
asphalt-wamp
Release 2.2.2

Mar 02, 2018





Contents

1 Configuration 3
1.1 Multiple clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 User guide 5
2.1 Calling remote procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Registering procedure handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Publishing messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Subscribing to topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Mapping WAMP exceptions to Python exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Using registries to structure your application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Implementing dynamic authentication and authorization 9

4 Version history 13

i



ii



asphalt-wamp, Release 2.2.2

This Asphalt framework component provides a WAMP (Web Application Message Protocol) client, implemented on
top of the autobahn library.

Contents 1

http://wamp-proto.org/
https://pypi.python.org/pypi/autobahn


asphalt-wamp, Release 2.2.2

2 Contents



CHAPTER 1

Configuration

WAMP, being a routed protocol, requires a router to connect to. If you do not have one already, the reference imple-
mentation, Crossbar, should work nicely. The recommended way of setting it up is with Docker, though setting up a
dedicated virtualenv for it would also do the trick.

Most WAMP clients need very little configuration. You usually have to set the realm name, host name (if not running
on localhost) and port (if not running on port 8080) and TLS, if connecting to a remote instance securely.

Suppose you’re connecting to realm myrealm on crossbar.example.org, port 8181 using TLS, your configu-
ration would look like this:

components:
wamp:

realm: myrealmname
host: crossbar.example.org
port: 8181
tls: true

Your wamp client resource (default) would then be accessible on the context as ctx.wamp.

1.1 Multiple clients

You can also configure multiple WAMP clients if necessary. For that, you will need to have a structure along the lines
of:

components:
wamp:

tls: true
clients:

wamp1:
realm: myrealmname
host: crossbar.example.org
port: 8181

(continues on next page)

3

http://crossbar.io/
https://docs.docker.com/engine/installation/
http://python-guide-pt-br.readthedocs.io/en/latest/dev/virtualenvs/


asphalt-wamp, Release 2.2.2

(continued from previous page)

wamp2:
realm: otherrealm
host: crossbar.company.com

In this example, two client resources (wamp1 / ctx.wamp1 and wamp2 / ctx.wamp2) are created. The first
one is like the one in the previous example. The second connects to the realm named otherrealm on crossbar.
company.com on the default port using TLS. Setting tls: true (or any other option) on the same level as
clients means it’s the default value for all clients.

For a comprehensive list of all client options, see the documentation of the the WAMPClient class.

4 Chapter 1. Configuration



CHAPTER 2

User guide

The following sections explain how to use the most common functions of a WAMP client. The more advanced options
have been documented in the API reference.

For practical examples, see the examples directory.

2.1 Calling remote procedures

To call a remote procedure, use the call() method:

result = await ctx.wamp.call('procedurename', arg1, arg2, arg3='foo')

To receive progressive results from the call, you can give a callback as the on_progress option:

def progress(status):
print('operation status: {}'.format(status))

result = await ctx.wamp.call('procedurename', arg1, arg2, arg3='foo',
options=dict(on_progress=progress))

To set a time limit for how long to wait for the call to complete, use the timeout option:

# Wait 10 seconds until giving up
result = await ctx.wamp.call('procedurename', arg1, arg2, arg3='foo',
→˓options=dict(timeout=10))

Note: This will not stop the remote handler from finishing; it will just make the client stop waiting and discard the
results of the call.

5

https://github.com/asphalt-framework/asphalt-wamp/tree/2.2.2/examples


asphalt-wamp, Release 2.2.2

2.2 Registering procedure handlers

To register a procedure on the router, create a callable that takes a CallContext as the first argument and use the
call() method to register it:

async def procedure_handler(ctx: CallContext, *args, **kwargs):
...

await ctx.wamp.register(procedure_handler, 'my_remote_procedure')

The handler can be either an asynchronous function or a regular function, but the latter will obviously have fewer use
cases due to the lack of await.

To send progressive results, you can call the progress callback on the CallContext object. For this to work, the
caller must have used the on_progress option when making the call. Otherwise progress will be None.

For example:

async def procedure_handler(ctx: CallContext, *args, **kwargs):
for i in range(1, 11):

await asyncio.sleep(1)
if ctx.progress:

ctx.progress('{}% complete'.format(i * 10))

return 'Done'

await ctx.wamp.register(procedure_handler, 'my_remote_procedure')

2.3 Publishing messages

To publish a message on the router, call publish() with the topic as the first argument and then add any positional
and keyword arguments you want to include in the message:

await ctx.wamp.publish('some_topic', 'hello', 'world', another='argument')

By default, publications are not acknowledged by the router. This means that a published message could be silently
discarded if, for example, the publisher does not have proper permissions to publish it. To avoid this, use the
acknowledge option:

await ctx.wamp.publish('some_topic', 'hello', 'world', another='argument',
options=dict(acknowledge=True))

2.4 Subscribing to topics

You can use the subscribe() method to receive published messages from the router:

async def subscriber(ctx: EventContext, *args, **kwargs):
print('new message: args={}, kwargs={}'.format(args, kwargs))

await ctx.wamp.subscribe(subscriber, 'some_topic')

Just like procedure handlers, subscription handlers can be either an asynchronous or regular functions.

6 Chapter 2. User guide



asphalt-wamp, Release 2.2.2

2.5 Mapping WAMP exceptions to Python exceptions

Exceptions transmitted over WAMP are identified by a specific URI. WAMP errors can be mapped to Python excep-
tions by linking a specific URI to a specific exception class by means of either exception(), map_exception()
or map_exception().

When you map an exception, you can raise it in your procedure or subscription handlers and it will be automatically
translated using the given error URI so that the recipients will be able to properly map it on their end as well. Likewise,
when a matching error is received from the router, the appropriate exception class is instantiated and raised in the
calling code.

Any unmapped exceptions manifest themselves as ApplicationError exceptions.

2.6 Using registries to structure your application

While it may at first seem convenient to register every procedure and subscription handler using register() and
subscribe(), it does not scale very well when your handlers are distributed over several packages and modules.

The WAMPRegistry class provides an alternative to this. Each registry object stores registered procedure handlers,
subscription handlers and mapped exceptions, and can apply defaults on each of these. Each registry can have a
separate namespace prefix so you don’t have to repeat it in every single procedure name, topic or mapped error.

Suppose you want to register two procedures and one subscriber, all under the foo prefix and you want to apply the
invoke='roundrobin' setting to all procedures:

from asphalt.wamp import WAMPRegistry

registry = WAMPRegistry('foo', procedure_defaults={'invoke': 'roundrobin'})

@registry.procedure
def multiply(ctx, factor1, factor2):

return factor1 * factor2

@registry.procedure
def divide(ctx, numerator, denominator):

return numerator / denominator

@registry.subscriber
def message_received(ctx, message):

print('new message: %s' % message)

To use the registry, pass it to the WAMP component as an option:

class ApplicationComponent(ContainerComponent):
async def start(ctx):

ctx.add_component('wamp', registry=registry)
await super.start(ctx)

This will register the foo.multiply, foo.divide procedures and a subscriptions for the foo.
message_received topic.

Say your procedures and/or subscribers are spread over several modules and you want a different namespace for
every module, you could have a separate registry in every module and then combine them into a single registry using

2.5. Mapping WAMP exceptions to Python exceptions 7

http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.exception.ApplicationError


asphalt-wamp, Release 2.2.2

add_from():

from asphalt.wamp import WAMPRegistry

from myapp.services import accounting, deliveries, production # these are modules

registry = WAMPRegistry()
registry.add_from(accounting.registry, 'accounting')
registry.add_from(deliveries.registry, 'deliveries')
registry.add_from(production.registry, 'production')

You can set the prefix either in the call to add_from() or when creating the registry of each subsection. Note that if
you do both, you end up with two prefixes!

8 Chapter 2. User guide



CHAPTER 3

Implementing dynamic authentication and authorization

While static configuration of users and permissions may work for trivial applications, you will probably find yourself
wanting for more flexibility for both authentication and authorization as your application grows larger. Crossbar, the
reference WAMP router implementation, supports dynamic authentication and dynamic authorization. That means that
instead of a preconfigured list of users or permissions, the router itself will call named remote procedures to determine
whether the credentials are valid (authentication) or whether a session has permission to register/call a procedure or
subscribe/publish to a topic (authorization).

The catch-22 in this is that the WAMP client that provides these procedures has to have permission to register these
procedures. This chicken and egg problem can be solved by providing a trusted backdoor for this particular client. In
the example below, the client providing the authenticator and authorizer services connects via port 8081 which will
be only made accessible for that particular client. Unlike the other two configured roles, the server role has a static
authorization configuration, which is required for this to work.

version: 2
workers:
- type: router

realms:
- name: myrealm
roles:
- name: regular

authorizer: authorize
- name: admin

authorizer: authorize
- name: server

permissions:
- uri: "*"
allow: {call: true, publish: true, register: true, subscribe: true}

transports:
- type: websocket
endpoint:

type: tcp
port: 8080

auth:
ticket:

(continues on next page)

9

http://crossbar.io/


asphalt-wamp, Release 2.2.2

(continued from previous page)

type: dynamic
authenticator: authenticate

- type: websocket
endpoint:

type: tcp
port: 8081

auth:
anonymous:

type: static
role: server

The client performing the server role will then register the authenticate() and authorize() procedures
on the router:

from typing import Dict

from asphalt.core import ContainerComponent
from asphalt.wamp import CallContext, WAMPRegistry
from autobahn.wamp.exception import ApplicationError

registry = WAMPRegistry()
users = {

'joe_average': ('1234', 'regular'),
'bofh': ('B3yt&4_+', 'admin')

}

@registry.procedure
def authenticate(ctx: CallContext, realm: str, auth_id: str, details: Dict[str, Any]):

# Don't do this in real apps! This is a security hazard!
# Instead, use a password hashing algorithm like argon2, scrypt or bcrypt
user = users.get(authid)
if user:

# This applies for "ticket" authentication as configured above
password, role = user
if password == details['ticket']:

return {'authrole': role}

raise ApplicationError(ApplicationError.AUTHENTICATION_FAILED, 'Authentication
→˓failed')

@registry.procedure
def authorize(ctx: CallContext, session: Dict[str, Any], uri: str, action: str):

# Cache any positive answers
if session['authrole'] == 'regular':

# Allow regular users to call and subscribe to public.*
if action in ('call', 'subscribe') and uri.startswith('public.'):

return {'allow': True, 'cache': True}
elif session['authrole'] == 'admin':

# Allow admins to call, subscribe and publish anything anywhere
# (but not register procedures)
if action in ('call', 'subscribe', 'publish'):

return {'allow': True, 'cache': True}

return {'allow': False}
(continues on next page)

10 Chapter 3. Implementing dynamic authentication and authorization



asphalt-wamp, Release 2.2.2

(continued from previous page)

class ServerComponent(ContainerComponent):
async def start(ctx):

ctx.add_component('wamp', registry=registry)
await super().start(ctx)

For more information, see the Crossbar documentation:

• Dynamic authentication

• Dynamic authorization

Warning: At the time of this writing (2017-04-29), caching of authorizer responses has not been implemented in
Crossbar. This documentation assumes that it will be present in a future release.

11

http://crossbar.io/docs/Dynamic-Authenticators/
http://crossbar.io/docs/Authorization/#dynamic-authorization


asphalt-wamp, Release 2.2.2

12 Chapter 3. Implementing dynamic authentication and authorization



CHAPTER 4

Version history

This library adheres to Semantic Versioning.

2.2.2 (2018-03-02)

• Fixed error in Client.stop() when the session is already None

2.2.1 (2018-02-22)

• Fixed mapped custom exceptions being reported via asphalt-exceptions

2.2.0 (2018-02-15)

• Added integration with asphalt-exceptions

• Raised connection logging level to INFO

• Added a configurable shutdown timeout

• Renamed WAMPClient.close() to WAMPClient.stop()

• Improved the reliability of the connection/session teardown process

2.1.0 (2017-09-21)

• Added the protocol_options option to WAMPClient

• Added the connection_timeout option to WAMPClient

2.0.1 (2017-06-07)

• Fixed failure to register option-less procedures and subscriptions added from a registry

2.0.0 (2017-06-07)

• BACKWARD INCOMPATIBLE Upgraded minimum Autobahn version to v17.5.1

• BACKWARD INCOMPATIBLE Changed the default value of the path option on WAMPClient to /ws to
match the default Crossbar configuration

• BACKWARD INCOMPATIBLE Changed subscriptions to use the details keyword argument to accept
subscription details (since details_arg is now deprecated in Autobahn)

13

http://semver.org/


asphalt-wamp, Release 2.2.2

• BACKWARD INCOMPATIBLE Replaced SessionJoinEvent.session_id with the details at-
tribute which directly exposes all session details provided by Autobahn

• BACKWARD INCOMPATIBLE Changed the way registration/subscription/call/publish options are passed.
Keyword arguments were replaced with a single options keyword-only argument.

• BACKWARD INCOMPATIBLE Registry-based subscriptions and exception mappings now inherit the parent
prefixes, just like procedures did previously

• Added compatibility with Asphalt 4.0

• Added the WAMPClient.details property which returns the session details when joined to one

• Fixed error during WAMPClient.close() if a connection attempt was in progress

• Fixed minor documentation errors

1.0.0 (2017-04-29)

• Initial release

• API reference

14 Chapter 4. Version history


	Configuration
	Multiple clients

	User guide
	Calling remote procedures
	Registering procedure handlers
	Publishing messages
	Subscribing to topics
	Mapping WAMP exceptions to Python exceptions
	Using registries to structure your application

	Implementing dynamic authentication and authorization
	Version history

