate_with(0).to_list()

which gives:

[1, 0, 16, 0, 81, 0, 4, 0, 9]

1.3 Reference Documentation

Descriptions and examples for every public function, class and method in asq.

1.3.1 API Reference

asq

asq.initiators

Initiators are factory functions for creating Queryables.

Initiators are so-called because they are used to initiate a query expression using the fluent interface of asq which
uses method-chaining to compose complex queries from the query operators provided by queryables.

query Make an iterable queryable.
empty An empty Queryable.
integers Generates in sequence the integral numbers within a range.
repeat Generate a sequence with one repeated value.

asq.initiators.query(iterable)
Make an iterable queryable.

Use this function as an entry-point to the asq system of chainable query methods.

18 Chapter 1. Contents

asq Documentation, Release 1.3a

Note: Currently this factory only provides support for objects supporting the iterator protocol. Future imple-
mentations may support other providers.

Parameters iterable – Any object supporting the iterator protocol.

Returns An instance of Queryable.

Raises TypeError - If iterable is not actually iterable

Examples

Create a queryable from a list:

>>> from asq.initiators import query
>>> a = [1, 7, 9, 4, 3, 2]
>>> q = query(a)
>>> q
Queryable([1, 7, 9, 4, 3, 2])
>>> q.to_list()
[1, 7, 9, 4, 3, 2]

asq.initiators.empty()
An empty Queryable.

Note: The same empty instance will be returned each time.

Returns A Queryable over an empty sequence.

Examples

Create a queryable from a list:

>>> from asq.initiators import empty
>>> q = empty()
>>> q
Queryable(())
>>> q.to_list()
[]

See that empty() always returns the same instance:

>>> a = empty()
>>> b = empty()
>>> a is b
True

asq.initiators.integers(start, count)
Generates in sequence the integral numbers within a range.

Note: This method uses deferred execution.

1.3. Reference Documentation 19

asq Documentation, Release 1.3a

Parameters

• start – The first integer in the sequence.

• count – The number of sequential integers to generate.

Returns A Queryable over the specified range of integers.

Raises ValueError - If count is negative.

Examples

Create the first five integers:

>>> from asq.initiators import integers
>>> numbers = integers(0, 5)
>>> numbers
Queryable(range(0, 5))
>>> numbers.to_list()
[0, 1, 2, 3, 4]

asq.initiators.repeat(element, count)
Generate a sequence with one repeated value.

Note: This method uses deferred execution.

Parameters

• element – The value to be repeated.

• count – The number of times to repeat the value.

Raises ValueError - If the count is negative.

Examples

Repeat the letter x five times:

>>> from asq.initiators import repeat
>>> q = repeat('x', 5)
>>> q
Queryable(repeat('x', 5))
>>> q.to_list()
['x', 'x', 'x', 'x', 'x']

asq.queryables

Classes which support the Queryable interface.

asq.queryables.Queryable

class asq.queryables.Queryable(iterable)
Queries over iterables executed serially.

20 Chapter 1. Contents

asq Documentation, Release 1.3a

Queryable objects are constructed from iterables.

Queryable.__contains__ Support for membership testing using the ‘in’ op-
erator.

Queryable.__enter__ Support for the context manager protocol.
Queryable.__eq__ Determine value equality with another iterable.
Queryable.__exit__ Support for the context manager protocol.
Queryable.__getitem__ Support for indexing into the sequence using

square brackets.
Queryable.__init__ Construct a Queryable from any iterable.
Queryable.__iter__ Support for the iterator protocol.
Queryable.__ne__ Determine value inequality with another iterable.
Queryable.__reversed__ Support for sequence reversal using the reversed()

built-in.
Queryable.__repr__ Returns a stringified representation of the

Queryable.
Queryable.__str__ Returns a stringified representation of the

Queryable.
Queryable.aggregate Apply a function over a sequence to produce a sin-

gle result.
Queryable.all Determine if all elements in the source sequence

satisfy a condition.
Queryable.any Determine if the source sequence contains any el-

ements which satisfy the predicate.
Queryable.as_parallel Return a ParallelQueryable for parallel execution

of queries.
Queryable.average Return the arithmetic mean of the values in the

sequence..
Queryable.close Closes the queryable.
Queryable.closed Determine whether the Queryable has been

closed.
Queryable.concat Concatenates two sequences.
Queryable.contains Determines whether the sequence contains a par-

ticular value.
Queryable.count Return the number of elements (which match an

optional predicate).
Queryable.default_if_empty If the source sequence is empty return a single

element sequence containing the supplied default
value, otherwise return the source sequence un-
changed.

Queryable.difference Returns those elements which are in the source se-
quence which are not in the second_iterable.

Queryable.distinct Eliminate duplicate elements from a sequence.
Queryable.element_at Return the element at ordinal index.
Queryable.first The first element in a sequence (optionally satis-

fying a predicate).
Queryable.first_or_default The first element (optionally satisfying a predi-

cate) or a default.
Queryable.group_by Groups the elements according to the value of a

key extracted by a selector function.
Queryable.group_join Match elements of two sequences using keys and

group the results.
Continued on next page

1.3. Reference Documentation 21

asq Documentation, Release 1.3a

Table 1.2 – continued from previous page
Queryable.intersect Returns those elements which are both in the

source sequence and in the second_iterable.
Queryable.join Perform an inner join with a second sequence us-

ing selected keys.
Queryable.last The last element in a sequence (optionally satisfy-

ing a predicate).
Queryable.last_or_default The last element (optionally satisfying a predi-

cate) or a default.
Queryable.log Log query result consumption details to a logger.
Queryable.max Return the maximum value in a sequence.
Queryable.min Return the minimum value in a sequence.
Queryable.of_type Filters elements according to whether they are of

a certain type.
Queryable.order_by Sorts by a key in ascending order.
Queryable.order_by_descending Sorts by a key in descending order.
Queryable.select Transforms each element of a sequence into a new

form.
Queryable.select_many Projects each element of a sequence to an inter-

mediate new sequence, flattens the resulting se-
quences into one sequence and optionally trans-
forms the flattened sequence using a selector func-
tion.

Queryable.select_many_with_correspondenceProjects each element of a sequence to an inter-
mediate new sequence, and flattens the resulting
sequence, into one sequence and uses a selector
function to incorporate the corresponding source
for each item in the result sequence.

Queryable.select_many_with_index Projects each element of a sequence to an interme-
diate new sequence, incorporating the index of the
element, flattens the resulting sequence into one
sequence and optionally transforms the flattened
sequence using a selector function.

Queryable.select_with_correspondenceApply a callable to each element in an input se-
quence, generating a new sequence of 2-tuples
where the first element is the input value and the
second is the transformed input value.

Queryable.select_with_index Transforms each element of a sequence into a new
form, incorporating the index of the element.

Queryable.sequence_equal Determine whether two sequences are equal by el-
ementwise comparison.

Queryable.single The only element (which satisfies a condition).
Queryable.single_or_default The only element (which satisfies a condition) or

a default.
Queryable.skip Skip the first count contiguous elements of the

source sequence.
Queryable.skip_while Omit elements from the start for which a predicate

is True.
Queryable.sum Return the arithmetic sum of the values in the se-

quence..
Queryable.take Returns a specified number of elements from the

start of a sequence.
Continued on next page

22 Chapter 1. Contents

asq Documentation, Release 1.3a

Table 1.2 – continued from previous page
Queryable.take_while Returns elements from the start while the predi-

cate is True.
Queryable.to_dictionary Build a dictionary from the source sequence.
Queryable.to_list Convert the source sequence to a list.
Queryable.to_lookup Returns a Lookup object, using the provided se-

lector to generate a key for each item.
Queryable.to_set Convert the source sequence to a set.
Queryable.to_str Build a string from the source sequence.
Queryable.to_tuple Convert the source sequence to a tuple.
Queryable.union Returns those elements which are either in the

source sequence or in the second_iterable, or in
both.

Queryable.where Filters elements according to whether they match
a predicate.

Queryable.zip Elementwise combination of two sequences.

__contains__(item)
Support for membership testing using the ‘in’ operator.

Parameters item – The item for which to test membership.
Returns True if item is in the sequence, otherwise False.

Note: A chainable query operator called contains() (no underscores) is also provided.

Example

Test whether 49 is one of the squares of two, seven or nine:

>>> a = [2, 7, 9]
>>> 49 in query(a).select(lambda x: x*x)
True

__enter__()
Support for the context manager protocol.

__eq__(rhs)
Determine value equality with another iterable.

Parameters rhs – Any iterable collection.
Returns True if the sequences are equal in value, otherwise False.

Note: This in the infix operator equivalent of the sequence_equal() query operator.

Examples

Test whether a sequence is equal to a list:

>>> expected = [2, 4, 8, 16, 32]
>>> range(1, 5).select(lambda x: x ** 2) == expected
True

1.3. Reference Documentation 23

asq Documentation, Release 1.3a

__exit__(type, value, traceback)
Support for the context manager protocol.

Ensures that close() is called on the Queryable.

__getitem__(index)
Support for indexing into the sequence using square brackets.

Equivalent to element_at().
Parameters index – The index should be between zero and count() - 1 inclusive.

Negative indices are not interpreted in the same way they are for built-in lists, and
are considered out-of-range.

Returns The value of the element at offset index into the sequence.
Raises

• ValueError - If the Queryable is closed().
• IndexError - If the index is out-of-range.

Note: A chainable query operator called element_at() is also provided.

Examples

Retrieve the fourth element of a greater than six:

>>> a = [7, 3, 9, 2, 1, 10, 11, 4, 13]
>>> query(a).where(lambda x: x > 6)[3]
11

__init__(iterable)
Construct a Queryable from any iterable.

Parameters iterable – Any object supporting the iterator protocol.
Raises TypeError - if iterable does not support the iterator protocol.

Example

Initialise a queryable from a list:

>>> a = [1, 5, 7, 8]
>>> queryable = Queryable(a)

Note: The query(iterable) initiator should normally be used in preference to calling the
Queryable constructor directly.

__iter__()
Support for the iterator protocol.

Allows Queryable instances to be used anywhere an iterable is required.
Returns An iterator over the values in the query result.
Raises ValueError - If the Queryable has been closed().

Note: This method should not usually be called directly; use the iter() built-in or other
Python constructs which check for the presence of __iter__(), such as for loops.

24 Chapter 1. Contents

asq Documentation, Release 1.3a

Examples

Call __iter__() indirectly through the iter() built-in to obtain an iterator over the query
results:

>>> a = [8, 9, 2]
>>> q = query(a)
>>> iterator = iter(q)
>>> next(iterator)
8
>>> next(iterator)
9
>>> next(iterator)
2
>>> next(iterator)
StopIteration

Call __iter__() indirectly by using a for loop:

>>> a = [1, 9, 4]
>>> q = query(a)
>>> for v in q:
... print(v)
...
1
9
4

__ne__(rhs)
Determine value inequality with another iterable.

Parameters rhs – Any iterable collection.
Returns True if the sequences are inequal in value, otherwise False.

Examples

Test whether a sequence is not equal to a list:

>>> expected = [1, 2, 3]
>>> range(1, 5).select(lambda x: x ** 2) != expected
True

__reversed__()
Support for sequence reversal using the reversed() built-in.

Called by reversed() to implement reverse iteration.

Equivalent to the reverse() method.
Returns A Queryable over the reversed sequence.
Raises ValueError - If the Queryable is closed().

Note: A chainable query operator called reverse() is also provided.

Note: This method should not usually be called directly; use the reversed() built-in or
other Python constructs which check for the presence of __reversed__().

1.3. Reference Documentation 25

asq Documentation, Release 1.3a

Example

Create a reverse iterator over a queryable for use with a for loop:

>>> a = [7, 3, 9, 2, 1]
>>> q = query(a)
>>> for v in reversed(q):
... print(v)
...
1
2
9
3
7

__repr__()
Returns a stringified representation of the Queryable.

The string will not necessarily contain the sequence data.
Returns A stringified representation of the Queryable.

Note: This method should not usually be called directly; use the str() built-in or other
Python constructs which check for the presence of __str__ such as string interpolation functions.

Provide a string representation of the Queryable using the repr() built-in:

>>> a = [9, 7, 8]
>>> q = query(a)
>>> str(q)
'Queryable([9, 7, 8])'

__str__()
Returns a stringified representation of the Queryable.

The string will necessarily contain the sequence data.
Returns A stringified representation of the Queryable.

Note: This method should not usually be called directly; use the str() built-in or other
Python constructs which check for the presence of __str__ such as string interpolation functions.

Note: In order to convert the Queryable sequence to a string based on the element values,
consider using the to_str() method.

Example

Convert the Queryable to a string using the str() built-in:

>>> a = [9, 7, 8]
>>> q = query(a)
>>> str(q)
'Queryable([9, 7, 8])'

26 Chapter 1. Contents

asq Documentation, Release 1.3a

aggregate(reducer, seed=sentinel, result_selector=identity)
Apply a function over a sequence to produce a single result.

Apply a binary function cumulatively to the elements of the source sequence so as to reduce the
iterable to a single value.

Note: This method uses immediate execution.

Parameters
• reducer – A binary function the first positional argument of which is an accu-

mulated value and the second is the update value from the source sequence. The
return value should be the new accumulated value after the update value has been
incorporated.

• seed – An optional value used to initialise the accumulator before iteration over
the source sequence. If seed is omitted the and the source sequence contains only
one item, then that item is returned.

• result_selector – An optional unary function applied to the final accumu-
lator value to produce the result. If omitted, defaults to the identity function.

Raises
• ValueError - If called on an empty sequence with no seed value.
• TypeError - If reducer is not callable.
• TypeError - If result_selector is not callable.

Examples

Compute the product of a list of numbers:

>>> numbers = [4, 7, 3, 2, 1, 9]
>>> query(numbers).aggregate(lambda accumulator, update: accumulator
→˓* update)
1512

Concatenate strings to an initial seed value:

>>> cheeses = ['Cheddar', 'Stilton', 'Cheshire', 'Beaufort', 'Brie']
>>> query(cheeses).aggregate(lambda a, u: a + ' ' + u, seed="Cheeses:
→˓")
'Cheeses: Cheddar Stilton Cheshire Beaufort Brie'

Concatenate text fragments using operator.add() and return the number of words:

>>> from operator import add
>>> fragments = ['The quick ', 'brown ', 'fox jumped over ', 'the ',
→˓'lazy dog.']
>>> query(fragments).aggregate(add, lambda result: len(result.
→˓split()))
9

all(predicate=bool)
Determine if all elements in the source sequence satisfy a condition.

All of the source sequence will be consumed.

1.3. Reference Documentation 27

asq Documentation, Release 1.3a

Note: This method uses immediate execution.

Parameters predicate (callable) – An optional single argument function used
to test each elements. If omitted, the bool() function is used resulting in the elements
being tested directly.

Returns True if all elements in the sequence meet the predicate condition, otherwise
False.

Raises
• ValueError - If the Queryable is closed()
• TypeError - If predicate is not callable.

Examples

Determine whether all values evaluate to True in a boolean context:

>>> items = [5, 2, "camel", 3.142, (3, 4, 9)]
>>> query(objects).all()
True

Check that all numbers are divisible by 13:

>>> numbers = [260, 273, 286, 299, 312, 325, 338, 351, 364, 377]
>>> query(numbers).all(lambda x: x % 13 == 0)
True

any(predicate=None)
Determine if the source sequence contains any elements which satisfy the predicate.

Only enough of the sequence to satisfy the predicate once is consumed.

Note: This method uses immediate execution.

Parameters predicate – An optional single argument function used to test each
element. If omitted, or None, this method returns True if there is at least one element
in the source.

Returns True if the sequence contains at least one element which satisfies the predi-
cate, otherwise False.

Raises ValueError - If the Queryable is closed()

Examples

Determine whether the sequence contains any items:

>>> items = [0, 0, 0]
>>> query(items).any()
True

Determine whether the sequence contains any items which are a multiple of 13:

>>> numbers = [98, 458, 32, 876, 12, 9, 325]
>>> query(numbers).any(lambda x: x % 13 == 0)
True

28 Chapter 1. Contents

asq Documentation, Release 1.3a

as_parallel(pool=None)
Return a ParallelQueryable for parallel execution of queries.

Warning: This feature should be considered experimental alpha quality.

Parameters pool – An optional multiprocessing pool which will provide execution
resources for parellel processing. If omitted, a pool will be created if necessary and
managed internally.

Returns A ParallelQueryable on which all the standard query operators may be called.

average(selector=identity)
Return the arithmetic mean of the values in the sequence..

All of the source sequence will be consumed.

Note: This method uses immediate execution.

Parameters selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the identity function is used.

Returns The arithmetic mean value of the projected sequence.
Raises

• ValueError - If the Queryable has been closed.
• ValueError - I the source sequence is empty.

Examples

Compute the average of some numbers:

>>> numbers = [98, 458, 32, 876, 12, 9, 325]
>>> query(numbers).average()
258.57142857142856

Compute the mean square of a sequence:

>>> numbers = [98, 458, 32, 876, 12, 9, 325]
>>> query(numbers).average(lambda x: x*x)
156231.14285714287

close()
Closes the queryable.

The Queryable should not be used following a call to close. This method is idempotent. Other
calls to a Queryable following close() will raise ValueError.

closed()
Determine whether the Queryable has been closed.

Returns True if closed, otherwise False.

concat(second_iterable)
Concatenates two sequences.

1.3. Reference Documentation 29

asq Documentation, Release 1.3a

Note: This method uses deferred execution.

Parameters second_iterable – The sequence to concatenate on to the sequence.
Returns A Queryable over the concatenated sequences.
Raises

• ValueError - If the Queryable is closed().
• TypeError - If second_iterable is not in fact iterable.

Example

Concatenate two sequences of numbers:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).concat([98, 23, 23, 12]).to_list()
[1, 45, 23, 34, 98, 23, 23, 12]

contains(value, equality_comparer=operator.eq)
Determines whether the sequence contains a particular value.

Execution is immediate. Depending on the type of the sequence, all or none of the sequence
may be consumed by this operation.

Note: This method uses immediate execution.

Parameters value – The value to test for membership of the sequence
Returns True if value is in the sequence, otherwise False.
Raises ValueError - If the Queryable has been closed.

Example

Check whether a sentence contains a particular word:

>>> words = ['A', 'man', 'a', 'plan', 'a', 'canal', 'Panama']
>>> words.contains('plan')
True

Check whether a sentence contains a particular word with a case- insensitive check:

>>> words = ['A', 'man', 'a', 'plan', 'a', 'canal', 'Panama']
>>> query(words).contains('panama',
... lambda lhs, rhs: lhs.lower() == rhs.lower())
True

count(predicate=None)
Return the number of elements (which match an optional predicate).

Note: This method uses immediate execution.

Parameters predicate – An optional unary predicate function used to identify el-
ements which will be counted. The single positional argument of the function is the
element value. The function should return True or False.

30 Chapter 1. Contents

asq Documentation, Release 1.3a

Returns The number of elements in the sequence if the predicate is None (the de-
fault), or if the predicate is supplied the number of elements for which the predicate
evaluates to True.

Raises
• ValueError - If the Queryable is closed().
• TypeError - If predicate is neither None nor a callable.

Examples

Count the number of elements in a sequence:

>>> people = ['Sheila', 'Jim', 'Fred']
>>> query(people).count()
3

Count the number of names containing the letter ‘i’:

>>> people = ['Sheila', 'Jim', 'Fred']
>>> query(people).count(lambda s: 'i' in s)
3

default_if_empty(default)
If the source sequence is empty return a single element sequence containing the supplied default
value, otherwise return the source sequence unchanged.

Note: This method uses deferred execution.

Parameters default – The element to be returned if the source sequence is empty.
Returns The source sequence, or if the source sequence is empty an sequence con-

taining a single element with the supplied default value.
Raises ValueError - If the Queryable has been closed.

Examples

An empty sequence triggering the default return:

>>> e = []
>>> query(e).default_if_empty(97).to_list()
[97]

A non-empty sequence passing through:

>>> f = [70, 45, 34]
>>> query(f).default_if_empty(97).to_list()
[70, 45, 34]

difference(second_iterable, selector=identity)
Returns those elements which are in the source sequence which are not in the second_iterable.

This method is equivalent to the Except() LINQ operator, renamed to a valid Python identifier.

Note: This method uses deferred execution, but as soon as execution commences the entirety
of the second_iterable is consumed; therefore, although the source sequence may be infinite the

1.3. Reference Documentation 31

asq Documentation, Release 1.3a

second_iterable must be finite.

Parameters
• second_iterable – Elements from this sequence are excluded from the re-

turned sequence. This sequence will be consumed in its entirety, so must be finite.
• selector – A optional single argument function with selects from the elements

of both sequences the values which will be compared for equality. If omitted the
identity function will be used.

Returns A sequence containing all elements in the source sequence except those
which are also members of the second sequence.

Raises
• ValueError - If the Queryable has been closed.
• TypeError - If the second_iterable is not in fact iterable.
• TypeError - If the selector is not callable.

Examples

Numbers in the first list which are not in the second list:

>>> a = [0, 2, 4, 5, 6, 8, 9]
>>> b = [1, 3, 5, 7, 8]
>>> query(a).difference(b).to_list()
[0, 2, 4, 6, 9]

Countries in the first list which are not in the second list, compared in a case-insensitive manner:

>>> a = ['UK', 'Canada', 'qatar', 'china', 'New Zealand', 'Iceland']
>>> b = ['iceland', 'CANADA', 'uk']
>>> query(a).difference(b, lambda x: x.lower()).to_list()
['qatar', 'china', 'New Zealand']

distinct(selector=identity)
Eliminate duplicate elements from a sequence.

Note: This method uses deferred execution.

Parameters selector – An optional single argument function the result of which is
the value compared for uniqueness against elements already consumed. If omitted,
the element value itself is compared for uniqueness.

Returns Unique elements of the source sequence as determined by the selector func-
tion. Note that it is unprojected elements that are returned, even if a selector was
provided.

Raises
• ValueError - If the Queryable is closed.
• TypeError - If the selector is not callable.

Examples

Remove duplicate numbers:

32 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> d = [0, 2, 4, 5, 6, 8, 9, 1, 3, 5, 7, 8]
>>> query(d).distinct().to_list()
[0, 2, 4, 5, 6, 8, 9, 1, 3, 7]

A sequence such that no two numbers in the result have digits which sum to the same value:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> def sum_of_digits(num):
... return sum(int(i) for i in str(num))
...
>>> query(e).distinct(sum_of_digits).to_list()
[10, 34, 56, 11, 89]

element_at(index)
Return the element at ordinal index.

Note: This method uses immediate execution.

Parameters index – The index of the element to be returned.
Returns The element at ordinal index in the source sequence.
Raises

• ValueError - If the Queryable is closed().
• ValueError - If index is out of range.

Example

Retrieve the fifth element from a list:

>>> f = [10, 34, 56, 11, 89]
>>> query(f).element_at(4)
89

first(predicate=None)
The first element in a sequence (optionally satisfying a predicate).

If the predicate is omitted or is None this query returns the first element in the sequence; oth-
erwise, it returns the first element in the sequence for which the predicate evaluates to True.
Exceptions are raised if there is no such element.

Note: This method uses immediate execution.

Parameters predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for matching elements,
otherwise False. If the predicate is omitted or None the first element of the source
sequence will be returned.

Returns The first element of the sequence if predicate is None, otherwise the first
element for which the predicate returns True.

Raises
• ValueError - If the Queryable is closed.
• ValueError - If the source sequence is empty.
• ValueError - If there are no elements matching the predicate.
• TypeError - If the predicate is not callable.

1.3. Reference Documentation 33

asq Documentation, Release 1.3a

Examples

Retrieve the first element of a sequence:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first()
10

Retrieve the first element of a sequence divisible by seven:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first(lambda x: x % 7 == 0)
56

first_or_default(default, predicate=None)
The first element (optionally satisfying a predicate) or a default.

If the predicate is omitted or is None this query returns the first element in the sequence; oth-
erwise, it returns the first element in the sequence for which the predicate evaluates to True. If
there is no such element the value of the default argument is returned.

Note: This method uses immediate execution.

Parameters
• default – The value which will be returned if either the sequence is empty or

there are no elements matching the predicate.
• predicate – An optional unary predicate function, the only argument to which

is the element. The return value should be True for matching elements, otherwise
False. If the predicate is omitted or None the first element of the source sequence
will be returned.

Returns The first element of the sequence if predicate is None, otherwise the first
element for which the predicate returns True. If there is no such element, the default
argument is returned.

Raises
• ValueError - If the Queryable is closed.
• TypeError - If the predicate is not callable.

Examples

Retrieve the first element of a sequence:

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first_or_default(14)
10

Return the default when called on an empty sequence:

>>> f = []
>>> query(f).first_or_default(17)
17

Retrieve the first element of a sequence divisible by eight:

34 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> e = [10, 34, 56, 43, 74, 25, 11, 89]
>>> query(e).first_or_default(10, lambda x: x % 8 == 0)
56

group_by(key_selector=identity, element_selector=identity, result_selector=lambda key,
grouping: grouping)

Groups the elements according to the value of a key extracted by a selector function.

Note: This method has different behaviour to itertools.groupby in the Python standard library
because it aggregates all items with the same key, rather than returning groups of consecutive
items of the same key.

Note: This method uses deferred execution, but consumption of a single result will lead to
evaluation of the whole source sequence.

Parameters
• key_selector – An optional unary function used to extract a key from each

element in the source sequence. The default is the identity function.
• element_selector – A optional unary function to map elements in the source

sequence to elements in a resulting Grouping. The default is the identity function.
• result_selector – An optional binary function to create a result from each

group. The first positional argument is the key identifying the group. The second
argument is a Grouping object containing the members of the group. The default
is a function which simply returns the Grouping.

Returns A Queryable sequence of elements of the where each element represents a
group. If the default result_selector is relied upon this is a Grouping object.

Raises
• ValueError - If the Queryable is closed().
• TypeError - If key_selector is not callable.
• TypeError - If element_selector is not callable.
• TypeError - If result_selector is not callable.

Examples

Group numbers by the remainder when dividing them by five:

>>> numbers = [10, 34, 56, 43, 74, 25, 11, 89]
>>> groups = query(e).group_by(lambda x: x % 5).to_list()
>>> groups
[Grouping(key=0), Grouping(key=4), Grouping(key=1),
Grouping(key=3)]
>>> groups[0].key
0
>>> groups[0].to_list()
[10, 25]
>>> groups[1].key
1
>>> groups[1].to_list()
[34, 74, 89]

Group people by their nationality of the first name, and place only the person’s name in the
grouped result:

1.3. Reference Documentation 35

asq Documentation, Release 1.3a

>>> people = [dict(name="Joe Bloggs", nationality="British"),
... dict(name="Ola Nordmann", nationality="Norwegian"),
... dict(name="Harry Holland", nationality="Dutch"),
... dict(name="Kari Nordmann", nationality="Norwegian"),
... dict(name="Jan Kowalski", nationality="Polish"),
... dict(name="Hans Schweizer", nationality="Swiss"),
... dict(name="Tom Cobbleigh", nationality="British"),
... dict(name="Tommy Atkins", nationality="British")]
>>> groups = query(people).group_by(lambda p: p['nationality'],

lambda p: p['name']).to_list()
>>> groups
[Grouping(key='British'), Grouping(key='Norwegian'),
Grouping(key='Dutch'), Grouping(key='Polish'),
Grouping(key='Swiss')]

>>> groups[0].to_list()
['Joe Bloggs', 'Tom Cobbleigh', 'Tommy Atkins']
>>> groups[1].to_list()
['Ola Nordmann', 'Kari Nordmann']

Determine the number of people in each national group by creating a tuple for each group
where the first element is the nationality and the second element is the number of people of that
nationality:

>>> people = [dict(name="Joe Bloggs", nationality="British"),
... dict(name="Ola Nordmann", nationality="Norwegian"),
... dict(name="Harry Holland", nationality="Dutch"),
... dict(name="Kari Nordmann", nationality="Norwegian"),
... dict(name="Jan Kowalski", nationality="Polish"),
... dict(name="Hans Schweizer", nationality="Swiss"),
... dict(name="Tom Cobbleigh", nationality="British"),
... dict(name="Tommy Atkins", nationality="British")]
>>> groups = query(people).group_by(lambda p: p['nationality'],
... result_selector=lambda key, group: (key, len(group))).to_list()
>>> groups
[('British', 3), ('Norwegian', 2), ('Dutch', 1), ('Polish', 1),
('Swiss', 1)]

group_join(inner_iterable, outer_key_selector=identity, inner_key_selector=identity, re-
sult_selector=lambda outer, grouping: grouping)

Match elements of two sequences using keys and group the results.

The group_join() query produces a hierarchical result, with all of the inner elements in the result
grouped against the matching outer element.

The order of elements from outer is maintained. For each of these the order of elements from
inner is also preserved.

Note: This method uses deferred execution.

Parameters
• inner_iterable – The sequence to join with the outer sequence.
• outer_key_selector – An optional unary function to extract keys from ele-

ments of the outer (source) sequence. The first positional argument of the function
should accept outer elements and the result value should be the key. If omitted,
the identity function is used.

• inner_key_selector – An optional unary function to extract keys from el-

36 Chapter 1. Contents

asq Documentation, Release 1.3a

ements of the inner_iterable. The first positional argument of the function should
accept outer elements and the result value should be the key. If omitted, the iden-
tity function is used.

• result_selector – An optional binary function to create a result element
from an outer element and the Grouping of matching inner elements. The first
positional argument is the outer elements and the second in the Grouping of inner
elements which match the outer element according to the key selectors used. If
omitted, the result elements will be the Groupings directly.

Returns A Queryable over a sequence with one element for each group in the result
as returned by the result_selector. If the default result selector is used, the result is a
sequence of Grouping objects.

Raises
• ValueError - If the Queryable has been closed.
• TypeError - If the inner_iterable is not in fact iterable.
• TypeError - If the outer_key_selector is not callable.
• TypeError - If the inner_key_selector is not callable.
• TypeError - If the result_selector is not callable.

Example

Correlate players with soccer teams using the team name. Group the players within those teams
such that each element of the result sequence contains full information about a team and a
collection of players belonging to that team:

>>> players = [dict(name="Ferdinand", team="Manchester United"),
... dict(name="Cole", team="Chelsea", fee=5),
... dict(name="Crouch", team="Tottenham Hotspur"),
... dict(name="Downing", team="Aston Villa"),
... dict(name="Lampard", team="Chelsea", fee=11),
... dict(name="Rooney", team="Manchester United"),
... dict(name="Scholes", team="Manchester United",
→˓fee=None)]
>>> teams = [dict(name="Manchester United", ground="Old Trafford"),
... dict(name="Chelsea", ground="Stamford Bridge"),
... dict(name="Tottenham Hotspur", ground="White Hart Lane"),
... dict(name="Aston Villa", ground="Villa Park")]
>>> q = query(teams).group_join(players, lambda team: team['name'],
... lambda player: player['team'],
... lambda team, grouping: dict(team=team['name'],
... ground=team['ground'],
... players=grouping)).to_
→˓list()
>>> q
[{'players': Grouping(key='Manchester United'), 'ground': 'Old
→˓Trafford', 'team': 'Manchester United'},
{'players': Grouping(key='Chelsea'), 'ground': 'Stamford Bridge',
→˓'team': 'Chelsea'},
{'players': Grouping(key='Tottenham Hotspur'), 'ground': 'White Hart
→˓Lane', 'team': 'Tottenham Hotspur'},
{'players': Grouping(key='Aston Villa'), 'ground': 'Villa Park',
→˓'team': 'Aston Villa'}]
>>> q[0]['players'].to_list()
[{'name': 'Ferdinand', 'team': 'Manchester United'},
{'name': 'Rooney', 'team': 'Manchester United'},
{'name': 'Scholes', 'team': 'Manchester United'}]

1.3. Reference Documentation 37

asq Documentation, Release 1.3a

intersect(second_iterable, selector=identity)
Returns those elements which are both in the source sequence and in the second_iterable.

Note: This method uses deferred execution.

Parameters
• second_iterable – Elements are returned if they are also in the sequence.
• selector – An optional single argument function which is used to project the

elements in the source and second_iterables prior to comparing them. If omitted
the identity function will be used.

Returns A sequence containing all elements in the source sequence which are also
members of the second sequence.

Raises
• ValueError - If the Queryable has been closed.
• TypeError - If the second_iterable is not in fact iterable.
• TypeError - If the selector is not callable.

Examples

Find all the numbers common to both lists a and b:

>>> a = [1, 6, 4, 2, 6, 7, 3, 1]
>>> b = [6, 2, 1, 9, 2, 5]
>>> query(a).intersect(b).to_list()
[1, 6, 2]

Take those strings from the list a which also occur in list b when compared in a case-insensitive
way:

>>> a = ["Apple", "Pear", "Banana", "Orange", "Strawberry"]
>>> b = ["PEAR", "ORANGE", "BANANA", "RASPBERRY", "BLUEBERRY"]
>>> query(a).intersect(b, lambda s: s.lower()).to_list()
['Pear', 'Banana', 'Orange']

join(inner_iterable, outer_key_selector=identity, inner_key_selector=identity, re-
sult_selector=lambda outer, inner: (outer, inner))

Perform an inner join with a second sequence using selected keys.

The order of elements from outer is maintained. For each of these the order of elements from
inner is also preserved.

Note: This method uses deferred execution.

Parameters
• inner_iterable – The sequence to join with the outer sequence.
• outer_key_selector – An optional unary function to extract keys from ele-

ments of the outer (source) sequence. The first positional argument of the function
should accept outer elements and the result value should be the key. If omitted,
the identity function is used.

• inner_key_selector – An optional unary function to extract keys from el-
ements of the inner_iterable. The first positional argument of the function should
accept outer elements and the result value should be the key. If omitted, the iden-
tity function is used.

38 Chapter 1. Contents

asq Documentation, Release 1.3a

• result_selector – An optional binary function to create a result element
from two matching elements of the outer and inner. If omitted the result elements
will be a 2-tuple pair of the matching outer and inner elements.

Returns A Queryable whose elements are the result of performing an inner- join on
two sequences.

Raises
• ValueError - If the Queryable has been closed.
• TypeError - If the inner_iterable is not in fact iterable.
• TypeError - If the outer_key_selector is not callable.
• TypeError - If the inner_key_selector is not callable.
• TypeError - If the result_selector is not callable.

Examples

Correlate pets with their owners, producing pairs of pet and owner date for each result:

>>> people = ['Minnie', 'Dennis', 'Roger', 'Beryl']
>>> pets = [dict(name='Chester', owner='Minnie'),
... dict(name='Gnasher', owner='Dennis'),
... dict(name='Dodge', owner='Roger'),
... dict(name='Pearl', owner='Beryl')]
>>> query(pets).join(people, lambda pet: pet['owner']).to_list()
[({'owner': 'Minnie', 'name': 'Chester'}, 'Minnie'),
({'owner': 'Dennis', 'name': 'Gnasher'}, 'Dennis'),
({'owner': 'Roger', 'name': 'Dodge'}, 'Roger'),
({'owner': 'Beryl', 'name': 'Pearl'}, 'Beryl')]

or correlate owners with pets, producing more refined results:

>>> query(people).join(pets, inner_key_selector=lambda pet: pet['owner
→˓'],
... result_selector=lambda person, pet: pet['name'] + " is owned by
→˓" + person) \
... .to_list()
['Chester is owned by Minnie',
'Gnasher is owned by Dennis',
'Dodge is owned by Roger',
'Pearl is owned by Beryl']

last(predicate=None)
The last element in a sequence (optionally satisfying a predicate).

If the predicate is omitted or is None this query returns the last element in the sequence; oth-
erwise, it returns the last element in the sequence for which the predicate evaluates to True.
Exceptions are raised if there is no such element.

Note: This method uses immediate execution.

Parameters predicate – An optional unary predicate function, the only argument
to which is the element. The return value should be True for matching elements,
otherwise False. If the predicate is omitted or None the last element of the source
sequence will be returned.

Returns The last element of the sequence if predicate is None, otherwise the last ele-
ment for which the predicate returns True.

1.3. Reference Documentation 39

asq Documentation, Release 1.3a

Raises
• ValueError - If the Queryable is closed.
• ValueError - If the source sequence is empty.
• ValueError - If there are no elements matching the predicate.
• TypeError - If the predicate is not callable.

Examples

Return the last number in this sequence:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last()
34

Return the last number under 30 in this sequence:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last(lambda x: x < 30)
23

last_or_default(default, predicate=None)
The last element (optionally satisfying a predicate) or a default.

If the predicate is omitted or is None this query returns the last element in the sequence; oth-
erwise, it returns the last element in the sequence for which the predicate evaluates to True. If
there is no such element the value of the default argument is returned.

Note: This method uses immediate execution.

Parameters
• default – The value which will be returned if either the sequence is empty or

there are no elements matching the predicate.
• predicate – An optional unary predicate function, the only argument to which

is the element. The return value should be True for matching elements, otherwise
False. If the predicate is omitted or None the last element of the source sequence
will be returned.

Returns The last element of the sequence if predicate is None, otherwise the last el-
ement for which the predicate returns True. If there is no such element, the default
argument is returned.

Raises
• ValueError - If the Queryable is closed.
• TypeError - If the predicate is not callable.

Examples

Return the last number in this sequence:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last()
34

Return the last number under 30 in this sequence:

40 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last(lambda x: x < 30)
23

Trigger return of the default using a sequence with no values which satisfy the predicate:

>>> numbers = [1, 45, 23, 34]
>>> query(numbers).last_or_default(100, lambda x: x > 50)
100

Trigger return of the default using an empty sequence:

>>> numbers = []
>>> query(numbers).last_or_default(37)
37

log(logger=None, label=None, eager=False)
Log query result consumption details to a logger.

Parameters
• logger – Any object which supports a debug() method which accepts a str, such

as a Python standard library logger object from the logging module. If logger is
not provided or is None, this method has no logging side effects.

• label – An optional label which will be inserted into each line of logging output
produced by this particular use of log

• eager – An optional boolean which controls how the query result will be con-
sumed. If True, the sequence will be consumed and logged in its entirety. If False
(the default) the sequence will be evaluated and logged lazily as it consumed.

Warning: Use of eager=True requires use of sufficient memory to hold the entire sequence
which is obviously not possible with infinite sequences. Use with care!

Returns A queryable over the unaltered source sequence.
Raises

• AttributeError - If logger does not support a debug() method.
• ValueError - If the Queryable has been closed.

Examples

These examples log to a console logger called clog which can be created using the following
incantation:

>>> import logging
>>> clog = logging.getLogger("clog")
>>> clog.setLevel(logging.DEBUG)
>>> clog.addHandler(logging.StreamHandler())

By default, log() uses deferred execution, so unless the output of log() is consumed nothing
at all will be logged. In this example nothing is logged to the console because the result of
log() is never consumed:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog)

1.3. Reference Documentation 41

asq Documentation, Release 1.3a

We can easily consume the output of log() by chaining a call to to_list(). Use the default
arguments for log():

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog).to_list()
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓BEGIN (DEFERRED)
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[0] yields 1
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[1] yields 5
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[2] yields 9
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[3] yields 34
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[4] yields 2
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[5] yields 9
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[6] yields 12
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[7] yields 7
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[8] yields 13
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[9] yields 48
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[10] yields 34
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[11] yields 23
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[12] yields 34
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[13] yields 9
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓[14] yields 47
Queryable([1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]) :
→˓END (DEFERRED)
[1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]

The beginning and end of the sequence are delimited by BEGIN and END markers which also
indicated whether logging is DEFERRED so items are logged only as they are requested or
EAGER where the whole sequence will be returns immediately.

From left to right the log output shows:
1. A label, which defaults to the repr() of the Queryable instance being logged.
2. In square brackets the zero-based index of the element being logged.
3. yields <element> showing the element value

Specify a label a more concise label to log():

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query()').to_list()
query() : BEGIN (DEFERRED)
query() : [0] yields 1
query() : [1] yields 5
query() : [2] yields 9
query() : [3] yields 34

42 Chapter 1. Contents

asq Documentation, Release 1.3a

query() : [4] yields 2
query() : [5] yields 9
query() : [6] yields 12
query() : [7] yields 7
query() : [8] yields 13
query() : [9] yields 48
query() : [10] yields 34
query() : [11] yields 23
query() : [12] yields 34
query() : [13] yields 9
query() : [14] yields 47
query() : END (DEFERRED)
[1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]

We can show how the default deferred logging produces only required elements by only con-
suming the first three elements:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query()').take(3).to_list()
query() : BEGIN (DEFERRED)
query() : [0] yields 1
query() : [1] yields 5
query() : [2] yields 9
[1, 5, 9]

However, by setting the eager argument to be True, we can force logging of the whole se-
quence immediately:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query()', eager=True).take(3).to_
→˓list()
query() : BEGIN (EAGER)
query() : [0] = 1
query() : [1] = 5
query() : [2] = 9
query() : [3] = 34
query() : [4] = 2
query() : [5] = 9
query() : [6] = 12
query() : [7] = 7
query() : [8] = 13
query() : [9] = 48
query() : [10] = 34
query() : [11] = 23
query() : [12] = 34
query() : [13] = 9
query() : [14] = 47
query() : END (EAGER)
[1, 5, 9]

Note that in these cases the output has a different format and that use of eager logging in no
way affects the query result.

If logger is None (or omitted), then logging is disabled completely:

>>> query(numbers).log(logger=None, label='query()').take(3).to_list()
[1, 5, 9]

1.3. Reference Documentation 43

asq Documentation, Release 1.3a

Finally, see that log() can be used at multiple points within a query expression:

>>> numbers = [1, 5, 9, 34, 2, 9, 12, 7, 13, 48, 34, 23, 34, 9, 47]
>>> query(numbers).log(clog, label='query(numbers)')
→˓ \
... .select(lambda x: x * x).log(clog, label='squared') \
... .where(lambda x: x > 1000).log(clog, label="over 1000") \
... .take(3).log(clog, label="take 3") \
... .to_list()
take 3 : BEGIN (DEFERRED)
over 1000 : BEGIN (DEFERRED)
squared : BEGIN (DEFERRED)
query(numbers) : BEGIN (DEFERRED)
query(numbers) : [0] yields 1
squared : [0] yields 1
query(numbers) : [1] yields 5
squared : [1] yields 25
query(numbers) : [2] yields 9
squared : [2] yields 81
query(numbers) : [3] yields 34
squared : [3] yields 1156
over 1000 : [0] yields 1156
take 3 : [0] yields 1156
query(numbers) : [4] yields 2
squared : [4] yields 4
query(numbers) : [5] yields 9
squared : [5] yields 81
query(numbers) : [6] yields 12
squared : [6] yields 144
query(numbers) : [7] yields 7
squared : [7] yields 49
query(numbers) : [8] yields 13
squared : [8] yields 169
query(numbers) : [9] yields 48
squared : [9] yields 2304
over 1000 : [1] yields 2304
take 3 : [1] yields 2304
query(numbers) : [10] yields 34
squared : [10] yields 1156
over 1000 : [2] yields 1156
take 3 : [2] yields 1156
take 3 : END (DEFERRED)
[1156, 2304, 1156]

max(selector=identity)
Return the maximum value in a sequence.

All of the source sequence will be consumed.

Note: This method uses immediate execution.

Parameters selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the identity function is used.

Returns The maximum value of the projected sequence.
Raises

• ValueError - If the Queryable has been closed.
• ValueError - If the sequence is empty.

44 Chapter 1. Contents

asq Documentation, Release 1.3a

Examples

Return the maximum value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max()
23

Return the maximum absolute value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max(abs)
45

min(selector=identity)
Return the minimum value in a sequence.

All of the source sequence will be consumed.

Note: This method uses immediate execution.

Parameters selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the identity function is used.

Returns The minimum value of the projected sequence.
Raises

• ValueError - If the Queryable has been closed.
• ValueError - If the sequence is empty.

Examples

Return the minimum value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max()
-45

Return the minimum absolute value from a list of numbers:

>>> numbers = [1, -45, 23, -34, 19]
>>> query(numbers).max(abs)
1

of_type(classinfo)
Filters elements according to whether they are of a certain type.

Note: This method uses deferred execution.

Parameters classinfo – If classinfo is neither a class object nor a type object it
may be a tuple of class or type objects, or may recursively contain other such tuples
(other sequence types are not accepted).

Returns A Queryable over those elements of the source sequence for which the pred-
icate is True.

Raises

1.3. Reference Documentation 45

asq Documentation, Release 1.3a

• ValueError - If the Queryable is closed.
• TypeError - If classinfo is not a class, type, or tuple of classes, types, and

such tuples.

Examples

Return all of the strings from a list:

>>> numbers = ["one", 2.0, "three", "four", 5, 6.0, "seven", 8, "nine
→˓", "ten"]
>>> query(numbers).of_type(int).to_list()
[5, 8]

Return all the integers and floats from a list:

>>> numbers = ["one", 2.0, "three", "four", 5, 6.0, "seven", 8, "nine
→˓", "ten"]
>>> query(numbers).of_type((int, float)).to_list()
[2.0, 5, 6.0, 8]

order_by(key_selector=identity)
Sorts by a key in ascending order.

Introduces a primary sorting order to the sequence. Additional sort criteria should be spec-
ified by subsequent calls to then_by() and then_by_descending(). Calling order_by() or or-
der_by_descending() on the results of a call to order_by() will introduce a new primary order-
ing which will override any already established ordering.

This method performs a stable sort. The order of two elements with the same key will be
preserved.

Note: This method uses deferred execution.

Parameters key_selector – A unary function which extracts a key from each
element using which the result will be ordered.

Returns An OrderedQueryable over the sorted elements.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If the key_selector is not callable.

Examples

Sort a list of numbers in ascending order by their own value:

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by().to_list()
[-45, -34, -23, -14, 1, 12, 19, 23, 78, 98]

Sort a list of numbers in ascending order by their absolute value:

46 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by(abs).to_list()
[1, 12, -14, 19, 23, -23, -34, -45, 78, 98]

See that the relative order of the two elements which compare equal (23 and -23 in the list
shown) are preserved; the sort is stable.

order_by_descending(key_selector=identity)
Sorts by a key in descending order.

Introduces a primary sorting order to the sequence. Additional sort criteria should be spec-
ified by subsequent calls to then_by() and then_by_descending(). Calling order_by() or or-
der_by_descending() on the results of a call to order_by() will introduce a new primary order-
ing which will override any already established ordering.

This method performs a stable sort. The order of two elements with the same key will be
preserved.

Note: This method uses deferred execution.

Parameters key_selector – A unary function which extracts a key from each
element using which the result will be ordered.

Returns An OrderedQueryable over the sorted elements.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If the key_selector is not callable.

Examples

Sort a list of numbers in ascending order by their own value:

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by_descending().to_list()
[98, 78, 23, 19, 12, 1, -14, -23, -34, -45]

Sort a list of numbers in ascending order by their absolute value:

>>> numbers = [1, -45, 23, -34, 19, 78, -23, 12, 98, -14]
>>> query(numbers).order_by_descending(abs).to_list()
[98, 78, -45, -34, 23, -23, 19, -14, 12, 1]

See that the relative order of the two elements which compare equal (23 and -23 in the list
shown) are preserved; the sort is stable.

select(selector)
Transforms each element of a sequence into a new form.

Each element of the source is transformed through a selector function to produce a correspond-
ing element in teh result sequence.

If the selector is identity the method will return self.

1.3. Reference Documentation 47

asq Documentation, Release 1.3a

Note: This method uses deferred execution.

Parameters selector – A unary function mapping a value in the source sequence
to the corresponding value in the generated generated sequence. The single posi-
tional argument to the selector function is the element value. The return value of
the selector function should be the corresponding element of the result sequence.

Returns A Queryable over generated sequence whose elements are the result of in-
voking the selector function on each element of the source sequence.

Raises

• ValueError - If this Queryable has been closed.

• TypeError - If selector is not callable.

Examples

Select the scores from a collection of student records:

>>> students = [dict(name="Joe Bloggs", score=54),
... dict(name="Ola Nordmann", score=61),
... dict(name="John Doe", score=51),
... dict(name="Tom Cobleigh", score=71)]
>>> query(students).select(lambda student: student['score']).to_
→˓list()
[54, 61, 51, 71]

Transform a sequence of numbers into it square roots:

>>> import math
>>> numbers = [1, 45, 23, 34, 19, 78, 23, 12, 98, 14]
>>> query(numbers).select(math.sqrt).to_list()
[1.0, 6.708203932499369, 4.795831523312719, 5.830951894845301,
4.358898943540674, 8.831760866327848, 4.795831523312719,
3.4641016151377544, 9.899494936611665, 3.7416573867739413]

select_many(collection_selector=identity, result_selector=identity)
Projects each element of a sequence to an intermediate new sequence, flattens the resulting
sequences into one sequence and optionally transforms the flattened sequence using a selector
function.

Note: This method uses deferred execution.

Parameters

• collection_selector – A unary function mapping each element of the
source iterable into an intermediate sequence. The single argument of the
collection_selector is the value of an element from the source sequence. The
return value should be an iterable derived from that element value. The default
collection_selector, which is the identity function, assumes that each element
of the source sequence is itself iterable.

48 Chapter 1. Contents

asq Documentation, Release 1.3a

• result_selector – An optional unary function mapping the elements in
the flattened intermediate sequence to corresponding elements of the result
sequence. The single argument of the result_selector is the value of an ele-
ment from the flattened intermediate sequence. The return value should be the
corresponding value in the result sequence. The default result_selector is the
identity function.

Returns A Queryable over a generated sequence whose elements are the result of
applying the one-to-many collection_selector to each element of the source se-
quence, concatenating the results into an intermediate sequence, and then map-
ping each of those elements through the result_selector into the result sequence.

Raises

• ValueError - If this Queryable has been closed.

• TypeError - If either collection_selector or result_selector are not
callable.

Examples

Select all the words from three sentences by splitting each sentence into its component words:

>>> a = "The quick brown fox jumped over the lazy dog"
>>> b = "Pack my box with five dozen liquor jugs"
>>> c = "Jackdaws love my big sphinx of quartz"
>>> sentences = [a, b, c]
>>> query(sentences).select_many(lambda sentence: sentence.split()).
→˓to_list()
['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy',
'dog', 'Pack', 'my', 'box', 'with', 'five', 'dozen', 'liquor',
'jugs', 'Jackdaws', 'love', 'my', 'big', 'sphinx', 'of', 'quartz']

Select all the words from three sentences and return a list of the length of each word:

>>> a = "The quick brown fox jumped over the lazy dog"
>>> b = "Pack my box with five dozen liquor jugs"
>>> c = "Jackdaws love my big sphinx of quartz"
>>> sentences = [a, b, c]
>>> query(sentences).select_many(lambda sentence: sentence.split(),
→˓len).to_list()
[3, 5, 5, 3, 6, 4, 3, 4, 3, 4, 2, 3, 4, 4, 5, 6, 4, 8, 4, 2, 3, 6,
2, 6]

select_many_with_correspondence(collection_selector=identity, re-
sult_selector=lambda source_element,
collection_element: (source_element, collec-
tion_element)))

Projects each element of a sequence to an intermediate new sequence, and flattens the resulting
sequence, into one sequence and uses a selector function to incorporate the corresponding
source for each item in the result sequence.

Note: This method uses deferred execution.

Parameters

1.3. Reference Documentation 49

asq Documentation, Release 1.3a

• collection_selector – A unary function mapping each element of the
source iterable into an intermediate sequence. The single argument of the
collection_selector is the value of an element from the source sequence. The
return value should be an iterable derived from that element value. The default
collection_selector, which is the identity function, assumes that each element
of the source sequence is itself iterable.

• result_selector – An optional binary function mapping the elements in
the flattened intermediate sequence together with their corresponding source
elements to elements of the result sequence. The two positional arguments of
the result_selector are, first the source element corresponding to an element
from the intermediate sequence, and second the actual element from the inter-
mediate sequence. The return value should be the corresponding value in the
result sequence. If no result_selector function is provided, the elements of the
result sequence are KeyedElement namedtuples.

Returns A Queryable over a generated sequence whose elements are the result of
applying the one-to-many collection_selector to each element of the source se-
quence, concatenating the results into an intermediate sequence, and then map-
ping each of those elements through the result_selector which incorporates the
corresponding source element into the result sequence.

Raises

• ValueError - If this Queryable has been closed.

• TypeError - If projector or selector are not callable.

Example

Incorporate each album track with its performing artist into a descriptive string:

>>> albums = [dict(name="Hotel California", artist="The Eagles",
... tracks=["Hotel California",
... "New Kid in Town",
... "Life in the Fast Lane",
... "Wasted Time"]),
... dict(name="Revolver", artist="The Beatles",
... tracks=["Taxman",
... "Eleanor Rigby",
... "Yellow Submarine",
... "Doctor Robert"]),
... dict(name="Thriller", artist="Michael Jackson",
... tracks=["Thriller",
... "Beat It",
... "Billie Jean",
... "The Girl Is Mine"])]
>>> query(albums).select_many_with_correspondence(lambda album:
→˓album['tracks'],
... lambda album, track: track + " by " + album['artist']).to_
→˓list()
['Hotel California by The Eagles', 'New Kid in Town by The Eagles',
'Life in the Fast Lane by The Eagles', 'Wasted Time by The Eagles',
'Taxman by The Beatles', 'Eleanor Rigby by The Beatles',
'Yellow Submarine by The Beatles', 'Doctor Robert by The Beatles',
'Thriller by Michael Jackson', 'Beat It by Michael Jackson',
'Billie Jean by Michael Jackson',
'The Girl Is Mine by Michael Jackson']

50 Chapter 1. Contents

asq Documentation, Release 1.3a

select_many_with_index(collection_selector=IndexedElement, re-
sult_selector=lambda source_element, collection_element:
collection_element)

Projects each element of a sequence to an intermediate new sequence, incorporating the index
of the element, flattens the resulting sequence into one sequence and optionally transforms the
flattened sequence using a selector function.

Note: This method uses deferred execution.

Parameters

• collection_selector – A binary function mapping each element of the
source sequence into an intermediate sequence, by incorporating its index in
the source sequence. The two positional arguments to the function are the zero-
based index of the source element and the value of the element. The result of
the function should be an iterable derived from the index and element value. If
no collection_selector is provided, the elements of the intermediate sequence
will consist of tuples of (index, element) from the source sequence.

• result_selector – An optional binary function mapping the elements in
the flattened intermediate sequence together with their corresponding source
elements to elements of the result sequence. The two positional arguments of
the result_selector are, first the source element corresponding to an element
from the intermediate sequence, and second the actual element from the inter-
mediate sequence. The return value should be the corresponding value in the
result sequence. If no result_selector function is provided, the elements of the
flattened intermediate sequence are returned untransformed.

Returns A Queryable over a generated sequence whose elements are the result of
applying the one-to-many collection_selector to each element of the source se-
quence which incorporates both the index and value of the source element, con-
catenating the results into an intermediate sequence, and then mapping each of
those elements through the result_selector into the result sequence.

Raises

• ValueError - If this Queryable has been closed.

• TypeError - If projector [and selector] are not callable.

Example

Incorporate the index of each album along with the track and artist for a digital jukebox. A
generator expression is used to combine the index with the track name when generating the
intermediate sequences from each album which will be concatenated into the final result:

>>> albums = [dict(name="Hotel California", artist="The Eagles",
... tracks=["Hotel California",
... "New Kid in Town",
... "Life in the Fast Lane",
... "Wasted Time"]),
... dict(name="Revolver", artist="The Beatles",
... tracks=["Taxman",
... "Eleanor Rigby",

1.3. Reference Documentation 51

asq Documentation, Release 1.3a

... "Yellow Submarine",

... "Doctor Robert"]),

... dict(name="Thriller", artist="Michael Jackson",

... tracks=["Thriller",

... "Beat It",

... "Billie Jean",

... "The Girl Is Mine"])]
>>> query(albums).select_many_with_index(lambda index, album:
→˓(str(index) + ' - ' + track for track in album['tracks'])).to_
→˓list()
['0 - Hotel California', '0 - New Kid in Town',
'0 - Life in the Fast Lane', '0 - Wasted Time', '1 - Taxman',
'1 - Eleanor Rigby', '1 - Yellow Submarine', '1 - Doctor Robert',
'2 - Thriller', '2 - Beat It', '2 - Billie Jean',
'2 - The Girl Is Mine']

Incorporate the index of each album along with the track and artist for a digital jukebox. A
generator expression defining the collection_selector is used to combine the index with the
track name when generating the intermediate sequences from each album which will be con-
catenated into the final result:

>>> albums = [dict(name="Hotel California", artist="The Eagles",
... tracks=["Hotel California",
... "New Kid in Town",
... "Life in the Fast Lane",
... "Wasted Time"]),
... dict(name="Revolver", artist="The Beatles",
... tracks=["Taxman",
... "Eleanor Rigby",
... "Yellow Submarine",
... "Doctor Robert"]),
... dict(name="Thriller", artist="Michael Jackson",
... tracks=["Thriller",
... "Beat It",
... "Billie Jean",
... "The Girl Is Mine"])]
>>> query(albums).select_many_with_index(collection_selector=lambda
→˓index, album: (str(index) + ' - ' + track for track in album[
→˓'tracks']),
... result_selector=lambda album, track: album['name'] + ' - ' +
→˓track).to_list()
['Hotel California - 0 - Hotel California',
'Hotel California - 0 - New Kid in Town',
'Hotel California - 0 - Life in the Fast Lane',
'Hotel California - 0 - Wasted Time', 'Revolver - 1 - Taxman',
'Revolver - 1 - Eleanor Rigby', 'Revolver - 1 - Yellow Submarine',
'Revolver - 1 - Doctor Robert', 'Thriller - 2 - Thriller',
'Thriller - 2 - Beat It', 'Thriller - 2 - Billie Jean',
'Thriller - 2 - The Girl Is Mine']

select_with_correspondence(transform, selector=KeyedElement)
Apply a callable to each element in an input sequence, generating a new sequence of 2-tuples
where the first element is the input value and the second is the transformed input value.

The generated sequence is lazily evaluated.

52 Chapter 1. Contents

asq Documentation, Release 1.3a

Note: This method uses deferred execution.

Parameters

• selector – A unary function mapping a value in the source sequence to the
second argument of the result selector.

• result_selector – A binary callable mapping the of a value in the source
sequence and the transformed value to the corresponding value in the gener-
ated sequence. The two positional arguments of the selector function are the
original source element and the transformed value. The return value should be
the corresponding value in the result sequence. The default selector produces a
KeyedElement containing the index and the element giving this function sim-
ilar behaviour to the built-in enumerate().

Returns When using the default selector, a Queryable whose elements are
KeyedElements where the first element is from the input sequence and the second
is the result of invoking the transform function on the first value.

Raises

• ValueError - If this Queryable has been closed.

• TypeError - If transform is not callable.

Examples

Generate a list of KeyedElement items using the default selector:

>>> query(range(10)).select_with_correspondence(lambda x: x%5).to_
→˓list()
[KeyedElement(key=0, value=0),
KeyedElement(key=1, value=1),
KeyedElement(key=2, value=2),
KeyedElement(key=3, value=3),
KeyedElement(key=4, value=4),
KeyedElement(key=5, value=0),
KeyedElement(key=6, value=1),
KeyedElement(key=7, value=2),
KeyedElement(key=8, value=3),
KeyedElement(key=9, value=4)]

Square the integers zero to nine, retaining only those elements for which the square is an odd
number:

>>> query(range(10)) \
... .select_with_correspondence(lambda x: x*x) \
... .where(lambda y: y.value%2 != 0) \
... .select(lambda y: y.key) \
... .to_list()
...

[1, 3, 5, 7, 9]

select_with_index(selector=IndexedElement)
Transforms each element of a sequence into a new form, incorporating the index of the element.

1.3. Reference Documentation 53

asq Documentation, Release 1.3a

Each element is transformed through a selector function which accepts the element value and
its zero-based index in the source sequence. The generated sequence is lazily evaluated.

Note: This method uses deferred execution.

Parameters selector – A binary function mapping the index of a value in the
source sequence and the element value itself to the corresponding value in the
generated sequence. The two positional arguments of the selector function are the
zero- based index of the current element and the value of the current element. The
return value should be the corresponding value in the result sequence. The default
selector produces an IndexedElement containing the index and the element giving
this function similar behaviour to the built-in enumerate().

Returns A Queryable whose elements are the result of invoking the selector function
on each element of the source sequence

Raises

• ValueError - If this Queryable has been closed.

• TypeError - If selector is not callable.

Examples

Generate a list of IndexedElement items using the default selector. The contents of an
IndexedElement can either be accessed using the named attributes, or through the zero
(index) and one (element) indexes:

>>> dark_side_of_the_moon = ['Speak to Me', 'Breathe', 'On the Run',
... 'Time', 'The Great Gig in the Sky', 'Money', 'Us and Them',
... 'Any Colour You Like', 'Brain Damage', 'Eclipse']
>>> query(dark_side_of_the_moon).select_with_index().to_list()
[IndexedElement(index=0, element='Speak to Me'),
IndexedElement(index=1, element='Breathe'),
IndexedElement(index=2, element='On the Run'),
IndexedElement(index=3, element='Time'),
IndexedElement(index=4, element='The Great Gig in the Sky'),
IndexedElement(index=5, element='Money'),
IndexedElement(index=6, element='Us and Them'),
IndexedElement(index=7, element='Any Colour You Like'),
IndexedElement(index=8, element='Brain Damage'),
IndexedElement(index=9, element='Eclipse')]

Generate numbered album tracks using a custom selector:

>>> query(dark_side_of_the_moon).select_with_index(lambda index,
→˓track: str(index) + '. ' + track).to_list()
['0. Speak to Me', '1. Breathe', '2. On the Run', '3. Time',
'4. The Great Gig in the Sky', '5. Money', '6. Us and Them',
'7. Any Colour You Like', '8. Brain Damage', '9. Eclipse']

sequence_equal(second_iterable, equality_comparer=operator.eq)
Determine whether two sequences are equal by elementwise comparison.

Sequence equality is defined as the two sequences being equal length and corresponding ele-
ments being equal as determined by the equality comparer.

54 Chapter 1. Contents

asq Documentation, Release 1.3a

Note: This method uses immediate execution.

Parameters

• second_iterable – The sequence which will be compared with the source
sequence.

• equality_comparer – An optional binary predicate function which is
used to compare corresponding elements. Should return True if the elements
are equal, otherwise False. The default equality comparer is operator.eq which
calls __eq__ on elements of the source sequence with the corresponding ele-
ment of the second sequence as a parameter.

Returns True if the sequences are equal, otherwise False.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If second_iterable is not in fact iterable.

• TypeError - If equality_comparer is not callable.

Examples

Determine whether lists a and b are equal:

>>> a = [1, 3, 6, 2, 8]
>>> b = [3, 6, 2, 1, 8]
>>> query(a).sequence_equal(b)
False

Determine whether lists a and b and equal when absolute values are compared:

>>> a = [1, -3, 6, -2, 8]
>>> b = [-1, 3, -6, 2, -8]
>>> query(a).sequence_equal(b, lambda lhs, rhs: abs(lhs) == abs(rhs))
True

single(predicate=None)
The only element (which satisfies a condition).

If the predicate is omitted or is None this query returns the only element in the sequence;
otherwise, it returns the only element in the sequence for which the predicate evaluates to
True. Exceptions are raised if there is either no such element or more than one such element.

Note: This method uses immediate execution.

Parameters predicate – An optional unary predicate function, the only argu-
ment to which is the element. The return value should be True for matching
elements, otherwise False. If the predicate is omitted or None the only element
of the source sequence will be returned.

Returns The only element of the sequence if predicate is None, otherwise the only
element for which the predicate returns True.

1.3. Reference Documentation 55

asq Documentation, Release 1.3a

Raises

• ValueError - If the Queryable is closed.

• ValueError - If, when predicate is None the source sequence contains
more than one element.

• ValueError - If there are no elements matching the predicate or more
then one element matching the predicate.

• TypeError - If the predicate is not callable.

Examples

Return the only element in the sequence:

>>> a = [5]
>>> query(a).single()
5

Attempt to get the single element from a sequence with multiple elements:

>>> a = [7, 5, 4]
>>> query(a).single()
ValueError: Sequence for single() contains multiple elements.

Return the only element in a sequence meeting a condition:

>>> a = [7, 5, 4]
>>> query(a).single(lambda x: x > 6)
7

Attempt to get the single element from a sequence which meets a condition when in fact mul-
tiple elements do so:

>>> a = [7, 5, 4]
>>> query(a).single(lambda x: x >= 5)
ValueError: Sequence contains more than one value matching single()
predicate.

single_or_default(default, predicate=None)
The only element (which satisfies a condition) or a default.

If the predicate is omitted or is None this query returns the only element in the sequence;
otherwise, it returns the only element in the sequence for which the predicate evaluates to
True. A default value is returned if there is no such element. An exception is raised if there is
more than one such element.

Note: This method uses immediate execution.

Parameters

• default – The value which will be returned if either the sequence is empty
or there are no elements matching the predicate.

• predicate – An optional unary predicate function, the only argument to
which is the element. The return value should be True for matching elements,

56 Chapter 1. Contents

asq Documentation, Release 1.3a

otherwise False. If the predicate is omitted or None the only element of the
source sequence will be returned.

Returns The only element of the sequence if predicate is None, otherwise the only
element for which the predicate returns True. If there are no such elements the
default value will returned.

Raises

• ValueError - If the Queryable is closed.

• ValueError - If, when predicate is None the source sequence contains
more than one element.

• ValueError - If there is more then one element matching the predicate.

• TypeError - If the predicate is not callable.

Examples

Return the only element in the sequence:

>>> a = [5]
>>> query(a).single_or_default(7)
5

Attempt to get the single element from a sequence with multiple elements:

>>> a = [7, 5, 4]
>>> query(a).single_or_default(9)
ValueError: Sequence for single_or_default() contains multiple
elements

Attempt to get the single element from a sequence with no elements:

>>> a = []
>>> query(a).single_or_default(9)
9

Return the only element in a sequence meeting a condition:

>>> a = [7, 5, 4]
>>> query(a).single_or_default(9, lambda x: x > 6)
7

Attempt to get the single element from a sequence which meets a condition when in fact mul-
tiple elements do so:

>>> a = [7, 5, 4]
>>> query(a).single(lambda x: x >= 5)
ValueError: Sequence contains more than one value matching
single_or_default() predicate.

Attempt to get the single element matching a predicate from a sequence which contains no
matching elements:

>>> a = [7, 5, 4]
>>> query(a).single_or_default(9, lambda x: x > 20)
9

1.3. Reference Documentation 57

asq Documentation, Release 1.3a

skip(count=1)
Skip the first count contiguous elements of the source sequence.

If the source sequence contains fewer than count elements returns an empty sequence and does
not raise an exception.

Note: This method uses deferred execution.

Parameters count – The number of elements to skip from the beginning of the
sequence. If omitted defaults to one. If count is less than one the result sequence
will be empty.

Returns A Queryable over the elements of source excluding the first count elements.

Raises ValueError - If the Queryable is closed().

Examples

Skip the first element of a sequence:

>>> a = [7, 5, 4]
>>> query(a).skip().to_list()
[5, 4]

Skip the first two elements of a sequence:

>>> a = [7, 5, 4]
>>> query(a).skip(2).to_list()
[4]

skip_while(predicate)
Omit elements from the start for which a predicate is True.

Note: This method uses deferred execution.

Parameters predicate – A single argument predicate function.

Returns A Queryable over the sequence of elements beginning with the first element
for which the predicate returns False.

Raises

• ValueError - If the Queryable is closed().

• TypeError - If predicate is not callable.

Example

Skip while elements start with the letter ‘a’:

>>> words = ['aardvark', 'antelope', 'ape', 'baboon', 'cat',
... 'anaconda', 'zebra']
>>> query(words).skip_while(lambda s: s.startswith('a')).to_list()
['baboon', 'cat', 'anaconda', 'zebra']

58 Chapter 1. Contents

asq Documentation, Release 1.3a

sum(selector=identity)
Return the arithmetic sum of the values in the sequence..

All of the source sequence will be consumed.

Note: This method uses immediate execution.

Parameters selector – An optional single argument function which will be used
to project the elements of the sequence. If omitted, the identity function is used.

Returns The total value of the projected sequence, or zero for an empty sequence.

Raises ValueError - If the Queryable has been closed.

Examples

Compute the sum of a sequence of floats:

>>> numbers = [5.6, 3.4, 2.3, 9.3, 1.7, 2.4]
>>> query(numbers).sum()
24.7

Compute the sum of the squares of a sequence of integers:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> query(numbers).sum(lambda x: x*x)
385

take(count=1)
Returns a specified number of elements from the start of a sequence.

If the source sequence contains fewer elements than requested only the available elements will
be returned and no exception will be raised.

Note: This method uses deferred execution.

Parameters count – An optional number of elements to take. The default is one.

Returns A Queryable over the first count elements of the source sequence, or the all
elements of elements in the source, whichever is fewer.

Raises ValueError - If the Queryable is closed()

Examples

Take one element from the start of a list:

>>> a = [9, 7, 3, 4, 2]
>>> query(a).take().to_list()
[9]

Take three elements from the start of a list:

1.3. Reference Documentation 59

asq Documentation, Release 1.3a

>>> query(a).take(3).to_list()
[9, 7, 3]

take_while(predicate)
Returns elements from the start while the predicate is True.

Note: This method uses deferred execution.

Parameters predicate – A function returning True or False with which elements
will be tested.

Returns A Queryable over the elements from the beginning of the source sequence
for which predicate is True.

Raises

• ValueError - If the Queryable is closed()

• TypeError - If the predicate is not callable.

Example

>>> words = ['aardvark', 'antelope', 'ape', 'baboon', 'cat',
... 'anaconda', 'zebra']
>>> query(words).take_while(lambda s: s.startswith('a')).to_list()
['aardvark', 'antelope', 'ape']

to_dictionary(key_selector=identity, value_selector=identity)
Build a dictionary from the source sequence.

Parameters

• key_selector – A unary callable to extract a key from each item. By
default the key is the item itself.

• value_selector – A unary callable to extract a value from each item. By
default the value is the item itself.

Note: This method uses immediate execution.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If key_selector is not callable.

• TypeError - If value_selector is not callable.

Examples

Convert to a dictionary using the default key and value selectors:

60 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> animals = ['aardvark', 'baboon', 'cat', 'dot', 'frog', 'giraffe',
... 'horse', 'iguana']
>>> query(animals).to_dictionary()
{'horse': 'horse', 'aardvark': 'aardvark', 'frog': 'frog', 'cat':
'cat', 'giraffe': 'giraffe', 'baboon': 'baboon', 'dot': 'dot',
'iguana': 'iguana'}

Convert to a dictionary extracting the first letter as a key:

>>> animals = ['aardvark', 'baboon', 'cat', 'dot', 'frog', 'giraffe',
... 'horse', 'iguana']
>>> query(animals).to_dictionary(key_selector=lambda x: x[0])
{'a': 'aardvark', 'c': 'cat', 'b': 'baboon', 'd': 'dot', 'g':
'giraffe', 'f': 'frog', 'i': 'iguana', 'h': 'horse'}

Convert to a dictionary extracting the first letter as a key and converting the value to uppercase:

>>> query(animals).to_dictionary(key_selector=lambda x: x[0],
... value_selector=lambda x: x.upper())
{'a': 'AARDVARK', 'c': 'CAT', 'b': 'BABOON', 'd': 'DOT', 'g':
'GIRAFFE', 'f': 'FROG', 'i': 'IGUANA', 'h': 'HORSE'}

Attempt to convert a list of fruit to a dictionary using the initial letter as the key, in the presence
of a multiple keys of the same value:

>>> fruit = ['apple', 'apricot', 'banana', 'cherry']
>>> query(fruit).to_dictionary(lambda f: f[0])
ValueError: Duplicate key value 'a' in sequence during
to_dictionary()

to_list()
Convert the source sequence to a list.

Note: This method uses immediate execution.

Example

Convert from a tuple into a list:

>>> a = (1, 6, 8, 3, 4)
>>> query(a).to_list()
[1, 6, 8, 3, 4]

to_lookup()
Returns a Lookup object, using the provided selector to generate a key for each item.

Note: This method uses immediate execution.

Examples

Convert to a Lookup using the default key_selector and value_selector:

1.3. Reference Documentation 61

asq Documentation, Release 1.3a

>>> countries = ['Austria', 'Bahrain', 'Canada', 'Algeria',
... 'Belgium', 'Croatia', 'Kuwait', 'Angola', 'Greece',
... 'Korea']
>>> query(countries).to_lookup()
Lookup([('Austria', 'Austria'), ('Bahrain', 'Bahrain'), ('Canada',
'Canada'), ('Algeria', 'Algeria'), ('Belgium', 'Belgium'),
('Croatia', 'Croatia'), ('Kuwait', 'Kuwait'), ('Angola', 'Angola'),
('Greece', 'Greece'), ('Korea', 'Korea')])

Convert to a Lookup, using the initial letter of each country name as the key:

>>> countries = ['Austria', 'Bahrain', 'Canada', 'Algeria',
... 'Belgium', 'Croatia', 'Kuwait', 'Angola', 'Greece',
... 'Korea']
>>> query(countries).to_lookup(key_selector=lambda name: name[0])
Lookup([('A', 'Austria'), ('A', 'Algeria'), ('A', 'Angola'), ('B',
'Bahrain'), ('B', 'Belgium'), ('C', 'Canada'), ('C', 'Croatia'),
('K', 'Kuwait'), ('K', 'Korea'), ('G', 'Greece')])

Convert to a Lookup, using the initial letter of each country name as the key and the upper case
name as the value:

>>> countries = ['Austria', 'Bahrain', 'Canada', 'Algeria',
... 'Belgium', 'Croatia', 'Kuwait', 'Angola', 'Greece',
... 'Korea']
>>> query(countries).to_lookup(key_selector=lambda name: name[0],
... value_selector=lambda name: name.upper())
Lookup([('A', 'AUSTRIA'), ('A', 'ALGERIA'), ('A', 'ANGOLA'), ('B',
'BAHRAIN'), ('B', 'BELGIUM'), ('C', 'CANADA'), ('C', 'CROATIA'),
('K', 'KUWAIT'), ('K', 'KOREA'), ('G', 'GREECE')])

to_set()
Convert the source sequence to a set.

Note: This method uses immediate execution.

Raises

• ValueError - If duplicate keys are in the projected source sequence.

• ValueError - If the Queryable is closed().

Examples

Convert a list to a set:

>>> a = [4, 9, 2, 3, 0, 1]
>>> query(a).to_set()
{0, 1, 2, 3, 4, 9}

Attempt to convert a list containing duplicates to a set:

>>> b = [6, 2, 9, 0, 2, 1, 9]
>>> query(b).to_set()
ValueError: Duplicate item value 2 in sequence during to_set()

62 Chapter 1. Contents

asq Documentation, Release 1.3a

to_str(separator)
Build a string from the source sequence.

The elements of the query result will each coerced to a string and then the resulting strings
concatenated to return a single string. This allows the natural processing of character sequences
as strings. An optional separator which will be inserted between each item may be specified.

Note: this method uses immediate execution.

Parameters separator – An optional separator which will be coerced to a string
and inserted between each source item in the resulting string.

Returns A single string which is the result of stringifying each element and concate-
nating the results into a single string.

Raises

• TypeError - If any element cannot be coerced to a string.

• TypeError - If the separator cannot be coerced to a string.

• ValueError - If the Queryable is closed.

Examples

Convert a sequence of characters into a string:

>>> chars = ['c', 'h', 'a', 'r', 'a', 'c', 't', 'e', 'r', 's']
>>> query(chars).to_str()
'characters'

Concatenate some word fragments into a single string:

>>> syllables = ['pen', 'ta', 'syll', 'ab', 'ic']
>>> query(syllables).to_str()

Coerce some integers to strings and concatenate their digits to form a single string:

>>> codes = [72, 101, 108, 108, 111, 44, 32, 87, 111, 114, 108, 100,
→˓33]
>>> query(codes).to_str('-')
'72-101-108-108-111-44-32-87-111-114-108-100-33'

Coerce some integers to strings and concatenate their values separated by hyphens to form a
single string:

>>> codes = [72, 101, 108, 108, 111, 44, 32, 87, 111, 114, 108, 100,
→˓33]
>>> query(codes).to_str('-')
'72-101-108-108-111-44-32-87-111-114-108-100-33'

to_tuple()
Convert the source sequence to a tuple.

Note: This method uses immediate execution.

1.3. Reference Documentation 63

asq Documentation, Release 1.3a

Example

Convert from a list into a tuple:

>>> a = [1, 6, 8, 3, 4]
>>> query(a).to_list()
(1, 6, 8, 3, 4)

union(second_iterable, selector=identity)
Returns those elements which are either in the source sequence or in the second_iterable, or in
both.

Note: This method uses deferred execution.

Parameters

• second_iterable – Elements from this sequence are returns if they are
not also in the source sequence.

• selector – An optional single argument function which is used to project
the elements in the source and second_iterables prior to comparing them. If
omitted the identity function will be used.

Returns A sequence containing all elements in the source sequence and second se-
quence.

Raises

• ValueError - If the Queryable has been closed.

• TypeError - If the second_iterable is not in fact iterable.

• TypeError - If the selector is not callable.

Examples

Create a list of numbers which are in either or both of two lists:

>>> a = [1, 6, 9, 3]
>>> b = [2, 6, 7, 3]
>>> query(a).union(b).to_list()
[1, 6, 9, 3, 2, 7]

Create a list of numbers, based on their absolute values, which are in either or both of list a or
list b, preferentially taking numbers from list a where the absolute value is present in both:

>>> a = [-1, -4, 2, 6, 7]
>>> b = [3, -4, 2, -6, 9]
>>> query(a).union(b, abs).to_list()
[-1, -4, 2, 6, 7, 3, 9]

where(predicate)
Filters elements according to whether they match a predicate.

Note: This method uses deferred execution.

64 Chapter 1. Contents

asq Documentation, Release 1.3a

Parameters predicate – A unary function which is applied to each element in
the source sequence. Source elements for which the predicate returns True will
be present in the result.

Returns A Queryable over those elements of the source sequence for which the pred-
icate is True.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If the predicate is not callable.

Example

Filter for elements greater than five:

>>> a = [1, 7, 2, 9, 3]
>>> query(a).where(lambda x: x > 5).to_list()
[7, 9]

zip(second_iterable, result_selector=lambda x, y: (x, y))
Elementwise combination of two sequences.

The source sequence and the second iterable are merged element-by- element using a function
to combine them into the single corresponding element of the result sequence. The length of
the result sequence is equal to the length of the shorter of the two input sequences.

Note: This method uses deferred execution.

Parameters

• second_iterable – The second sequence to be combined with the source
sequence.

• result_selector – An optional binary function for combining corre-
sponding elements of the source sequences into an element of the result se-
quence. The first and second positional arguments are the elements from the
source sequences. The result should be the result sequence element. If omit-
ted, the result sequence will consist of 2-tuple pairs of corresponding elements
from the source sequences.

Returns A Queryable over the merged elements.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If result_selector is not callable.

Examples

Combine two sequences using the default result selector which creates a 2-tuple pair of corre-
sponding elements:

1.3. Reference Documentation 65

asq Documentation, Release 1.3a

>>> a = [1, 4, 6, 4, 2, 9, 1, 3, 8]
>>> b = [6, 7, 2, 9, 3, 5, 9]
>>> query(a).zip(b).to_list()
[(1, 6), (4, 7), (6, 2), (4, 9), (2, 3), (9, 5), (1, 9)]

Multiply the corresponding elements of two sequences to create a new sequence equal in length
to the shorter of the two:

>>> a = [1, 4, 6, 4, 2, 9, 1, 3, 8]
>>> b = [6, 7, 2, 9, 3, 5, 9]
>>> query(a).zip(b, lambda x, y: x * y).to_list()
[6, 28, 12, 36, 6, 45, 9]

asq.queryables.OrderedQueryable

class asq.queryables.OrderedQueryable(iterable, order, func)
A Queryable representing an ordered iterable.

The sorting implemented by this class is an incremental partial sort so you don’t pay for sorting
results which are never enumerated.

TODO: Document OrderedQueryable

asq.queryables.Lookup

class asq.queryables.Lookup(key_value_pairs)
A multi-valued dictionary.

A Lookup represents a collection of keys, each one of which is mapped to one or more values. The
keys in the Lookup are maintained in the order in which they were added. The values for each key
are also maintained in order.

Note: Lookup objects are immutable.

All standard query operators may be used on a Lookup. When iterated or used as a Queryable the
elements are returned as a sequence of Grouping objects.

Example

Lookup, being a subclass of Queryable supports all of the asq query operators over a collection
of Groupings. For example, to select only those groups containing two or more elements and then
flatten those groups into a single list, use:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),

66 Chapter 1. Contents

asq Documentation, Release 1.3a

... ('tree', 'poplar')]

...
>>> lookup = Lookup(key_value_pairs)
>>> lookup.where(lambda group: len(group) >= 2).select_many().to_list()

['oak', 'birch', 'poplar', 'eagle', 'swallow']

__init__(key_value_pairs)
Construct a Lookup with a sequence of (key, value) tuples.

Parameters key_value_pairs – An iterable over 2-tuples each containing a
key, value pair.

Example

To construct a Lookup from key value pairs:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
...
>>> lookup = Lookup(key_value_pairs)

__getitem__(key)

The sequence corresponding to a given key, or an empty sequence if there are no
values corresponding to that key.

Parameters key – The key of the group to be returned.

Returns The Grouping corresponding to the supplied key.

Examples

To retrieve a Grouping for a given key:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
...
>>> lookup = Lookup(key_value_pairs)
>>> lookup['tree']
Grouping(key='tree')

but if no such key exists a Grouping will still be returned, albeit an empty one:

>>> vehicles = lookup['vehicle']
>>> vehicles
Grouping(key='vehicle')
>>> len(vehicles)
0

1.3. Reference Documentation 67

asq Documentation, Release 1.3a

__len__()
Support for the len() built-in function.

Returns The number of Groupings (keys) in the lookup.

Example

To determine the number of Groupings in a Lookup:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
>>> lookup = Lookup(key_value_pairs)
>>> len(lookup)
3

__contains__()
Support for the ‘in’ membership operator.

Parameters key – The key for which membership will be tested.

Returns True if the Lookup contains a Grouping for the specified key, otherwise
False.

Example

To determine whether a Lookup contains a specific Grouping:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
... ('tree', 'poplar')]
>>> lookup = Lookup(key_value_pairs)
>>> 'tree' in lookup
True
>>> 'vehicle' in lookup
False

__repr__()
Support for the repr() built-in function.

Returns The official string representation of the object.

Example

To produce a string representation of a Lookup:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),

68 Chapter 1. Contents

asq Documentation, Release 1.3a

... ('tree', 'birch'),

... ('mammal', 'mouse'),

... ('tree', 'poplar')]

...
>>> lookup = Lookup(key_value_pairs)
>>> repr(lookup)
"Lookup([('tree', 'oak'), ('tree', 'birch'), ('tree', 'poplar'),
('bird', 'eagle'), ('bird', 'swallow'), ('mammal', 'mouse')])"

apply_result_selector(selector)

Example

Convert each group to a set using a lambda selector and put the resulting sets in a list:

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
...
>>> lookup = Lookup(key_value_pairs)
>>> lookup.apply_result_selector(lambda key, group: set(group)).to_
→˓list()
[set(['poplar', 'oak', 'birch']), set(['eagle', 'swallow']),
set(['mouse'])]

to_dictionary(key_selector=None, value_selector=None)
Build a dictionary from the source sequence.

Parameters

• key_selector – A unary callable to extract a key from each item. By
default the key of the Grouping.

• value_selector – A unary callable to extract a value from each item. By
default the value is the list of items from the Grouping.

Note: This method uses immediate execution.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If key_selector is not callable.

• TypeError - If value_selector is not callable.

Example

Convert a Lookup to a dict using the default selectors which produce a dictionary mapping
the lookup keys to lists:

1.3. Reference Documentation 69

asq Documentation, Release 1.3a

>>> key_value_pairs = [('tree', 'oak'),
... ('bird', 'eagle'),
... ('bird', 'swallow'),
... ('tree', 'birch'),
... ('mammal', 'mouse'),
...
>>> lookup = Lookup(key_value_pairs)
>>> lookup.to_dictionary()
{'mammal': ['mouse'], 'bird': ['eagle', 'swallow'], 'tree': ['oak',
→˓'birch']}

Providing a value_selector to construct the values of the dictionary as a set rather than
the default list:

>>> lookup.to_dictionary(value_selector=set)
{'mammal': {'mouse'}, 'bird': {'swallow', 'eagle'}, 'tree': {'birch',
→˓ 'oak'}}

asq.queryables.Grouping

class asq.queryables.Grouping(key, items)
A collection of objects which share a common key.

All standard query operators may be used on a Grouping.

Note: It is not intended that clients should directly create Grouping objects. Instances of this class
are retrieved from Lookup objects.

Example

Grouping, being a subclass of Queryable, supports all of the asq query operators. For example, to
produce a list of the group items in upper case:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g.select(str.upper).to_list()
['PEAR', 'APPLE', 'ORANGE', 'BANANA']

__init__(key, iterable)
Create a Grouping with a given key and a collection of members.

Parameters

• key – The key corresponding to this Grouping

• items – An iterable collection of the members of the group.

Example

Construct a Grouping from a list:

70 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> Grouping("fruit", ["pear", "apple", "orange", "banana"])
Grouping(key='fruit')

key
The key common to all elements.

Example

To retrieve the key from a Grouping:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g.key
'fruit'

__len__()
The number of items in the Grouping.

Example

To retrieve the number of items in a Grouping:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> len(g)
4

__eq__()
Determine value equality with another grouping.

Parameters rhs – The object on the right-hand-side of the comparison must sup-
port a property called ‘key’ and be iterable.

Returns True if the keys and sequences are equal, otherwise False.

Example

To test whether two Groupings are equal in value:

>>> g1 = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g2 = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g1 == g2
True

__ne__()
Determine value inequality with another grouping.

Parameters rhs – The object on the right-hand-side of the comparison must sup-
port a property called ‘key’ and be iterable.

Returns True if the keys or sequences are not equal, otherwise False.

Example

To test whether two Groupings are inequal in value:

1.3. Reference Documentation 71

asq Documentation, Release 1.3a

>>> g1 = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g2 = Grouping("fruit", ["cherry", "apple", "orange", "banana"])
>>> g1 != g2
True

__repr__()

Example

To create a string representation of the Grouping:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> repr(g)
Grouping(key="fruit", items=["pear", "apple", "orange", "banana"])

to_dictionary(key_selector=None, value_selector=None)
Build a dictionary from the source sequence.

Parameters

• key_selector – A unary callable to extract a key from each item or None.
If None, the default key selector produces a single dictionary key, which if the
key of this Grouping.

• value_selector – A unary callable to extract a value from each item. If
None, the default value selector produces a list, which contains all elements
from this Grouping.

Note: This method uses immediate execution.

Raises

• ValueError - If the Queryable is closed.

• TypeError - If key_selector is not callable.

• TypeError - If value_selector is not callable.

Examples

Convert a Grouping to a dict using the default selectors:

>>> g = Grouping("fruit", ["pear", "apple", "orange", "banana"])
>>> g.to_dictionary()
{'fruit': ['pear', 'apple', 'orange', 'banana']}

Providing a key_selector and to generate the dictionary keys from the length of each
element in the Grouping:

>>> g.to_dictionary(key_selector=len, value_selector=identity)
{4: 'pear', 5: 'apple', 6: 'banana'}

Notice that first six-letter word ‘orange’ is overwritten by the second six-letter word, ‘banana’.

72 Chapter 1. Contents

asq Documentation, Release 1.3a

Since the key of the Grouping is not availble via the items in the collection, if you need to
incorporate the key into the produced dict it must be incorporated into the selectors:

>>> g.to_dictionary(
... key_selector=lambda item: '{} letter {}'.format(len(item), g.
→˓key),
... value_selector=str.capitalize)
...
{'5 letter fruit': 'Apple', '6 letter fruit': 'Banana', '4 letter
→˓fruit': 'Pear'}

asq.selectors

Selector functions and selector function factories.

Selectors are so-called because they are used to select a value from an element. The selected value is often an attribute
or sub-element but could be any computed value. The selectors module provides to standard selectors and also
some selector factories.

Selectors

identity The identity function.

asq.selectors.identity(x)
The identity function.

The identity function returns its only argument.

Parameters x – A value that will be returned.

Returns The argument x.

Examples

Use the the identity function with the where() query operator, which has the effect that only
elements which evaluate to True are present in the result:

>>> from selectors import identity
>>> a = [5, 3, 0, 1, 0, 4, 2, 0, 3]
>>> query(a).where(identity).to_list()
[5, 3, 1, 4, 2, 3]

Selector factories

a_ alias of attrgetter
k_ alias of itemgetter
m_ alias of methodcaller

asq.selectors.a_(name)
attrgetter(attr, ...) –> attrgetter object

1.3. Reference Documentation 73

asq Documentation, Release 1.3a

Return a callable object that fetches the given attribute(s) from its operand. After f = attrget-
ter(‘name’), the call f(r) returns r.name. After g = attrgetter(‘name’, ‘date’), the call g(r) returns
(r.name, r.date). After h = attrgetter(‘name.first’, ‘name.last’), the call h(r) returns (r.name.first,
r.name.last).

Longhand equivalent

The selector factory call:

a_(name)

is equivalent to the longhand:

lambda element: element.name

Example

From a list of spaceship characteristics order the spaceships by length and select the spaceship
name:

>>> from asq.selectors import a_
>>> class SpaceShip(object):
... def __init__(self, name, length, crew):
... self.name = name
... self.length = length
... self.crew = crew
...
>>> spaceships = [SpaceShip("Nebulon-B", 300, 854),
... SpaceShip("V-19 Torrent", 6, 1),
... SpaceShip("Venator", 1137, 7400),
... SpaceShip("Lambda-class T-4a shuttle", 20, 6),
... SpaceShip("GR-45 medium transport", 90, 6)]
>>> query(spaceships).order_by(a_('length')).select(a_('name')).to_list()
['V-19 Torrent', 'Lambda-class T-4a shuttle', 'GR-45 medium transport',
'Nebulon-B', 'Venator']

or sort the

asq.selectors.k_(key)
itemgetter(item, ...) –> itemgetter object

Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the
call f(r) returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

Longhand equivalent

The selector factory call:

k_(key)

is equivalent to the longhand:

lambda element: element[name]

74 Chapter 1. Contents

asq Documentation, Release 1.3a

Example

From a list of dictionaries containing planetary data, sort the planets by increasing mass and select
their distance from the sun:

>>> from asq.selectors import k_
>>> planets = [dict(name='Mercury', mass=0.055, period=88),
... dict(name='Venus', mass=0.815, period=224.7),
... dict(name='Earth', mass=1.0, period=365.3),
... dict(name='Mars', mass=0.532, period=555.3),
... dict(name='Jupiter', mass=317.8, period=4332),
... dict(name='Saturn', mass=95.2, period=10761),
... dict(name='Uranus', mass=14.6, period=30721),
... dict(name='Neptune', mass=17.2, period=60201)]
>>> query(planets).order_by(k_('mass')).select(k_('period')).to_list()
[88, 555.3, 224.7, 365.3, 30721, 60201, 10761, 4332]

asq.selectors.m_(name, *args, **kwargs)
methodcaller(name, ...) –> methodcaller object

Return a callable object that calls the given method on its operand. After f = methodcaller(‘name’),
the call f(r) returns r.name(). After g = methodcaller(‘name’, ‘date’, foo=1), the call g(r) returns
r.name(‘date’, foo=1).

Longhand equivalent

The selector factory call:

m_(name, *args, **kwargs)

is equivalent to the longhand:

lambda element: getattr(element, name)(*args, **kwargs)

Example

From a list of SwimmingPool objects compute a list of swimming pool areas by selecting the
area() method on each pool:

>>> class SwimmingPool(object):
... def __init__(self, length, width):
... self.length = length
... self.width = width
... def area(self):
... return self.width * self.length
... def volume(self, depth):
... return self.area() * depth
...
>>> pools = [SwimmingPool(50, 25),
... SwimmingPool(25, 12.5),
... SwimmingPool(100, 25),
... SwimmingPool(10, 10)]
>>> query(pools).select(m_('area')).to_list()
[1250, 312.5, 2500, 100]

1.3. Reference Documentation 75

asq Documentation, Release 1.3a

Compute volumes of the above pools for a water depth of 2 metres by passing the depth as a
positional argument to the m_() selector factory:

>>> query(pools).select(m_('volume', 2)).to_list()
[2500, 625.0, 5000, 200]

Alternatively, we can use a named parameter to make the code clearer:

>>> query(pools).select(m_('volume', depth=1.5)).to_list()
[1875.0, 468.75, 3750.0, 150.0]

asq.predicates

Predicate function factories

Predicates are boolean functions which return True or False.

Predicate factories

The predicate factories partially apply the binary comparison operators by providing the right-hand-side argument.
The result is a unary function the single argument to which is the left-hand-side of the comparison operator.

For example. the lt_(rhs) predicate factory returns:

lambda lhs: lhs < rhs

where rhs is provided when the predicate is created but lhs takes the value passed to the unary predicate.

contains_ Create a unary predicate which tests for membership
if its argument.

eq_ Create a predicate which tests its argument for equal-
ity with a value.

is_ Create a predicate which performs an identity com-
parison of its argument with a value.

ge_ Create a predicate which performs a greater-than-or-
equal comparison of its argument with a value.

gt_ Create a predicate which performs a greater-than
comparison of its argument with a value.

le_ Create a predicate which performs a less-than-or-
equal comparison of its argument with a value.

lt_ Create a predicate which performs a less-than com-
parison of its argument with a value.

ne_ Create a predicate which tests its argument for in-
equality with a value.

asq.predicates.contains_(lhs)
Create a unary predicate which tests for membership if its argument.

Parameters lhs – (left-hand-side) The value to test for membership for in the predicate
argument.

Returns A unary predicate function which determines whether its single arguments
(lhs) contains lhs.

76 Chapter 1. Contents

asq Documentation, Release 1.3a

Example

Filter for specific words containing ‘ei’:

>>> words = ['banana', 'receive', 'believe', 'ticket', 'deceive']
>>> query(words).where(contains_('ei')).to_list()
['receive', 'deceive']

asq.predicates.eq_(rhs)
Create a predicate which tests its argument for equality with a value.

Parameters rhs – (right-hand-side) The value with which the left-hand-side element
will be compared for equality.

Returns A unary predicate function which compares its single argument (lhs) for equal-
ity with rhs.

Example

Filter for those numbers equal to five:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(eq_(5)).to_list()
[5, 5]

asq.predicates.is_(rhs)
Create a predicate which performs an identity comparison of its argument with a value.

Parameters rhs – (right-hand-side) The value against which the identity test will be
performed.

Returns A unary predicate function which determines whether its single arguments
(lhs) has the same identity - that is, is the same object - as rhs.

Example

Filter for a specific object by identity:

>>> sentinel = object()
>>> sentinel
<object object at 0x0000000002ED8040>
>>> objects = ["Dinosaur", 5, sentinel, 89.3]
>>> query(objects).where(is_(sentinel)).to_list()
[<object object at 0x0000000002ED8040>]
>>>

asq.predicates.ge_(rhs)
Create a predicate which performs a greater-than-or-equal comparison of its argument with a value.

Parameters rhs – (right-hand-side) The value against which the greater-than-or- equal
test will be performed.

Returns A unary predicate function which determines whether its single argument (lhs)
is greater-than rhs.

1.3. Reference Documentation 77

asq Documentation, Release 1.3a

Example

Filter for those numbers greater-than-or-equal to 43:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(ge_(43)).to_list()
[89, 67, 43]

asq.predicates.gt_(rhs)
Create a predicate which performs a greater-than comparison of its argument with a value.

Parameters rhs – (right-hand-side) The value against which the greater-than test will
be performed.

Returns A unary predicate function which determines whether its single argument (lhs)
is less-than-or-equal to rhs.

Example

Filter for those numbers greater-than 43:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(gt_(43)).to_list()
[89, 67]

asq.predicates.le_(rhs)
Create a predicate which performs a less-than-or-equal comparison of its argument with a value.

Parameters rhs – (right-hand-side) The value against which the less-than-or-equal test
will be performed.

Returns A unary predicate function which determines whether its single argument (lhs)
is less-than-or-equal to rhs.

Example

Filter for those numbers less-than-or-equal to 43:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(le_(43)).to_list()
[5, 9, 12, 5, 34, 2, 43]

asq.predicates.lt_(rhs)
Create a predicate which performs a less-than comparison of its argument with a value.

Parameters rhs – (right-hand-side) The value against which the less-than test will be
performed.

Returns A unary predicate function which determines whether its single argument (lhs)
is less-than rhs.

Example

Filter for those numbers less-than-or-equal to 43:

78 Chapter 1. Contents

asq Documentation, Release 1.3a

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(lt_(43)).to_list()
[5, 9, 12, 5, 34, 2]

asq.predicates.ne_(rhs)
Create a predicate which tests its argument for inequality with a value.

Parameters rhs – (right-hand-side) The value with which the left-hand-side element
will be compared for inequality.

Returns A unary predicate function which compares its single argument (lhs) for in-
equality with rhs.

Example

Filter for those numbers not equal to 5:

>>> numbers = [5, 9, 12, 5, 89, 34, 2, 67, 43]
>>> query(numbers).where(ne_(5)).to_list()
[9, 12, 89, 34, 2, 67, 43]

Predicate combinators

Predicate combinators allow the predicate factories to be modified and combined in a concise way. For example, we
can write:

or_(lt_(5), gt_(37))

which will produce a predicate equivalent to:

lambda lhs: lhs < 5 or lhs > 37

which can be applied to each element of a sequence to test whether the element is outside the range 5 to 37.

and_ A predicate combinator which produces the a new
predicate which is the logical conjunction of two ex-
isting unary predicates.

not_ A predicate combinator which negates produces an
inverted predicate.

or_ A predicate combinator which produces the a new
predicate which is the logical disjunction of two ex-
isting unary predicates.

xor_ A predicate combinator which produces the a new
predicate which is the logical exclusive disjunction
of two existing unary predicates.

asq.predicates.and_(predicate1, predicate2)
A predicate combinator which produces the a new predicate which is the logical conjunction of two
existing unary predicates.

The predicate returned by this combinator returns True when both of the two supplied predicates
return True, otherwise it returns False.

1.3. Reference Documentation 79

asq Documentation, Release 1.3a

Parameters

• predicate1 – A unary predicate function.

• predicate2 – A unary predicate function.

Returns A unary predicate function which is the logical conjunction of predicate1 and
predicate2.

..rubric:: Example

Filter a list for all the words which both start with ‘a’ and end ‘t’:

>>> words = ['alphabet', 'train', 'apple', 'aghast', 'tent', 'alarm']
>>> query(words).where(and_(m_('startswith', 'a'), m_('endswith', 't'))).
→˓to_list()
['alphabet', 'aghast']

asq.predicates.not_(predicate)
A predicate combinator which negates produces an inverted predicate.

The predicate returned by this combinator is the logical inverse of the supplied combinator.

Parameters predicate – A unary predicate function to be inverted.

Returns A unary predicate function which is the logical inverse of pred.

Example

Filter a list for all the word which do not contain a specific sentinel object:

>>> sentinel = object()
>>> objects = ["Dinosaur", 5, sentinel, 89.3]
>>> query(objects).where(not_(is_(sentinel))).to_list()
['Dinosaur', 5, 89.3]

asq.predicates.or_(predicate1, predicate2)
A predicate combinator which produces the a new predicate which is the logical disjunction of two
existing unary predicates.

The predicate returned by this combinator returns True when either or both of the two supplied
predicates return True, otherwise it returns False.

Parameters

• predicate1 – A unary predicate function.

• predicate2 – A unary predicate function.

Returns A unary predicate function which is the logical disjunction of predicate1 and
predicate2.

Example

Filter a list for all words which either start with ‘a’ or end with ‘t’:

>>> words = ['alphabet', 'train', 'apple', 'aghast', 'tent', 'alarm']
>>> query(words).where(or_(m_('startswith', 'a'), m_('endswith', 't'))).
→˓to_list()
['alphabet', 'apple', 'aghast', 'tent', 'alarm']

80 Chapter 1. Contents

asq Documentation, Release 1.3a

asq.predicates.xor_(predicate1, predicate2)
A predicate combinator which produces the a new predicate which is the logical exclusive disjunc-
tion of two existing unary predicates.

The predicate returned by this combinator returns True when the two supplied predicates return the
different values, otherwise it returns False.

Parameters

• predicate1 – A unary predicate function.

• predicate2 – A unary predicate function.

Returns A unary predicate function which is the logical exclusive disjunction of predi-
cate1 and predicate2.

Example

Filter a list for all words which either start with ‘a’ or end with ‘t’ but not both:

>>> words = ['alphabet', 'train', 'apple', 'aghast', 'tent', 'alarm']
>>> query(words).where(xor_(m_('startswith', 'a'), m_('endswith', 't'))).
→˓to_list()
['apple', 'tent', 'alarm']

asq.record

Records provide a convenient anonymous class which can be useful for managing intermediate query results. new()
provides a concise way to create Records in the middle of a query.

asq.record.Record

class asq.record.Record(**kwargs)
A class to which any attribute can be added at construction.

__init__(**kwargs)
Initialise a Record with an attribute for each keyword argument.

The attributes of a Record are mutable and may be read from and written to using regular
Python instance attribute syntax.

Parameters **kwargs – Each keyword argument will be used to initialise an at-
tribute with the same name as the argument and the given value.

__repr__()
A valid Python expression string representation of the Record.

__str__()
A string representation of the Record.

asq.record.new

asq.record.new(**kwargs)
A convenience factory for creating Records.

1.3. Reference Documentation 81

asq Documentation, Release 1.3a

Parameters **kwargs – Each keyword argument will be used to initialise an attribute
with the same name as the argument and the given value.

Returns A Record which has a named attribute for each of the keyword arguments.

Example

Create an employee and the get and set attributes:

>>> employee = new(age=34, sex='M', name='Joe Bloggs', scores=[3, 2, 9,
→˓8])
>>> employee
Record(age=34, scores=[3, 2, 9, 8], name='Joe Bloggs', sex='M')
>>> employee.age
34
>>> employee.name
'Joe Bloggs'
>>> employee.age = 35
>>> employee.age
35

asq.namedelements

This module contains the definition of the IndexedElement type.

IndexedElements and KeyedElement are namedtuples useful for storing index, element pairs. They
are used as the default selectors by the select_with_index() and select_many_with_index(),
select_with_correspondence() and select_many_with_corresponding() query methods.

asq.namedelements.IndexedElement

class asq.namedelements.IndexedElement(index, value)
The index and value of the element can be accessed via the index and value attributes.

static __new__(index, value)
Create new instance of IndexedElement(index, value)

__repr__()
Return a nicely formatted representation string

__str__()
x.__str__() <==> str(x)

asq.namedelements.KeyedElement

class asq.namedelements.KeyedElement(key, value)
The key and associated value can be accessed via the key and value attributes.

static __new__(key, value)
Create new instance of KeyedElement(key, value)

__repr__()
Return a nicely formatted representation string

82 Chapter 1. Contents

asq Documentation, Release 1.3a

__str__()
x.__str__() <==> str(x)

asq.extension

Adding extension operators.

The extension modules contains tools for registering new extension operators with asq. This is achieved by
dynamically adding new methods to Queryable and possibly its subclasses.

add_method Add an existing function to a class as a method.
extend A function decorator for extending an existing class.

asq.extension.add_method(function, klass, name=None)
Add an existing function to a class as a method.

Note: Consider using the extend decorator as a more readable alternative to using this function directly.

Parameters

• function – The function to be added to the class klass.

• klass – The class to which the new method will be added.

• name – An optional name for the new method. If omitted or None the original name of
the function is used.

Returns The function argument unmodified.

Raises

ValueError - If klass already has an attribute with the same name as the extension
method.

Example

Define a function called every_second() which returns every second element from the source and add it to
Queryable as a new query operator called alternate():

>>> def every_second(self):
... def generate():
... for index, item in enumerate(self):
... if index % 2 == 0:
... yield item
... return self._create(generate())
...
>>> from asq.extension import add_method
>>> from asq.queryables import Queryable
>>>
>>> add_method(every_second, Queryable, "alternate")
<function every_second at 0x0000000002D2D5C8>
>>> a = [5, 8, 3, 2, 0, 9, 5, 4, 9, 2, 7, 0]
>>> query(a).alternate().to_list()
[5, 3, 0, 5, 9, 7]

1.3. Reference Documentation 83

asq Documentation, Release 1.3a

asq.extension.extend(klass, name=None)
A function decorator for extending an existing class.

Use as a decorator for functions to add to an existing class.

Parameters

• klass – The class to be decorated.

• name – The name the new method is to be given in the klass class.

Returns A decorator function which accepts a single function as its only argument. The decorated
function will be added to class klass.

Raises

ValueError - If klass already has an attribute with the same name as the extension
method.

Example

Define a new query method called pairs() which iterates over successive pairs in the source iterable, add it
to the Queryable class and use it to execute a query. Note that extension methods defined in this way will
typically need to call internal methods of Queryable, such as the _create() method used here to construct
a new Queryable:

>>> from asq.extension import extend
>>> from asq.queryables import Queryable
>>>
>>> @extend(Queryable)
... def pairs(self):
... def generate_pairs():
... i = iter(self)
... sentinel = object()
... prev = next(i, sentinel)
... if prev is sentinel:
... return
... for item in i:
... yield prev, item
... prev = item
... return self._create(generate_pairs())
...
>>> from asq import query
>>> a = [5, 4, 7, 2, 8, 9, 1, 0, 4]
>>> query(a).pairs().to_list()
[(5, 4), (4, 7), (7, 2), (2, 8), (8, 9), (9, 1), (1, 0), (0, 4)]

1.3.2 Differences from LINQ

Although asq is inspired by LINQ, there are inevitably some differences with Microsoft’s LINQ on .NET in order to
accommodate the variance between C# and Python.

Embedded Domain Specific Language

C# and VB.NET have specific syntax extensions to support the creation of LINQ queries. This provides an alternative
to the fluent interface (method chaining). Any LINQ query can be expressed using the fluent interface. This is not

84 Chapter 1. Contents

asq Documentation, Release 1.3a

true for the LINQ domain specific languages embedded in C# and VB.NET but they provide syntactic sugar for many
common queries structures.

For example the following LINQ comprehension expression in C#:

from item in collection where item.id == 3 select item

is equivalent to the following call without syntactic sugar in C#:

collection.Where(item => item.id == 3)

No language extensions are provided by asq; however, the fluent interface is fully supported.

let bindings

LINQ query syntax includes a let keyword which has no direct equivalent in the LINQ fluent (method chaining)
interface. The let keyword introduces a new identifier which can store intermediate query results for improvements
in readability or performance.

All queries in LINQ syntax are translated by the C# compiler into chained method calls. The let keyword is translated
into a select() mapping which creates instances of anonymous types which bundle together the current query
value together with any addition values bound by let so they may all be passed down the method chain. Selectors
and predicates in the method chain following the select() are modified to extract the correct members from the
anonymous type.

For example, the following LINQ query expression:

var names = new string[] { "Dog", "Cat", "Giraffe", "Monkey", "Tortoise" };
var result =

from animalName in names
let nameLength = animalName.Length
where nameLength > 3
orderby nameLength
select animalName;

is equivalent to the C# method chain:

var result = names
.Select(animalName => new { nameLength = animalName.Length, animalName})
.Where(x=>x.nameLength > 3)
.OrderBy(x=>x.nameLength)
.Select(x=>x.animalName);

The latter form can be emulated in asq using a Record object which can be concisely created by the new() factory
function:

from asq.initiators import asq
from asq.record import new

names = ['Dog', 'Cat', 'Giraffe', 'Monkey', 'Tortoise']
result = query(names)

.select(lambda animal_name: new(name_length=len(animal_name),
animal_name=animal_name))

.where(lambda x: x.name_length > 3)

.order_by(lambda x: x.name_length)

.select(lambda x: x.animal_name)

1.3. Reference Documentation 85

asq Documentation, Release 1.3a

Extension methods

C# supports extension methods which allow LINQ to “add” methods to existing types such as IEnumerable. This
is how the LINQ query operators are added to enumerable types. Python has no fully equivalent technique because so-
called monkey patching, whereby new methods can be added to existing classes, cannot be applied to built-in types
such as list because they are immutable by design.

For this reason query initiators such query() must be used to convert a Python iterable into a type which supports
query operators.

Nonetheless, the core operators included in asq may be supplemented with additional operators by adding new meth-
ods to the appropriate queryable type, usually Queryable itself.

A decorator called @extend is provided by asq for this purpose.

Overloading

Being statically typed C# supports method overloading and this is used extensively by LINQ. For example, the
SelectMany() method has the following four overloads:

SelectMany<TSource, TResult>(IEnumerable<TSource>,
Func<TSource, IEnumerable<TResult>>)

SelectMany<TSource, TResult>(IEnumerable<TSource>,
Func<TSource, Int32, IEnumerable<TResult>>)

SelectMany<TSource, TCollection, TResult>(IEnumerable<TSource>,
Func<TSource, IEnumerable<TCollection>>,
Func<TSource, TCollection, TResult>)

SelectMany<TSource, TCollection, TResult>(IEnumerable<TSource>,
Func<TSource, Int32, IEnumerable

→˓<TCollection>>,
Func<TSource, TCollection, TResult>)

These four overloads perform quite distinct, although related, operations. In asq the equivalent of these overloads are
methods with separate - and more descriptive - names:

select_many(collection_selector, result_selector)

select_many_with_index(collection_selector, result_selector)

select_many_with_correspondence(collection_selector, result_selector)

Default arguments allow the Python select_many() method to perform the equivalent function as the first and
third C# overloads and select_many_with_index() the second and fourth overloads. The third Python method
provides a simpler alternative to the second version in some scenarios.

Equality comparers

Many .NET containers and and LINQ operators allow the specification of comparer objects, particularly IEquality-
Comparer. This is important in C# because equality in C# using the equality operator is by reference rather than value.
The use of separate comparer types is not idiomatic in Python and in general no attempt has been made to support the
equivalent of LINQ operator overloads which accept equality comparers.

Two asq operators which do accept equality comparison functions are contains() and sequence_equal().

86 Chapter 1. Contents

asq Documentation, Release 1.3a

Style changes

All class and method names in asq are compatible with the PEP 8 style- guide. This necessarily requires that they are
different to the .NET methods, so, for example, SelectMany() in .NET becomes select_many() in asq.

The LINQ IEnumerable extension methods which create new sequences rather than operate on existing sequences
have become module-scope free function initiators in asq in the initiators sub-module.

Specific naming changes

Owing to clashes with existing Python types, some specific name changes have been made. Other name changes have
been made because overloads in LINQ have become separate named methods in asq.

LINQ asq
IEnumerable query(iterable)
range() integers()
except() difference()

Selector and predicate factories

Lambdas in Python are relatively verbose compared to C# lambdas and have the further restriction that they cannot
span multiple lines. Selector and predicate factories are provided to asq to generate common lambda forms. These
have some out-of-the-box equivalent in LINQ.

Execution engine

The LINQ implementation in .NET converts query expressions or method chains into an abstract representation of the
query in the form of expression trees. This allows decoupling of query specification from the form of the which will
be queried. This allows queries to be applied to diverse data sources including object sequences as represented by
IEnumerable (LINQ-to-objects), database (LINQ-to-SQL), XML (LINQ-to-XML) or indeed any other data source for
which a LINQ provider has been created.

At this stage in it‘s development asq sets out to be a solid, Pythonic, functional equivalent of LINQ-to-objects only.
With only one data provider there is not advantage to representing queries in some abstract intermediate representation.
An expression tree based implementation of asq may be created in future.

Pythonic behaviour

Container creation

Included in asq are several additions to support idiomatic Python usage. The first group are the to_*() methods
where * is a placeholder for various built-in types (list, set, dict, tuple) and asq provided types (lookup).

Special methods

The following Python special methods are supported by the Queryable type to support idiomatic Python usage.

1.3. Reference Documentation 87

asq Documentation, Release 1.3a

Special method Purpose Equivalent query operator
__contains__ Support for the in operator contains()
__getitem__ Support for indexing with [] element_at()
__reversed__ Support for reversed() built-in reverse()
__repr__ Stringified representation
__str__ Stringified representation

So, for example, the expression:

5 in query(numbers).select(lambda: x * 2)

is equivalent to:

query(numbers).select(lambda: x * 2).contains(5)

1.3.3 Frequently Asked Questions

Where are map(), filter() and reduce()?

All three of these operators exist in asq with different spelling for consistency with LINQ:

Python Standard Libary asq
map() select()
filter() where()
reduce() aggregate()

Where are fold(), foldl() and foldr()?

Folds in asq can be performed using aggregate(). Here are the equivalents of some Haskell code using folds and
the Python asq code using aggregate():

Haskell asq
foldl f seed seq query(seq).aggregate(f, seed)
foldr f seed seq query(seq).reverse().aggregate(f, seed)

Wouldn’t generators be a better name for what asq calls initiators?

Possibly, but it could be confused with other uses of the word ‘generator’ in Python. In fact, asq‘s initiators might
actually be generators but the essential point is that they ‘initiate’ the fluent query interface of asq.

How do I pronounce asq?

See the answer to the next question.

Where does the name asq come from?

Well, “asq” is homophonic with “ask” which is in turn synonymous with “query”. Further more, “query” contains a
“q” which rather neatly takes us back to the “q” in “asq”. The inspiration for asq comes from “LINQ” where the
“Q” also stands for “query”. Finally, the glyph “q” is mirror symmetric with “p” and replacing the “q” in “asq” with
“p” gives “asp” which also rhymes with “asq” but more importantly is synonymous with “snake”. “asq” is written in
Python, and pythons are a kind of snake, although the programming language is actually named after a popular British
comedy troupe and nothing to do with snakes at all. Or something.

88 Chapter 1. Contents

asq Documentation, Release 1.3a

1.4 Detailed Change History

1.4.1 Changes

asq v.next

• Adds a convenience alias for asq.initiators.query as asq.query.

asq 1.3

There are several minor breaking API changes in this release. Please read carefully more details:

• Re-assigns copyright from Robert Smallshire to Sixty North AS.

• Adds select_with_correspondence() query method.

• Renames the indexedelement module to namedelements.

• Renames the second element of IndexedElement from element to value.

• Adds the KeyedElement namedtuple to the namedelements module. KeyedElement has two ele-
ments called key and value.

• Queryable.to_dictionary() no longer raises an exception if the key_selector produces duplicate keys. Instead, the
values associated with later keys overwrite those produced by earlier keys. This weakening of the to_dictionary()
constract allows us to maintain Liskov subsstitutability in light of the specialised default key and value selectors
for the overrides of to_dictionary() provided for the Lookup and Grouping classes. (See the next two
changes for more details).

• Less surprising behaviour for Lookup.to_dictionary(): The default key and value selectors for
Lookup.to_dictionary() are overidden, so that the produced dictionary contains a single item for each
Grouping such that the key of each item is the key of the corresponding Grouping and the value of the item
is a list of the elements from the Grouping.

• Less surprising behaviour for Grouping.to_dictionary(): The default key and value selectors for
Grouping.to_dictionary() are overidden, so that the produced dictionary contains a single item, such
that the key of the item is the key of the Grouping and the value of the item is a list containing the elements
from the Grouping.

asq 1.2.1

• Fixes a problem in setup.py that prevented installation on Python 2.

asq 1.2

• The default selector for select_with_index() now produces a new IndexedElement object for each type which is
a namedtuple. As IndexedElement is a tuple this change is backwards compatibile, but now the more readable
item.index and item.element attributes can be used instead of accessing via indexes zero and one.

asq 1.1

• The selector factories k_(), a_() and m_() have much faster implementations because they are now simply
aliases for itemgetter, attrgetter and methodcaller from the Python standard library operator module. As a result,

1.4. Detailed Change History 89

asq Documentation, Release 1.3a

even though they remain backwards API compatible with those in asq 1.0 their capabilities are also extended
somewhat:

– k_ can optionally accept more than one argument (key) and if so, the selector it produces will return a
tuple of multiple looked-up values rather than a single value.

– a_ can optionally accept more than one argument (key) and if so, the selector it produces will return a
tuple of multiple looked-up values rather than a single value. Furthermore, the attribute names supplied
in each argument can now contain dots to refer to nested attributes.

• Added asq.selectors.make_selector which will create a selector directly from a string or integer using attribute
or item lookup respectively.

asq 1.0

Huge correctness and completeness changes for 1.0 since 0.9. The API now has feature equivalence with LINQ for
objects with 100% test coverage and complete documentation.

The API has been very much reorganised with some renaming of crucial functions. The important asq() function is
now called query() to prevent a clash with the package name itself and is found in the asq.initiators package.

For common asq usage you now need to do:

from asq.initiators import query
a = [1, 2, 3]
query(a).select(lambda x: x*x).to_list()

to get started. For more than that, consult the documentation.

1.5 Samples

More complex examples of non-trivial usage of asq:

1.5.1 Samples

Mandelbrot

Visualising the Mandelbrot fractal with asq. This is a direct translation of Jon Skeet’s original LINQ Mandelbrot
from LINQ in C# to asq in Python. The sample requires the Python Imaging Library and so at the time of writing
only works with Python 2.

This example can be found in the source distribution of asq under asq/examples/mandelbrot.py.

'''A conversion of Jon Skeet's LINQ Mandelbrot from LINQ to asq.

The original can be found at

http://msmvps.com/blogs/jon_skeet/archive/2008/02/26/visualising-the-mandelbrot-set-
→˓with-linq-yet-again.aspx

'''
import colorsys
#import Image

from asq.initiators import integers, query

90 Chapter 1. Contents

http://msmvps.com/blogs/jon_skeet/archive/2008/02/26/visualising-the-mandelbrot-set-with-linq-yet-again.aspx
http://www.pythonware.com/products/pil/

asq Documentation, Release 1.3a

def generate(start, func):
value = start
while True:

yield value
value = func(value)

def colnorm(r, g, b):
return (int(255 * r) - 1, int(255 * g) - 1, int(255 * b) - 1)

def col(n, max):
if n == max:

return (0, 0, 0)
return colnorm(colorsys.hsv_to_rgb(0.0, 1.0, float(n) / max))

def mandelbrot():
MaxIterations = 200
SampleWidth = 3.2
SampleHeight = 2.5
OffsetX = -2.1
OffsetY = -1.25

ImageWidth = 480
ImageHeight = int(SampleHeight * ImageWidth / SampleWidth)

query = integers(0, ImageHeight).select(lambda y: (y * SampleHeight) /
→˓ImageHeight + OffsetY) \

.select_many_with_correspondence(
lambda y: integers(0, ImageWidth).select(lambda x: (x * SampleWidth) /

→˓ ImageWidth + OffsetX),
lambda y, x: (x, y)) \

.select(lambda real_imag: complex(*real_imag)) \

.select(lambda c: query(generate(c, lambda x: x * x + c))
.take_while(lambda x: x.real ** 2 + x.imag ** 2 < 4)
.take(MaxIterations)
.count()) \

.select(lambda c: ((c * 7) % 255, (c * 5) % 255, (c * 11) % 255) if c !=
→˓MaxIterations else (0, 0, 0))

data = q.to_list()

image = Image.new("RGB", (ImageWidth, ImageHeight))
image.putdata(data)
image.show()

if __name__ == '__main__':
mandelbrot()

This example can be be run with:

python -m asq.examples.mandelbrot

which produces

1.5. Samples 91

asq Documentation, Release 1.3a

92 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

93

asq Documentation, Release 1.3a

94 Chapter 2. Indices and tables

Python Module Index

a
asq.extension, 83
asq.initiators, 18
asq.namedelements, 82
asq.predicates, 76
asq.queryables, 20
asq.record, 81
asq.selectors, 73

95

asq Documentation, Release 1.3a

96 Python Module Index

Index

Symbols
__contains__() (asq.queryables.Lookup method), 68
__contains__() (asq.queryables.Queryable method), 23
__enter__() (asq.queryables.Queryable method), 23
__eq__() (asq.queryables.Grouping method), 71
__eq__() (asq.queryables.Queryable method), 23
__exit__() (asq.queryables.Queryable method), 23
__getitem__() (asq.queryables.Lookup method), 67
__getitem__() (asq.queryables.Queryable method), 24
__init__() (asq.queryables.Grouping method), 70
__init__() (asq.queryables.Lookup method), 67
__init__() (asq.queryables.Queryable method), 24
__init__() (asq.record.Record method), 81
__iter__() (asq.queryables.Queryable method), 24
__len__() (asq.queryables.Grouping method), 71
__len__() (asq.queryables.Lookup method), 67
__ne__() (asq.queryables.Grouping method), 71
__ne__() (asq.queryables.Queryable method), 25
__new__() (asq.namedelements.IndexedElement static

method), 82
__new__() (asq.namedelements.KeyedElement static

method), 82
__repr__() (asq.namedelements.IndexedElement

method), 82
__repr__() (asq.namedelements.KeyedElement method),

82
__repr__() (asq.queryables.Grouping method), 72
__repr__() (asq.queryables.Lookup method), 68
__repr__() (asq.queryables.Queryable method), 26
__repr__() (asq.record.Record method), 81
__reversed__() (asq.queryables.Queryable method), 25
__str__() (asq.namedelements.IndexedElement method),

82
__str__() (asq.namedelements.KeyedElement method),

82
__str__() (asq.queryables.Queryable method), 26
__str__() (asq.record.Record method), 81

A
a_() (in module asq.selectors), 73
add_method() (in module asq.extension), 83
aggregate() (asq.queryables.Queryable method), 26
all() (asq.queryables.Queryable method), 27
and_() (in module asq.predicates), 79
any() (asq.queryables.Queryable method), 28
apply_result_selector() (asq.queryables.Lookup method),

69
as_parallel() (asq.queryables.Queryable method), 29
asq.extension (module), 83
asq.initiators (module), 18
asq.namedelements (module), 82
asq.predicates (module), 76
asq.queryables (module), 20
asq.record (module), 81
asq.selectors (module), 73
average() (asq.queryables.Queryable method), 29

C
close() (asq.queryables.Queryable method), 29
closed() (asq.queryables.Queryable method), 29
concat() (asq.queryables.Queryable method), 29
contains() (asq.queryables.Queryable method), 30
contains_() (in module asq.predicates), 76
count() (asq.queryables.Queryable method), 30

D
default_if_empty() (asq.queryables.Queryable method),

31
difference() (asq.queryables.Queryable method), 31
distinct() (asq.queryables.Queryable method), 32

E
element_at() (asq.queryables.Queryable method), 33
empty() (in module asq.initiators), 19
eq_() (in module asq.predicates), 77
extend() (in module asq.extension), 83

97

asq Documentation, Release 1.3a

F
first() (asq.queryables.Queryable method), 33
first_or_default() (asq.queryables.Queryable method), 34

G
ge_() (in module asq.predicates), 77
group_by() (asq.queryables.Queryable method), 35
group_join() (asq.queryables.Queryable method), 36
Grouping (class in asq.queryables), 70
gt_() (in module asq.predicates), 78

I
identity() (in module asq.selectors), 73
IndexedElement (class in asq.namedelements), 82
integers() (in module asq.initiators), 19
intersect() (asq.queryables.Queryable method), 37
is_() (in module asq.predicates), 77

J
join() (asq.queryables.Queryable method), 38

K
k_() (in module asq.selectors), 74
key (asq.queryables.Grouping attribute), 71
KeyedElement (class in asq.namedelements), 82

L
last() (asq.queryables.Queryable method), 39
last_or_default() (asq.queryables.Queryable method), 40
le_() (in module asq.predicates), 78
log() (asq.queryables.Queryable method), 41
Lookup (class in asq.queryables), 66
lt_() (in module asq.predicates), 78

M
m_() (in module asq.selectors), 75
max() (asq.queryables.Queryable method), 44
min() (asq.queryables.Queryable method), 45

N
ne_() (in module asq.predicates), 79
new() (in module asq.record), 81
not_() (in module asq.predicates), 80

O
of_type() (asq.queryables.Queryable method), 45
or_() (in module asq.predicates), 80
order_by() (asq.queryables.Queryable method), 46
order_by_descending() (asq.queryables.Queryable

method), 47
OrderedQueryable (class in asq.queryables), 66

Q
query() (in module asq.initiators), 18
Queryable (class in asq.queryables), 20

R
Record (class in asq.record), 81
repeat() (in module asq.initiators), 20

S
select() (asq.queryables.Queryable method), 47
select_many() (asq.queryables.Queryable method), 48
select_many_with_correspondence()

(asq.queryables.Queryable method), 49
select_many_with_index() (asq.queryables.Queryable

method), 51
select_with_correspondence() (asq.queryables.Queryable

method), 52
select_with_index() (asq.queryables.Queryable method),

53
sequence_equal() (asq.queryables.Queryable method), 54
single() (asq.queryables.Queryable method), 55
single_or_default() (asq.queryables.Queryable method),

56
skip() (asq.queryables.Queryable method), 57
skip_while() (asq.queryables.Queryable method), 58
sum() (asq.queryables.Queryable method), 58

T
take() (asq.queryables.Queryable method), 59
take_while() (asq.queryables.Queryable method), 60
to_dictionary() (asq.queryables.Grouping method), 72
to_dictionary() (asq.queryables.Lookup method), 69
to_dictionary() (asq.queryables.Queryable method), 60
to_list() (asq.queryables.Queryable method), 61
to_lookup() (asq.queryables.Queryable method), 61
to_set() (asq.queryables.Queryable method), 62
to_str() (asq.queryables.Queryable method), 62
to_tuple() (asq.queryables.Queryable method), 63

U
union() (asq.queryables.Queryable method), 64

W
where() (asq.queryables.Queryable method), 64

X
xor_() (in module asq.predicates), 80

Z
zip() (asq.queryables.Queryable method), 65

98 Index

	Contents
	Front Matter
	Narrative Documentation
	Reference Documentation
	Detailed Change History
	Samples

	Indices and tables
	Python Module Index

