

 导航

 	
 索引

 	
 下一页 |

 	ASP.NET 文档

ASP.NET Core Documentation

注意

ASP.NET 5 has been renamed to ASP.NET Core 1.0. Read more [https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/].

注解

This documentation is a work in progress. Topics marked with a 🔧 are placeholders that have not been written yet. You can track the status of these topics through our public documentation issue tracker [https://github.com/aspnet/docs/issues]. Learn how you can contribute [https://github.com/aspnet/Docs/blob/master/CONTRIBUTING.md] on GitHub.

Topics

	Introduction

	Getting Started

	Release notes [https://github.com/aspnet/home/releases]

	Tutorials
	Your First ASP.NET Core Application on a Mac Using Visual Studio Code

	Building Your First Web API with ASP.NET Core MVC and Visual Studio

	Deploy an ASP.NET Core web app to Azure using Visual Studio

	Building your first ASP.NET Core MVC app with Visual Studio
	Getting started with ASP.NET Core MVC and Visual Studio

	Adding a controller

	Adding a view

	Adding a model

	Working with SQL Server LocalDB

	Controller methods and views

	Adding Search

	Adding a New Field

	Adding Validation

	Examining the Details and Delete methods

	ASP.NET Core on Nano Server

	ASP.NET Core and Azure Service Fabric [https://azure.microsoft.com/en-us/documentation/articles/service-fabric-add-a-web-frontend/]

	🔧 Creating Backend Services for Native Mobile Applications

	Developing ASP.NET Core applications using dotnet watch

	Fundamentals
	Application Startup

	Middleware

	Working with Static Files

	Routing

	Error Handling

	Globalization and localization

	Configuration

	Logging

	🔧 File Providers

	Dependency Injection

	Working with Multiple Environments

	Managing Application State

	Servers

	Request Features

	Open Web Interface for .NET (OWIN)

	Choosing the Right .NET For You on the Server

	MVC
	🔧 Overview of ASP.NET MVC

	Models
	Model Binding

	Model Validation

	Formatting Response Data

	🔧 Custom Formatters

	Views
	Views Overview

	🔧 Razor Syntax

	Layout

	🔧 Dynamic vs Strongly Typed Views

	Working with Forms

	🔧 HTML Helpers

	Tag Helpers
	Introduction to Tag Helpers

	Working with Forms

	Authoring Tag Helpers

	Partial Views

	Injecting Services Into Views

	View Components

	🔧 Creating a Custom View Engine

	🔧 Building Mobile Specific Views

	Controllers
	Controllers, Actions, and Action Results

	🔧 Routing to Controller Actions

	Filters

	Dependency Injection and Controllers

	Testing Controller Logic

	Areas

	🔧 Working with the Application Model

	Testing
	Unit Testing [https://docs.microsoft.com/en-us/dotnet/articles/core/testing/unit-testing-with-dotnet-test]

	Integration Testing

	Testing Controller Logic

	Working with Data
	Getting Started with ASP.NET Core and Entity Framework 6

	Getting Started With ASP.NET Core and Entity Framework Core [http://docs.efproject.net/en/latest/platforms/aspnetcore/index.html]

	Azure Storage
	Adding Azure Storage by Using Visual Studio Connected Services [https://azure.microsoft.com/documentation/articles/vs-azure-tools-connected-services-storage/]

	Get Started with Azure Blob storage and Visual Studio Connected Services [https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-blobs/]

	Get Started with Queue Storage and Visual Studio Connected Services [https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-queues/]

	How to Get Started with Azure Table Storage and Visual Studio Connected Services [https://azure.microsoft.com/documentation/articles/vs-storage-aspnet5-getting-started-tables/]

	Client-Side Development
	Using Gulp

	Using Grunt

	Manage Client-Side Packages with Bower

	Building Beautiful, Responsive Sites with Bootstrap

	Knockout.js MVVM Framework

	Using Angular for Single Page Applications (SPAs)

	Styling Applications with Less, Sass, and Font Awesome

	Bundling and Minification

	🔧 Working with a Content Delivery Network (CDN)

	🔧 Responsive Design for the Mobile Web

	TypeScript [https://www.typescriptlang.org/docs/handbook/asp-net-core.html]

	Building Projects with Yeoman

	Mobile
	🔧 Responsive Design for the Mobile Web

	🔧 Building Mobile Specific Views

	🔧 Creating Backend Services for Native Mobile Applications

	Publishing and Deployment
	Publishing to IIS

	Publishing to IIS with Web Deploy using Visual Studio

	How Web Publishing In Visual Studio Works

	Deploy an ASP.NET Core web app to Azure using Visual Studio

	Publishing to an Azure Web App with Continuous Deployment

	🔧 Publishing to a Windows Virtual Machine on Azure

	Publish to a Docker Image [https://azure.microsoft.com/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/]

	Publish to a Linux Production Environment

	🔧 How to Customize Publishing

	Guidance for Hosting Providers
	ASP.NET Core Module Configuration Reference

	Directory Structure

	Application Pools

	Servicing

	Data Protection

	Security
	Authentication
	Introduction to Identity

	Enabling authentication using Facebook, Google and other external providers

	Account Confirmation and Password Recovery

	Two-factor authentication with SMS

	🔧 Supporting Third Party Clients using OAuth 2.0

	Using Cookie Middleware without ASP.NET Core Identity

	Azure Active Directory
	Integrating Azure AD Into an ASP.NET Core Web App [https://azure.microsoft.com/documentation/samples/active-directory-dotnet-webapp-openidconnect-aspnetcore]

	Calling a ASP.NET Core Web API From a WPF Application Using Azure AD [https://azure.microsoft.com/documentation/samples/active-directory-dotnet-native-aspnetcore]

	Calling a Web API in an ASP.NET Core Web Application Using Azure AD [https://azure.microsoft.com/en-us/documentation/samples/active-directory-dotnet-webapp-webapi-openidconnect-aspnetcore/]

	Authorization
	Introduction

	Simple Authorization

	Role based Authorization

	Claims-Based Authorization

	Custom Policy-Based Authorization

	Dependency Injection in Requirement Handlers

	Resource Based Authorization

	View Based Authorization

	Limiting identity by scheme

	🔧 Authorization Filters

	Data Protection
	Introduction to Data Protection

	Getting Started with the Data Protection APIs

	Consumer APIs
	Consumer APIs Overview

	Purpose Strings

	Purpose hierarchy and multi-tenancy

	Password Hashing

	Limiting the lifetime of protected payloads

	Unprotecting payloads whose keys have been revoked

	Configuration
	Configuring Data Protection

	Default Settings

	Machine Wide Policy

	Non DI Aware Scenarios

	Extensibility APIs
	Core cryptography extensibility

	Key management extensibility

	Miscellaneous APIs

	Implementation
	Authenticated encryption details.

	Subkey Derivation and Authenticated Encryption

	Context headers

	Key Management

	Key Storage Providers

	Key Encryption At Rest

	Key Immutability and Changing Settings

	Key Storage Format

	Ephemeral data protection providers

	Compatibility
	Sharing cookies between applications

	Replacing <machineKey> in ASP.NET

	Safe storage of app secrets during development

	🔧 Enforcing SSL

	🔧 Anti-Request Forgery

	🔧 Preventing Open Redirect Attacks

	🔧 Preventing Cross-Site Scripting

	Enabling Cross-Origin Requests (CORS)

	Performance
	🔧 Measuring Application Performance

	Caching
	In Memory Caching

	Working with a Distributed Cache

	Response Caching

	🔧 Output Caching

	Migration
	Migrating From ASP.NET MVC to ASP.NET Core MVC

	Migrating Configuration

	Migrating Authentication and Identity

	Migrating from ASP.NET Web API

	Migrating HTTP Modules to Middleware

	Migrating from ASP.NET 5 RC1 to ASP.NET Core 1.0

	Migrating from ASP.NET Core RC2 to ASP.NET Core 1.0

	API [https://docs.asp.net/projects/api]

	Contribute
	ASP.NET Contributing Guide [https://github.com/aspnet/Home/blob/dev/CONTRIBUTING.md]

	ASP.NET Docs Contributing Guide [https://github.com/aspnet/Docs/blob/master/CONTRIBUTING.md]

	ASP.NET Docs Style Guide

Related Resources

	.NET Core [https://microsoft.com/net/core]

	Entity Framework Core [https://docs.efproject.net]

	WebHooks [http://docs.asp.net/projects/aspnetwebhooks]

Contribute

The documentation on this site is the handiwork of our many contributors [https://github.com/aspnet/docs/contributors].

We accept pull requests! But you’re more likely to have yours accepted if you follow these guidelines:

	Read https://github.com/aspnet/Docs/blob/master/CONTRIBUTING.md

	Follow the ASP.NET Docs Style Guide

 [image:]

 版权所有 2016, Microsoft.
 最后更新于 7月 06, 2016.
 由 Sphinx 1.4.1 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

Introduction to ASP.NET Core

By Daniel Roth [https://github.com/danroth27], Rick Anderson [https://twitter.com/RickAndMSFT] and Shaun Luttin [https://twitter.com/dicshaunary]

ASP.NET Core is a significant redesign of ASP.NET. This topic introduces the new concepts in ASP.NET Core and explains how they help you develop modern web apps.

Sections:

	What is ASP.NET Core?

	Why build ASP.NET Core?

	Application anatomy

	Startup

	Services

	Middleware

	Servers

	Content root

	Web root

	Configuration

	Environments

	Build web UI and web APIs using ASP.NET Core MVC

	Client-side development

	Next steps

What is ASP.NET Core?

ASP.NET Core is a new open-source and cross-platform framework for building modern cloud based internet connected applications, such as web apps, IoT apps and mobile backends. ASP.NET Core apps can run on .NET Core [https://www.microsoft.com/net/core/platform] or on the full .NET Framework. It was architected to provide an optimized development framework for apps that are deployed to the cloud or run on-premises. It consists of modular components with minimal overhead, so you retain flexibility while constructing your solutions. You can develop and run your ASP.NET Core apps cross-platform on Windows, Mac and Linux. ASP.NET Core is open source at GitHub [https://github.com/aspnet/home].

Why build ASP.NET Core?

The first preview release of ASP.NET came out almost 15 years ago as part of the .NET Framework. Since then millions of developers have used it to build and run great web apps, and over the years we have added and evolved many capabilities to it.

ASP.NET Core has a number of architectural changes that result in a much leaner and modular framework. ASP.NET Core is no longer based on System.Web.dll. It is based on a set of granular and well factored NuGet [http://www.nuget.org/] packages. This allows you to optimize your app to include just the NuGet packages you need. The benefits of a smaller app surface area include tighter security, reduced servicing, improved performance, and decreased costs in a pay-for-what-you-use model.

With ASP.NET Core you gain the following foundational improvements:

	A unified story for building web UI and web APIs

	Integration of modern client-side frameworks and development workflows

	A cloud-ready environment-based configuration system

	Built-in dependency injection

	New light-weight and modular HTTP request pipeline

	Ability to host on IIS or self-host in your own process

	Built on .NET Core [https://microsoft.com/net/core], which supports true side-by-side app versioning

	Ships entirely as NuGet [https://nuget.org] packages

	New tooling that simplifies modern web development

	Build and run cross-platform ASP.NET apps on Windows, Mac and Linux

	Open source and community focused

Application anatomy

An ASP.NET Core app is simply a console app that creates a web server in its Main method:

using System;
using Microsoft.AspNetCore.Hosting;

namespace aspnetcoreapp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
 }
}

Main uses WebHostBuilder [http://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Hosting/WebHostBuilder/index.html#Microsoft.AspNetCore.Hosting.WebHostBuilder], which follows the builder pattern, to create a web application host. The builder has methods that define the web server (for example UseKestrel) and the startup class (UseStartup). In the example above, the Kestrel web server is used, but other web servers can be specified. We’ll show more about UseStartup in the next section. WebHostBuilder provides many optional methods including UseIISIntegration for hosting in IIS and IIS Express and UseContentRoot for specifying the root content directory. The Build and Run methods build the IWebHost that will host the app and start it listening for incoming HTTP requests.

Startup

The UseStartup method on WebHostBuilder specifies the Startup class for your app.

public class Program
{
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
}

The Startup class is where you define the request handling pipeline and where any services needed by the app are configured. The Startup class must be public and contain the following methods:

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app)
 {
 }
}

	ConfigureServices defines the services (see Services below) used by your app (such as the ASP.NET MVC Core framework, Entity Framework Core, Identity, etc.)

	Configure defines the middleware in the request pipeline

	See Application Startup for more details

Services

A service is a component that is intended for common consumption in an application. Services are made available through dependency injection. ASP.NET Core includes a simple built-in inversion of control (IoC) container that supports constructor injection by default, but can be easily replaced with your IoC container of choice. In addition to its loose coupling benefit, DI makes services available throughout your app. For example, Logging is available throughout your app. See Dependency Injection for more details.

Middleware

In ASP.NET Core you compose your request pipeline using Middleware. ASP.NET Core middleware performs asynchronous logic on an HttpContext and then either invokes the next middleware in the sequence or terminates the request directly. You generally “Use” middleware by invoking a corresponding UseXYZ extension method on the IApplicationBuilder in the Configure method.

ASP.NET Core comes with a rich set of prebuilt middleware:

	Static files

	Routing

	Authentication

You can also author your own custom middleware.

You can use any OWIN [http://owin.org]-based middleware with ASP.NET Core. See Open Web Interface for .NET (OWIN) for details.

Servers

The ASP.NET Core hosting model does not directly listen for requests; rather it relies on an HTTP server implementation to forward the request to the application. The forwarded request is wrapped as a set of feature interfaces that the application then composes into an HttpContext. ASP.NET Core includes a managed cross-platform web server, called Kestrel, that you would typically run behind a production web server like IIS [https://iis.net] or nginx [http://nginx.org].

Content root

The content root is the base path to any content used by the app, such as its views and web content. By default the content root is the same as application base path for the executable hosting the app; an alternative location can be specified with WebHostBuilder.

Web root

The web root of your app is the directory in your project for public, static resources like css, js, and image files. The static files middleware will only serve files from the web root directory (and sub-directories) by default. The web root path defaults to <content root>/wwwroot, but you can specify a different location using the WebHostBuilder.

Configuration

ASP.NET Core uses a new configuration model for handling simple name-value pairs. The new configuration model is not based on System.Configuration or web.config; rather, it pulls from an ordered set of configuration providers. The built-in configuration providers support a variety of file formats (XML, JSON, INI) and environment variables to enable environment-based configuration. You can also write your own custom configuration providers.

See Configuration for more information.

Environments

Environments, like “Development” and “Production”, are a first-class notion in ASP.NET Core and can be set using environment variables. See Working with Multiple Environments for more information.

Build web UI and web APIs using ASP.NET Core MVC

	You can create well-factored and testable web apps that follow the Model-View-Controller (MVC) pattern. See MVC and Testing.

	You can build HTTP services that support multiple formats and have full support for content negotiation. See Formatting Response Data

	Razor [http://www.asp.net/web-pages/overview/getting-started/introducing-razor-syntax-c] provides a productive language to create Views

	Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files

	You can create HTTP services with full support for content negotiation using custom or built-in formatters (JSON, XML)

	Model Binding automatically maps data from HTTP requests to action method parameters

	Model Validation automatically performs client and server side validation

Client-side development

ASP.NET Core is designed to integrate seamlessly with a variety of client-side frameworks, including AngularJS, KnockoutJS and Bootstrap. See Client-Side Development for more details.

Next steps

	Building your first ASP.NET Core MVC app with Visual Studio

	Your First ASP.NET Core Application on a Mac Using Visual Studio Code

	Building Your First Web API with ASP.NET Core MVC and Visual Studio

	Fundamentals

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Getting Started

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

Getting Started

	Install .NET Core [https://microsoft.com/net/core]

	Create a new .NET Core project:

mkdir aspnetcoreapp
cd aspnetcoreapp
dotnet new

	Update the project.json file to add the Kestrel HTTP server package as a dependency:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "emitEntryPoint": true
 },
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 "Microsoft.AspNetCore.Server.Kestrel": "1.0.0"
 },
 "frameworks": {
 "netcoreapp1.0": { }
 }
}

	Restore the packages:

dotnet restore

	Add a Startup.cs file that defines the request handling logic:

using System;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;

namespace aspnetcoreapp
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app)
 {
 app.Run(context =>
 {
 return context.Response.WriteAsync("Hello from ASP.NET Core!");
 });
 }
 }
}

	Update the code in Program.cs to setup and start the Web host:

using System;
using Microsoft.AspNetCore.Hosting;

namespace aspnetcoreapp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
 }
}

	Run the app (the dotnet run command will build the app when it’s out of date):

dotnet run

	Browse to http://localhost:5000:

[image: _images/running-output.png]

Next steps

	Building your first ASP.NET Core MVC app with Visual Studio

	Your First ASP.NET Core Application on a Mac Using Visual Studio Code

	Building Your First Web API with ASP.NET Core MVC and Visual Studio

	Fundamentals

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Tutorials

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

Tutorials

	Your First ASP.NET Core Application on a Mac Using Visual Studio Code

	Building Your First Web API with ASP.NET Core MVC and Visual Studio

	Deploy an ASP.NET Core web app to Azure using Visual Studio

	Building your first ASP.NET Core MVC app with Visual Studio
	Getting started with ASP.NET Core MVC and Visual Studio

	Adding a controller

	Adding a view

	Adding a model

	Working with SQL Server LocalDB

	Controller methods and views

	Adding Search

	Adding a New Field

	Adding Validation

	Examining the Details and Delete methods

	ASP.NET Core on Nano Server

	ASP.NET Core and Azure Service Fabric [https://azure.microsoft.com/en-us/documentation/articles/service-fabric-add-a-web-frontend/]

	🔧 Creating Backend Services for Native Mobile Applications

	Developing ASP.NET Core applications using dotnet watch

 [image:]

 版权所有 2016, Microsoft.
 最后更新于 7月 06, 2016.
 由 Sphinx 1.4.1 创建。

 Your First ASP.NET Core Application on a Mac Using Visual Studio Code

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

Your First ASP.NET Core Application on a Mac Using Visual Studio Code

By Daniel Roth [https://github.com/danroth27], Steve Smith [http://ardalis.com] and Rick Anderson [https://twitter.com/RickAndMSFT]

This article will show you how to write your first ASP.NET Core application on a Mac.

Sections:

	Setting Up Your Development Environment

	Scaffolding Applications Using Yeoman

	Developing ASP.NET Core Applications on a Mac With Visual Studio Code

	Running Locally Using Kestrel

	Publishing to Azure

	Additional Resources

Setting Up Your Development Environment

To setup your development machine download and install .NET Core [https://microsoft.com/net/core] and Visual Studio Code [https://code.visualstudio.com] with the C# extension [https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp].

Scaffolding Applications Using Yeoman

Follow the instruction in Building Projects with Yeoman to create an ASP.NET Core project.

Developing ASP.NET Core Applications on a Mac With Visual Studio Code

	Start Visual Studio Code

[image: ../_images/vscode-welcome.png]

	Tap File > Open and navigate to your Empty ASP.NET Core app

[image: ../_images/file-open.png]
From a Terminal / bash prompt, run dotnet restore to restore the project’s dependencies. Alternately, you can enter command shift p in Visual Studio Code and then type dot as shown:

[image: ../_images/dotnet-restore1.png]
You can run commands directly from within Visual Studio Code, including dotnet restore and any tools referenced in the project.json file, as well as custom tasks defined in .vscode/tasks.json.

This empty project template simply displays “Hello World!”. Open Startup.cs in Visual Studio Code to see how this is configured:

[image: ../_images/vscode-startupcs.png]
If this is your first time using Visual Studio Code (or just Code for short), note that it provides a very streamlined, fast, clean interface for quickly working with files, while still providing tooling to make writing code extremely productive.

In the left navigation bar, there are four icons, representing four viewlets:

	Explore

	Search

	Git

	Debug

The Explore viewlet allows you to quickly navigate within the folder system, as well as easily see the files you are currently working with. It displays a badge to indicate whether any files have unsaved changes, and new folders and files can easily be created (without having to open a separate dialog window). You can easily Save All from a menu option that appears on mouse over, as well.

The Search viewlet allows you to quickly search within the folder structure, searching filenames as well as contents.

Code will integrate with Git if it is installed on your system. You can easily initialize a new repository, make commits, and push changes from the Git viewlet.

[image: ../_images/vscode-git.png]
The Debug viewlet supports interactive debugging of applications.

Finally, Code’s editor has a ton of great features. You’ll notice unused using statements are underlined and can be removed automatically by using command . when the lightbulb icon appears. Classes and methods also display how many references there are in the project to them. If you’re coming from Visual Studio, Code includes many of the same keyboard shortcuts, such as command k c to comment a block of code, and command k u to uncomment.

Running Locally Using Kestrel

The sample is configured to use Kestrel for the web server. You can see it configured in the project.json file, where it is specified as a dependency.

{
 "buildOptions": {
 "emitEntryPoint": true
 },
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 "Microsoft.AspNetCore.Server.Kestrel": "1.0.0"
 },
 "frameworks": {
 "netcoreapp1.0": {}
 }
}

	Run dotnet run command to launch the app

	Navigate to localhost:5000:

[image: ../_images/hello-world1.png]

	To stop the web server enter Ctrl+C.

Publishing to Azure

Once you’ve developed your application, you can easily use the Git integration built into Visual Studio Code to push updates to production, hosted on Microsoft Azure [http://azure.microsoft.com].

Initialize Git

Initialize Git in the folder you’re working in. Tap on the Git viewlet and click the Initialize Git repository button.

[image: ../_images/vscode-git-commit.png]
Add a commit message and tap enter or tap the checkmark icon to commit the staged files.

[image: ../_images/init-commit.png]
Git is tracking changes, so if you make an update to a file, the Git viewlet will display the files that have changed since your last commit.

Initialize Azure Website

You can deploy to Azure Web Apps directly using Git.

	Create a new Web App [https://tryappservice.azure.com/] in Azure. If you don’t have an Azure account, you can create a free trial [http://azure.microsoft.com/en-us/pricing/free-trial/].

	Configure the Web App in Azure to support continuous deployment using Git [http://azure.microsoft.com/en-us/documentation/articles/web-sites-publish-source-control/].

Record the Git URL for the Web App from the Azure portal:

[image: ../_images/azure-portal.png]

	In a Terminal window, add a remote named azure with the Git URL you noted previously.

	git remote add azure https://ardalis-git@firstaspnetcoremac.scm.azurewebsites.net:443/firstaspnetcoremac.git

	Push to master.

	git push azure master to deploy.

[image: ../_images/git-push-azure-master.png]

	Browse to the newly deployed web app. You should see Hello world!

Additional Resources

	Visual Studio Code [https://code.visualstudio.com]

	Building Projects with Yeoman

	Fundamentals

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Building Your First Web API with ASP.NET Core MVC and Visual Studio

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

Building Your First Web API with ASP.NET Core MVC and Visual Studio

By Mike Wasson [https://github.com/mikewasson] and Rick Anderson [https://twitter.com/RickAndMSFT]

HTTP is not just for serving up web pages. It’s also a powerful platform for building APIs that expose services and data. HTTP is simple, flexible, and ubiquitous. Almost any platform that you can think of has an HTTP library, so HTTP services can reach a broad range of clients, including browsers, mobile devices, and traditional desktop apps.

In this tutorial, you’ll build a simple web API for managing a list of “to-do” items. You won’t build any UI in this tutorial.

ASP.NET Core has built-in support for MVC building Web APIs. Unifying the two frameworks makes it simpler to build apps that include both UI (HTML) and APIs, because now they share the same code base and pipeline.

注解

If you are porting an existing Web API app to ASP.NET Core, see Migrating from ASP.NET Web API

Sections:

	Overview

	Install Fiddler

	Create the project

	Add a model class

	Add a repository class

	Register the repository

	Add a controller

	Getting to-do items

	Use Fiddler to call the API

	Implement the other CRUD operations

	Next steps

Overview

Here is the API that you’ll create:

	API
	Description
	Request body
	Response body

	GET /api/todo
	Get all to-do items
	None
	Array of to-do items

	GET /api/todo/{id}
	Get an item by ID
	None
	To-do item

	POST /api/todo
	Add a new item
	To-do item
	To-do item

	PUT /api/todo/{id}
	Update an existing item
	To-do item
	None

	DELETE /api/todo/{id}
	Delete an item.
	None
	None

The following diagram show the basic design of the app.

[image: ../_images/architecture.png]

	The client is whatever consumes the web API (browser, mobile app, and so forth). We aren’t writing a client in this tutorial.

	A model is an object that represents the data in your application. In this case, the only model is a to-do item. Models are represented as simple C# classes (POCOs).

	A controller is an object that handles HTTP requests and creates the HTTP response. This app will have a single controller.

	To keep the tutorial simple the app doesn’t use a database. Instead, it just keeps to-do items in memory. But we’ll still include a (trivial) data access layer, to illustrate the separation between the web API and the data layer. For a tutorial that uses a database, see Building your first ASP.NET Core MVC app with Visual Studio.

Install Fiddler

We’re not building a client, we’ll use Fiddler [http://www.fiddler2.com/fiddler2/] to test the API. Fiddler is a web debugging tool that lets you compose HTTP requests and view the raw HTTP responses.

Create the project

Start Visual Studio. From the File menu, select New > Project.

Select the ASP.NET Core Web Application project template. Name the project TodoApi and tap OK.

[image: ../_images/new-project3.png]
In the New ASP.NET Core Web Application (.NET Core) - TodoApi dialog, select the Web API template. Tap OK.

[image: ../_images/web-api-project.png]

Add a model class

A model is an object that represents the data in your application. In this case, the only model is a to-do item.

Add a folder named “Models”. In Solution Explorer, right-click the project. Select Add > New Folder. Name the folder Models.

[image: ../_images/add-folder.png]

注解

You can put model classes anywhere in your project, but the Models folder is used by convention.

Next, add a TodoItem class. Right-click the Models folder and select Add > New Item.

In the Add New Item dialog, select the Class template. Name the class TodoItem and click OK.

[image: ../_images/add-class.png]
Replace the generated code with:

namespace TodoApi.Models
{
 public class TodoItem
 {
 public string Key { get; set; }
 public string Name { get; set; }
 public bool IsComplete { get; set; }
 }
}

Add a repository class

A repository is an object that encapsulates the data layer, and contains logic for retrieving data and mapping it to an entity model. Even though the example app doesn’t use a database, it’s useful to see how you can inject a repository into your controllers. Create the repository code in the Models folder.

Start by defining a repository interface named ITodoRepository. Use the class template (Add New Item > Class).

using System.Collections.Generic;

namespace TodoApi.Models
{
 public interface ITodoRepository
 {
 void Add(TodoItem item);
 IEnumerable<TodoItem> GetAll();
 TodoItem Find(string key);
 TodoItem Remove(string key);
 void Update(TodoItem item);
 }
}

This interface defines basic CRUD operations.

Next, add a TodoRepository class that implements ITodoRepository:

using System;
using System.Collections.Generic;
using System.Collections.Concurrent;

namespace TodoApi.Models
{
 public class TodoRepository : ITodoRepository
 {
 private static ConcurrentDictionary<string, TodoItem> _todos =
 new ConcurrentDictionary<string, TodoItem>();

 public TodoRepository()
 {
 Add(new TodoItem { Name = "Item1" });
 }

 public IEnumerable<TodoItem> GetAll()
 {
 return _todos.Values;
 }

 public void Add(TodoItem item)
 {
 item.Key = Guid.NewGuid().ToString();
 _todos[item.Key] = item;
 }

 public TodoItem Find(string key)
 {
 TodoItem item;
 _todos.TryGetValue(key, out item);
 return item;
 }

 public TodoItem Remove(string key)
 {
 TodoItem item;
 _todos.TryGetValue(key, out item);
 _todos.TryRemove(key, out item);
 return item;
 }

 public void Update(TodoItem item)
 {
 _todos[item.Key] = item;
 }
 }
}

Build the app to verify you don’t have any compiler errors.

Register the repository

By defining a repository interface, we can decouple the repository class from the MVC controller that uses it. Instead of instantiating a TodoRepository inside the controller we will inject an ITodoRepository the built-in support in ASP.NET Core for dependency injection.

This approach makes it easier to unit test your controllers. Unit tests should inject a mock or stub version of ITodoRepository. That way, the test narrowly targets the controller logic and not the data access layer.

In order to inject the repository into the controller, we need to register it with the DI container. Open the Startup.cs file. Add the following using directive:

using TodoApi.Models;

In the ConfigureServices method, add the highlighted code:

// This method gets called by the runtime. Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddLogging();

 // Add our repository type
 services.AddSingleton<ITodoRepository, TodoRepository>();
}

Add a controller

In Solution Explorer, right-click the Controllers folder. Select Add > New Item. In the Add New Item dialog, select the Web API Controller Class template. Name the class TodoController.

Replace the generated code with the following:

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using TodoApi.Models;

namespace TodoApi.Controllers
{
 [Route("api/[controller]")]
 public class TodoController : Controller
 {
 public TodoController(ITodoRepository todoItems)
 {
 TodoItems = todoItems;
 }
 public ITodoRepository TodoItems { get; set; }
 }
}

This defines an empty controller class. In the next sections, we’ll add methods to implement the API.

Getting to-do items

To get to-do items, add the following methods to the TodoController class.

public IEnumerable<TodoItem> GetAll()
{
 return TodoItems.GetAll();
}

[HttpGet("{id}", Name = "GetTodo")]
public IActionResult GetById(string id)
{
 var item = TodoItems.Find(id);
 if (item == null)
 {
 return NotFound();
 }
 return new ObjectResult(item);
}

These methods implement the two GET methods:

	GET /api/todo

	GET /api/todo/{id}

Here is an example HTTP response for the GetAll method:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Server: Microsoft-IIS/10.0
Date: Thu, 18 Jun 2015 20:51:10 GMT
Content-Length: 82

[{"Key":"4f67d7c5-a2a9-4aae-b030-16003dd829ae","Name":"Item1","IsComplete":false}]

Later in the tutorial I’ll show how you can view the HTTP response using the Fiddler tool.

Routing and URL paths

The [HttpGet] [https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/HttpGetAttribute/index.html] attribute specifies that these are HTTP GET methods. The URL path for each method is constructed as follows:

	Take the template string in the controller’s route attribute, [Route("api/[controller]")]

	Replace “[Controller]” with the name of the controller, which is the controller class name minus the “Controller” suffix. For this sample the name of the controller is “todo” (case insensitive). For this sample, the controller class name is TodoController and the root name is “todo”. ASP.NET MVC Core is not case sensitive.

	If the [HttpGet] attribute also has a template string, append that to the path. This sample doesn’t use a template string.

For the GetById method, “{id}” is a placeholder variable. In the actual HTTP request, the client will use the ID of the todo item. At runtime, when MVC invokes GetById, it assigns the value of “{id}” in the URL the method’s id parameter.

Return values

The GetAll method returns a CLR object. MVC automatically serializes the object to JSON [http://www.json.org/] and writes the JSON into the body of the response message. The response code for this method is 200, assuming there are no unhandled exceptions. (Unhandled exceptions are translated into 5xx errors.)

In contrast, the GetById method returns the more general IActionResult type, which represents a generic result type. That’s because GetById has two different return types:

	If no item matches the requested ID, the method returns a 404 error. This is done by returning NotFound.

	Otherwise, the method returns 200 with a JSON response body. This is done by returning an ObjectResult [https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/ObjectResult/index.html].

Use Fiddler to call the API

This step is optional, but it’s useful to see the raw HTTP responses from the web API.
In Visual Studio, press ^F5 to launch the app. Visual Studio launches a browser and navigates to http://localhost:port/api/todo, where port is a randomly chosen port number. If you’re using Chrome, Edge or Firefox, the todo data will be displayed. If you’re using IE, IE will prompt to you open or save the todo.json file.

Launch Fiddler. From the File menu, uncheck the Capture Traffic option. This turns off capturing HTTP traffic.

[image: ../_images/fiddler1.png]
Select the Composer page. In the Parsed tab, type http://localhost:port/api/todo, where port is the port number. Click Execute to send the request.

[image: ../_images/fiddler2.png]
The result appears in the sessions list. The response code should be 200. Use the Inspectors tab to view the content of the response, including the response body.

[image: ../_images/fiddler3.png]

Implement the other CRUD operations

The last step is to add Create, Update, and Delete methods to the controller. These methods are variations on a theme, so I’ll just show the code and highlight the main differences.

Create

[HttpPost]
public IActionResult Create([FromBody] TodoItem item)
{
 if (item == null)
 {
 return BadRequest();
 }
 TodoItems.Add(item);
 return CreatedAtRoute("GetTodo", new { controller = "Todo", id = item.Key }, item);
}

This is an HTTP POST method, indicated by the [HttpPost] [https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/HttpPostAttribute/index.html] attribute. The [FromBody] [https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/FromBodyAttribute/index.html] attribute tells MVC to get the value of the to-do item from the body of the HTTP request.

The CreatedAtRoute [https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/Controller/index.html] method returns a 201 response, which is the standard response for an HTTP POST method that creates a new resource on the server. CreateAtRoute also adds a Location header to the response. The Location header specifies the URI of the newly created to-do item. See 10.2.2 201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].

We can use Fiddler to send a Create request:

	In the Composer page, select POST from the drop-down.

	In the request headers text box, add Content-Type: application/json, which is a Content-Type header with the value application/json. Fiddler automatically adds the Content-Length header.

	In the request body text box, enter the following: {"Name":"<your to-do item>"}

	Click Execute.

[image: ../_images/fiddler4.png]
Here is an example HTTP session. Use the Raw tab to see the session data in this format.

Request:

POST http://localhost:29359/api/todo HTTP/1.1
User-Agent: Fiddler
Host: localhost:29359
Content-Type: application/json
Content-Length: 33

{"Name":"Alphabetize paperclips"}

Response:

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8
Location: http://localhost:29359/api/Todo/8fa2154d-f862-41f8-a5e5-a9a3faba0233
Server: Microsoft-IIS/10.0
Date: Thu, 18 Jun 2015 20:51:55 GMT
Content-Length: 97

{"Key":"8fa2154d-f862-41f8-a5e5-a9a3faba0233","Name":"Alphabetize paperclips","IsComplete":false}

Update

[HttpPut("{id}")]
public IActionResult Update(string id, [FromBody] TodoItem item)
{
 if (item == null || item.Key != id)
 {
 return BadRequest();
 }

 var todo = TodoItems.Find(id);
 if (todo == null)
 {
 return NotFound();
 }

 TodoItems.Update(item);
 return new NoContentResult();
}

Update is similar to Create, but uses HTTP PUT. The response is 204 (No Content) [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html].
According to the HTTP spec, a PUT request requires the client to send the entire updated entity, not just the deltas. To support partial updates, use HTTP PATCH.

[image: ../_images/put.png]

Delete

[HttpDelete("{id}")]
public void Delete(string id)
{
 TodoItems.Remove(id);
}

The void return type returns a 204 (No Content) response. That means the client receives a 204 even if the item has already been deleted, or never existed. There are two ways to think about a request to delete a non-existent resource:

	“Delete” means “delete an existing item”, and the item doesn’t exist, so return 404.

	“Delete” means “ensure the item is not in the collection.” The item is already not in the collection, so return a 204.

Either approach is reasonable. If you return 404, the client will need to handle that case.

[image: ../_images/delete.png]

Next steps

	To learn about creating a backend for a native mobile app, see 🔧 Creating Backend Services for Native Mobile Applications.

	For information about deploying your API, see Publishing and Deployment.

	View or download sample code [https://github.com/aspnet/Docs/tree/master/aspnet/tutorials/first-web-api/sample]

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Deploy an ASP.NET Core web app to Azure using Visual Studio

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

Deploy an ASP.NET Core web app to Azure using Visual Studio

By Rick Anderson [https://twitter.com/RickAndMSFT], Cesar Blum Silveira [https://github.com/cesarbs]

Sections:

	Set up the development environment

	Create a web app

	Test the app locally

	Deploy the app to Azure

Set up the development environment

	Install the latest Azure SDK for Visual Studio 2015 [http://go.microsoft.com/fwlink/?linkid=518003]. The SDK installs Visual Studio 2015 if you don’t already have it.

注解

The SDK installation can take more than 30 minutes if your machine doesn’t have many of the dependencies.

	Install .NET Core + Visual Studio tooling [http://go.microsoft.com/fwlink/?LinkID=798306]

	Verify your Azure account [https://portal.azure.com/]. You can open a free Azure account [https://azure.microsoft.com/pricing/free-trial/] or Activate Visual Studio subscriber benefits [https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/].

Create a web app

In the Visual Studio Start Page, tap New Project....

[image: ../_images/new_project1.png]
Alternatively, you can use the menus to create a new project. Tap File > New > Project....

[image: ../_images/alt_new_project1.png]
Complete the New Project dialog:

	In the left pane, tap Web

	In the center pane, tap ASP.NET Core Web Application (.NET Core)

	Tap OK

[image: ../_images/new_prj.png]
In the New ASP.NET Core Web Application (.NET Core) dialog:

	Tap Web Application

	Verify Authentication is set to Individual User Accounts

	Verify Host in the cloud is not checked

	Tap OK

[image: ../_images/noath.png]

Test the app locally

	Press Ctrl-F5 to run the app locally

	Tap the About and Contact links. Depending on the size of your device, you might need to tap the navigation icon to show the links

[image: ../_images/show.png]

	Tap Register and register a new user. You can use a fictitious email address. When you submit, you’ll get the following error:

[image: ../_images/mig.png]
You can fix the problem in two different ways:

	Tap Apply Migrations and, once the page updates, refresh the page; or

	Run the following from the command line in the project’s directory:

dotnet ef database update

The app displays the email used to register the new user and a Log off link.

[image: ../_images/hello.png]

Deploy the app to Azure

Right-click on the project in Solution Explorer and select Publish....

[image: ../_images/pub.png]
In the Publish dialog, tap Microsoft Azure App Service.

[image: ../_images/maas1.png]
Tap New... to create a new resource group. Creating a new resource group will make it easier to delete all the Azure resources you create in this tutorial.

[image: ../_images/newrg1.png]
Create a new resource group and app service plan:

	Tap New... for the resource group and enter a name for the new resource group

	Tap New... for the app service plan and select a location near you. You can keep the default generated name

	Tap Explore additional Azure services to create a new database

[image: ../_images/cas.png]

	Tap the green + icon to create a new SQL Database

[image: ../_images/sql.png]

	Tap New... on the Configure SQL Database dialog to create a new database server.

[image: ../_images/conf.png]

	Enter an administrator user name and password, and then tap OK. Don’t forget the user name and password you create in this step. You can keep the default Server Name

[image: ../_images/conf_servername.png]

注解

“admin” is not allowed as the administrator user name.

	Tap OK on the Configure SQL Database dialog

[image: ../_images/conf_final.png]

	Tap Create on the Create App Service dialog

[image: ../_images/create_as.png]

	Tap Next in the Publish dialog

[image: ../_images/pubc.png]

	On the Settings stage of the Publish dialog:
	Expand Databases and check Use this connection string at runtime

	Expand Entity Framework Migrations and check Apply this migration on publish

	Tap Publish and wait until Visual Studio finishes publishing your app

[image: ../_images/pubs.png]
Visual Studio will publish your app to Azure and launch the cloud app in your browser.

Test your app in Azure

	Test the About and Contact links

	Register a new user

[image: ../_images/final.png]

Update the app

	Edit the Views/Home/About.cshtml Razor view file and change its contents. For example:

@{
 ViewData["Title"] = "About";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<p>My updated about page.</p>

	Right-click on the project and tap Publish... again

[image: ../_images/pub.png]

	After the app is published, verify the changes you made are available on Azure

Clean up

When you have finished testing the app, go to the Azure portal [https://portal.azure.com/] and delete the app.

	Select Resource groups, then tap the resource group you created

[image: ../_images/portalrg.png]

	In the Resource group blade, tap Delete

[image: ../_images/rgd.png]

	Enter the name of the resource group and tap Delete. Your app and all other resources created in this tutorial are now deleted from Azure

Next steps

	Getting started with ASP.NET Core MVC and Visual Studio

	Introduction to ASP.NET Core

	Fundamentals

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Building your first ASP.NET Core MVC app with Visual Studio

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

Building your first ASP.NET Core MVC app with Visual Studio

	Getting started with ASP.NET Core MVC and Visual Studio

	Adding a controller

	Adding a view

	Adding a model

	Working with SQL Server LocalDB

	Controller methods and views

	Adding Search

	Adding a New Field

	Adding Validation

	Examining the Details and Delete methods

 [image:]

 版权所有 2016, Microsoft.
 最后更新于 7月 06, 2016.
 由 Sphinx 1.4.1 创建。

 Getting started with ASP.NET Core MVC and Visual Studio

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

 	Building your first ASP.NET Core MVC app with Visual Studio

Getting started with ASP.NET Core MVC and Visual Studio

By Rick Anderson [https://twitter.com/RickAndMSFT]

This tutorial will teach you the basics of building an ASP.NET Core MVC web app using Visual Studio 2015 [https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx].

Install Visual Studio and .NET Core

	Install Visual Studio Community 2015. Select the Community download and the default installation. Skip this step if you have Visual Studio 2015 installed.
	Visual Studio 2015 Home page installer [https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx]

	Install .NET Core + Visual Studio tooling [http://go.microsoft.com/fwlink/?LinkID=798306]

Create a web app

From the Visual Studio Start page, tap New Project.

[image: ../../_images/new_project.png]
Alternatively, you can use the menus to create a new project. Tap File > New > Project.

[image: ../../_images/alt_new_project.png]
Complete the New Project dialog:

	In the left pane, tap Web

	In the center pane, tap ASP.NET Core Web Application (.NET Core)

	Name the project “MvcMovie” (It’s important to name the project “MvcMovie” so when you copy code, the namespace will match.)

	Tap OK

[image: ../../_images/new_project2.png]
In the New ASP.NET Core Web Application - MvcMovie dialog, tap Web Application, and then tap OK.

[image: ../../_images/p3.png]
Visual Studio used a default template for the MVC project you just created, so you have a working app right now by entering a project name and selecting a few options. This is a simple “Hello World!” project, and it’s a good place to start,

Tap F5 to run the app in debug mode or Ctl-F5 in non-debug mode.

[image: ../../_images/12.png]

	Visual Studio starts IIS Express [http://www.iis.net/learn/extensions/introduction-to-iis-express/iis-express-overview] and runs your app. Notice that the address bar shows localhost:port# and not something like example.com. That’s because localhost always points to your own local computer, which in this case is running the app you just created. When Visual Studio creates a web project, a random port is used for the web server. In the image above, the port number is 1234. When you run the app, you’ll see a different port number.

	Launching the app with Ctrl+F5 (non-debug mode) allows you to make code changes, save the file, refresh the browser, and see the code changes. Many developers prefer to use non-debug mode to quickly launch the app and view changes.

	You can launch the app in debug or non-debug mode from the Debug menu item:

[image: ../../_images/debug_menu.png]

	You can debug the app by tapping the IIS Express button

[image: ../../_images/iis_express.png]
The default template gives you working Home, Contact, About, Register and Log in links. The browser image above doesn’t show these links. Depending on the size of your browser, you might need to click the navigation icon to show them.

[image: ../../_images/2.png]
In the next part of this tutorial, we’ll learn about MVC and start writing some code.

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Adding a controller

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

 	Building your first ASP.NET Core MVC app with Visual Studio

Adding a controller

By Rick Anderson [https://twitter.com/RickAndMSFT]

The Model-View-Controller (MVC) architectural pattern separates an app into three main components: the Model, the View, and the Controller. The MVC pattern helps you create apps that are testable and easier to maintain and update than traditional monolithic apps. MVC-based apps contain:

	Models: Classes that represent the data of the app and that use validation logic to enforce business rules for that data. Typically, model objects retrieve and store model state in a database. In this tutorial, a Movie model retrieves movie data from a database, provides it to the view or updates it. Updated data is written to a SQL Server database.

	Views: Views are the components that display the app’s user interface (UI). Generally, this UI displays the model data.

	Controllers: Classes that handle browser requests, retrieve model data, and then specify view templates that return a response to the browser. In an MVC app, the view only displays information; the controller handles and responds to user input and interaction. For example, the controller handles route data and query-string values, and passes these values to the model. The model might use these values to query the database.

The MVC pattern helps you create apps that separate the different aspects of the app (input logic, business logic, and UI logic), while providing a loose coupling between these elements. The pattern specifies where each kind of logic should be located in the app. The UI logic belongs in the view. Input logic belongs in the controller. Business logic belongs in the model. This separation helps you manage complexity when you build an app, because it enables you to work on one aspect of the implementation at a time without impacting the code of another. For example, you can work on the view code without depending on the business logic code.

We’ll be covering all these concepts in this tutorial series and show you how to use them to build a simple movie app. The following image shows the Models, Views and Controllers folders in the MVC project.

[image: ../../_images/mvc1.png]

	In Solution Explorer, right-click Controllers > Add > New Item...

[image: ../../_images/add_controller.png]

	In the Add New Item dialog, enter HelloWorldController.

Replace the contents of Controllers/HelloWorldController.cs with the following:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
 }
}

Every public method in a controller is callable as an HTTP endpoint. In the sample above, both methods return a string. Note the comments preceding each method:

public class HelloWorldController : Controller
{
 //
 // GET: /HelloWorld/

 public string Index()
 {
 return "This is my default action...";
 }

 //
 // GET: /HelloWorld/Welcome/

 public string Welcome()
 {
 return "This is the Welcome action method...";
 }
}

The first comment states this is an HTTP GET [http://www.w3schools.com/tags/ref_httpmethods.asp] method that is invoked by appending “/HelloWorld/” to the base URL. The second comment specifies an HTTP GET [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html] method that is invoked by appending “/HelloWorld/Welcome/” to the URL. Later on in the tutorial we’ll use the scaffolding engine to generate HTTP POST methods.

Run the app in non-debug mode (press Ctrl+F5) and append “HelloWorld” to the path in the address bar. (In the image below, http://localhost:1234/HelloWorld is used, but you’ll have to replace 1234 with the port number of your app.) The Index method returns a string. You told the system to return some HTML, and it did!

[image: ../../_images/hell1.png]
MVC invokes controller classes (and the action methods within them) depending on the incoming URL. The default URL routing logic used by MVC uses a format like this to determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]

You set the format for routing in the Startup.cs file.

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

When you run the app and don’t supply any URL segments, it defaults to the “Home” controller and the “Index” method specified in the template line highlighted above.

The first URL segment determines the controller class to run. So localhost:xxxx/HelloWorld maps to the HelloWorldController class. The second part of the URL segment determines the action method on the class. So localhost:xxxx/HelloWorld/Index would cause the Index method of the HelloWorldController class to run. Notice that we only had to browse to localhost:xxxx/HelloWorld and the Index method was called by default. This is because Index is the default method that will be called on a controller if a method name is not explicitly specified. The third part of the URL segment (id) is for route data. We’ll see route data later on in this tutorial.

Browse to http://localhost:xxxx/HelloWorld/Welcome. The Welcome method runs and returns the string “This is the Welcome action method...”. For this URL, the controller is HelloWorld and Welcome is the action method. We haven’t used the [Parameters] part of the URL yet.

[image: ../../_images/welcome.png]
Let’s modify the example slightly so that you can pass some parameter information from the URL to the controller (for example, /HelloWorld/Welcome?name=Scott&numtimes=4). Change the Welcome method to include two parameters as shown below. Note that the code uses the C# optional-parameter feature to indicate that the numTimes parameter defaults to 1 if no value is passed for that parameter.

public string Welcome(string name, int numTimes = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, id: {numTimes}");
}

注解

The code above uses HtmlEncoder.Default.Encode to protect the app from malicious input (namely JavaScript). It also uses Interpolated Strings [https://msdn.microsoft.com/en-us/library/dn961160.aspx].

注解

In Visual Studio 2015, when you are running in IIS Express without debugging (Ctl+F5), you don’t need to build the app after changing the code. Just save the file, refresh your browser and you can see the changes.

Run your app and browse to:

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

(Replace xxxx with your port number.) You can try different values for name and numtimes in the URL. The MVC model binding system automatically maps the named parameters from the query string in the address bar to parameters in your method. See Model Binding for more information.

[image: ../../_images/rick4.png]
In the sample above, the URL segment (Parameters) is not used, the name and numTimes parameters are passed as query strings [http://en.wikipedia.org/wiki/Query_string]. The ? (question mark) in the above URL is a separator, and the query strings follow. The & character separates query strings.

Replace the Welcome method with the following code:

public string Welcome(string name, int ID = 1)
{
 return HtmlEncoder.Default.Encode($"Hello {name}, id: {ID}");
}

Run the app and enter the following URL: http://localhost:xxx/HelloWorld/Welcome/3?name=Rick

[image: ../../_images/rick_routedata.png]
This time the third URL segment matched the route parameter id. The Welcome method contains a parameter id that matched the URL template in the MapRoute method. The trailing ? (in id?) indicates the id parameter is optional.

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

In these examples the controller has been doing the “VC” portion of MVC - that is, the view and controller work. The controller is returning HTML directly. Generally you don’t want controllers returning HTML directly, since that becomes very cumbersome to code and maintain. Instead we’ll typically use a separate Razor view template file to help generate the HTML response. We’ll do that in the next tutorial.

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Adding a view

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

 	Building your first ASP.NET Core MVC app with Visual Studio

Adding a view

By Rick Anderson [https://twitter.com/RickAndMSFT]

In this section you’re going to modify the HelloWorldController class to use Razor view template files to cleanly encapsulate the process of generating HTML responses to a client.

You’ll create a view template file using Razor. Razor-based view templates have a .cshtml file extension, and provide an elegant way to create HTML output using C#. Razor seemlessly blends C# and HTML, minimizing the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow.

Currently the Index method returns a string with a message that is hard-coded in the controller class. Change the Index method to return a View object, as shown in the following code:

public IActionResult Index()
{
 return View();
}

The Index method above uses a view template to generate an HTML response to the browser. Controller methods (also known as action methods) such as the Index method above, generally return an IActionResult (or a class derived from ActionResult), not primitive types like string.

	Right click on the Views folder, and then Add > New Folder and name the folder HelloWorld.

	Right click on the Views/HelloWorld folder, and then Add > New Item.

	In the Add New Item - MvcMovie dialog
	In the search box in the upper-right, enter view

	Tap MVC View Page

	In the Name box, keep the default Index.cshtml

	Tap Add

[image: ../../_images/add_view.png]
Replace the contents of the Views/HelloWorld/Index.cshtml Razor view file with the following:

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>Hello from our View Template!</p>

Navigate to http://localhost:xxxx/HelloWorld. The Index method in the HelloWorldController didn’t do much work; it simply ran the statement return View();, which specified that the method should use a view template file to render a response to the browser. Because you didn’t explicitly specify the name of the view template file to use, MVC defaulted to using the Index.cshtml view file in the /Views/HelloWorld folder. The image below shows the string “Hello from our View Template!” hard-coded in the view.

[image: ../../_images/hell_template.png]
If your browser window is small (for example on a mobile device), you might need to toggle (tap) the Bootstrap navigation button [http://getbootstrap.com/components/#navbar] in the upper right to see the to the Home, About, and Contact links.

[image: ../../_images/1.png]

Changing views and layout pages

Tap on the menu links (MvcMovie, Home, About). Each page shows the same menu layout. The menu layout is implemented in the Views/Shared/_Layout.cshtml file. Open the Views/Shared/_Layout.cshtml file.

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it across multiple pages in your site. Find the @RenderBody() line. RenderBody is a placeholder where all the view-specific pages you create show up, “wrapped” in the layout page. For example, if you select the About link, the Views/Home/About.cshtml view is rendered inside the RenderBody method.

Change the title and menu link in the layout file

Change the contents of the title element. Change the anchor text in the layout template to “MVC Movie” and the controller from Home to Movies as highlighted below:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Movie App </title>

 <environment names="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position" asp-fallback-test-value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Movies" asp-action="Index" class="navbar-brand">MvcMovie
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action="About">About
 <a asp-area="" asp-controller="Home" asp-action="Contact">Contact

 </div>
 </div>
 </div>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2016 - MvcMovie</p>
 </footer>
 </div>

警告

We haven’t implemented the Movies controller yet, so if you click on that link, you’ll get a 404 (Not found) error.

Save your changes and tap the About link. Notice how each page displays the Mvc Movie link. We were able to make the change once in the layout template and have all pages on the site reflect the new link text and new title.

Examine the Views/_ViewStart.cshtml file:

@{
 Layout = "_Layout";
}

The Views/_ViewStart.cshtml file brings in the Views/Shared/_Layout.cshtml file to each view. You can use the Layout property to set a different layout view, or set it to null so no layout file will be used.

Now, let’s change the title of the Index view.

Open Views/HelloWorld/Index.cshtml. There are two places to make a change:

	The text that appears in the title of the browser

	The secondary header (<h2> element).

You’ll make them slightly different so you can see which bit of code changes which part of the app.

@{
 ViewData["Title"] = "Movie List";
}

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

ViewData["Title"] = "Movie List"; in the code above sets the Title property of the ViewDataDictionary [http://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/ViewFeatures/ViewDataDictionary/index.html#Microsoft.AspNetCore.Mvc.ViewFeatures.ViewDataDictionary] to “Movie List”. The Title property is used in the <title> HTML element in the layout page:

<title>@ViewData["Title"] - Movie App</title>

Save your change and refresh the page. Notice that the browser title, the primary heading, and the secondary headings have changed. (If you don’t see changes in the browser, you might be viewing cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The browser title is created with ViewData["Title"] we set in the Index.cshtml view template and the additional “- Movie App” added in the layout file.

Also notice how the content in the Index.cshtml view template was merged with the Views/Shared/_Layout.cshtml view template and a single HTML response was sent to the browser. Layout templates make it really easy to make changes that apply across all of the pages in your application. To learn more see Layout.

[image: ../../_images/hell3.png]
Our little bit of “data” (in this case the “Hello from our View Template!” message) is hard-coded, though. The MVC application has a “V” (view) and you’ve got a “C” (controller), but no “M” (model) yet. Shortly, we’ll walk through how to create a database and retrieve model data from it.

Passing Data from the Controller to the View

Before we go to a database and talk about models, though, let’s first talk about passing information from the controller to a view. Controller actions are invoked in response to an incoming URL request. A controller class is where you write the code that handles the incoming browser requests, retrieves data from a database, and ultimately decides what type of response to send back to the browser. View templates can then be used from a controller to generate and format an HTML response to the browser.

Controllers are responsible for providing whatever data or objects are required in order for a view template to render a response to the browser. A best practice: A view template should never perform business logic or interact with a database directly. Instead, a view template should work only with the data that’s provided to it by the controller. Maintaining this “separation of concerns” helps keep your code clean, testable and more maintainable.

Currently, the Welcome method in the HelloWorldController class takes a name and a ID parameter and then outputs the values directly to the browser. Rather than have the controller render this response as a string, let’s change the controller to use a view template instead. The view template will generate a dynamic response, which means that you need to pass appropriate bits of data from the controller to the view in order to generate the response. You can do this by having the controller put the dynamic data (parameters) that the view template needs in a ViewData dictionary that the view template can then access.

Return to the HelloWorldController.cs file and change the Welcome method to add a Message and NumTimes value to the ViewData dictionary. The ViewData dictionary is a dynamic object, which means you can put whatever you want in to it; the ViewData object has no defined properties until you put something inside it. The MVC model binding system automatically maps the named parameters (name and numTimes) from the query string in the address bar to parameters in your method. The complete HelloWorldController.cs file looks like this:

using Microsoft.AspNetCore.Mvc;
using System.Text.Encodings.Web;

namespace MvcMovie.Controllers
{
 public class HelloWorldController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Welcome(string name, int numTimes = 1)
 {
 ViewData["Message"] = "Hello " + name;
 ViewData["NumTimes"] = numTimes;

 return View();
 }
 }
}

The ViewData dictionary object contains data that will be passed to the view. Next, you need a Welcome view template.

	Right click on the Views/HelloWorld folder, and then Add > New Item.

	In the Add New Item - MvcMovie dialog
	In the search box in the upper-right, enter view

	Tap MVC View Page

	In the Name box, enter Welcome.cshtml

	Tap Add

You’ll create a loop in the Welcome.cshtml view template that displays “Hello” NumTimes. Replace the contents of Views/HelloWorld/Welcome.cshtml with the following:

@{
 ViewData["Title"] = "About";
}

<h2>Welcome</h2>

 @for (int i = 0; i < (int)ViewData["NumTimes"]; i++)
 {
 @ViewData["Message"]
 }

Save your changes and browse to the following URL:

http://localhost:xxxx/HelloWorld/Welcome?name=Rick&numtimes=4

Data is taken from the URL and passed to the controller using the MVC model binder . The controller packages the data into a ViewData dictionary and passes that object to the view. The view then renders the data as HTML to the browser.

[image: ../../_images/rick1.png]
In the sample above, we used the ViewData dictionary to pass data from the controller to a view. Later in the tutorial, we will use a view model to pass data from a controller to a view. The view model approach to passing data is generally much preferred over the ViewData dictionary approach. See 🔧 Dynamic vs Strongly Typed Views for more information.

Well, that was a kind of an “M” for model, but not the database kind. Let’s take what we’ve learned and create a database of movies.

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Adding a model

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

 	Building your first ASP.NET Core MVC app with Visual Studio

Adding a model

By Rick Anderson [https://twitter.com/RickAndMSFT]

In this section you’ll add some classes for managing movies in a database. These classes will be the “Model” part of the MVC app.

You’ll use a .NET Framework data-access technology known as the Entity Framework Core [http://ef.readthedocs.org/] to define and work with these data model classes. Entity Framework Core (often referred to as EF Core) features a development paradigm called Code First. You write the code first, and the database tables are created from this code. Code First allows you to create data model objects by writing simple classes. (These are also known as POCO classes, from “plain-old CLR objects.”) The database is created from your classes. If you are required to create the database first, you can still follow this tutorial to learn about MVC and EF app development.

Create a new project with individual user accounts

In the current version of the ASP.NET Core MVC tools for Visual Studio, scaffolding a model is only supported when you create a new project with individual user accounts. We hope to have this fixed in the next tooling update. Until that’s fixed, you’ll need to create a new project with the same name. Because the project has the same name, you’ll need to create it in another directory.

From the Visual Studio Start page, tap New Project.

[image: ../../_images/new_project.png]
Alternatively, you can use the menus to create a new project. Tap File > New > Project.

[image: ../../_images/alt_new_project.png]
Complete the New Project dialog:

	In the left pane, tap Web

	In the center pane, tap ASP.NET Core Web Application (.NET Core)

	Change the location to a different directory from the previous project you created or you’ll get an error

	Name the project “MvcMovie” (It’s important to name the project “MvcMovie” so when you copy code, the namespace will match.)

	Tap OK

[image: ../../_images/new_project2.png]

警告

You must have the Authentication set to Individual User Accounts in this release for the scaffolding engine to work.

In the New ASP.NET Core Web Application - MvcMovie dialog:

	tap Web Application

	tap the Change Authentication button and change the authentication to Individual User Accounts and tap OK

[image: ../../_images/p4.png]
[image: ../../_images/indiv.png]
Follow the instructions in Change the title and menu link in the layout file so you can tap the MvcMovie link to invoke the Movie controller. We’ll scaffold the movies controller in this tutorial.

Adding data model classes

In Solution Explorer, right click the Models folder > Add > Class. Name the class Movie and add the following properties:

using System;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

In addition to the properties you’d expect to model a movie, the ID field is required by the DB for the primary key. Build the project. If you don’t build the app, you’ll get an error in the next section. We’ve finally added a Model to our MVC app.

Scaffolding a controller

In Solution Explorer, right-click the Controllers folder > Add > Controller.

[image: ../../_images/add_controller1.png]
In the Add Scaffold dialog, tap MVC Controller with views, using Entity Framework > Add.

[image: ../../_images/add_scaffold2.png]
Complete the Add Controller dialog

	Model class: Movie(MvcMovie.Models)

	Data context class: ApplicationDbContext(MvcMovie.Models)

	Views:: Keep the default of each option checked

	Controller name: Keep the default MoviesController

	Tap Add

[image: ../../_images/add_controller2.png]
The Visual Studio scaffolding engine creates the following:

	A movies controller (Controllers/MoviesController.cs)

	Create, Delete, Details, Edit and Index Razor view files (Views/Movies)

Visual Studio automatically created the CRUD [https://en.wikipedia.org/wiki/Create,_read,_update_and_delete] (create, read, update, and delete) action methods and views for you (the automatic creation of CRUD action methods and views is known as scaffolding). You’ll soon have a fully functional web application that lets you create, list, edit, and delete movie entries.

If you run the app and click on the Mvc Movie link, you’ll get the following errors:

[image: ../../_images/m1.png]
[image: ../../_images/pending.png]
We’ll follow those instructions to get the database ready for our Movie app.

Update the database

警告

You must stop IIS Express before you update the database.

To Stop IIS Express:

	Right click the IIS Express system tray icon in the notification area

[image: ../../_images/iisExIcon.png]

	Tap Exit or Stop Site

[image: ../../_images/stopIIS.png]

	Alternatively, you can exit and restart Visual Studio

	Open a command prompt in the project directory (MvcMovie/src/MvcMovie). Follow these instructions for a quick way to open a folder in the project directory.
	Open a file in the root of the project (for this example, use Startup.cs.)

	Right click on Startup.cs > Open Containing Folder.

[image: ../../_images/quick.png]

	Shift + right click a folder > Open command window here

[image: ../../_images/folder.png]

	Run cd .. to move back up to the project directory

	Run the following commands in the command prompt:

dotnet ef migrations add Initial
dotnet ef database update

注解

If IIS-Express is running, you’ll get the error CS2012: Cannot open ‘MvcMovie/bin/Debug/netcoreapp1.0/MvcMovie.dll’ for writing – ‘The process cannot access the file ‘MvcMovie/bin/Debug/netcoreapp1.0/MvcMovie.dll’ because it is being used by another process.’

dotnet ef commands

	dotnet (.NET Core) is a cross-platform implementation of .NET. You can read about it here [http://go.microsoft.com/fwlink/?LinkId=798644]

	dotnet ef migrations add Initial Runs the Entity Framework .NET Core CLI migrations command and creates the initial migration. The parameter “Initial” is arbitrary, but customary for the first (initial) database migration. This operation creates the Data/Migrations/<date-time>_Initial.cs file containing the migration commands to add (or drop) the Movie table to the database

	dotnet ef database update Updates the database with the migration we just created

Test the app

注解

If your browser is unable to connect to the movie app you might need to wait for IIS Express to load the app. It can sometimes take up to 30 seconds to build the app and have it ready to respond to requests.

	Run the app and tap the Mvc Movie link

	Tap the Create New link and create a movie

[image: ../../_images/movies.png]

注解

You may not be able to enter decimal points or commas in the Price field. To support jQuery validation [http://jqueryvalidation.org/] for non-English locales that use a comma (”,”) for a decimal point, and non US-English date formats, you must take steps to globalize your app. See Additional resources for more information. For now, just enter whole numbers like 10.

注解

In some locals you’ll need to specify the date format. See the highlighted code below.

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcMovie.Models
{
 public class Movie
 {
 public int ID { get; set; }
 public string Title { get; set; }
 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
 public DateTime ReleaseDate { get; set; }
 public string Genre { get; set; }
 public decimal Price { get; set; }
 }
}

Tapping Create causes the form to be posted to the server, where the movie information is saved in a database. You are then redirected to the /Movies URL, where you can see the newly created movie in the listing.

[image: ../../_images/h.png]
Create a couple more movie entries. Try the Edit, Details, and Delete links, which are all functional.

Examining the Generated Code

Open the Controllers/MoviesController.cs file and examine the generated Index method. A portion of the movie controller with the Index method is shown below:

public class MoviesController : Controller
{
 private readonly ApplicationDbContext _context;

 public MoviesController(ApplicationDbContext context)
 {
 _context = context;
 }

 // GET: Movies
 public async Task<IActionResult> Index()
 {
 return View(await _context.Movie.ToListAsync());
 }

The constructor uses Dependency Injection to inject the database context into the controller. The database context is used in each of the CRUD [https://en.wikipedia.org/wiki/Create,_read,_update_and_delete] methods in the controller.

A request to the Movies controller returns all the entries in the Movies table and then passes the data to the Index view.

Strongly typed models and the @model keyword

Earlier in this tutorial, you saw how a controller can pass data or objects to a view using the ViewData dictionary. The ViewData dictionary is a dynamic object that provides a convenient late-bound way to pass information to a view.

MVC also provides the ability to pass strongly typed objects to a view. This strongly typed approach enables better compile-time checking of your code and richer IntelliSense [https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx] in Visual Studio (VS). The scaffolding mechanism in VS used this approach (that is, passing a strongly typed model) with the MoviesController class and views when it created the methods and views.

Examine the generated Details method in the Controllers/MoviesController.cs file:

public async Task<IActionResult> Details(int? id)
{
 if (id == null)
 {
 return NotFound();
 }

 var movie = await _context.Movie.SingleOrDefaultAsync(m => m.ID == id);
 if (movie == null)
 {
 return NotFound();
 }

 return View(movie);
}

The id parameter is generally passed as route data, for example http://localhost:1234/movies/details/1 sets:

	The controller to the movies controller (the first URL segment)

	The action to details (the second URL segment)

	The id to 1 (the last URL segment)

You could also pass in the id with a query string as follows:

http://localhost:1234/movies/details?id=1

If a Movie is found, an instance of the Movie model is passed to the Details view:

return View(movie);

Examine the contents of the Views/Movies/Details.cshtml file:

@model MvcMovie.Models.Movie

@{
 ViewData["Title"] = "Details";
}

<h2>Details</h2>

<div>
 <h4>Movie</h4>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.Genre)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Genre)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Price)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Price)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.ReleaseDate)
 </dd>
 <dt>
 @Html.DisplayNameFor(model => model.Title)
 </dt>
 <dd>
 @Html.DisplayFor(model => model.Title)
 </dd>
 </dl>
</div>
<div>
 <a asp-action="Edit" asp-route-id="@Model.ID">Edit |
 <a asp-action="Index">Back to List
</div>

By including a @model statement at the top of the view file, you can specify the type of object that the view expects. When you created the movie controller, Visual Studio automatically included the following @model statement at the top of the Details.cshtml file:

@model MvcMovie.Models.Movie

This @model directive allows you to access the movie that the controller passed to the view by using a Model object that’s strongly typed. For example, in the Details.cshtml view, the code passes each movie field to the DisplayNameFor and DisplayFor HTML Helpers with the strongly typed Model object. The Create and Edit methods and views also pass a Movie model object.

Examine the Index.cshtml view and the Index method in the Movies controller. Notice how the code creates a List object when it calls the View method. The code passes this Movies list from the Index action method to the view:

public async Task<IActionResult> Index()
{
 return View(await _context.Movie.ToListAsync());
}

When you created the movies controller, Visual Studio automatically included the following @model statement at the top of the Index.cshtml file:

@model IEnumerable<MvcMovie.Models.Movie>

The @model directive allows you to access the list of movies that the controller passed to the view by using a Model object that’s strongly typed. For example, in the Index.cshtml view, the code loops through the movies with a foreach statement over the strongly typed Model object:

@model IEnumerable<MvcMovie.Models.Movie>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Genre)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ReleaseDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Title)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Genre)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReleaseDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete
 </td>
 </tr>
}
 </tbody>
</table>

Because the Model object is strongly typed (as an IEnumerable<Movie> object), each item in the loop is typed as Movie. Among other benefits, this means that you get compile-time checking of the code and full IntelliSense [https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx] support in the code editor:

[image: ../../_images/ints.png]
You now have a database and pages to display, edit, update and delete data. In the next tutorial, we’ll work with the database.

Additional resources

	Tag Helpers

	Globalization and localization

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Working with SQL Server LocalDB

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

 	Building your first ASP.NET Core MVC app with Visual Studio

Working with SQL Server LocalDB

By Rick Anderson [https://twitter.com/RickAndMSFT]

The ApplicationDbContext class handles the task of connecting to the database and mapping Movie objects to database records. The database context is registered with the Dependency Injection container in the ConfigureServices method in the Startup.cs file:

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

The ASP.NET Core Configuration system reads the ConnectionString. For local development, it gets the connection string from the appsettings.json file:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-MvcMovie-4ae3798a;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,

When you deploy the app to a test or production server, you can use an environment variable or another approach to set the connection string to a real SQL Server. See Configuration .

SQL Server Express LocalDB

LocalDB is a lightweight version of the SQL Server Express Database Engine that is targeted for program development. LocalDB starts on demand and runs in user mode, so there is no complex configuration. By default, LocalDB database creates “*.mdf” files in the C:/Users/<user> directory.

	From the View menu, open SQL Server Object Explorer (SSOX).

[image: ../../_images/ssox1.png]

	Right click on the Movie table > View Designer

[image: ../../_images/design.png]
[image: ../../_images/dv.png]
Note the key icon next to ID. By default, EF will make a property named ID the primary key.

	Right click on the Movie table > View Data

[image: ../../_images/ssox2.png]
[image: ../../_images/vd22.png]

Seed the database

Create a new class named SeedData in the Models folder. Replace the generated code with the following:

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using MvcMovie.Data;
using System;
using System.Linq;

namespace MvcMovie.Models
{
 public static class SeedData
 {
 public static void Initialize(IServiceProvider serviceProvider)
 {
 using (var context = new ApplicationDbContext(
 serviceProvider.GetRequiredService<DbContextOptions<ApplicationDbContext>>()))
 {
 // Look for any movies.
 if (context.Movie.Any())
 {
 return; // DB has been seeded
 }

 context.Movie.AddRange(
 new Movie
 {
 Title = "When Harry Met Sally",
 ReleaseDate = DateTime.Parse("1989-1-11"),
 Genre = "Romantic Comedy",
 Price = 7.99M
 },

 new Movie
 {
 Title = "Ghostbusters ",
 ReleaseDate = DateTime.Parse("1984-3-13"),
 Genre = "Comedy",
 Price = 8.99M
 },

 new Movie
 {
 Title = "Ghostbusters 2",
 ReleaseDate = DateTime.Parse("1986-2-23"),
 Genre = "Comedy",
 Price = 9.99M
 },

 new Movie
 {
 Title = "Rio Bravo",
 ReleaseDate = DateTime.Parse("1959-4-15"),
 Genre = "Western",
 Price = 3.99M
 }
);
 context.SaveChanges();
 }
 }
 }
}

Notice if there are any movies in the DB, the seed initializer returns.

if (context.Movie.Any())
{
 return; // DB has been seeded
}

Add the seed initializer to the end of the Configure method in the Startup.cs file:

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 SeedData.Initialize(app.ApplicationServices);
}

Test the app

	Delete all the records in the DB. You can do this with the delete links in the browser or from SSOX.

	Force the app to initialize (call the methods in the Startup class) so the seed method runs. To force initialization, IIS Express must be stopped and restarted. You can do this with any of the following approaches:
	Right click the IIS Express system tray icon in the notification area and tap Exit or Stop Site

[image: ../../_images/iisExIcon.png]

[image: ../../_images/stopIIS.png]

	If you were running VS in non-debug mode, press F5 to run in debug mode

	If you were running VS in debug mode, stop the debugger and press ^F5

注解

If the database doesn’t initialize, put a break point on the line if (context.Movie.Any()) and start debugging.

[image: ../../_images/dbg.png]
The app shows the seeded data.

[image: ../../_images/m55.png]

 Is this page helpful?

 Yes
 No

 Is this page helpful?

 Sorry this wasn't helpful.

 characters remaining
 Submit
 Skip this

 Controller methods and views

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	ASP.NET 文档

 	Tutorials

 	Building your first ASP.NET Core MVC app with Visual Studio

Controller methods and views

By Rick Anderson [https://twitter.com/RickAndMSFT]

We have a good start to the movie app, but the presentation is not ideal. We don’t want to see the time (12:00:00 AM in the image below