ASGI Documentation
Release 2.0

ASGI Team

Jan 08, 2020

Contents

Introduction 3
Specifications 5
Extensions 19

Implementations 21

ASGI Documentation, Release 2.0

ASGI (Asynchronous Server Gateway Interface) is a spiritual successor to WSGI, intended to provide a standard
interface between async-capable Python web servers, frameworks, and applications.

Where WSGI provided a standard for synchronous Python apps, ASGI provides one for both asynchronous and syn-
chronous apps, with a WSGI backwards-compatibility implementation and multiple servers and application frame-
works.

You can read more in the introduction to ASGI, look through the specifications, and see what implementations there
already are or that are upcoming.

Contribution and discussion about ASGI is welcome, and mostly happens on the asgiref GitHub repository.

Contents 1

https://github.com/django/asgiref

ASGI Documentation, Release 2.0

2 Contents

CHAPTER 1

Introduction

ASGI is a spiritual successor to WSGI, the long-standing Python standard for compatibility between web servers,
frameworks, and applications.

WSGTI succeeded in allowing much more freedom and innovation in the Python web space, and ASGI’s goal is to
continue this onward into the land of asynchronous Python.

1.1 What’s wrong with WSGI?

You may ask “why not just upgrade WSGI”’? This has been asked many times over the years, and the problem usually
ends up being that WSGI’s single-callable interface just isn’t suitable for more involved Web protocols like WebSocket.

WSGTI applications are a single, synchronous callable that takes a request and returns a response; this doesn’t allow
for long-lived connections, like you get with long-poll HTTP or WebSocket connections.

Even if we made this callable asynchronous, it still only has a single path to provide a request, so protocols that have
multiple incoming events (like receiving WebSocket frames) can’t trigger this.

1.2 How does ASGI work?

ASGI is structured as a single, asynchronous callable. It takes scope, which contains details about the incoming
request, send, an awaitable that lets you send events to the client, and receive, an awaitable which lets you receive
events from the client.

This not only allows multiple incoming events and outgoing events for each application, but also allows for a back-
ground coroutine so the application can do other things (such as listening for events on an external trigger, like a Redis
queue).

In its simplest form, an application can be written as a function, like this:

https://www.python.org/dev/peps/pep-3333/

ASGI Documentation, Release 2.0

async def application(scope, receive, send):
event = await receive()

await send({"type": "websocket.send", ...})

Every event that you send or receive is a Python dict, with a predefined format. It’s these event formats that form
the basis of the standard, and allow applications to be swappable between servers.

These events each have a defined t ype key, which can be used to infer the event’s structure. Here’s an example event
for sending the start of a HTTP response that you might get from receive:

{

"type": "http.response.start",
"status": 200,
"headers": [(b"X-Header", b"Amazing Value")],

And here’s an example of an event you might pass to send to send an outgoing WebSocket message:

{
"type": "websocket.send",
"text": "Hello world!",

1.3 WSGI compatibility

ASGI is also designed to be a superset of WSGI, and there’s a defined way of translating between the two, allowing
WSGI applications to be run inside ASGI servers through a translation wrapper (provided in the asgiref library).
A threadpool can be used to run the synchronous WSGI applications away from the async event loop.

4 Chapter 1. Introduction

CHAPTER 2

Specifications

These are the specifications for ASGI. The root specification outlines how applications are structured and called, and
the protocol specifications outline the events that can be sent and received for each protocol.

2.1 ASGI (Asynchronous Server Gateway Interface) Specification

Version: 3.0 (2019-03-20)

2.1.1 Abstract

This document proposes a standard interface between network protocol servers (particularly web servers) and Python
applications, intended to allow handling of multiple common protocol styles (including HTTP, HTTP/2, and Web-
Socket).

This base specification is intended to fix in place the set of APIs by which these servers interact and run application
code; each supported protocol (such as HTTP) has a sub-specification that outlines how to encode and decode that
protocol into messages.

2.1.2 Rationale

The WSGI specification has worked well since it was introduced, and allowed for great flexibility in Python framework
and web server choice. However, its design is irrevocably tied to the HTTP-style request/response cycle, and more
and more protocols that do not follow this pattern are becoming a standard part of web programming (most notably,
WebSocket).

ASGI attempts to preserve a simple application interface, while providing an abstraction that allows for data to be sent
and received at any time, and from different application threads or processes.

It also takes the principle of turning protocols into Python-compatible, asynchronous-friendly sets of messages and
generalises it into two parts; a standardised interface for communication around which to build servers (this document),
and a set of standard message formats for each protocol.

ASGI Documentation, Release 2.0

Its primary goal is to provide a way to write HTTP/2 and WebSocket code alongside normal HTTP handling code,
however; part of this design means ensuring there is an easy path to use both existing WSGI servers and applications,
as a large majority of Python web usage relies on WSGI and providing an easy path forward is critical to adoption.
Details on that interoperability are covered in the ASGI-HTTP spec.

2.1.3 Overview

ASGI consists of two different components:

* A protocol server, which terminates sockets and translates them into connections and per-connection event
messages.

e An application, which lives inside a protocol server, is instantiated once per connection, and handles event
messages as they happen.

Like WSGI, the server hosts the application inside it, and dispatches incoming requests to it in a standardized format.
Unlike WSGI, however, applications are instantiated objects that are fed events rather than simple callables, and must
run as asyncio-compatible coroutines (on the main thread; they are free to use threading or other processes if they
need synchronous code).

Unlike WSGI, there are two separate parts to an ASGI connection:
* A connection scope, which represents a protocol connection to a user and survives until the connection closes.
* Events, which are sent to the application as things happen on the connection.

Applications are instantiated with a connection scope, and then run in an event loop where they are expected to handle
events and send data back to the client.

Each application instance maps to a single incoming “socket” or connection, and is expected to last the lifetime of
that connection plus a little longer if there is cleanup to do. Some protocols may not use traditional sockets; ASGI
specifications for those protocols are expected to define what the scope (instance) lifetime is and when it gets shut
down.

2.1.4 Specification Details

Connection Scope

Every connection by a user to an ASGI application results in an instance of that application being created for the
connection. How long this lives, and what information it receives upon creation, is called the connection scope.

For example, under HTTP the connection scope lasts just one request, but it contains most of the request data (apart
from the HTTP request body, as this is streamed in via events).

Under WebSocket, though, the connection scope lasts for as long as the socket is connected. The scope contains
information like the WebSocket’s path, but details like incoming messages come through as events instead.

Some protocols may give you a connection scope with very limited information up front because they encapsulate
something like a handshake. Each protocol definition must contain information about how long its connection scope
lasts, and what information you will get inside it.

Applications cannot communicate with the client when they are initialized and given their connection scope; they
must wait until their event loop is entered and, depending on the protocol spec, may have to wait for an initial opening
message.

6 Chapter 2. Specifications

ASGI Documentation, Release 2.0

Events

ASGI decomposes protocols into a series of events that an application must react to. For HTTP, this is as simple as two
events in order - http.request and http.disconnect. For something like a WebSocket, it could be more like
websocket .connect, websocket . send, websocket .receive, and ﬁnally websocket .disconnect.

Each event is a dict with a top-level type key that contains a Unicode string of the message type. Users are free
to invent their own message types and send them between application instances for high-level events - for example, a
chat application might send chat messages with a user type of mychat .message. It is expected that applications
should be able to handle a mixed set of events, some sourced from the incoming client connection and some from
other parts of the application.

Because these messages could be sent over a network, they need to be serializable, and so they are only allowed to
contain the following types:

* Byte strings

* Unicode strings

¢ Integers (within the signed 64-bit range)

* Floating point numbers (within the IEEE 754 double precision range; no Nan or infinities)
* Lists (tuples should be encoded as lists)

* Dicts (keys must be Unicode strings)

* Booleans

* None

Applications

Note: The application format changed in 3.0 to use a single callable, rather than the prior two-callable format.
Two-callable is documented below in “Legacy Applications”; servers can easily implement support for it using the
asgiref.compatibility library, and should try to support it.

ASGI applications should be a single async callable:

coroutine application(scope, receive, send)

* scope: The connection scope, a dictionary that contains at least a t ype key specifying the protocol that is
incoming

* receive, an awaitable callable that will yield a new event dictionary when one is available

* send, an awaitable callable taking a single event dictionary as a positional argument that will return once the
send has been completed or the connection has been closed

The application is called once per “connection.” The definition of a connection and its lifespan are dictated by the
protocol specification in question. For example, with HTTP it is one request, whereas for a WebSocket it is a single
WebSocket connection.

Both the scope and the format of the messages you send and receive are defined by one of the application pro-
tocols. scope must be a dict. The key scope ["type"] will always be present, and can be used to work
out which protocol is incoming. The key scope["asgi"] will also be present as a dictionary containing a
scope["asgi"] ["version"] key that corresponds to the ASGI version the server implements. If missing,
the version should defaultto "2.0".

2.1. ASGI (Asynchronous Server Gateway Interface) Specification 7

ASGI Documentation, Release 2.0

There may also be a spec-specific version present as scope ["asgi"] ["spec_version"]. This allows the
individual protocol specifications to make enhancements without bumping the overall ASGI version.

The protocol-specific sub-specifications cover these scope and message formats. They are equivalent to the specifica-
tion for keys in the environ dict for WSGI.

Legacy Applications

Legacy (v2.0) ASGI applications are defined as a callable:

’ application (scope)

Which returns another, awaitable callable:

’coroutine application_instance (receive, send)

The meanings of scope, receive and send are the same as in the newer single-callable application, but note that
the first callable is synchronous.

The first callable is called when the connection is started, and then the second callable is called immediately afterwards.

This style was retired in version 3.0 as the two-callable layout was deemed unnecessary. It’s now legacy, but there are
applications out there written in this style, and so it’s important to support them.

There is a compatibility suite available in the asgiref.compatibility module which allows you to both detect
legacy applications and convert them to the new single-protocol style seamlessly. Servers are encouraged to support
both types as of ASGI 3.0 and gradually drop support by default over time.

Protocol Specifications

These describe the standardized scope and message formats for various protocols.

The one common key across all scopes and messages is t ype, a way to indicate what type of scope or message is
being received.

In scopes, the t ype key must be a Unicode string, like "http" or "websocket ", as defined in the relevant protocol
specification.

In messages, the type should be namespaced as protocol.message_type, where the protocol matches
the scope type, and message_type is defined by the protocol spec. Examples of a message type value include
http.request and websocket .send.

Note: Applications should actively reject any protocol that they do not understand with an Exception (of any type).
Failure to do this may result in the server thinking you support a protocol you don’t, which can be confusing when
using with the Lifespan protocol, as the server will wait to start until you tell it.

Current protocol specifications:
e HTTP and WebSocket

* Lifespan

Middleware

It is possible to have ASGI “middleware” - code that plays the role of both server and application, taking in a scope
and the send/receive awaitables, potentially modifying them, and then calling an inner application.

8 Chapter 2. Specifications

ASGI Documentation, Release 2.0

When middleware is modifying the scope, it should make a copy of the scope object before mutating it and passing it
to the inner application, as changes may leak upstream otherwise. In particular, you should not assume that the copy
of the scope you pass down to the application is the one that it ends up using, as there may be other middleware in the
way; thus, do not keep a reference to it and try to mutate it outside of the initial ASGI constructor callable that receives
scope. Your one and only chance to add to it is before you hand control to the child application.

Error Handling

If a server receives an invalid event dictionary - for example, having an unknown t ype, missing keys an event type
should have, or with wrong Python types for objects (e.g. Unicode strings for HTTP headers) - it should raise an
exception out of the send awaitable back to the application.

If an application receives an invalid event dictionary from receive, it should raise an exception.

In both cases, the presence of additional keys in the event dictionary should not raise an exception. This allows
non-breaking upgrades to protocol specifications over time.

Servers are free to surface errors that bubble up out of application instances they are running however they wish -
log to console, send to syslog, or other options - but they must terminate the application instance and its associated
connection if this happens.

Note that messages received by a server after the connection has been closed are not considered errors. In this case the
send awaitable callable should act as a no-op.

Extra Coroutines

Frameworks or applications may want to run extra coroutines in addition to the coroutine launched for each application
instance. Since there is no way to parent these to the instance’s coroutine in Python 3.7, applications should ensure
that all coroutines launched as part of running an application instance are terminated either before or at the same time
as the application instance’s coroutine.

Any coroutines that continue to run outside of this window have no guarantees about their lifetime and may be killed
at any time.

Extensions

There are times when protocol servers may want to provide server-specific extensions outside of a core ASGI protocol
specification, or when a change to a specification is being trialled before being rolled in.

For this use case, we define a common pattern for extensions - named additions to a protocol specification that are
optional but that, if provided by the server and understood by the application, can be used to get more functionality.

This is achieved via an extensions entry in the scope dictionary, which is itself a dict. Extensions have a
Unicode string name that is agreed upon between servers and applications.

If the server supports an extension, it should place an entry into the extensions dictionary under the extension’s
name, and the value of that entry should itself be a dict. Servers can provide any extra scope information that is part
of the extension inside this value or, if the extension is only to indicate that the server accepts additional events via the
send callable, it may just be an empty dict.

As an example, imagine a HTTP protocol server wishes to provide an extension that allows a new event to be sent
back to the server that tries to flush the network send buffer all the way through the OS level. It provides an empty
entry in the extensions dictionary to signal that it can handle the event:

2.1. ASGI (Asynchronous Server Gateway Interface) Specification 9

ASGI Documentation, Release 2.0

scope = {
"type " : "httpﬂ ,
"method": "GET",
"extensions": {

"fullflush": {},
by
}

If an application sees this it then knows it can send the custom event (say, of type http.fullflush) viathe send
callable.

Strings and Unicode

In this document, and all sub-specifications, byte string refers to the bytes type in Python 3. Unicode string refers
to the str type in Python 3.

This document will never specify just string - all strings are one of the two exact types.

All dict keys mentioned (including those for scopes and events) are Unicode strings.

2.1.5 Version History

* 3.0 (2019-03-04): Changed to single-callable application style
e 2.0 (2017-11-28): Initial non-channel-layer based ASGI spec

2.1.6 Copyright

This document has been placed in the public domain.

2.2 HTTP & WebSocket ASGI Message Format

Version: 2.1 (2019-03-20)

The HTTP+WebSocket ASGI sub-specification outlines how to transport HTTP/1.1, HTTP/2 and WebSocket connec-
tions within ASGI.

It is deliberately intended and designed to be a superset of the WSGI format and specifies how to translate between
the two for the set of requests that are able to be handled by WSGI.

2.2.1 Spec Versions

This spec has had two versions:
* 2.0: The first version of the spec, released with ASGI 2.0
e 2.1: Added the headers key to the WebSocket Accept response

Spec versions let you understand what the server you are using understands. If a server tells you it only supports
version 2 . 0 of this spec, then sending headers with a WebSocket Accept message is an error, for example.

They are separate from the HTTP version or the ASGI version.

10 Chapter 2. Specifications

ASGI Documentation, Release 2.0

2.2.2 HTTP

The HTTP format covers HTTP/1.0, HTTP/1.1 and HTTP/2, as the changes in HTTP/2 are largely on the transport
level. A protocol server should give different scopes to different requests on the same HTTP/2 connection, and
correctly multiplex the responses back to the same stream in which they came. The HTTP version is available as a
string in the scope.

Multiple header fields with the same name are complex in HTTP. RFC 7230 states that for any header field that can
appear multiple times, it is exactly equivalent to sending that header field only once with all the values joined by
commas.

However, RFC 7230 and RFC 6265 make it clear that this rule does not apply to the various headers used by
HTTP cookies (Cookie and Set-Cookie). The Cookie header must only be sent once by a user-agent, but
the Set-Cookie header may appear repeatedly and cannot be joined by commas. The ASGI design decision is to
transport both request and response headers as lists of 2-element [name, value] lists and preserve headers exactly
as they were provided.

The HTTP protocol should be signified to ASGI applications with a t ype value of http.

Connection Scope
HTTP connections have a single-request connection scope - that is, your applications will be instantiated at the start
of the request, and destroyed at the end, even if the underlying socket is still open and serving multiple requests.

If you hold a response open for long-polling or similar, the scope will persist until the response closes from either the
client or server side.

The connection scope contains:
e type (Unicode string) — "http".
* asgi["version"] (Unicode string) — Version of the ASGI spec.

* asgi["spec_version"] (Unicode string) — Version of the ASGI HTTP spec this server understands; one
of "2.0" or "2.1". Optional; if missing assume 2 . 0.

* http_version (Unicode string) —Oneof "1.0","1.1"or "2".

method (Unicode string) — The HTTP method name, uppercased.

scheme (Unicode string) — URL scheme portion (likely "http" or "https™"). Optional (but must not be
empty); default is "http".

path (Unicode string) — HTTP request target excluding any query string, with percent-encoded sequences and
UTF-8 byte sequences decoded into characters.

raw_path (byte string) — The original HTTP path component unmodified from the bytes that were received by
the web server. Some web server implementations may be unable to provide this. Optional; defaults to None.

* query_string (byte string) — URL portion after the 2, percent-encoded.

root_path (Unicode string) — The root path this application is mounted at; same as SCRIPT_NAME in WSGL
Optional; defaults to " ".

headers (Iterable[[byte string, byte string]]) — An iterable of [name, value] two-item iterables, where
name is the header name, and value is the header value. Order of header values must be preserved from the
original HTTP request; order of header names is not important. Duplicates are possible and must be preserved in
the message as received. Header names must be lowercased. Pseudo headers (present in HTTP/2 and HTTP/3)
must be removed; if :authority is present its value must be added to the start of the iterable with host as
the header name or replace any existing host header already present.

2.2. HTTP & WebSocket ASGI Message Format 11

ASGI Documentation, Release 2.0

e client (Iterable[Unicode string, int]) — A two-item iterable of [host, port], where host the remote
host’s IPv4 or IPv6 address, and port is the remote port as an integer. Optional; defaults to None.

* server (lterable[Unicode string, int]) — A two-item iterable of [host, port], where host is the listening
address for this server, and port is the integer listening port. Optional; defaults to None.

Servers are responsible for handling inbound and outbound chunked transfer encodings. A request with a chunked
encoded body should be automatically de-chunked by the server and presented to the application as plain body bytes;
a response that is given to the server with no Content-Length may be chunked as the server sees fit.

Request

Sent to indicate an incoming request. Most of the request information is in the connection scope; the body message
serves as a way to stream large incoming HTTP bodies in chunks, and as a trigger to actually run request code (as you
should not trigger on a connection opening alone).

Note that if the request is being sent using Transfer-Encoding: chunked, the server is responsible for han-
dling this encoding. The http . request messages should contain just the decoded contents of each chunk.

Keys:
* type (Unicode string) — "http.request".

* body (byte string) — Body of the request. Optional; defaults to b"". If more_body is set, treat as start of
body and concatenate on further chunks.

* more_body (bool) — Signifies if there is additional content to come (as part of a Request message). If True,
the consuming application should wait until it gets a chunk with this set to False. If False, the request is
complete and should be processed. Optional; defaults to False.

Response Start
Starts sending a response to the client. Needs to be followed by at least one response content message. The protocol
server must not start sending the response to the client until it has received at least one Response Body event.

You may send a Transfer—-Encoding header in this message, but the server must ignore it. Servers handle
Transfer-Encoding themselves, and may opt to use Transfer-Encoding: chunked if the application
presents a response that has no Content-Length set.

Note that this is not the same as Content-Encoding, which the application still controls, and which is the appro-
priate place to set gz ip or other compression flags.

Keys:
* type (Unicode string) — "http.response.start".
e status (int) — HTTP status code.

e headers (lterable[[byte string, byte string]]) — A iterable of [name, wvalue] two-item iterables, where
name is the header name, and value is the header value. Order must be preserved in the HTTP response.
Header names must be lowercased. Optional; defaults to an empty list. Pseudo headers (present in HTTP/2 and
HTTP/3) must not be present.

Response Body

Continues sending a response to the client. Protocol servers must flush any data passed to them into the send buffer
before returning from a send call. If more_body is set to False this will close the connection.

Keys:

12 Chapter 2. Specifications

ASGI Documentation, Release 2.0

e type (Unicode string) — "http.response.body".

* body (byte string) — HTTP body content. Concatenated onto any previous body values sent in this connection
scope. Optional; defaults to b" ".

* more_body (bool) — Signifies if there is additional content to come (as part of a Response Body message). If
False, response will be taken as complete and closed, and any further messages on the channel will be ignored.
Optional; defaults to False.

Disconnect

Sent to the application when a HTTP connection is closed or if receive is called after a response has been sent. This
is mainly useful for long-polling, where you may want to trigger cleanup code if the connection closes early.

Keys:

* type (Unicode string) — "http.disconnect".

2.2.3 WebSocket

WebSockets share some HTTP details - they have a path and headers - but also have more state. Again, most of that
state is in the scope, which will live as long as the socket does.

WebSocket protocol servers should handle PING/PONG messages themselves, and send PING messages as necessary
to ensure the connection is alive.

WebSocket protocol servers should handle message fragmentation themselves, and deliver complete messages to the
application.

The WebSocket protocol should be signified to ASGI applications with a t ype value of websocket.

Connection Scope
WebSocket connections’ scope lives as long as the socket itself - if the application dies the socket should be closed,
and vice-versa. The scope contains the initial connection metadata (mostly from the HTTP handshake):

* type (Unicode string) — "websocket".

* asgi["version"] (Unicode string) — The version of the ASGI spec.

* asgi["spec_version"] (Unicode string) — Version of the ASGI HTTP spec this server understands; one
of "2.0" or "2.1". Optional; if missing assume "2.0".

* http_version (Unicode string) —One of "1 .1" or "2". Optional; defaultis "1.1".

scheme (Unicode string) — URL scheme portion (likely "ws" or "wss"). Optional (but must not be empty);
defaultis "ws".

path (Unicode string) — HTTP request target excluding any query string, with percent-encoded sequences and
UTF-8 byte sequences decoded into characters.

raw_path (byte string) — The original HTTP path component unmodified from the bytes that were received by
the web server. Some web server implementations may be unable to provide this. Optional; defaults to None.

* query_string (byte string) — URL portion after the ?. Optional; default is empty string.

root_path (byte string) — The root path this application is mounted at; same as SCRIPT_NAME in WSGI.
Optional; defaults to empty string.

2.2. HTTP & WebSocket ASGI Message Format 13

ASGI Documentation, Release 2.0

* headers (Iterable[[byte string, byte string]]) — An iterable of [name, value] two-item iterables, where
name is the header name and value is the header value. Order should be preserved from the original HTTP
request; duplicates are possible and must be preserved in the message as received. Header names must be
lowercased. Pseudo headers (present in HTTP/2 and HTTP/3) must be removed; if : authority is present
its value must be added to the start of the iterable with host as the header name or replace any existing host
header already present.

e client (Iterable[Unicode string, int]) — A two-item iterable of [host, port], where host is the remote
host’s IPv4 or IPv6 address, and port is the remote port. Optional; defaults to None.

e server (Iterable[Unicode string, int]) — A two-item iterable of [host, port], where host is the listening
address for this server, and port is the integer listening port. Optional; defaults to None.

* subprotocols ({terable[Unicode string]) — Subprotocols the client advertised. Optional; defaults to empty
list.

Connection

Sent when the client initially opens a connection and is about to finish the WebSocket handshake.

This message must be responded to with either an Accept message or a Close message before the socket will pass
websocket .receive messages. The protocol server must send this message during the handshake phase of the
WebSocket and not complete the handshake until it gets a reply, returning HTTP status code 4 03 if the connection is
denied.

Keys:

* type (Unicode string) — "websocket .connect".

Accept

Sent by the application when it wishes to accept an incoming connection.
* type (Unicode string) — "websocket .accept".
* subprotocol (Unicode string) — The subprotocol the server wishes to accept. Optional; defaults to None.

* headers (Iterable[[byte string, byte string]]) — An iterable of [name, value] two-item iterables, where
name is the header name, and value is the header value. Order must be preserved in the HTTP response.
Header names must be lowercased. Must not include a header named sec-websocket-protocol; use the
subprotocol key instead. Optional; defaults to an empty list. Added in spec version 2.1. Pseudo headers
(present in HTTP/2 and HTTP/3) must not be present.

Receive

Sent when a data message is received from the client.
Keys:
e type (Unicode string) — "websocket .receive".

* bytes (byte string) — The message content, if it was binary mode, or None. Optional; if missing, it is equivalent
to None.

* text (Unicode string) — The message content, if it was text mode, or None. Optional; if missing, it is equivalent
to None.

Exactly one of bytes or text must be non-None. One or both keys may be present, however.

14 Chapter 2. Specifications

ASGI Documentation, Release 2.0

Send

Sends a data message to the client.

Keys:
e type (Unicode string) — "websocket .send".
* bytes (byte string) — Binary message content, or None. Optional; if missing, it is equivalent to None.
* text (Unicode string) — Text message content, or None. Optional; if missing, it is equivalent to None.

Exactly one of bytes or text must be non-None. One or both keys may be present, however.

Disconnection
Sent when either connection to the client is lost, either from the client closing the connection, the server closing the
connection, or loss of the socket.
Keys:
* type (Unicode string) — "websocket .disconnect"

* code (int) — The WebSocket close code, as per the WebSocket spec.

Close

Tells the server to close the connection.

If this is sent before the socket is accepted, the server must close the connection with a HTTP 403 error code (Forbid-
den), and not complete the WebSocket handshake; this may present on some browsers as a different WebSocket error
code (such as 1006, Abnormal Closure).

If this is sent after the socket is accepted, the server must close the socket with the close code passed in the message
(or 1000 if none is specified).

* type (Unicode string) — "websocket .close".

* code (int) — The WebSocket close code, as per the WebSocket spec. Optional; defaults to 1000.

2.2.4 WSGI Compatibility

Part of the design of the HTTP portion of this spec is to make sure it aligns well with the WSGI specification, to ensure
easy adaptability between both specifications and the ability to keep using WSGI applications with ASGI servers.

WSGTI applications, being synchronous, must be run in a threadpool in order to be served, but otherwise their runtime
maps onto the HTTP connection scope’s lifetime.

There is an almost direct mapping for the various special keys in WSGI’s environ variable to the http scope:
e REQUEST_METHOD is the method
e SCRIPT_NAME is root_path
e PATH_INFO can be derived from path and root_path

* QUERY_STRING s query_string

CONTENT_TYPE can be extracted from headers

CONTENT_LENGTH can be extracted from headers

2.2. HTTP & WebSocket ASGI Message Format 15

ASGI Documentation, Release 2.0

e SERVER_NAME and SERVER_PORT are in server
¢ REMOTE_HOST/REMOTE_ADDR and REMOTE_PORT are in client
* SERVER_PROTOCOL is encoded in http_version
e wsgi.url_scheme is scheme
* wsgi.input isa StringIO based around the http.request messages
* wsgi.errors is directed by the wrapper as needed
The start_response callable maps similarly to http.response.start:
* The status argument becomes status, with the reason phrase dropped.
* response_headers maps to headers

Yielding content from the WSGI application maps to sending http . response.body messages.

2.2.5 WSGI encoding differences

The WSGI specification (as defined in PEP 3333) specifies that all strings sent to or from the server must be of the
str type but only contain codepoints in the ISO-8859-1 (“latin-1") range. This was due to it originally being designed
for Python 2 and its different set of string types.

The ASGI HTTP and WebSocket specifications instead specify each entry of the scope dict as either a byte string or
a Unicode string. HTTP, being an older protocol, is sometimes imperfect at specifying encoding, so some decisions of
what is Unicode versus bytes may not be obvious.

* path: URLs can have both percent-encoded and UTF-8 encoded sections. Because decoding these is often
done by the underlying server (or sometimes even proxies in the path), this is a Unicode string, fully decoded
from both UTF-8 encoding and percent encodings.

* headers: These are byte strings of the exact byte sequences sent by the client/to be sent by the server. While
modern HTTP standards say that headers should be ASCII, older ones did not and allowed a wider range of
characters. Frameworks/applications should decode headers as they deem appropriate.

* query_string: Unlike the path, this is not as subject to server interference and so is presented as its raw
byte string version, percent-encoded.

* root_path: Unicode string to match path.
2.0 (2017-11-28): Initial non-channel-layer based ASGI spec

This document has been placed in the public domain.

2.3 Lifespan Protocol

Version: 2.0 (2019-03-20)

The Lifespan ASGI sub-specification outlines how to communicate lifespan events such as startup and shutdown
within ASGI. This refers to the lifespan of the main event loop. In a multi-process environment there will be lifespan
events in each process.

The lifespan messages allow for an application to initialise and shutdown in the context of a running event loop.
An example of this would be creating a connection pool and subsequently closing the connection pool to release the
connections.

A possible implementation of this protocol is given below:

16 Chapter 2. Specifications

ASGI Documentation, Release 2.0

async def app(scope, receive, send):

if scope['type'] == 'lifespan':
while True:
message = await receive()
if message['type'] == 'lifespan.startup':
Do some startup here!
await send({'type': 'lifespan.startup.complete'})
elif message['type'] == 'lifespan.shutdown':
Do some shutdown here!
await send({'type': 'lifespan.shutdown.complete'})
return
else:

pass # Handle other types

2.3.1 Scope

The lifespan scope exists for the duration of the event loop. The scope itself contains basic metadata:
e type (Unicode string) — "1ifespan".
* asgi["version"] (Unicode string) — The version of the ASGI spec.

* asgi["spec_version"] (Unicode string) — The version of this spec being used. Optional; defaults to
n l . O n .

If an exception is raised when calling the application callable with a 1ifespan. startup message or a scope with
type 1ifespan, the server must continue but not send any lifespan events.

This allows for compatibility with applications that do not support the lifespan protocol. If you want to log an error that
occurs during lifespan startup and prevent the server from starting, then send back 1ifespan.startup.failed
instead.

2.3.2 Startup

Sent when the server is ready to startup and receive connections, but before it has started to do so.
Keys:

* type (Unicode string) — "1ifespan.startup".

2.3.3 Startup Complete

Sent by the application when it has completed its startup. A server must wait for this message before it starts processing
connections.

Keys:

* type (Unicode string) — "1ifespan.startup.complete".

2.3.4 Startup Failed

Sent by the application when it has failed to complete its startup. If a server sees this it should log/print the message
provided and then exit.

Keys:

2.3. Lifespan Protocol 17

ASGI Documentation, Release 2.0

e type (Unicode string) — "1ifespan.startup.failed".

* message (Unicode string) — Optional; defaults to " ".

2.3.5 Shutdown

Sent when the server has stopped accepting connections and closed all active connections.
Keys:

* type (Unicode string) — "1ifespan.shutdown".

2.3.6 Shutdown Complete

Sent by the application when it has completed its cleanup. A server must wait for this message before terminating.
Keys:

e type (Unicode string) — "1ifespan.shutdown.complete".

2.3.7 Shutdown Failed

Sent by the application when it has failed to complete its cleanup. If a server sees this it should log/print the message
provided and then terminate.

Keys:
* type (Unicode string) — "1ifespan.shutdown.failed".
* message (Unicode string) — Optional; defaults to " ".
Version History
* 2.0 (2019-03-04): Added startup.failed and shutdown.failed, clarified exception handling during startup phase.
* 1.0 (2018-09-06): Updated ASGI spec with a lifespan protocol.
Copyright

This document has been placed in the public domain.

18 Chapter 2. Specifications

CHAPTER 3

Extensions

The ASGI specification provides for server-specific extensions to be used outside of the core ASGI specification. This
document specifies some common extensions.

3.1 Websocket Denial Response

Websocket connections start with the client sending a HTTP request containing the appropriate upgrade headers. On
receipt of this request a server can choose to either upgrade the connection or respond with an HTTP response (denying
the upgrade). The core ASGI specification does not allow for any control over the denial response, instead specifying
that the HTTP status code 403 should be returned, whereas this extension allows an ASGI framework to control the
denial response. Rather than being a core part of ASGI, this is an extension for what is considered a niche feature as
most clients do not utilise the denial response.

ASGTI Servers that implement this extension will provide websocket .http.response in the extensions part of
the scope:

"scope": {

"extensions": {
"websocket.http.response": {},

by

This will allow the ASGI Framework to send HTTP response messages after the websocket . connect message.
These messages cannot be followed by any other websocket messages as the server should send a HTTP response and
then close the connection.

The messages themselves should be websocket.http.response.start and websocket.http.
response.body with a structure that matches the http.response.start and http.response.body
messages defined in the HTTP part of the core ASGI specification.

19

ASGI Documentation, Release 2.0

3.2 HTTP/2 Server Push

HTTP/2 allows for a server to push a resource to a client by sending a push promise. ASGI servers that implement
this extension will provide http.response.push in the extensions part of the scope:

"scope": {

"extensions": {
"http.response.push": {},
by

An ASGI framework can initiate a server push by sending a message with the following keys. This message can be
sent at any time after the Response Start message but before the final Response Body message.
Keys:

* type (Unicode string): "http.response.push"

* path (Unicode string): HTTP path from URL, with percent-encoded sequences and UTF-8 byte sequences
decoded into characters.

* headers (lterable[[byte string, byte string]]): An iterable of [name, value] two-item iterables, where
name is the header name, and value is the header value. Header names must be lowercased. Pseudo headers
(present in HTTP/2 and HTTP/3) must not be present.

The ASGI server should then attempt to send a server push (or push promise) to the client. If the client supports server
push, the server should create a new connection to a new instance of the application and treat it as if the client had
made a request.

The ASGI server should set the pseudo : authority header value to be the same value as the request that triggered
the push promise.

20 Chapter 3. Extensions

CHAPTER 4

Implementations

Complete or upcoming implementations of ASGI - servers, frameworks, and other useful pieces.

4.1 Servers

4.1.1 Daphne

Stable / http://github.com/django/daphne

The current ASGI reference server, written in Twisted and maintained as part of the Django Channels project. Supports
HTTP/1, HTTP/2, and WebSockets.

4.1.2 Uvicorn

Stable / https://www.uvicorn.org/

A fast ASGI server based on uvloop and httptools. Supports HTTP/1 and WebSockets.

4.1.3 Hypercorn

Beta / https://pgjones.gitlab.io/hypercorn/index.html

An ASGI server based on the sans-io hyper, h11, h2, and wsproto libraries. Supports HTTP/1, HTTP/2, and Web-
Sockets.

21

http://github.com/django/daphne
https://www.uvicorn.org/
https://pgjones.gitlab.io/hypercorn/index.html

ASGI Documentation, Release 2.0

4.2 Application Frameworks

4.2.1 Django/Channels

Stable / http://channels.readthedocs.io

Channels is the Django project to add asynchronous support to Django and is the original driving force behind the
ASGI project. Supports HTTP and WebSockets with Django integration, and any protocol with ASGI-native code.

4.2.2 Quart

Beta / https://github.com/pgjones/quart

Quart is a Python ASGI web microframework. It is intended to provide the easiest way to use asyncio functionality in
a web context, especially with existing Flask apps. Supports HTTP.

4.2.3 Starlette

Beta / https://github.com/encode/starlette

Starlette is a minimalist ASGI library for writing against basic but powerful Request and Response classes.
Supports HTTP.

22 Chapter 4. Implementations

http://channels.readthedocs.io
https://github.com/pgjones/quart
https://github.com/encode/starlette

	Introduction
	Specifications
	Extensions
	Implementations

