

 This is the core Asphalt library. If you’re looking for documentation for some specific component
project, you will the appropriate link from the project’s Github page [https://github.com/asphalt-framework].

If you’re a new user, it’s a good idea to start from the tutorials. Pick a tutorial that suits
your current level of knowledge.

Table of contents

	Tutorials
	Tutorial 1: Getting your feet wet – a simple echo server and client

	Tutorial 2: Something a little more practical – a web page change detector

	User guide
	Application architecture

	Working with coroutines and threads

	Events

	Testing Asphalt components

	Configuration and deployment

	Version history

	Acknowledgements

	API reference

Tutorials

The following tutorials will help you get acquainted with Asphalt application development.
It is expected that the reader have at least basic understanding of the Python language.

Code for all tutorials can be found in the examples directory in the source distribution or in
the
Github repository [https://github.com/asphalt-framework/asphalt/tree/master/asphalt/examples].

	Tutorial 1: Getting your feet wet – a simple echo server and client
	Prerequisites

	Setting up the virtual environment

	Creating the project structure

	Creating the first component

	Making the server listen for connections

	Creating the client

	Conclusion

	Tutorial 2: Something a little more practical – a web page change detector
	Setting up the project structure

	Detecting changes in a web page

	Computing the changes between old and new versions

	Sending changes via email

	Separating the change detection logic

	Setting up the configuration file

	Conclusion

Tutorial 1: Getting your feet wet – a simple echo server and client

This tutorial will get you started with Asphalt development from the ground up.
You will be learn how to build a simple network server that echoes back messages sent to it, along
with a matching client application. It will however not yet touch more advanced concepts like
using the asphalt command to run an application with a configuration file.

Prerequisites

Asphalt requires Python 3.5.0 or later. You will also need to have the venv module installed
for your Python version of choice. It should come with most Python installations, but if it does
not, you can usually install it with your operating system’s package manager (python3-venv is a
good guess).

Setting up the virtual environment

Now that you have your base tools installed, it’s time to create a virtual environment (referred
to as simply virtualenv later). Installing Python libraries in a virtual environment isolates
them from other projects, which may require different versions of the same libraries.

Now, create a project directory and a virtualenv:

mkdir tutorial1
cd tutorial1
python3.5 -m venv tutorialenv
source tutorialenv/bin/activate

On Windows, the last line should be:

tutorialenv\Scripts\activate

The last command activates the virtualenv, meaning the shell will first look for commands in
its bin directory (Scripts on Windows) before searching elsewhere. Also, Python will
now only import third party libraries from the virtualenv and not anywhere else. To exit the
virtualenv, you can use the deactivate command (but don’t do that now!).

You can now proceed with installing Asphalt itself:

pip install asphalt

Creating the project structure

Every project should have a top level package, so create one now:

mkdir echo
touch echo/__init__.py

On Windows, the last line should be:

copy NUL echo__init__.py

Creating the first component

Now, let’s write some code! Create a file named server.py in the echo package directory:

from asphalt.core import Component, run_application

class ServerComponent(Component):
 async def start(self, ctx):
 print('Hello, world!')

if __name__ == '__main__':
 component = ServerComponent()
 run_application(component)

The ServerComponent class is the root component (and in this case, the only component) of
this application. Its start() method is called by run_application when it has
set up the event loop. Finally, the if __name__ == '__main__': block is not strictly necessary
but is good, common practice that prevents run_application() from being called again if this
module is ever imported from another module.

You can now try running the above application. With the project directory (tutorial) as your
current directory, do:

python -m echo.server

This should print “Hello, world!” on the console. The event loop continues to run until you press
Ctrl+C (Ctrl+Break on Windows).

Making the server listen for connections

The next step is to make the server actually accept incoming connections.
For this purpose, the asyncio.start_server() [https://docs.python.org/3/library/asyncio-stream.html#asyncio.start_server] function is a logical choice:

from asyncio import start_server

from asphalt.core import Component, run_application

async def client_connected(reader, writer):
 message = await reader.readline()
 writer.write(message)
 writer.close()
 print('Message from client:', message.decode().rstrip())

class ServerComponent(Component):
 async def start(self, ctx):
 await start_server(client_connected, 'localhost', 64100)

if __name__ == '__main__':
 component = ServerComponent()
 run_application(component)

Here, asyncio.start_server() [https://docs.python.org/3/library/asyncio-stream.html#asyncio.start_server] is used to listen to incoming TCP connections on the
localhost interface on port 64100. The port number is totally arbitrary and can be changed to
any other legal value you want to use.

Whenever a new connection is established, the event loop launches client_connected() as a new
Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task]. Tasks work much like green threads [https://en.wikipedia.org/wiki/Green_threads] in that they’re adjourned when
waiting for something to happen and then resumed when the result is available. The main difference
is that a coroutine running in a task needs to use the await statement (or async for or
async with) to yield control back to the event loop. In client_connected(), the await
on the first line will cause the task to be adjourned until a line of text has been read from the
network socket.

The client_connected() function receives two arguments: a StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader] and
a StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]. In the callback we read a line from the client, write it back to
the client and then close the connection. To get at least some output from the application, the
function was made to print the received message on the console (decoding it from bytes to
str and stripping the trailing newline character first). In production applications, you will
want to use the logging [https://docs.python.org/3/library/logging.html#module-logging] module for this instead.

If you have the netcat utility or similar, you can already test the server like this:

echo Hello | nc localhost 64100

This command, if available, should print “Hello” on the console, as echoed by the server.

Creating the client

No server is very useful without a client to access it, so we’ll need to add a client module in
this project. And to make things a bit more interesting, we’ll make the client accept a message to
be sent as a command line argument.

Create the file client.py file in the echo package directory as follows:

import sys
from asyncio import open_connection

from asphalt.core import CLIApplicationComponent, run_application

class ClientComponent(CLIApplicationComponent):
 def __init__(self, message: str):
 super().__init__()
 self.message = message

 async def run(self, ctx):
 reader, writer = await open_connection('localhost', 64100)
 writer.write(self.message.encode() + b'\n')
 response = await reader.readline()
 writer.close()
 print('Server responded:', response.decode().rstrip())

if __name__ == '__main__':
 component = ClientComponent(sys.argv[1])
 run_application(component)

You may have noticed that ClientComponent inherits from
CLIApplicationComponent instead of
Component and that instead of overriding the
start() method,
run() is overridden instead.
This is standard practice for Asphalt applications that just do one specific thing and then exit.

The script instantiates ClientComponent using the first command line argument as the
message argument to the component’s constructor. Doing this instead of directly accessing
sys.argv from the run() method makes this component easier to test and allows you to
specify the message in a configuration file (covered in the next tutorial).

When the client component runs, it grabs the message to be sent from the list of command line
arguments (sys.argv), converts it from a unicode string to a bytestring and adds a newline
character (so the server can use readline()). Then, it connects to localhost on port 64100
and sends the bytestring to the other end. Next, it reads a response line from the server, closes
the connection and prints the (decoded) response. When the run() method returns, the
application exits.

To send the “Hello” message to the server, run this in the project directory:

python -m echo.client Hello

Conclusion

This covers the basics of setting up a minimal Asphalt application. You’ve now learned to:

	Create a virtual environment to isolate your application’s dependencies from other applications

	Create a package structure for your application

	Start your application using run_application()

	Use asyncio streams [https://docs.python.org/3/library/asyncio-stream.html#asyncio-streams] to create a basic client-server protocol

This tutorial only scratches the surface of what’s possible with Asphalt, however. The
second tutorial will build on the knowledge you gained here and teach you how
to work with components, resources and configuration files to build more useful applications.

Tutorial 2: Something a little more practical – a web page change detector

Now that you’ve gone through the basics of creating an Asphalt application, it’s time to expand
your horizons a little. In this tutorial you will learn to use a container component to create
a multi-component application and how to set up a configuration file for that.

The application you will build this time will periodically load a web page and see if it has
changed since the last check. When changes are detected, it will then present the user with the
computed differences between the old and the new versions.

Setting up the project structure

As in the previous tutorial, you will need a project directory and a virtual environment. Create a
directory named tutorial2 and make a new virtual environment inside it. Then activate it and
use pip to install the asphalt-mailer and aiohttp libraries:

pip install asphalt-mailer aiohttp

This will also pull in the core Asphalt library as a dependency.

Next, create a package directory named webnotifier and a module named app (app.py).
The code in the following sections should be put in the app module (unless explicitly stated
otherwise).

Detecting changes in a web page

The first task is to set up a loop that periodically retrieves the web page. For that, you can
adapt code from the aiohttp HTTP client tutorial [http://aiohttp.readthedocs.io/en/stable/client.html]:

import asyncio
import logging

import aiohttp
from asphalt.core import CLIApplicationComponent, run_application

logger = logging.getLogger(__name__)

class ApplicationComponent(CLIApplicationComponent):
 async def run(self, ctx):
 with aiohttp.ClientSession() as session:
 while True:
 async with session.get('http://imgur.com') as resp:
 await resp.text()

 await asyncio.sleep(10)

if __name__ == '__main__':
 run_application(ApplicationComponent(), logging=logging.DEBUG)

Great, so now the code fetches the contents of http://imgur.com at 10 second intervals.
But this isn’t very useful yet – you need something that compares the old and new versions of the
contents somehow. Furthermore, constantly loading the contents of a page exerts unnecessary strain
on the hosting provider. We want our application to be as polite and efficient as reasonably
possible.

To that end, you can use the if-modified-since header in the request. If the requests after the
initial one specify the last modified date value in the request headers, the remote server will
respond with a 304 Not Modified if the contents have not changed since that moment.

So, modify the code as follows:

class ApplicationComponent(CLIApplicationComponent):
 async def start(self, ctx):
 last_modified = None
 with aiohttp.ClientSession() as session:
 while True:
 headers = {'if-modified-since': last_modified} if last_modified else {}
 async with session.get('http://imgur.com', headers=headers) as resp:
 logger.debug('Response status: %d', resp.status)
 if resp.status == 200:
 last_modified = resp.headers['date']
 await resp.text()
 logger.info('Contents changed')

 await asyncio.sleep(10)

The code here stores the date header from the first response and uses it in the
if-modified-since header of the next request. A 200 response indicates that the web page
has changed so the last modified date is updated and the contents are retrieved from the response.
Some logging calls were also sprinkled in the code to give you an idea of what’s happening.

Computing the changes between old and new versions

Now you have code that actually detects when the page has been modified between the requests.
But it doesn’t yet show what in its contents has changed. The next step will then be to use the
standard library difflib [https://docs.python.org/3/library/difflib.html#module-difflib] module to calculate the difference between the contents and send it
to the logger:

from difflib import unified_diff

class ApplicationComponent(CLIApplicationComponent):
 async def start(self, ctx):
 with aiohttp.ClientSession() as session:
 last_modified, old_lines = None, None
 while True:
 logger.debug('Fetching webpage')
 headers = {'if-modified-since': last_modified} if last_modified else {}
 async with session.get('http://imgur.com', headers=headers) as resp:
 logger.debug('Response status: %d', resp.status)
 if resp.status == 200:
 last_modified = resp.headers['date']
 new_lines = (await resp.text()).split('\n')
 if old_lines is not None and old_lines != new_lines:
 difference = '\n'.join(unified_diff(old_lines, new_lines))
 logger.info('Contents changed:\n%s', difference)

 old_lines = new_lines

 await asyncio.sleep(10)

This modified code now stores the old and new contents in different variables to enable them to be
compared. The .split('\n') is needed because unified_diff() [https://docs.python.org/3/library/difflib.html#difflib.unified_diff] requires the input
to be iterables of strings. Likewise, the '\n'.join(...) is necessary because the output is
also an iterable of strings.

Sending changes via email

While an application that logs the changes on the console could be useful on its own, it’d be much
better if it actually notified the user by means of some communication medium, wouldn’t it?
For this specific purpose you need the asphalt-mailer library you installed in the beginning.
The next modification will send the HTML formatted differences to you by email.

But, you only have a single component in your app now. To use asphalt-mailer, you will need to
add its component to your application somehow. Enter
ContainerComponent. With that, you can create a hierarchy of
components where the mailer component is a child component of your own container component.

And to make the the results look nicer in an email message, you can switch to using
difflib.HtmlDiff [https://docs.python.org/3/library/difflib.html#difflib.HtmlDiff] to produce the delta output:

from difflib import HtmlDiff

class ApplicationComponent(CLIApplicationComponent):
 async def start(self, ctx):
 self.add_component(
 'mailer', backend='smtp', host='your.smtp.server.here',
 message_defaults={'sender': 'your@email.here', 'to': 'your@email.here'})
 await super().start(ctx)

 async def run(self, ctx):
 with aiohttp.ClientSession() as session:
 last_modified, old_lines = None, None
 diff = HtmlDiff()
 while True:
 logger.debug('Fetching webpage')
 headers = {'if-modified-since': last_modified} if last_modified else {}
 async with session.get('http://imgur.com', headers=headers) as resp:
 logger.debug('Response status: %d', resp.status)
 if resp.status == 200:
 last_modified = resp.headers['date']
 new_lines = (await resp.text()).split('\n')
 if old_lines is not None and old_lines != new_lines:
 difference = diff.make_file(old_lines, new_lines, context=True)
 logger.info('Sent notification email')

 old_lines = new_lines

 await asyncio.sleep(10)

You’ll need to replace the host, sender and to arguments for the mailer component and
possibly add the ssl, username and password arguments if your SMTP server requires
authentication.

With these changes, you’ll get a new HTML formatted email each time the code detects changes in the
target web page.

Separating the change detection logic

While the application now works as intended, you’re left with two small problems. First off, the
target URL and checking frequency are hard coded. That is, they can only be changed by modifying
the program code. It is not reasonable to expect non-technical users to modify the code when they
want to simply change the target website or the frequency of checks. Second, the change detection
logic is hardwired to the notification code. A well designed application should maintain proper
separation of concerns [https://en.wikipedia.org/wiki/Separation_of_concerns]. One way to do this is to separate the change detection logic to its own
class.

Create a new module named detector in the webnotifier package. Then, add the change event
class to it:

import asyncio
import logging

import aiohttp
from async_generator import yield_

from asphalt.core import Component, Event, Signal, context_finisher

logger = logging.getLogger(__name__)

class WebPageChangeEvent(Event):
 def __init__(self, source, topic, old_lines, new_lines):
 super().__init__(source, topic)
 self.old_lines = old_lines
 self.new_lines = new_lines

This class defines the type of event that the notifier will emit when the target web page changes.
The old and new content are stored in the event instance to allow the event listener to generate
the output any way it wants.

Next, add another class in the same module that will do the HTTP requests and change detection:

class Detector:
 changed = Signal(WebPageChangeEvent)

 def __init__(self, url, delay):
 self.url = url
 self.delay = delay

 async def run(self):
 with aiohttp.ClientSession() as session:
 last_modified, old_lines = None, None
 while True:
 logger.debug('Fetching contents of %s', self.url)
 headers = {'if-modified-since': last_modified} if last_modified else {}
 async with session.get(self.url, headers=headers) as resp:
 logger.debug('Response status: %d', resp.status)
 if resp.status == 200:
 last_modified = resp.headers['date']
 new_lines = (await resp.text()).split('\n')
 if old_lines is not None and old_lines != new_lines:
 self.changed.dispatch(old_lines, new_lines)

 old_lines = new_lines

 await asyncio.sleep(self.delay)

The constructor arguments allow you to freely specify the parameters for the detection process.
The class includes a signal named change that uses the previously created
WebPageChangeEvent class. The code dispatches such an event when a change in the target web
page is detected.

Finally, add the component class which will allow you to integrate this functionality into any
Asphalt application:

class ChangeDetectorComponent(Component):
 def __init__(self, url, delay=10):
 self.url = url
 self.delay = delay

 @context_finisher
 async def start(self, ctx):
 detector = Detector(self.url, self.delay)
 ctx.publish_resource(detector, context_attr='detector')
 task = asyncio.get_event_loop().create_task(detector.run())
 logging.info('Started web page change detector for url "%s" with a delay of %d seconds',
 self.url, self.delay)

 # Can be replaced with plain "yield" on Python 3.6+
 await yield_()

 # This part is run when the context is finished
 task.cancel()
 logging.info('Shut down web page change detector')

The component’s start() method starts the detector’s run() method as a new task, publishes
the detector object as resource and installs an event listener that will shut down the detector
when the context finishes.

Now that you’ve moved the change detection code to its own module, ApplicationComponent will
become somewhat lighter:

class ApplicationComponent(CLIApplicationComponent):
 async def start(self, ctx):
 self.add_component('detector', ChangeDetectorComponent, url='http://imgur.com')
 self.add_component(
 'mailer', backend='smtp', host='your.smtp.server.here',
 message_defaults={'sender': 'your@email.here', 'to': 'your@email.here'})
 await super().start(ctx)

 async def run(self, ctx):
 diff = HtmlDiff()
 async for event in ctx.detector.changed.stream_events():
 difference = diff.make_file(event.old_lines, event.new_lines, context=True)
 await ctx.mailer.create_and_deliver(
 subject='Change detected in %s' % event.source.url, html_body=difference)
 logger.info('Sent notification email')

The main application component will now use the detector resource published by
ChangeDetectorComponent. It adds one event listener which reacts to change events by creating
an HTML formatted difference and sending it to the default recipient.

Once the start() method here has run to completion, the event loop finally has a chance to run
the task created for Detector.run(). This will allow the detector to do its work and dispatch
those changed events that the page_changed() listener callback expects.

Setting up the configuration file

Now that your application code is in good shape, you will need to give the user an easy way to
configure it. This is where YAML [http://yaml.org/] configuration files come in handy. They’re clearly structured and
are far less intimidating to end users than program code. And you can also have more than one of
them, in case you want to run the program with a different configuration.

In your project directory (tutorial2), create a file named config.yaml with the following
contents:

component:
 type: webnotifier.app:ApplicationComponent
 components:
 detector:
 url: http://imgur.com/
 delay: 15
 mailer:
 host: your.smtp.server.here
 message_defaults:
 sender: your@email.here
 to: your@email.here

logging:
 version: 1
 disable_existing_loggers: false
 formatters:
 default:
 format: '[%(asctime)s %(levelname)s] %(message)s'
 handlers:
 console:
 class: logging.StreamHandler
 formatter: default
 loggers:
 root:
 handlers: [console]
 level: INFO
 webnotifier:
 handlers: [console]
 level: DEBUG
 propagate: false

The component section defines parameters for the root component. Aside from the special
type key which tells the runner where to find the component class, all the keys in this section
are passed to the constructor of ApplicationComponent as keyword arguments. Keys under
components will match the alias of each child component, which is given as the first argument
to add_component(). Any component parameters given
here can now be removed from the add_component() call in ApplicationComponent‘s code.

The logging configuration here sets up two loggers, one for webnotifier and its descendants
and another (root) as a catch-all for everything else. It specifies one handler that just
writes all log entries to the standard output. To learn more about what you can do with the logging
configuration, consult the Configuration dictionary schema [https://docs.python.org/3/library/logging.config.html#logging-config-dictschema] section in the standard library
documentation.

You can now run your app with the asphalt run command, provided that the project directory is
on Python’s search path. When your application is properly packaged [https://packaging.python.org/] and installed in
site-packages, this won’t be a problem. But for the purposes of this tutorial, you can
temporarily add it to the search path by setting the PYTHONPATH environment variable:

PYTHONPATH=. asphalt run config.yaml

On Windows:

set PYTHONPATH=%CD%
asphalt run config.yaml

Note

The if __name__ == '__main__': block is no longer needed since asphalt run is now used
as the entry point for the application.

Conclusion

You now know how to take advantage of Asphalt’s component system to add structure to your
application. You’ve learned how to build reusable components and how to make the components work
together through the use of resources. Last, but not least, you’ve learned to set up a YAML
configuration file for your application and to set up a fine grained logging configuration in it.

You now possess enough knowledge to leverage Asphalt to create practical applications. You are now
encouraged to find out what Asphalt component projects [https://github.com/asphalt-framework] exist to aid your application
development. Happy coding ☺

User guide

This is the reference documentation. If you’re looking to learn Asphalt from scratch, you should
take a look at the Tutorials first.

	Application architecture
	Components

	Container components

	Context hierarchies

	Resources

	Lazy resources

	Working with coroutines and threads
	Examples

	Using alternate thread pools

	Events
	Exception handling

	Waiting for a single event

	Receiving events iteratively

	Testing Asphalt components
	Example

	Configuration and deployment
	Running the Asphalt launcher

	Writing a configuration file

	Configuration overlays

	Performance tuning

Application architecture

Asphalt applications are built by assembling a hierarchy of components. Each component typically
provides some specific functionality for the application, like a network server or client, a
database connection or a myriad of other things. A component’s lifecycle is usually very short:
it’s instantiated and its start() method is run and the
component is then discarded. A common exception to this are command line tools, where the root
component’s start() call typically lasts for the entire run time of the tool.

Components work together through a shared Context. Every application
has at least a top level context which is passed to the root component’s
start() method. A context is essentially a container for
resources and a namespace for arbitrary data attributes. Resources can be objects of any type
like data or services.

Contexts can have subcontexts. How and if subcontexts are used depends on the components using
them. For example, a component serving network requests may want to create a subcontext for each
request it handles to store request specific information and other state. While the subcontext will
have its own independent state, it also has full access the resources of its parent context.

An Asphalt application is normally started by calling run_application()
with the root component as the argument. This function takes care of logging and and starting the
root component in the event loop. The application will then run until Ctrl+C is pressed, the
process is terminated from outside or the application code stops the event loop.

The runner is further extended by the asphalt command line tool which reads the application
configuration from a YAML formatted configuration file, instantiates the root component and calls
run_application(). The settings from the configuration file are merged
with hard coded defaults so the config file only needs to override settings where necessary.

Components

Components are the basic building blocks of an Asphalt application. They have a narrowly defined
set of responsibilities:

	Take in configuration through the constructor

	Validate the configuration

	Publish resources (in start())

	Close/shut down/cleanup resources when the context is finished (by adding a callback on the
finished signal of the context, or by using context_finisher())

In the start() method, the component receives a
Context as its only argument. The component can use the context to
publish resources for other components and the application business logic to use. It can also
request resources provided by other components to provide some complex service that builds on those
resources.

The start() method of a component is only called once,
during application startup. When all components have been started, they are disposed of.
If any of the components raises an exception, the application startup process fails and the context
is finished.

In order to speed up the startup process and to prevent any deadlocks, components should try to
publish any resources as soon as possible before requesting any. If two or more components end up
waiting on each others’ resources, the application will fail to start due to timeout errors.
Also, if a component needs to perform lengthy operations like connection validation on network
clients, it should publish all its resources first to avoid said timeouts.

Hint

It is a good idea to use type hints [https://www.python.org/dev/peps/pep-0484/] with typeguard [https://pypi.python.org/pypi/typeguard] checks
(assert check_argument_types()) in the component’s __init__ method to ensure that the
received configuration values are of the expected type, but this is of course not required.

Container components

A container component is component that can contain other Asphalt components.
The root component of virtually any nontrivial Asphalt application is a container component.
Container components can of course contain other container components and so on.

When the container component starts its child components, each
start() call is launched in its own task. Therefore all the
child components start concurrently and cannot rely on the start order. This is by design.
The only way components should be relying on each other is by the publishing and requesting of
resources in their shared context.

Context hierarchies

As mentioned previously, every application has at least one context. Component code and application
business logic can create new contexts at any time, and a new context can be linked to a parent
context to take advantage of its resources. Such subcontexts have access to all the resources of
the parent context, but parent contexts cannot access resources from their subcontexts. Sometimes
it may also be beneficial to create completely isolated contexts to ensure consistent behavior
when some reusable code is plugged in an application.

A common use case for creating subcontexts is when a network server handles an incoming request.
Such servers typically want to create a separate subcontext for each request, usually using
specialized subclass of Context.

Resources

The resource system in Asphalt exists for two principal reasons:

	To avoid having to duplicate configuration

	To enable sharing of pooled resources, like database connection pools

Here are a few examples of services that will likely benefit from resource sharing:

	Database connections

	Remote service handles

	Serializers

	Template renderers

	SSL contexts

When you publish a resource, you should make sure that the resource is discoverable using any
abstract interface or base class that it implements. This is so that consumers of the service don’t
have to care if you switch the implementation of another. For example, consider a mailer service,
provided by asphalt-mailer [https://github.com/asphalt-framework/asphalt-mailer]. The library has an abstract base class for all mailers,
asphalt.mailer.api.Mailer. To facilitate this loose coupling of services, it publishes all
mailers as Mailers.

Lazy resources

Resources can also be published lazily. That means they’re created on demand, that is, either
when their context attribute is accessed or when the resource is being requested for the first
time. Unlike with normal resources, the resource values are not inherited by subcontexts, but every
time the resource is requested in a new context, a new value is created specifically for that
context.

There are at least a couple plausible reasons for publishing resources this way:

	The resource needs access to the resources or data specific to the local context
(example: template renderers)

	The life cycle of the resource needs to be tied to the life cycle of the context
(example: database transactions)

Lazy resources are published using publish_lazy_resource().
Instead of passing a static value to it, you give it a callable that takes the local context
object (whatever that may be) as the argument and returns the created resource object. The creator
callable will only be called at most once per context.

The creator callable can be a coroutine function or return an awaitable, in which case the
coroutine or other awaitable is resolved before returning the resource object to the caller. This
approach has the unfortunate limitation that the awaitable cannot be automatically resolved on
attribute access so something like await ctx.resourcename is required when such resources are
accessed through their context attributes.

Working with coroutines and threads

Asphalt was designed as a network oriented framework capable of high concurrency. This means that
it can efficiently work with hundreds or even thousands of connections at once. This is achieved by
utilizing co-operative multitasking [https://en.wikipedia.org/wiki/Cooperative_multitasking], using an event loop provided by the asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]
module.

The event loop can only work on one task at a time, so whenever the currently running task needs to
wait for something to happen, it will need to explicitly yield control back to the event loop
(using await and similar statements) to let the event loop run other tasks while this task
waits for the result. Once the result is available, the event loop will resume the task.

There is another concurrency mechanism called threads. Threads are an implementation of
preemptive multitasking [https://en.wikipedia.org/wiki/Preemption_%28computing%29], which means that the CPU may run your program at more than one location
at once and your code will not have to worry about yielding control to another task. There are some
big downsides to using threads, however. First off, threaded code is much more prone to
race conditions [https://en.wikipedia.org/wiki/Race_condition] and programs often need to use locks [https://en.wikipedia.org/wiki/Lock_%28computer_science%29] to share state in a predictable manner.
Second, threads don’t scale. When you have more threads than CPU cores, the cores need to do
context switching [https://en.wikipedia.org/wiki/Context_switch], that is, juggle between the threads. With a large number of threads, the
overhead from context switching becomes very significant up to the point where the system stops
responding altogether.

While Asphalt was designed to avoid the use of threads, they are sometimes necessary.
Most third party libraries at the moment don’t support the asynchronous concurrency model, and as
such, they sometimes need to be used with threads in order to avoid blocking the event loop.
Also, file operations cannot, at this time, be executed asynchronously and need to be wrapped in
threads. Finally, your application might just need to do some CPU heavy processing that would
otherwise block the event loop for long periods of time.

To help with this, the asyncio_extras [https://pypi.python.org/pypi/asyncio_extras] library was created as a byproduct of Asphalt.
It provides several conveniences you can use to easily use threads when the need arises.

Examples

Consider a coroutine function that reads the contents of a certain file and then sends them over a
network connection. While you might get away with reading the file in the event loop thread,
consider what happens if the disk has to spin up from idle state or the file is located on a slow
(or temporarily inaccessible) network drive. The whole event loop will then be blocked for who
knows how long.

The easiest way is probably to use open_async() [http://pythonhosted.org/asyncio_extras/index.html#asyncio_extras.file.open_async]:

from asyncio_extras import open_async

async def read_and_send_file(connection):
 async with open_async('file.txt', 'rb') as f:
 contents = await f.read()

 await connection.send(contents)

The following snippet achieves the same goal:

from asyncio_extras import threadpool

async def read_and_send_file(connection):
 async with threadpool():
 with open('file.txt', 'rb') as f:
 contents = f.read()

 await connection.send(contents)

As does the next one:

from asyncio_extras import call_in_executor

async def read_and_send_file(connection):
 f = await call_in_executor(open, 'file.txt', 'rb')
 with f:
 contents = await call_in_executor(f.read)

 await connection.send(contents)

Alternatively, you can run the whole function in the thread pool.
You will need to make it a regular function instead of a coroutine function and you must
explicitly pass in the event loop object:

from asyncio_extras import threadpool, call_async

@threadpool
def read_and_send_file(connection, loop):
 with open('file.txt', 'rb') as f:
 contents = f.read()

 call_async(loop, connection.send, contents)

Using alternate thread pools

In more advanced applications, you may find it useful to set up specialized thread pools for
certain tasks in order to avoid the default thread pool from being overburdened:

from concurrent.futures import ThreadPoolExecutor

from asyncio_extras import threadpool

file_ops = ThreadPoolExecutor(5) # max 5 threads for file operations

async def read_and_send_file(connection):
 async with threadpool(file_ops):
 with open('file.txt', 'rb') as f:
 contents = f.read()

 await connection.send(contents)

All the thread related utilities in asyncio_extras [https://pypi.python.org/pypi/asyncio_extras] have a way to specify the executor to use.
Refer to its documentation for the specifics.

Events

Events are a handy way to make your code react to changes in another part of the application.
To dispatch and listen to events, you first need to have one or more
Signal instances as attributes of some class. Each signal needs to be
associated with some Event class. Then, when you dispatch a new event
by calling dispatch(), a new instance of this event class will be
constructed and passed to all listener callbacks.

To listen to events dispatched from a signal, you need to have a function or any other callable
that accepts a single positional argument. You then pass this callable to
connect(). That’s it!

To disconnect the callback, simply call disconnect() with whatever
you passed to connect() as argument.

Here’s how it works:

from asphalt.core import Event, Signal

class CustomEvent(Event):
 def __init__(source, topic, extra_argument):
 super().__init__(source, topic)
 self.extra_argument = extra_argument

class MyEventSource:
 somesignal = Signal(Event)
 customsignal = Signal(CustomEvent)

def plain_listener(event):
 print('received event: %s' % event)

async def coro_listener(event):
 print('coroutine listeners are fine too: %s' % event)

async def some_handler():
 source = MyEventSource()
 source.somesignal.connect(plain_listener)
 source.customsignal.connect(coro_listener)

 # Dispatches an Event instance
 source.somesignal.dispatch()

 # Dispatches a CustomEvent instance (the extra argument is passed to its constructor)
 source.customsignal.dispatch('extra argument here')

Exception handling

By default, all exceptions raised by listener callbacks are just sent to the logger
(asphalt.core.event). If the dispatcher needs to know about any exceptions raised by listeners,
it can call dispatch() with return_future=True. This will
cause a Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] to be returned and, when awaited, will raise a
EventDispatchError if any listener raised an exception. This exception
will contain every exception that was raised, along with the information regarding which callback
raised which exception.

Waiting for a single event

To wait for the next event dispatched from a given signal, you can use the
wait_event() method:

async def print_next_event(source):
 event = await source.somesignal.wait_event()
 print(event)

You can even wait for the next event dispatched from any of several signals using the
wait_event() function:

from asphalt.core import wait_event

async def print_next_event(source1, source2, source3):
 event = await wait_event(source1.some_signal, source2.another_signal, source3.some_signal)
 print(event)

Receiving events iteratively

With stream_events(), you can even asynchronously iterate over
events dispatched from a signal:

async def listen_to_events(source):
 async for event in source.somesignal.stream_events():
 print(event)

Using stream_events(), you can stream events from multiple signals:

from asphalt.core import stream_events

async def listen_to_events(source1, source2, source3):
 async for event in stream_events(source1.some_signal, source2.another_signal,
 source3.some_signal):
 print(event)

Testing Asphalt components

Testing Asphalt components and component hierarchies is a relatively simple procedure:

	Create an instance of your Component

	Create a Context instance

	Run the component’s start() method with the context as the argument

	Run the tests

	Dispatch the finished event on the context to release any resources

With Asphalt projects, it is recommended to use the py.test [http://pytest.org/] testing framework because it is
already being used with Asphalt core and it provides easy testing of asynchronous code
(via the pytest-asyncio [https://pypi.python.org/pypi/pytest-asyncio] plugin).

Example

Let’s build a test suite for the Echo Tutorial.

The client and server components could be tested separately, but to make things easier, we’ll test
them against each other.

Create a tests directory at the root of the project directory and create a module named
test_client_server there (the test_ prefix is important):

import asyncio

import pytest
from asphalt.core import Context

from echo.client import ClientComponent
from echo.server import ServerComponent

@pytest.fixture
def event_loop():
 # Required on pytest-asyncio v0.4.0 and newer since the event_loop fixture provided by the
 # plugin no longer sets the global event loop
 loop = asyncio.new_event_loop()
 asyncio.set_event_loop(loop)
 yield loop
 loop.close()

@pytest.fixture
def context(event_loop):
 ctx = Context()
 yield ctx
 event_loop.run_until_complete(ctx.finished.dispatch(None, return_future=True))

@pytest.fixture
def server_component(event_loop, context):
 component = ServerComponent()
 event_loop.run_until_complete(component.start(context))

def test_client(event_loop, server_component, context, capsys):
 client = ClientComponent('Hello!')
 event_loop.run_until_complete(client.start(context))
 exc = pytest.raises(SystemExit, event_loop.run_forever)
 assert exc.value.code == 0

 # Grab the captured output of sys.stdout and sys.stderr from the capsys fixture
 out, err = capsys.readouterr()
 assert out == 'Message from client: Hello!\nServer responded: Hello!\n'

The test module above contains one test function (test_client) and three fixtures:

	event_loop: provides an asyncio event loop and closes it after the test

	context provides the root context and runs finish callbacks after the test

	server_component: creates and starts the server component

The client component is not provided as a fixture because, as always with
CLIApplicationComponent, starting it would run the logic we want
to test, so we defer that to the actual test code.

In the test function (test_client), the client component is instantiated and started. Since the
component’s start() function only kicks off the task that runs the client’s business logic (the
run() method), we have to wait until the task is complete by running the event loop (using
run_forever() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.run_forever]) until run() finishes and its callback code
attempts to terminate the application. For that purpose, we catch the resulting SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit]
exception and verify that the application indeed completed successfully, as indicated by the return
code of 0.

Finally, we check that the server and the client printed the messages they were supposed to.
When the server receives a line from the client, it prints a message to standard output using
print() [https://docs.python.org/3/library/functions.html#print]. Likewise, when the client gets a response from the server, it too prints out its
own message. By using pytest’s built-in capsys fixture, we can capture the output and verify it
against the expected lines.

To run the test suite, make sure you’re in the project directory and then do:

pytest tests

For more elaborate examples, please see the test suites of various Asphalt subprojects [https://github.com/asphalt-framework].

Configuration and deployment

As your application grows more complex, you may find that you need to have different settings for
your development environment and your production environment. You may even have multiple
deployments that all need their own custom configuration.

For this purpose, Asphalt provides a command line interface that will read a YAML [http://yaml.org/] formatted
configuration file and run the application it describes.

Running the Asphalt launcher

Running the launcher is very straightfoward:

asphalt run yourconfig.yaml [your-overrides.yml...]

Or alternatively:

python -m asphalt run yourconfig.yaml [your-overrides.yml...]

What this will do is:

	read all the given configuration files, starting from yourconfig.yaml

	
	merge the configuration files’ contents into a single configuration dictionary using

	merge_config()

	
	call run_application() using the configuration dictionary as keyword

	arguments

Writing a configuration file

A production-ready configuration file should contain at least the following options:

	component: a dictionary containing the class name and keyword arguments for its constructor

	logging: a dictionary to be passed to logging.config.dictConfig() [https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig]

Suppose you had the following component class as your root component:

class MyRootComponent(ContainerComponent):
 def __init__(self, components, data_directory: str):
 super().__init__(components)
 self.data_directory = data_directory

 async def start(ctx):
 self.add_component('mailer', backend='smtp')
 self.add_component('sqlalchemy')
 await super().start(ctx)

You could then write a configuration file like this:

component:
 type: myproject:MyRootComponent
 data_directory: /some/file/somewhere
 components:
 mailer:
 host: smtp.mycompany.com
 ssl: true
 sqlalchemy:
 url: postgresql:///mydatabase
max_threads: 20
logging:
 version: 1
 disable_existing_loggers: false
 handlers:
 console:
 class: logging.StreamHandler
 formatter: generic
 formatters:
 generic:
 format: "%(asctime)s:%(levelname)s:%(name)s:%(message)s"
 root:
 handlers: [console]
 level: INFO

In the above configuration you have three top level configuration keys: component,
max_threads and logging, all of which are directly passed to
run_application() as keyword arguments.

The component section defines the type of the root component using the specially processed
type option. You can either specify a setuptools entry point name (from the
asphalt.components namespace) or a text reference like module:class (see
resolve_reference() for details). The rest of the keys in this section are
passed directly to the constructor of the MyRootComponent class.

The components section within component is processed in a similar fashion.
Each subsection here is a component type alias and its keys and values are the constructor
arguments to the relevant component class. The per-component configuration values are merged with
those provided in the start() method of MyRootComponent. See the next section for a more
elaborate explanation.

With max_threads: 20, the maximum number of threads in the event loop’s default thread pool
executor is set to 20.

The logging configuration tree here sets up a root logger that prints all log entries of at
least INFO level to the console. You may want to set up more granular logging in your own
configuration file. See the
Python standard library documentation [https://docs.python.org/3/library/logging.config.html#logging-config-dictschema] for details.

Configuration overlays

Component configuration can be specified on several levels:

	Hard-coded arguments to add_component()

	First configuration file argument to asphalt run

	Second configuration file argument to asphalt run

	...

Any options you specify on each level override or augment any options given on previous levels.
To minimize the effort required to build a working configuration file for your application, it is
suggested that you pass as many of the options directly in the component initialization code and
leave only deployment specific options like API keys, access credentials and such to the
configuration file.

With the configuration presented in the earlier paragraphs, the mailer component’s constructor
gets passed three keyword arguments:

	backend='smtp'

	host='smtp.mycompany.com'

	ssl=True

The first one is provided in the root component code while the other two options come from the YAML
file. You could also override the mailer backend in the configuration file if you wanted. The same
effect can be achieved programmatically by supplying the override configuration to the container
component via its components constructor argument. This is very useful when writing tests
against your application. For example, you might want to use the mock mailer in your test suite
configuration to test that the application correctly sends out emails (and to prevent them from
actually being sent to recipients!).

There is another neat trick that lets you easily modify a specific key in the configuration.
By using dotted notation in a configuration key, you can target a specific key arbitrarily deep in
the configuration structure. For example, to override the logging level for the root logger in the
configuration above, you could use an override configuration such as:

logging.root.level: DEBUG

The keys don’t need to be on the top level either, so the following has the same effect:

logging:
 root.level: DEBUG

Performance tuning

Asphalt’s core code and many third part components employ a number of potentially expensive
validation steps in its code. The performance hit of these checks is not a concern in development
and testing, but in a production environment you will probably want to maximize the performance.

To do this, you will want to disable Python’s debugging mode by either setting the environment
variable PYTHONOPTIMIZE to 1 or (if applicable) running Python with the -O switch.
This has the effect of completely eliminating all assert statements and blocks starting with
if __debug__: from the compiled bytecode.

When you want maximum performance, you’ll also want to use the fastest available event loop
implementation. This can be done by specifying the event_loop_policy option in the
configuration file or by using the -l or --loop switch. The core library has built-in
support for the uvloop [http://magic.io/blog/uvloop-make-python-networking-great-again/] event loop implementation, which should provide a nice performance boost
over the standard library implementation.

Version history

This library adheres to Semantic Versioning [http://semver.org/].

2.1.1 (2017-02-01)

	Fixed memory leak which prevented objects containing Signals from being garbage collected

	Log a message on startup that indicates whether optimizations (-O or PYTHONOPTIMIZE) are
enabled

2.1.0 (2016-09-26)

	Added the possibility to specify more than one configuration file on the command line

	Added the possibility to use the command line interface via python -m asphalt ...

	Added the CLIApplicationComponent class to facilitate the creation of Asphalt based command
line tools

	Root component construction is now done after installing any alternate event loop policy provider

	Switched YAML library from PyYAML to ruamel.yaml

	Fixed a corner case where in wait_event() the future’s result would be set twice, causing an
exception in the listener

	Fixed coroutine-based lazy resource returning a CoroWrapper instead of a Future when asyncio’s
debug mode has been enabled

	Fixed a bug where a lazy resource would not be created separately for a context if a parent
context contained an instance of the same resource

2.0.0 (2016-05-09)

	BACKWARD INCOMPATIBLE Dropped Python 3.4 support in order to make the code fully rely on the
new async/await, async for and async with language additions

	BACKWARD INCOMPATIBLE De-emphasized the ability to implicitly run code in worker threads.
As such, Asphalt components are no longer required to transparently work outside of the event
loop thread. Instead, use asyncio_extras.threads.call_async() to call asynchronous code from
worker threads if absolutely necessary. As a direct consequence of this policy shift, the
asphalt.core.concurrency module was dropped in favor of the asyncio_extras library.

	BACKWARD INCOMPATIBLE The event system was completely rewritten:
	instead of inheriting from EventSource, event source classes now simply assign Signal
instances to attributes and use object.signalname.connect() to listen to events

	all event listeners are now called independently of each other and coroutine listeners are run
concurrently

	added the ability to stream events

	added the ability to wait for a single event to be dispatched

	BACKWARD INCOMPATIBLE Removed the asphalt.command module from the public API

	BACKWARD INCOMPATIBLE Removed the asphalt quickstart command

	BACKWARD INCOMPATIBLE Removed the asphalt.core.connectors module

	BACKWARD INCOMPATIBLE Removed the optional argument of Context.request_resource()

	BACKWARD INCOMPATIBLE Removed the asphalt.core.runners entry point namespace

	BACKWARD INCOMPATIBLE Component.start() is now required to be a coroutine method

	BACKWARD INCOMPATIBLE Removed regular context manager support from the Context class
(asynchronous context manager support still remains)

	BACKWARD INCOMPATIBLE The Context.publish_resource(),
Context.publish_lazy_resource() and Context.remove_resource() methods are no longer
coroutine methods

	BACKWARD INCOMPATIBLE Restricted resource names to alphanumeric characters and underscores

	Added the possibility to specify a custom event loop policy

	Added support for uvloop [https://github.com/MagicStack/uvloop]

	Added support for aiogevent [https://bitbucket.org/haypo/aiogevent]

	Added the ability to use coroutine functions as lazy resource creators (though that just makes
them return a Future instead)

	Added the ability to get a list of all the resources in a Context

	Changed the asphalt.core.util.resolve_reference() function to return invalid reference
strings as-is

	Switched from argparse to click for the command line interface

	All of Asphalt core’s public API is now importable directly from asphalt.core

1.2.0 (2016-01-02)

	Moved the @asynchronous and @blocking decorators to the asphalt.core.concurrency
package along with related code (they’re still importable from asphalt.core.util until v2.0)

	Added typeguard checks to fail early if arguments of wrong types are passed to functions

1.1.0 (2015-11-19)

	Decorated ContainerComponent.start with @asynchronous so that it can be called by a
blocking subclass implementation

	Added the stop_event_loop function to enable blocking callables to shut down Asphalt’s event
loop

1.0.0 (2015-10-18)

	Initial release

Acknowledgements

Many thanks to following people for the time spent helping with Asphalt’s development:

	Alice Bevan-McGregor (brainstorming and documentation QA)

	Guillaume “Cman” Brun (brainstorming)

	Darin Gordon (brainstorming and documentation QA)

	Antti Haapala (brainstorming)

	Olli Paloheimo (Asphalt logo design).

	Cody Scott (tutorials QA)

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 asphalt	

 	
 	
 asphalt.core.component	

 	
 	
 asphalt.core.context	

 	
 	
 asphalt.core.event	

 	
 	
 asphalt.core.runner	

 	
 	
 asphalt.core.util	

Index

 A
 | C
 | D
 | E
 | G
 | M
 | N
 | P
 | Q
 | R
 | S
 | U
 | W

A

 	
 	add_component() (asphalt.core.component.ContainerComponent method)

 	all() (asphalt.core.util.PluginContainer method)

 	asphalt.core.component (module)

 	
 	asphalt.core.context (module)

 	asphalt.core.event (module)

 	asphalt.core.runner (module)

 	asphalt.core.util (module)

C

 	
 	CLIApplicationComponent (class in asphalt.core.component)

 	Component (class in asphalt.core.component)

 	connect() (asphalt.core.event.Signal method)

 	
 	ContainerComponent (class in asphalt.core.component)

 	Context (class in asphalt.core.context)

 	ContextFinishEvent (class in asphalt.core.context)

 	create_object() (asphalt.core.util.PluginContainer method)

D

 	
 	disconnect() (asphalt.core.event.Signal method)

 	
 	dispatch() (asphalt.core.event.Signal method)

 	dispatch_event() (asphalt.core.event.Signal method)

E

 	
 	Event (class in asphalt.core.event)

 	
 	EventDispatchError

G

 	
 	get_resources() (asphalt.core.context.Context method)

M

 	
 	merge_config() (in module asphalt.core.util)

N

 	
 	names (asphalt.core.util.PluginContainer attribute)

P

 	
 	parent (asphalt.core.context.Context attribute)

 	PluginContainer (class in asphalt.core.util)

 	
 	publish_lazy_resource() (asphalt.core.context.Context method)

 	publish_resource() (asphalt.core.context.Context method)

Q

 	
 	qualified_name() (in module asphalt.core.util)

R

 	
 	remove_resource() (asphalt.core.context.Context method)

 	request_resource() (asphalt.core.context.Context method)

 	resolve() (asphalt.core.util.PluginContainer method)

 	resolve_reference() (in module asphalt.core.util)

 	Resource (class in asphalt.core.context)

 	
 	ResourceConflict

 	ResourceEvent (class in asphalt.core.context)

 	ResourceNotFound

 	run() (asphalt.core.component.CLIApplicationComponent method)

 	run_application() (in module asphalt.core.runner)

S

 	
 	Signal (class in asphalt.core.event)

 	start() (asphalt.core.component.Component method)

 	(asphalt.core.component.ContainerComponent method)

 	
 	stream_events() (asphalt.core.event.Signal method)

 	(in module asphalt.core.event)

U

 	
 	utc_timestamp (asphalt.core.event.Event attribute)

W

 	
 	wait_event() (asphalt.core.event.Signal method)

 	(in module asphalt.core.event)

asphalt.core.context

	
class asphalt.core.context.Resource(value, types, alias, context_attr, creator=None)

	Contains the resource value or its creator callable, plus some metadata.

	Variables:	
	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – alias of the resource

	types [https://docs.python.org/3/library/types.html#module-types] (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – type names the resource was registered with

	context_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – the context attribute of the resource

	creator (Callable[[Context], Any]) – callable to create the value (in case of a lazy resource)

	
class asphalt.core.context.ResourceEvent(source, topic, resource)

	Dispatched when a resource has been published to or removed from a context.

	Variables:	
	source (Context) – the relevant context

	resource [https://docs.python.org/3/library/resource.html#module-resource] (Resource) – the resource that was published or removed

	
exception asphalt.core.context.ResourceConflict

	Raised when a new resource that is being published conflicts with an existing resource or
context variable.

	
exception asphalt.core.context.ResourceNotFound(type, alias)

	Raised when a resource request cannot be fulfilled within the allotted time.

	
class asphalt.core.context.ContextFinishEvent(source, topic, exception)

	Dispatched when a context has served its purpose and is being torn down.

	Variables:	exception (Optional[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]) – the exception that caused the context to finish, if
any

	
class asphalt.core.context.Context(parent=None, *, default_timeout=5)

	Contexts give request handlers and callbacks access to resources.

Contexts are stacked in a way that accessing an attribute that is not present in the current
context causes the attribute to be looked up in the parent instance and so on, until the
attribute is found (or AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] is raised).

Requesting or publishing of resources MUST NOT be attempted during or after the dispatch
of the finished event.

	Parameters:	
	parent (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Context]) – the parent context, if any

	default_timeout (int [https://docs.python.org/3/library/functions.html#int]) – default timeout for request_resource() if omitted from the call
arguments

	Variables:	
	finished (Signal) – a signal (ContextFinishEvent) dispatched when the context has
served its purpose and is being discarded

	resource_published (Signal) – a signal (ResourceEvent) dispatched when a resource
has been published in this context

	resource_removed (Signal) – a signal (ResourceEvent): dispatched when a resource has
been removed from this context

	
get_resources(type=None, *, include_parents=True)

	Return the currently published resources specific to one type or all types.

	Parameters:	
	type (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type], None]) – type of the resources to return, or None to return all resources

	include_parents (bool [https://docs.python.org/3/library/functions.html#bool]) – include the resources from parent contexts

	Return type:	Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Resource]

	
parent

	Return the parent of this context or None if there is no parent context.

	Return type:	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Context]

	
publish_lazy_resource(creator, types, alias='default', context_attr=None)

	Publish a “lazy” or “contextual” resource and dispatch a resource_published event.

Instead of a concrete resource value, you supply a creator callable which is called with a
context object as its argument when the resource is being requested either via
request_resource() or by context attribute access.
The return value of the creator callable will be cached so the creator will only be called
once per context instance.

If the creator callable is a coroutine function or returns an awaitable, it is resolved
before storing the resource value and returning it to the requester. Note that this will
NOT work when a context attribute has been specified for the resource.

	Parameters:	
	creator (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Context], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – a callable taking a context instance as argument

	types (Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]]]) – type(s) to register the resource as

	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of this resource (unique among all its registered types)

	context_attr (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – name of the context attribute this resource will be accessible as

	Return type:	Resource

	Returns:	the resource handle

	Raises:	asphalt.core.context.ResourceConflict – if there is an existing resource creator for
the given types or context variable

	
publish_resource(value, alias='default', context_attr=None, *, types=())

	Publish a resource and dispatch a resource_published event.

	Parameters:	
	value – the actual resource value

	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of this resource (unique among all its registered types)

	context_attr (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – name of the context attribute this resource will be accessible as

	types (Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]]]) – type(s) to register the resource as (omit to use the type of value)

	Return type:	Resource

	Returns:	the resource handle

	Raises:	asphalt.core.context.ResourceConflict – if the resource conflicts with an existing
one in any way

	
remove_resource(resource)

	Remove the given resource from the collection and dispatch a resource_removed event.

	Parameters:	resource (Resource) – the resource to be removed

	Raises:	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – the given resource was not in the collection

	
coroutine request_resource(self, type, alias='default', *, timeout=None)

	Request a resource matching the given type and alias.

If no such resource was found, this method will wait timeout seconds for it to become
available. The timeout does not apply to resolving awaitables created by lazy resource
creators.

	Parameters:	
	type (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) – type of the requested resource

	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – alias of the requested resource

	timeout (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None]) – the timeout (in seconds; omit to use the context’s default timeout)

	Returns:	the value contained by the requested resource (NOT a Resource
instance)

	Raises:	asphalt.core.context.ResourceNotFound – if the requested resource does not become
available in the allotted time

asphalt.core.event

	
class asphalt.core.event.Event(source, topic)

	The base class for all events.

	Parameters:	
	source – the object where this event originated from

	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – the event topic

	Variables:	
	source – the object where this event was dispatched from

	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – the topic

	time [https://docs.python.org/3/library/time.html#module-time] (float [https://docs.python.org/3/library/functions.html#float]) – event creation time as seconds from the UNIX epoch

	monotime (float [https://docs.python.org/3/library/functions.html#float]) – event creation time, as returned by time.monotonic() [https://docs.python.org/3/library/time.html#time.monotonic]

	
utc_timestamp

	Return a timezone aware datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] corresponding to the time variable,
using the UTC timezone.

	Return type:	datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
exception asphalt.core.event.EventDispatchError(event, exceptions)

	Raised when one or more event listener callbacks raise an exception.

The tracebacks of all the exceptions are displayed in the exception message.

	Variables:	
	event (Event) – the event

	exceptions (Sequence[Tuple[Callable, Exception [https://docs.python.org/3/library/exceptions.html#Exception]]]) – a sequence containing tuples of (callback, exception) for each exception that
was raised by a listener callback

	
class asphalt.core.event.Signal(event_class, *, source=None, topic=None)

	Declaration of a signal that can be used to dispatch events.

This is a descriptor that returns itself on class level attribute access and a bound version of
itself on instance level access. Connecting listeners and dispatching events only works with
these bound instances.

Each signal must be assigned to a class attribute, but only once. Assigning the same Signal
instance to more than one attribute will raise a LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] on attribute access.

	Parameters:	event_class (type [https://docs.python.org/3/library/functions.html#type]) – an event class

	
connect(callback)

	Connect a callback to this signal.

Each callable can only be connected once. Duplicate registrations are ignored.

If you need to pass extra arguments to the callback, you can use functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial]
to wrap the callable.

	Parameters:	callback (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Event], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – a callable that will receive an event object as its only argument.

	Return type:	Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Event], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Returns:	the value of callback argument

	
disconnect(callback)

	Disconnects the given callback.

The callback will no longer receive events from this signal.

No action is taken if the callback is not on the list of listener callbacks.

	Parameters:	callback (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – the callable to remove

	Return type:	None [https://docs.python.org/3/library/constants.html#None]

	
dispatch(*args, return_future=False, **kwargs)

	Create and dispatch an event.

This method constructs an event object and then passes it to dispatch_event() for
the actual dispatching.

	Parameters:	
	args – positional arguments to the constructor of the associated event class.

	return_future (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return a Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] that completes when all the listener
callbacks have been processed. If any one of them raised an exception, the future will
have an EventDispatchError exception set in it which
contains all of the exceptions raised in the callbacks.

If set to False, then None will be returned, and any exceptions raised in
listener callbacks will be logged instead.

	Return type:	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Future]

	Returns:	a future or None, depending on the return_future argument

	
dispatch_event(event, *, return_future=False)

	Dispatch the given event to all listeners.

Creates a new task in which all listener callbacks are called with the given event as
the only argument. Coroutine callbacks are converted to their own respective tasks and
waited for concurrently.

	Parameters:	
	event (Event) – the event object to dispatch

	return_future (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return a Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] that completes when all the listener
callbacks have been processed. If any one of them raised an exception, the future will
have an EventDispatchError exception set in it which
contains all of the exceptions raised in the callbacks.

If set to False, then None will be returned, and any exceptions raised in
listener callbacks will be logged instead.

	Return type:	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Future]

	Returns:	a future or None, depending on the return_future argument

	
stream_events(max_queue_size=0)

	Shortcut for calling stream_events() with this signal as the argument.

	
wait_event()

	Shortcut for calling wait_event() with this signal as the argument.

	Return type:	coroutine

	
coroutine asphalt.core.event.wait_event(*signals)

	Return the first event dispatched from any of the given signals.

	Return type:	Event

	
asphalt.core.event.stream_events(*signals, max_queue_size=0)

	Generate event objects to the consumer as they’re dispatched.

This function is meant for use with async for.

	Parameters:	
	signals (Signal) – one or more signals to get events from

	max_queue_size (int [https://docs.python.org/3/library/functions.html#int]) – maximum size of the queue, after which it will start to drop events

asphalt.core.runner

	
asphalt.core.runner.run_application(component, *, event_loop_policy=None, max_threads=None, logging=20)

	Configure logging and start the given root component in the default asyncio event loop.

Assuming the root component was started successfully, the event loop will continue running
until the process is terminated.

	Initializes the logging system first based on the value of logging:

	
	If the value is a dictionary, it is passed to logging.config.dictConfig() [https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig] as
argument.

	If the value is an integer, it is passed to logging.basicConfig() [https://docs.python.org/3/library/logging.html#logging.basicConfig] as the logging
level.

	If the value is None, logging setup is skipped entirely.

By default, the logging system is initialized using basicConfig() [https://docs.python.org/3/library/logging.html#logging.basicConfig] using the
INFO logging level.

The default executor in the event loop is replaced with a new
ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor] where the maximum number of threads is set to
the value of max_threads or, if omitted, the default value of
ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor].

	Parameters:	
	component (Union [https://docs.python.org/3/library/typing.html#typing.Union][Component, Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – the root component (either a component instance or a configuration dictionary
where the special type key is either a component class or a module:varname
reference to one)

	event_loop_policy (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – entry point name (from the asphalt.core.event_loop_policies
namespace) of an alternate event loop policy (or a module:varname reference to one)

	max_threads (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – the maximum number of worker threads in the default thread pool executor
(the default value depends on the event loop implementation)

	logging (Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], int [https://docs.python.org/3/library/functions.html#int], None]) – a logging configuration dictionary, logging level [https://docs.python.org/3/library/logging.html#levels] or
None

asphalt.core.util

	
asphalt.core.util.resolve_reference(ref)

	Return the object pointed to by ref.

If ref is not a string or does not contain :, it is returned as is.

References must be in the form <modulename>:<varname> where <modulename> is the fully
qualified module name and varname is the path to the variable inside that module.

For example, “concurrent.futures:Future” would give you the
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] class.

	Raises:	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – if the reference could not be resolved

	
asphalt.core.util.qualified_name(obj)

	Return the qualified name (e.g. package.module.Type) for the given object.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
asphalt.core.util.merge_config(original, overrides)

	Return a copy of the original configuration dictionary, with overrides from overrides
applied.

This similar to what dict.update() [https://docs.python.org/3/library/stdtypes.html#dict.update] does, but when a dictionary is about to be
replaced with another dictionary, it instead merges the contents.

If a key in overrides is a dotted path (ie. foo.bar.baz: value), it is assumed to be a
shorthand for foo: {bar: {baz: value}}.

	Parameters:	
	original (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – a configuration dictionary

	overrides (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – a dictionary containing overriding values to the configuration

	Return type:	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Returns:	the merge result

	
class asphalt.core.util.PluginContainer(namespace, base_class=None)

	A convenience class for loading and instantiating plugins through the use of entry points.

	Parameters:	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – a setuptools entry points namespace

	base_class (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][type [https://docs.python.org/3/library/functions.html#type]]) – the base class for plugins of this type (or None if the entry points
don’t point to classes)

	
all()

	Load all entry points (if not already loaded) in this namespace and return the resulting
objects as a list.

	Return type:	List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
create_object(type, **constructor_kwargs)

	Instantiate a plugin.

The entry points in this namespace must point to subclasses of the base_class parameter
passed to this container.

	Parameters:	
	type (Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – an entry point identifier, a module:varname reference to a class, or an
actual class object

	constructor_kwargs – keyword arguments passed to the constructor of the plugin class

	Returns:	the plugin instance

	
names

	Return names of all entry points in this namespace.

	Return type:	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
resolve(obj)

	Resolve a reference to an entry point or a variable in a module.

If obj is a module:varname reference to an object, resolve_reference() is
used to resolve it. If it is a string of any other kind, the named entry point is loaded
from this container’s namespace. Otherwise, obj is returned as is.

	Parameters:	obj – an entry point identifier, an object reference or an arbitrary object

	Returns:	the loaded entry point, resolved object or the unchanged input value

	Raises:	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – if obj was a string but the named entry point was not found

asphalt.core.component

	
class asphalt.core.component.Component

	This is the base class for all Asphalt components.

	
coroutine start(self, ctx)

	Perform any necessary tasks to start the services provided by this component.

	Components typically use the context to:

	
	publish resources (publish_resource() and
publish_lazy_resource())

	request resources (request_resource())

It is advisable for Components to first publish all the resources they can before
requesting any. This will speed up the dependency resolution and prevent deadlocks.

	Parameters:	ctx (Context) – the containing context for this component

	
class asphalt.core.component.ContainerComponent(components=None)

	A component that can contain other components.

	Parameters:	components (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]]) – dictionary of component alias ⭢ component configuration dictionary

	Variables:	
	child_components (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Component]) – dictionary of component alias ⭢ Component instance (of child
components added with add_component())

	component_configs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – dictionary of component alias ⭢ externally provided component
configuration

	
add_component(alias, type=None, **config)

	Add a child component.

This will instantiate a component class, as specified by the type argument.

If the second argument is omitted, the value of alias is used as its value.

The locally given configuration can be overridden by component configuration parameters
supplied to the constructor (via the components argument).

When configuration values are provided both as keyword arguments to this method and
component configuration through the components constructor argument, the configurations
are merged together using merge_config() in a way that the
configuration values from the components argument override the keyword arguments to
this method.

	Parameters:	
	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – a name for the component instance, unique within this container

	type (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type], None]) – entry point name or Component subclass or a module:varname
reference to one

	config – keyword arguments passed to the component’s constructor

	
coroutine start(self, ctx)

	Create child components that have been configured but not yet created and then calls their
start() methods in separate tasks and waits until they have completed.

	
class asphalt.core.component.CLIApplicationComponent(components=None)

	Specialized subclass of ContainerComponent for command line tools.

Command line tools and similar applications should use this as their root component and
implement their main code in the run() method.

When all the subcomponents have been started, run() is started as a new task.
When the task is finished, the application will exit using the return value as its exit code.

If run() raises an exception, a stack trace is printed and the exit code will be set
to 1. If the returned exit code is out of range or of the wrong data type, it is set to 1 and a
warning is emitted.

	
coroutine run(self, ctx)

	Run the business logic of the command line tool.

Do not call this method yourself.

	Return type:	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]

	Returns:	the application’s exit code (0-127; None = 0)

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Table of contents

 		Tutorials

 		Tutorial 1: Getting your feet wet – a simple echo server and client

 		Prerequisites

 		Setting up the virtual environment

 		Creating the project structure

 		Creating the first component

 		Making the server listen for connections

 		Creating the client

 		Conclusion

 		Tutorial 2: Something a little more practical – a web page change detector

 		Setting up the project structure

 		Detecting changes in a web page

 		Computing the changes between old and new versions

 		Sending changes via email

 		Separating the change detection logic

 		Setting up the configuration file

 		Conclusion

 		User guide

 		Application architecture

 		Components

 		Container components

 		Context hierarchies

 		Resources

 		Lazy resources

 		Working with coroutines and threads

 		Examples

 		Using alternate thread pools

 		Events

 		Exception handling

 		Waiting for a single event

 		Receiving events iteratively

 		Testing Asphalt components

 		Example

 		Configuration and deployment

 		Running the Asphalt launcher

 		Writing a configuration file

 		Configuration overlays

 		Performance tuning

 		Version history

 		Acknowledgements

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

