
asm-simulator Documentation
Release 1.3.0

Pablo Parra

Oct 11, 2022

User documentation

1 Numbering formats 3

2 Instruction Set 5
2.1 Operand types . 5
2.2 Instructions description . 6

3 Directives 21
3.1 DB: Define Byte . 21
3.2 DW: Define Word . 21
3.3 ORG: Advance Program Counter . 22
3.4 EQU: Define symbolic name . 22

i

ii

asm-simulator Documentation, Release 1.3.0

A web-based simulator of a 16-bit CPU. This project has been developed for educational purposes to support the
teaching of the Operating Systems course of the Degree in Computer Engineering of the University of Alcalá.

The simulator has the following features:

• A 16-bit big-endian CPU.

• Two modes of operation: supervisor & user. Each mode of operation has its own SP register.

• 4 general purpose registers, which can be accessed in word or byte modes.

• 1024 bytes of memory.

• A Memory Protection Unit (MPU).

• 16-bit input/output address map which can be accessed using IN/OUT instructions.

• An interrupt controller that supports up to 16 interrupt sources.

• A programmable 16-bit timer.

• Three input/output devices: * Visual display with a resolution of 16x16. * Textual display of 16 characters. *
10-keys numeric keypad.

• Inline memory editing.

• Execution breakpoints.

User documentation 1

https://www.uah.es/en/estudios/estudios-oficiales/grados/asignatura/Operating-System-780007
https://www.uah.es/en/estudios/estudios-oficiales/Degree-in-Computer-Engineering
https://www.uah.es/en

asm-simulator Documentation, Release 1.3.0

2 User documentation

CHAPTER 1

Numbering formats

The assembler supports the following numbering formats:

• Decimal: 10, 2939d, etc.

• Octal: 0o237, 0o2332, etc.

• Binary: 0000000010001000b, 1111111101010101b, etc.

• Hexadecimal: 0x1000, 0x3FF, etc.

3

asm-simulator Documentation, Release 1.3.0

4 Chapter 1. Numbering formats

CHAPTER 2

Instruction Set

This section covers the complete set of instructions that are included in the simulator. Each instruction is identified
by an opcode (operation code), a mnemonic and the type of its parameters. An instruction can have zero, one or
two parameters. Two or more instructions of the same type can have the same mnemonic (e.g. MOV) but differ in
their operation code, depending on the type of the operands that are involved. Thus, an instruction is always coded in
memory as follows:

opcode Operand 1 Operand 2
mandatory optional optional

The size of the operation code is always of 8 bits, while the size of the operands can be 8 or 16 bits, depending on
their type.

2.1 Operand types

The type of operands or addressing modes supported by the simulator are the following. The table includes the code
name of the operand type and the size of the instruction operand in memory.

Operand type Description Size
BYTE 8-bits immediate value 8 bits
WORD 16-bits immediate value 16 bits
ADDRESS 16-bits address 16 bits
REGISTER_8BITS 8-bits register 8 bits
REGISTER_16BITS 16-bits register 8 bits
REGADDRESS Register addressing + offset 16 bits

The semantics of the operand types are the following:

• 8-bits immediate value: an operand of this type will define an unsigned 8-bits wide integer value.

• 16-bits immediate value: An operand of this type will define an unsigned 16-bits wide integer value.

5

asm-simulator Documentation, Release 1.3.0

• 16-bits address: an operand of this type will define an 16-bits memory address.

• 8-bits register: this operand will codify the reference number or index of one of the 8-bits registers that are
implemented by the CPU. All the index values are expressed in decimal format:

Register Name Description Index
AH MSB of Register A 9
AL LSB of Register A 10
BH MSB of Register B 11
BL LSB of Register B 12
CH MSB of Register C 13
CL LSB of Register C 14
DH MSB of Register D 15
DL LSB of Register D 16

• 16-bits register: this operand will codify the reference number or index of one of the 16-bits registers that are
implemented by the CPU. All the index values are expressed in decimal format:

Register Name Description Index
A General Purpose Register A 0
B General Purpose Register B 1
C General Purpose Register C 2
D General Purpose Register D 3
SP Stack Pointer Register SP 4

• Register addressing + offset: this operand will codify on 1 byte the reference number of one of the 16-bits
registers and, on the another byte the offset added to the value stored on the given register. The offset is codified
using two’s complement [-128, 127].

2.2 Instructions description

The assembler simulator supports the following instructions:

• ADD: 16-bits addition

• ADDB: 8-bits addition

• AND: 16-bits bitwise AND

• ANDB: 8-bits bitwise AND

• CALL: call to subroutine

• CLI: clear interrupt mask

• CMP: 16-bits integer comparison

• CMPB: 8-bits integer comparison

• DEC: decrement 16-bits register

• DECB: decrement 8-bits register

• DIV: 16-bits division

• DIVB: 8-bits division

• HLT: halt processor

6 Chapter 2. Instruction Set

asm-simulator Documentation, Release 1.3.0

• IN: read input/output register

• INC: increment 16-bits register

• INCB: increment 8-bits register

• IRET: return from ISR

• JA: jump if above

• JAE: jump if above or equal

• JB: jump if below

• JBE: jump if below or equal

• JC: jump if carry set

• JE: jump if equal

• JMP: jump to address

• JNA: jump if not above

• JNAE: jump if not above or equal

• JNB: jump if not below

• JNBE: jump if not below or equal

• JNC: jump if not carry set

• JNE: jump if not equal

• JNZ: jump if not zero

• JZ: jump if zero

• MOV: 16-bits copy

• MOVB: 8-bits copy

• MUL: 16-bits multiplication

• MULB: 8-bits multiplication

• NOT: 16-bits bitwise NOT

• NOTB: 8-bits bitwise NOT

• OR: 16-bits bitwise OR

• ORB: 8-bits bitwise OR

• OUT: write input/output register

• POP: pop 16-bits from stack

• POPB: pop 8-bits from stack

• PUSH: push 16-bits to stack

• PUSHB: push 8-bits to stack

• RET: return from subroutine

• SHL: 16-bits logical left shift

• SHLB: 8-bits logical left shift

• SHR: 16-bits logical right shift

2.2. Instructions description 7

asm-simulator Documentation, Release 1.3.0

• SHRB: 8-bits logical right shift

• SRET: return from system call

• STI: set interrupt mask

• SUB: 16-bits substraction

• SUBB: 8-bits substraction

• SVC: system call

• XOR: 16-bits bitwise XOR

• XORB: 8-bits bitwise XOR

2.2.1 ADD: 16-bits addition

Performs an addition of two 16-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to a 16-bits register. The integer contained by the register will be added to the value referenced
by Operand 2. The result will be stored in the register referenced by Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
17 (0x11) REGISTER_16BITS REGISTER_16BITS ADD A, B
18 (0x12) REGISTER_16BITS REGADDRESS ADD C, [A-100]
19 (0x13) REGISTER_16BITS ADDRESS ADD D, [0x1000]
20 (0x14) REGISTER_16BITS WORD ADD B, 12345

2.2.2 ADDB: 8-bits addition

Performs an addition of two 8-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to an 8-bits register. The integer contained by the register will be added to the value referenced
by Operand 2. The result will be stored in the register referenced by Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
21 (0x15) REGISTER_8BITS REGISTER_8BITS ADDB AH, BH
22 (0x16) REGISTER_8BITS REGADDRESS ADDB CL, [A-100]
23 (0x17) REGISTER_8BITS ADDRESS ADDB DH, [0x100]
24 (0x18) REGISTER_8BITS BYTE ADDB BL, 128

2.2.3 AND: 16-bits bitwise AND

Performs a bitwise AND of two 16-bits integers. Every form of the instruction will have two operands. Operand 1
will always be a reference to a 16-bits register. A logic AND will be performed between the contents of the register
and the value referenced by Operand 2. The result will be stored in the register referenced by Operand 1.

8 Chapter 2. Instruction Set

https://en.wikipedia.org/wiki/Bitwise_operation#AND

asm-simulator Documentation, Release 1.3.0

Opcode Operand 1 Operand 2 Example
88 (0x58) REGISTER_16BITS REGISTER_16BITS AND A, B
89 (0x59) REGISTER_16BITS REGADDRESS AND C, [A-100]
90 (0x5A) REGISTER_16BITS ADDRESS AND D, [0x1000]
91 (0x5B) REGISTER_16BITS WORD AND B, 0x00FF

2.2.4 ANDB: 8-bits bitwise AND

Performs a bitwise AND of two 8-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to an 8-bits register. A logic AND will be performed between the contents of the register and
the value referenced by Operand 2. The result will be stored in the register referenced by Operand 1.

Opcode Operand 1 Operand 2 Example
92 (0x5C) REGISTER_8BITS REGISTER_8BITS ANDB AH, BL
93 (0x5D) REGISTER_8BITS REGADDRESS ANDB CL, [A+30]
94 (0x5E) REGISTER_8BITS ADDRESS ANDB DH, [0x30]
95 (0x5F) REGISTER_8BITS WORD ANDB BL, 0x0F

2.2.5 CALL: call to subroutine

Jumps to a subroutine that starts at the address referenced by Operand 1. The instruction will push to the stack the
return address, i.e. the address of the instruction that follows the call.

Opcode Operand 1 Operand 2 Example
69 (0x45) REGADDRESS NONE CALL [B-20]
70 (0x46) WORD NONE CALL 0x1000

2.2.6 CLI: clear interrupt mask

Clears the Interrupt Mask Bit of the Status Register. When the register is cleared, the CPU interrupts are masked and,
thus, disabled. The instruction has no operands. This is a priviledged instruction that can only be called when in
Supervisor mode.

Opcode Operand 1 Operand 2 Example
130 (0x82) NONE NONE CLI

2.2.7 CMP: 16-bits integer comparison

Compares two 16-bits integers. Every form of the instruction will have two operands. Operand 1 will always be a
reference to a 16-bits register. The comparison will be done by substracting the value referenced by the second operand
to the value contained by the register referenced by Operand 1. The result of the substraction will not be stored, but
the carry (C) and zero (Z) flags of the Status Register will be modified as follows:

• Operand 1 == Operand 2 => C = 0, Z = 1

• Operand 1 > Operand 2 => C = 0, Z = 0

• Operand 1 < Operand 2 => C = 1, Z = 0

2.2. Instructions description 9

https://en.wikipedia.org/wiki/Bitwise_operation#AND

asm-simulator Documentation, Release 1.3.0

Opcode Operand 1 Operand 2 Example
37 (0x25) REGISTER_16BITS REGISTER_16BITS CMP A, B
38 (0x26) REGISTER_16BITS REGADDRESS CMP C, [A-100]
39 (0x27) REGISTER_16BITS ADDRESS CMP D, [0x1000]
40 (0x28) REGISTER_16BITS WORD CMP B, 12345

2.2.8 CMPB: 8-bits integer comparison

Compares two 8-bits integers. Every form of the instruction will have two operands. Operand 1 will always be
a reference to an 8-bits register. The comparison will be done by substracting the value referenced by the second
operand to the value contained by the register referenced by Operand 1. The result of the substraction will not be
stored, but the carry (C) and zero (Z) flags of the Status Register will be modified as follows:

• Operand 1 == Operand 2 => C = 0, Z = 1

• Operand 1 > Operand 2 => C = 0, Z = 0

• Operand 1 < Operand 2 => C = 1, Z = 0

Opcode Operand 1 Operand 2 Example
41 (0x29) REGISTER_8BITS REGISTER_8BITS CMPB CH, CL
42 (0x2A) REGISTER_8BITS REGADDRESS CMPB DL, [A-2]
43 (0x2B) REGISTER_8BITS ADDRESS CMPB BH, [0x20]
44 (0x2C) REGISTER_8BITS BYTE CMPB CH, 0x4

2.2.9 DEC: decrement 16-bits register

Decrements the value of a 16-bits register by 1 unit. The result will be stored in the same register. The operation will
modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
35 (0x23) REGISTER_16BITS NONE DEC B

2.2.10 DECB: decrement 8-bits register

Decrements the value of an 8-bits register by 1 unit. The result will be stored in the same register. The operation will
modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
36 (0x24) REGISTER_16BITS NONE DECB BL

2.2.11 DIV: 16-bits division

Divides the value stored in Register A by the 16-bits value referred to by Operand 1. The result will be stored into
Register A. The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register. If the
instruction executes a divison-by-zero, an exception will be triggered.

10 Chapter 2. Instruction Set

asm-simulator Documentation, Release 1.3.0

Opcode Operand 1 Operand 2 Example
80 (0x50) REGISTER_16BITS NONE DIV B
81 (0x51) REGADDRESS NONE DIV [A+100]
82 (0x52) ADDRESS NONE DIV [0x1000]
83 (0x53) WORD NONE DIV 0x2

2.2.12 DIVB: 8-bits division

Divides the value stored in Register AL by the 8-bits value referred to by Operand 1. The result will be stored into
Register AL. The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register. If the
instruction executes a divison-by-zero, an exception will be triggered.

Opcode Operand 1 Operand 2 Example
84 (0x54) REGISTER_8BITS NONE DIVB BL
85 (0x55) REGADDRESS NONE DIVB [A+100]
86 (0x56) ADDRESS NONE DIVB [0x100]
87 (0x57) BYTE NONE DIVB 0x2

2.2.13 HLT: halt processor

Sets the CPU in halt mode. The halt (H) flag of the Status Register will be set and the processor will be stopped from
executing further instructions. Interrupts can occur if they are properly enabled. If an interrupt occurs, the CPU will
abandon halt mode (halt flag will be cleared) and the execution will resume from the instruction service routine.

Opcode Operand 1 Operand 2 Example
0 (0x0) NONE NONE HLT

2.2.14 IN: read input/output register

Reads the value of an input/output register. The address of the register to be read is obtained from the value of Operand
1. The result will be stored into Register A. This is a priviledged instruction that can only be called when in Supervisor
mode.

Opcode Operand 1 Operand 2 Example
135 (0x87) REGISTER_16BITS NONE IN B
136 (0x88) REGADDRESS NONE IN [A+100]
137 (0x89) ADDRESS NONE IN [0x1000]
138 (0x8A) WORD NONE IN 0x2

2.2.15 INC: increment 16-bits register

Increments the value of a 16-bits register by 1 unit. The result will be stored in the same register. The operation will
modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
33 (0x21) REGISTER_16BITS NONE INC C

2.2. Instructions description 11

asm-simulator Documentation, Release 1.3.0

2.2.16 INCB: increment 8-bits register

Increments the value of an 8-bits register by 1 unit. The result will be stored in the same register. The operation will
modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
34 (0x22) REGISTER_16BITS NONE INCB DL

2.2.17 IRET: return from ISR

Returns from an Interrupt Service Routiner (ISR). The execution of this instruction will recover the Instruction Pointer
(IP), the Stack Pointer (SP) and the Status Register stored in the stack and jump to the IP address.

Opcode Operand 1 Operand 2 Example
132 (0x84) NONE NONE IRET

2.2.18 JA: jump if above

Jumps to a given address if the carry (C) and zero (Z) flags of the Status Register are zero (see CMP: 16-bits integer
comparison). If the condition is met, the CPU will resume its execution from the address referenced by Operand 1.
Otherwise, it will continue with the next instruction. The instruction has one mnemonic alias: JNBE.

Opcode Operand 1 Operand 2 Example
55 (0x37) REGADDRESS NONE JA [C+20]
56 (0x38) WORD NONE JA 0x1000

2.2.19 JAE: jump if above or equal

See JNC: jump if not carry set.

2.2.20 JB: jump if below

See JC: jump if carry set.

2.2.21 JBE: jump if below or equal

See JNA: jump if not above.

2.2.22 JC: jump if carry set

Jumps to a given address if the carry (C) flag of the Status Register is set (see CMP: 16-bits integer comparison). If
the condition is met, the CPU will resume its execution from the address referenced by Operand 1. Otherwise, it will
continue with the next instruction. The instruction has two mnemonic aliases: JBE and JNAE.

Opcode Operand 1 Operand 2 Example
47 (0x2F) REGADDRESS NONE JC [C+50]
48 (0x30) WORD NONE JC 0x2000

12 Chapter 2. Instruction Set

asm-simulator Documentation, Release 1.3.0

2.2.23 JE: jump if equal

See JZ: jump if zero.

2.2.24 JMP: jump to address

Inconditionally jumps to a given address. The CPU will resume its execution from the address referenced by Operand
1.

Opcode Operand 1 Operand 2 Example
45 (0x2D) REGADDRESS NONE JMP [A+24]
46 (0x2E) WORD NONE JMP 0x1200

2.2.25 JNA: jump if not above

Jumps to a given address if the carry (C) or zero (Z) flags of the Status Register are set (see CMP: 16-bits integer
comparison). If the condition is met, the CPU will resume its execution from the address referenced by Operand 1.
Otherwise, it will continue with the next instruction. The instruction has one mnemonic alias: JBE.

Opcode Operand 1 Operand 2 Example
57 (0x39) REGADDRESS NONE JNA [C+20]
58 (0x3A) WORD NONE JNA 0x1000

2.2.26 JNAE: jump if not above or equal

See JC: jump if carry set.

2.2.27 JNB: jump if not below

See JNC: jump if not carry set.

2.2.28 JNBE: jump if not below or equal

See JNBE: jump if not below or equal.

2.2.29 JNC: jump if not carry set

Jumps to a given address if the carry (C) flag of the Status Register is zero (see CMP: 16-bits integer comparison). If
the condition is met, the CPU will resume its execution from the address referenced by Operand 1. Otherwise, it will
continue with the next instruction. The instruction has two mnemonic aliases: JNB and JAE.

Opcode Operand 1 Operand 2 Example
49 (0x31) REGADDRESS NONE JNC [C+2]
50 (0x32) WORD NONE JNC 0x4000

2.2. Instructions description 13

asm-simulator Documentation, Release 1.3.0

2.2.30 JNE: jump if not equal

See JNZ: jump if not zero.

2.2.31 JNZ: jump if not zero

Jumps to a given address if the zero (Z) flag of the Status Register is set (see CMP: 16-bits integer comparison). If
the condition is met, the CPU will resume its execution from the address referenced by Operand 1. Otherwise, it will
continue with the next instruction. The instruction has one mnemonic alias: JNE.

Opcode Operand 1 Operand 2 Example
53 (0x35) REGADDRESS NONE JNZ [A+2]
54 (0x36) WORD NONE JNZ 0x1000

2.2.32 JZ: jump if zero

Jumps to a given address if the zero (Z) flag of the Status Register is zero (see CMP: 16-bits integer comparison). If
the condition is met, the CPU will resume its execution from the address referenced by Operand 1. Otherwise, it will
continue with the next instruction. The instruction has one mnemonic alias: JE.

Opcode Operand 1 Operand 2 Example
51 (0x33) REGADDRESS NONE JZ [A+20]
52 (0x34) WORD NONE JZ 0x1000

2.2.33 MOV: 16-bits copy

Copies a 16-bits value, referenced by Operand 2, to the location referred to by Operand 1.

Opcode Operand 1 Operand 2 Example
1 (0x01) REGISTER_16BITS REGISTER_16BITS MOV A, B
2 (0x02) REGISTER_16BITS REGADDRESS MOV C, [A-100]
3 (0x03) REGISTER_16BITS ADDRESS MOV D, [0x1000]
4 (0x04) REGADDRESS REGISTER_16BITS MOV [B-2], A
5 (0x05) ADDRESS REGISTER_16BITS MOV [0x100], D
6 (0x06) REGISTER_16BITS WORD MOV A, 0x100
7 (0x07) REGADDRESS WORD MOV [D-4], B
8 (0x08) ADDRESS WORD MOV [0x200], C

2.2.34 MOVB: 8-bits copy

Copies an 8-bits value, referenced by Operand 2, to the location referred to by Operand 1.

14 Chapter 2. Instruction Set

asm-simulator Documentation, Release 1.3.0

Opcode Operand 1 Operand 2 Example
9 (0x09) REGISTER_8BITS REGISTER_8BITS MOVB AH, BL
10 (0x0A) REGISTER_8BITS REGADDRESS MOVB BL, [A-100]
11 (0x0B) REGISTER_8BITS ADDRESS MOVB DH, [0x1000]
12 (0x0C) REGADDRESS REGISTER_8BITS MOVB [B-2], AH
13 (0x0D) ADDRESS REGISTER_8BITS MOVB [0x100], CL
14 (0x0E) REGISTER_8BITS BYTE MOVB AL, 0x80
15 (0x0F) REGADDRESS BYTE MOVB [D-4], AL
16 (0x10) ADDRESS BYTE MOVB [0x200], CH

2.2.35 MUL: 16-bits multiplication

Multiplies the value stored in Register A by the 16-bits value referred to by Operand 1. The result will be stored into
Register A. The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
72 (0x48) REGISTER_16BITS NONE MUL A
73 (0x49) REGADDRESS NONE MUL [A+100]
74 (0x4A) ADDRESS NONE MUL [0x2000]
75 (0x4B) WORD NONE MUL 0x4

2.2.36 MULB: 8-bits multiplication

Multiplies the value stored in Register AL by the 8-bits value referred to by Operand 1. The result will be stored into
Register AL. The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
76 (0x4C) REGISTER_8BITS NONE MULB CL
77 (0x4D) REGADDRESS NONE MULB [A+100]
78 (0x4E) ADDRESS NONE MULB [0x400]
79 (0x4F) BYTE NONE MULB 0x8

2.2.37 NOT: 16-bits bitwise NOT

Performs a bitwise NOT on the bits of a 16-bits register, referenced by Operand 1. The result of the operation will be
stored in the same register.

Opcode Operand 1 Operand 2 Example
112 (0x70) REGISTER_16BITS NONE NOT A

2.2.38 NOTB: 8-bits bitwise NOT

Performs a bitwise NOT on the bits of an 8-bits register, referenced by Operand 1. The result of the operation will be
stored in the same register.

Opcode Operand 1 Operand 2 Example
113 (0x71) REGISTER_8BITS NONE NOTB AL

2.2. Instructions description 15

https://en.wikipedia.org/wiki/Bitwise_operation#NOT
https://en.wikipedia.org/wiki/Bitwise_operation#NOT

asm-simulator Documentation, Release 1.3.0

2.2.39 OR: 16-bits bitwise OR

Performs a bitwise OR of two 16-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to a 16-bits register. A logic OR will be performed between the contents of the register and the
value referenced by Operand 2. The result will be stored in the register referenced by Operand 1.

Opcode Operand 1 Operand 2 Example
96 (0x60) REGISTER_16BITS REGISTER_16BITS OR C, B
97 (0x61) REGISTER_16BITS REGADDRESS OR C, [B-100]
98 (0x62) REGISTER_16BITS ADDRESS OR D, [0x1000]
99 (0x63) REGISTER_16BITS WORD OR D, 0xA5A5

2.2.40 ORB: 8-bits bitwise OR

Performs a bitwise OR of two 8-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to an 8-bits register. A logic OR will be performed between the contents of the register and the
value referenced by Operand 2. The result will be stored in the register referenced by Operand 1.

Opcode Operand 1 Operand 2 Example
100 (0x64) REGISTER_8BITS REGISTER_8BITS ORB CH, BL
101 (0x65) REGISTER_8BITS REGADDRESS ORB DL, [A+30]
102 (0x66) REGISTER_8BITS ADDRESS ORB CH, [0x30]
103 (0x67) REGISTER_8BITS WORD ORB BL, 0xA5

2.2.41 OUT: write input/output register

Writes the contents of General Purpose Register A into an input/output register. The address of the register to be
written is obtained from the value of Operand 1. This is a priviledged instruction that can only be called when in
Supervisor mode.

Opcode Operand 1 Operand 2 Example
139 (0x8B) REGISTER_16BITS NONE OUT C
140 (0x8C) REGADDRESS NONE OUT [B+100]
141 (0x8D) ADDRESS NONE OUT [0x1000]
142 (0x8E) WORD NONE OUT 0x2

2.2.42 POP: pop 16-bits from stack

Pops a 16-bits value from the top of the stack and stores it into the 16-bits register referenced by Operand 1. The
instruction will update the Stack Pointer (SP), increasing it by 2 units.

Opcode Operand 1 Operand 2 Example
67 (0x43) REGISTER_16BITS NONE POP A

2.2.43 POPB: pop 8-bits from stack

Pops an 8-bits value from the top of the stack and stores it into the 8-bits register referenced by Operand 1. The
instruction will update the Stack Pointer (SP), increasing it by 1 unit.

16 Chapter 2. Instruction Set

https://en.wikipedia.org/wiki/Bitwise_operation#OR
https://en.wikipedia.org/wiki/Bitwise_operation#OR

asm-simulator Documentation, Release 1.3.0

Opcode Operand 1 Operand 2 Example
68 (0x44) REGISTER_8BITS NONE POPB AL

2.2.44 PUSH: push 16-bits to stack

Pushes a 16-bits value, referenced by Operand 1, to the top of the stack. The instruction will update the Stack Pointer
(SP), decreasing it by 2 units.

Opcode Operand 1 Operand 2 Example
59 (0x3B) REGISTER_16BITS NONE PUSH C
60 (0x3C) REGADDRESS NONE PUSH [B+100]
61 (0x3D) ADDRESS NONE PUSH [0x1000]
62 (0x3E) WORD NONE PUSH 0x2

2.2.45 PUSHB: push 8-bits to stack

Pushes an 8-bits value, referenced by Operand 1, to the top of the stack. The instruction will update the Stack Pointer
(SP), decreasing it by 1 units.

Opcode Operand 1 Operand 2 Example
63 (0x3F) REGISTER_16BITS NONE PUSHB CL
64 (0x40) REGADDRESS NONE PUSHB [B+100]
65 (0x41) ADDRESS NONE PUSHB [0x400]
66 (0x42) WORD NONE PUSHB 0x80

2.2.46 RET: return from subroutine

Returns from a subroutine. The execution of this instruction will pop the Instruction Pointer (IP) stored in the stack
and jump to the IP address. The instruction will update the Stack Pointer (SP).

Opcode Operand 1 Operand 2 Example
71 (0x47) NONE NONE RET

2.2.47 SHL: 16-bits logical left shift

Performs a logical left shift of the value of a 16-bits register. Every form of the instruction will have two operands.
Operand 1 will always be a reference to a 16-bits register. Operand 2 will indicate the number of bit positions that the
value shall be shifted. The result will be stored in the register referenced by Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
114 (0x72) REGISTER_16BITS REGISTER_16BITS SHL A, B
115 (0x73) REGISTER_16BITS REGADDRESS SHL C, [A-100]
116 (0x74) REGISTER_16BITS ADDRESS SHL D, [0x1000]
117 (0x75) REGISTER_16BITS WORD SHL B, 4

2.2. Instructions description 17

https://en.wikipedia.org/wiki/Logical_shift

asm-simulator Documentation, Release 1.3.0

2.2.48 SHLB: 8-bits logical left shift

Performs a logical left shift of the value of an 8-bits register. Every form of the instruction will have two operands.
Operand 1 will always be a reference to an 8-bits register. Operand 2 will indicate the number of bit positions that the
value shall be shifted. The result will be stored in the register referenced by Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
118 (0x76) REGISTER_8BITS REGISTER_8BITS SHLB AH, BL
119 (0x77) REGISTER_8BITS REGADDRESS SHLB CL, [A+30]
120 (0x78) REGISTER_8BITS ADDRESS SHLB DH, [0x30]
121 (0x79) REGISTER_8BITS WORD SHLB BL, 4

2.2.49 SHR: 16-bits logical right shift

Performs a logical right shift of the value of a 16-bits register. Every form of the instruction will have two operands.
Operand 1 will always be a reference to a 16-bits register. Operand 2 will indicate the number of bit positions that the
value shall be shifted. The result will be stored in the register referenced by Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
122 (0x7A) REGISTER_16BITS REGISTER_16BITS SHR A, B
123 (0x7B) REGISTER_16BITS REGADDRESS SHR C, [A-100]
124 (0x7C) REGISTER_16BITS ADDRESS SHR D, [0x1000]
125 (0x7D) REGISTER_16BITS WORD SHR B, 4

2.2.50 SHRB: 8-bits logical right shift

Performs a logical right shift of the value of an 8-bits register. Every form of the instruction will have two operands.
Operand 1 will always be a reference to an 8-bits register. Operand 2 will indicate the number of bit positions that the
value shall be shifted. The result will be stored in the register referenced by Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
126 (0x7E) REGISTER_8BITS REGISTER_8BITS SHRB AH, BL
127 (0x7F) REGISTER_8BITS REGADDRESS SHRB CL, [A+30]
128 (0x80) REGISTER_8BITS ADDRESS SHRB DH, [0x30]
129 (0x81) REGISTER_8BITS WORD SHRB BL, 4

2.2.51 SRET: return from system call

Returns from an System Call (SVC). The execution of this instruction will recover the Instruction Pointer (IP) and the
user Stack Pointer (SP) stored in the stack and jump to the IP address. This is a priviledged instruction that can only
be called when in Supervisor mode. When executed, the CPU will be switched to User mode.

Opcode Operand 1 Operand 2 Example
134 (0x86) NONE NONE SRET

18 Chapter 2. Instruction Set

https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Logical_shift

asm-simulator Documentation, Release 1.3.0

2.2.52 STI: set interrupt mask

Set the Interrupt Mask Bit of the Status Register. When the register is cleared, the CPU interrupts are unmasked and,
thus, enabled. The instruction has no operands. This is a priviledged instruction that can only be called when in
Supervisor mode.

Opcode Operand 1 Operand 2 Example
129 (0x81) NONE NONE STI

2.2.53 SUB: 16-bits substraction

Performs a substraction of two 16-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to a 16-bits register. The integer contained by the register will be substracted from the value
referenced by Operand 2. The result will be stored in the register referenced by Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
25 (0x19) REGISTER_16BITS REGISTER_16BITS SUB A, B
26 (0x1A) REGISTER_16BITS REGADDRESS SUB C, [A-100]
27 (0x1B) REGISTER_16BITS ADDRESS SUB D, [0x1000]
28 (0x1C) REGISTER_16BITS WORD SUB B, 12345

2.2.54 SUBB: 8-bits substraction

Performs a substraction of two 8-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to an 8-bits register. The integer in the Operand 2 will be substracted from the value in the
register specified in the Operand 1. The result will be stored in the register referenced by the Operand 1.

The operation will modify the values of the carry (C) and zero (Z) flags of the Status Register.

Opcode Operand 1 Operand 2 Example
29 (0x1D) REGISTER_8BITS REGISTER_8BITS SUBB BH, DL
30 (0x1E) REGISTER_8BITS REGADDRESS SUBB CH, [A-100]
31 (0x1F) REGISTER_8BITS ADDRESS SUBB DL, [0x400]
32 (0x20) REGISTER_8BITS WORD SUBB BL, 0x10

2.2.55 SVC: system call

Performs a System Call (SVC). This instruction can only be executed when the CPU is in User mode. The execution
of this instruction will: setup the Supervisor stack; push to it the Instruction Pointer (IP) and the user Stack Pointer
(SP); switch the CPU to Supervisor mode; and jump to address 0x0006.

Opcode Operand 1 Operand 2 Example
133 (0x85) NONE NONE SVC

2.2. Instructions description 19

asm-simulator Documentation, Release 1.3.0

2.2.56 XOR: 16-bits bitwise XOR

Performs a bitwise XOR of two 16-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to a 16-bits register. A logic XOR will be performed between the contents of the register and
the value referenced by Operand 2. The result will be stored in the register referenced by Operand 1.

Opcode Operand 1 Operand 2 Example
104 (0x68) REGISTER_16BITS REGISTER_16BITS XOR C, B
105 (0x69) REGISTER_16BITS REGADDRESS XOR C, [B-100]
106 (0x6A) REGISTER_16BITS ADDRESS XOR D, [0x400]
107 (0x6B) REGISTER_16BITS WORD XOR D, 0xA5A5

2.2.57 XORB: 8-bits bitwise XOR

Performs a bitwise XOR of two 8-bits integers. Every form of the instruction will have two operands. Operand 1 will
always be a reference to an 8-bits register. A logic XOR will be performed between the contents of the register and
the value referenced by Operand 2. The result will be stored in the register referenced by Operand 1.

Opcode Operand 1 Operand 2 Example
108 (0x6C) REGISTER_8BITS REGISTER_8BITS XORB CH, BL
109 (0x6D) REGISTER_8BITS REGADDRESS XORB DL, [A+30]
110 (0x6E) REGISTER_8BITS ADDRESS XORB CH, [0x30]
111 (0x6F) REGISTER_8BITS WORD XORB BL, 0xA5

20 Chapter 2. Instruction Set

https://en.wikipedia.org/wiki/Bitwise_operation#XOR
https://en.wikipedia.org/wiki/Bitwise_operation#XOR

CHAPTER 3

Directives

This section covers the directives supported by the simulator. Specifically, the simulator supports the following direc-
tives:

• DB: Define Byte

• DW: Define Word

• ORG: Advance Program Counter

• EQU: Define symbolic name

3.1 DB: Define Byte

This directive allows you to reserve memory space for one byte (8 bits). The receive directive receives two operands.
Operand 1 sets the name or identifier assigned to the space. Operand 2 sets the initialization value of the reserved
space. This operand can be a numeric value, a character or an array of characters. In the case of a single character, the
initial value stored will correspond to the ASCII code of the character encoded in single quotes (''). In the case of an
array, the values corresponding to the ASCII codes of those encoded between double quotes (""`) will be encoded.
If you want to encode a numeric value explicitly within the array, you must do it using the escape code \x.

Directive Result
DB var1, 0x01 Reserves one byte with an initial value of 0x01
DB char1, '1' Reserves one byte with an initial value of 0x31
DB string, "Hello" Reserves five bytes with values {0x48, 0x65, 0x6C, 0x6C, 0x6F}
DB string, "\x01\x02\x03\x04" Reserves four bytes with values {0x01, 0x02, 0x03, 0x04}

3.2 DW: Define Word

This directive allows you to reserve memory space for two bytes (16 bits). The receive directive receives two operands.
Operand 1 sets the name or identifier assigned to the space. Operand 2 sets the initialization value of the reserved space.

21

asm-simulator Documentation, Release 1.3.0

This operand can only be of numeric type.

Directive Result
DW var1, 2048 Reserves two bytes with values {0x80, 0x00}
DW var2, 0x1FFF Reserves two bytes with values {0x1F, 0xFF}

3.3 ORG: Advance Program Counter

This directive allows moving the program counter to a given address. The directive contains a single operand that sets
the address from which subsequent instructions are to be encoded.

Directive Result
ORG 0x100 The subsequent instructions will be encoded starting from address 0x100

3.4 EQU: Define symbolic name

The EQU directive gives a symbolic name or tag to an expression. This tag can be later used in subsequent lines of
assembly code and will be substituted by the value given. The directive receives two operands. The first sets the label
or symbolic name. The second defines the expression by which occurrences of the label will be replaced in the code.
These occurrences will only be evaluated in lines of code following the definition of the label.

Directive Result
EOS EQU 255 Any occurrence of EOS will be sustitued by 255
TMRPRELOAD EQU 0x0003 Any occurrence of TMRPRELOAD will be sustitued by 0x0003

22 Chapter 3. Directives

	Numbering formats
	Instruction Set
	Operand types
	Instructions description

	Directives
	DB: Define Byte
	DW: Define Word
	ORG: Advance Program Counter
	EQU: Define symbolic name

