

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

The goal of this file is explaining to the users of our project the notable changes relevant to them that occurred between commits.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/], and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[0.6.4] - 2019-09-15

Fixed

	prettyfied code

	fixed onetap account page on login

	fix minor bug in unfollow function

[0.6.3] - 2019-09-08

Added

	Improved documentation

	Added “no_comments” for Pods

	Improve Tox / Travis testing

	Improved random sleep delay

	Telegram support

Fixed

	Able to use Domains as a Proxy

	jsonschema requrements version

	skip_top_posts function

	Backup plan for graphql additional / shared data

[0.6.2] - 2019-08-30

Added

	New bypass challenge approach (choose sms or email option)

	Show InstaPy version on initialization

Fixed

	Login xpath update

[0.6.1] - 2019-08-12

Added

	Add log information about the non-working feature (unfollow with All Following option enabled)

Fixed

	Fix an issue with screen shot file creation

	Fix an issue with JSON file state creation

	Fix Get Query Hash function to work on all Python 3.x versions

	Fix Unfollow with option nonFollowers

[0.6.0] - 2019-08-12

Added

	Firefox Extension which hides Selenium

	Black code formatter

	Mobile user agent

	Mobile Mode to enable mobile features

	Screen shots (rotative screen shots are taken and saved in your InstaPy user folder)

	Connection State

Breaking Changes

	removed chromedriver

	signature changes:

	set_action_delays(random_range) -> (random_range_from, random_range_to)

	set_delemit_liking(max, min) ->(max_likes, min_likes)

	set_delemit_commenting(max, min) ->(max_comments, min_comments)

	unfollow_users(customList, instapyfollowed) -> (custom_list_enabled, custom_list, custom_list_param, instapy_followed_enabled, instapy_followed_param)

	setquota_supervisor(peak_) ->(peak___hourly, peak_*_daily)

Fixed

	Fix follow_likers feature

	Fix follow_user_followers

	Fix comment_image feature

	Update dont_unfollow_active_users to Mobile Mode

	Fix scroll down (util) function

	Remove bypass_by_mobile, it will auto detect the mobile if required now

	Update profile scrapping to use GraphQL (get_users_through_dialog_with_graphql)

[0.5.8] - 2019-08-01

Added

	skip user based on profile bio

Fixed

	xpath error likers from photo

[0.5.7] - 2019-07-24

Fixed

	user agent error in firefox

[0.5.6] - 2019-07-22

Fixed

	xpath compile multiple errors

Added

	feature watch stories

	always use the lastest user-agent

[0.5.5] - 2019-07-11

Fixed

	get_action_delay check for uninitialized delays in settings

[0.5.4] - 2019-07-03

Changed

	Always start chromedriver with –no-sandbox to fix #4607

Fixed

	get_action_delay method always returning default values #4540

[0.5.3] - 2019-07-02

Fixed

	Argument Being Interpreted as Sequence in bypass_suspicious_login

[0.5.2] - 2019-06-28

Fixed

	session.get_relationship_counts() broken behavior

[0.5.1] - 2019-06-18

Added

	Documentation for basic Selenium Errors

	Import Settings in docs

Fixed

	session.follow_user_following() broken behavior

[0.5.0] - 2019-06-03

Added

	Additional check for like block.

Changed

	Remove support for python2

	Information regarding the nogui parameter in documentation.

	XPath Isolation

	Remove redundant assignment of pod_post_ids

	Remove address var assigned multiple times without intermediate usage

	set_mandatory_language can maintain multiple character sets

	Feature finetuning comments for pods

Fixed

	Interact_by_comments aborts when self.abort is true

	Media type filter (Photo, Video) in get_links

	‘Failed to get comments’ issue

	Threaded session ending with exception ValueError: signal only works in main thread

	like_image in dev has this arg

	Verifying mandatory words when the script can not get post description

	Codacy checks for unused var, out of scope, and missing args

[0.4.3] - 2019-05-15

Fixed

	Commenting issue #4409

[0.4.2] - 2019-04-15

Fixed

	Fail of whole pod run on exception

[0.4.1] - 2019-04-06

Added

	Support for split database with -sdb flag to avoid SQLite lock up

Fixed

	“Failed to find login button” when trying to login (add KEYS.ENTER to submit login data)

[0.4.0] - 2019-04-03

Added

	Improved info provided by log messages in instapy.py and like_util.py

	Possibility to skip non bussiness accounts

Changed

	Remove docker from core, moved into instapy-docker repo

	Remove quickstart templates and only reference instapy-quickstart

	Restructure README and add new DOCUMENTATION file

Fixed

	“UnboundLocalError: local variable ‘tag’ referenced before assignment” when there is no smart-hastag genereated

	xPath to dialog_address

[0.3.4] - 2019-03-17

Added

	(re) add page_reload, after cookie load, on login_user()

Fixed

	“Failed to load desired amount of users” when trying to read long follower lists

[0.3.3] - 2019-03-14

Added

	Add additional exception catch to Login check

Changed

	Set language on the browser (no clicks required)

Fixed

	Get_active_users hotfix

[0.3.2] - 2019-03-12

Fixed

	Hot fix problems with browser abstraction class

[0.3.1] - 2019-03-12

Fixed

	Removed retry decorator

[0.3.0] - 2019-03-11

Added

	Allowing follow_by_tags to interact with the user

	Context manager to interaction calls in like_by_tags and follow_likers

	Engagement pods feature 🙌

	Smart Hashtags based on locations set_smart_location_hashtags

	Verify action for unfollow and follow actions

	Browser abstraction and Decorator that handles Selenium Browser exceptions by reloading

	Add delay unfollow of follow backers

Changed

	Expose threaded_session of Instapy.end()

Fixed

	follow_likers always fetches zero likers

	Prevent division by zero in validate_username

[0.2.3] - 2019-03-01

Changed

	Made Log in text checking more resilient

[0.2.2] - 2019-02-21

Fixed

	Chromedriver requirement now >= 2.44 instead of == 2.44

[0.2.1] - 2019-02-21

Fixed

	xPath for Log In button

[0.2.0] - 2019-02-18

Added

	Accept pending follow requests for private account

	Feature to follow_by_locations

	Proxy Authentication support for Firefox

Fixed

	Only import instapy-chromedriver package when needed

	Avoid user errors providing user names with caps

	Fix get_active_users wrong behavior on videos

	Bug in CLI argparsing - proxy_port & page_delay are integers and not strings.

	Selectors for finding comments and liking comments on posts

	Temporarily turn off follow for like_by_tags interaction

Changed

	Enable users interact by the comments of their own profiles.

	Moved elements from docs folder to instapy-docs and instapy-research repositories

[0.1.3] - 2019-02-05

Fixed

	Fix “Failed to load desired amount of users!” issue.

Added

	Add Progress Tracker to get_users_through_dialog() function.

	Add Proxy Authentication for Firefox

[0.1.2] - 2019-02-04

Fixed

	Fix for scrollIntoView error.

[0.1.1] - 2019-02-04

Added

	Workspace folders; Now user’s data files will be stored at the workspace folder.

	InstaPy has been published to PyPI; Now, can install/manage it by pip as instapy package.

	Github releases has been initiated; Will be released in-parallel with PyPI deployments.

	Add Universal Testing Framework- tox with pytest & flake8.

	Upgrade Travis CI usage (tox as build script).

	Send messages to Discord #status channel about jobs’ build states from Travis CI.

	Add instapy-chromedriver package if no chromedriver is in path.

	Add argparsing feature. Users are now able to provide credentials (and more) through CLI args.

	Turn off verification based on relationship bounds by default, completely (see #757815f commit).

	Simplify the default quickstart script much more.

[Unreleased] - 2019-01-27

Changed

	Add track post/profile

	Avoid prints for only one user

Fixed

	No posts exception when scraping likes

[Unreleased] - 2019-01-22

Added

	Now set_dont_unfollow_active_users() feature also has a Progress Tracker support.

Fixed

	Fix set_dont_unfollow_active_users() feature completely.

[Unreleased] - 2019-01-17

Changed

	Optimizing Dockerfile for smaller docker image.

Fixed

	Fix “Unable to locate element: …xpath”,”selector”:”//div[text()=’Likes’…” error.

[Unreleased] - 2019-01-16

Fixed

	Fix “Failed to load desired amount of users!” issue.

[Unreleased] - 2019-01-15

Fixed

	Handle A/B-Test for comments (graphql edge).

[Unreleased] - 2019-01-13

Fixed

	Adjust docker-compose.yml according to new Dockerfile.

[Unreleased] - 2019-01-11

Fixed

	Correctly mount Docker volume, make it work properly with chromedriver installed in assets folder.

[Unreleased] - 2019-01-10

Added

	Feature to remove outgoing unapproved follow requests from private accounts.

[Unreleased] - 2019-01-05

Changed

	Resolve security warning with new pyyaml version, updated pyyaml to version 4.2b1.

[Unreleased] - 2019-01-04

Fixed

	Fix for non-authenticated proxies in chrome headless browser.

[Unreleased] - 2019-01-02

Fixed

	User without timestamp will use the timestamp of previous user.

[Unreleased] - 2019-01-01

Changed

	PEP8 layout changes.

[Unreleased] - 2018-12-17

Added

	A new setting - set_do_reply_to_comments() to control replying to comments.

	A new feature - run_time() to get information of how many seconds the session is running; Added to “Sessional Live Report” and can also be manually requested like session.run_time() from quickstart scripts, any time.

Changed

	A few visual changes to source code for PEP8 compliance.

	Rename set_reply_comments() to set_comment_replies() out of revised design.

Fixed

	Fix bug off #3318 which hit python 2 saying, “TypeError: can’t multiply sequence by non-int of type ‘float’” (raised & solved at #3451).

	Fix error occured while liking a comment (raised at #3594).

	Fix Follow-Likers feature which couldn’t fetch likers properly (raised at #3573).

[Unreleased] - 2018-12-16

Added

	Save account progress information into database adding the possibility for external tools to collect and organize the account progress.

[Unreleased] - 2018-12-10

Fixed

	Fix person_id missing in post_unfollow_cleanup() [line 1152].

[Unreleased] - 2018-12-08

Fixed

	Remove https://i.instagram.com/api/v1/users/{}/info/ as it not working and killing the unfollow with error.

	Fix logging uncertain having no userid nor time log, will be important for sync feature.

	Fix get active users when Video have no likes button / no posts in page.

[Unreleased] - 2018-12-08

Added

	Full docker-compose and complex template + documentation.

Fixed

	Fixes likers_from_photo when liked counter is “liked by X and N others”.

[Unreleased] - 2018-12-06

Fixed

	Fix for python 2.7 users, ceil returns a float in python 2.

[Unreleased] - 2018-12-05

Added

	Added mandatory_language (updated check_link definition in like_util).

Fixed

	Add self.aborts for the follow followers and follow following because otherwise InstaPy won’t exit properly on them.

[Unreleased] - 2018-11-28

Added

	A new feature - Interact By Comments to auto-like comments, auto-reply to them, etc. (see README).

	New text analytics - MeaningCloud Sentiment Analysis API & Yandex Translate API (Language Detection & Translation) integrated into InstaPy for doing sophisticated text analysis (see README).

Changed

	Speed up logging in at least 25 (default page_delay) seconds (see #ee6acba commit).

	Upgrades to live_report() feature (“Sessional Live Report” uses it..). Now it is more smarter.

	Lots of visual changes to source code for PEP8 compliance.

	Modify check_authorization() to dismiss redundant navigations to profile pages. The gain is a few seconds (~2-3) saved which is so good.

Fixed

	Fix a little misbehaviour in set_relationship_bounds() with min_posts & max_posts. Now enabled parameter controls the whole setting.

	Update grpcio package’s version in requirements.txt to 1.16.1. Its 1.16.0 had a bug duplicating logger messages.

[Unreleased] - 2018-11-26

Changed

	Switch mandatory_words from ALL to ANY.

[Unreleased] - 2018-11-22

Fixed

	Added location to image_text in the check_link() method of like_util.py, so the script also searches for the mandatory words in location information.

[Unreleased] - 2018-11-17

Fixed

	“Cookie file not found, creating cookie…” bug fixed.

[Unreleased] - 2018-11-07

Changed

	Maintain names: ‘person’ for target user and ‘username’ for our running user.

	Verify private users in get_links_for_username.

	Changed behaviour of validate_username to check if a user is included in the blacklist. If yes will skip it and log why.

[Unreleased] - 2018-11-01

Added

	Interact with tagged images of users, and validation of a user to be optional.

	Use Clarifai to check video content. By default deactivated and should only be used if necessary.

[Unreleased] - 2018-10-29

Added

	This CHANGELOG file to hopefully serve as a useful resource for InstaPy fellas to stay up-to-date with the changes happened so far.

	Custom action delays capability (see README).

	Now follow engine has the same compact action verification procedure used in the unfollow engine.

	Lots of stability in action verification steps which are held at newly added verify_action function.

	New quickstart templates from 11 different people shared at #3033.

Changed

	Now “already followed” state is being tracked by the following status result rather than catching a NoSuchElementException.

Fixed

	Stale element reference error raised at #3173 (occured after #3159).

	Invalid like element issue (occured after IG introduced comment liking to its web interface).

[0.1.0] - 2016-10-12

Added

	Working version with basic features.

	Use Clarifai to check the images for inappropriate content.

Please, don’t dump raw git logs into this file - which is intended for users rather than developers.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at contact.timgrossmann@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Documentation

Table of Contents

	Settings

	Liking

	Commenting

	Emoji Support

	Following

	Smart Hashtags

	Smart Location Hashtags

	Quota Supervisor

	Restricting Likes

	Ignoring Restrictions

	Ignoring Users

	Excluding friends

	Mandatory Words

	Mandatory Language

	Don’t unfollow active users

	Blacklist Campaign

	Simulation

	Skipping user for private account, no profile picture, business account

	Liking based on the number of existing likes a post has

	Commenting based on the number of existing comments a post has

	Commenting based on mandatory words in the description or first comment

	Interactions based on the number of followers and/or following a user has

	Interactions based on the number of posts a user has

	Custom action delays

	Actions

	Like by Tags

	Like by Feeds

	Like by Locations

	Comment by Locations

	Follow by Tags

	Follow by Locations

	Following by a list

	Follow someone else’s followers

	Follow users that someone else is following

	Follow and interact someone else’s followers/following

	Follow the likers of photos of users

	Follow the commenters of photos of users

	Unfollowing

	Interact on posts at given URLs

	Interact with specific users

	Interact with specific users’ tagged posts

	Interact with someone else’s followers

	Interact with users that someone else is following

	Interact by Comments

	Accept pending follow requests

	Remove outgoing follow requests

	Skip based on Profile Bio

	InstaPy Pods

	InstaPy Stories

	Third Party features

	Clarifai ImageAPI

	Text Analytics

	Yandex Translate API

	MeaningCloud Sentiment Analysis API

	Integration with Telegram

	Instance Settings

	Running on a Headless Browser

	Bypass Suspicious Login Attempt

	Use a proxy

	Running in threads

	Relationship tools

	Grab Followers of a user

	Grab Following of a user

	Pick Unfollowers of a user

	Pick Nonfollowers of a user

	Pick Fans of a user

	Pick Mutual Following of a user

	Automate InstaPy

	Windows Task Scheduler

	cron

	Schedule

	Additional Information

	Advanced Installation

	Workspace folders

	Pass arguments by CLI

	Extensions

	Custom geckodriver

	Using one of the templates

	How not to be banned

	Disable Image Loading

	Changing DB location

	Split SQLite DB by Username

	How to avoid python & pip confusion

	Dealing with Selenium Common Exception Issues

Settings

Liking

This method is only needed for the interact_by_... actions.Posts will liked by default when using like_by_... actions.

~70% of the by InstaPy viewed posts will be liked

session.set_do_like(enabled=True, percentage=70)

Commenting

default enabled=False, ~ every 4th image will be commented on

session.set_do_comment(enabled=True, percentage=25)
session.set_comments(['Awesome', 'Really Cool', 'I like your stuff'])

you can also set comments for specific media types (Photo / Video)

session.set_comments(['Nice shot!'], media='Photo')
session.set_comments(['Great Video!'], media='Video')

and you can add the username of the poster to the comment by using

session.set_comments(['Nice shot! @{}'], media='Photo')

Emoji Support

To use an emoji just add an u in front of the opening apostrophe:

session.set_comments([u'This post is 🔥',u'More emojis are always better 💯',u'I love your posts 😍😍😍']);
or
session.set_comments([u'Emoji text codes are also supported :100: :thumbsup: :thumbs_up: \u2764 💯💯']);

Emoji text codes are implemented using 2 different naming codes. A complete list of emojis codes can be found on the Python Emoji Github [https://github.com/carpedm20/emoji/blob/master/emoji/unicode_codes.py], but you can use the alternate shorted naming scheme found for Emoji text codes here [https://www.webpagefx.com/tools/emoji-cheat-sheet]. Note: Every Emoji has not been tested. Please report any inconsistencies.

Following

default enabled=False, follows ~ 10% of the users from the images, times=1
(only follows a user once (if unfollowed again))

session.set_do_follow(enabled=True, percentage=10, times=2)

Smart Hashtags

Generate smart hashtags based on https://displaypurposes.com ranking,
banned and spammy tags are filtered out.
(limit) defines amount limit of generated hashtags by hashtag
(sort) sort generated hashtag list 'top' and 'random' are available
(log_tags) shows generated hashtags before use it
(use_smart_hashtags) activates like_by_tag to use smart hashtags

session.set_smart_hashtags(['cycling', 'roadbike'], limit=3, sort='top', log_tags=True)
session.like_by_tags(amount=10, use_smart_hashtags=True)

Smart Location Hashtags

Generate smart hashtags based on https://displaypurposes.com/map ranking.
Banned and spammy tags are filtered out.

Use_smart_location_hashtags activates like_by_tag to use smart hashtags

session.set_smart_location_hashtags(['204517928/chicago-illinois', '213570652/nagoya-shi-aichi-japan'], radius=20, limit=10)
session.like_by_tags(amount=10, use_smart_location_hashtags=True)

Parameters

radius: Radius around the location in Mileslimit: Defines amount limit of generated hashtags by hashtaglog_tags: Shows generated hashtags before use it (default is True)

Quota Supervisor

Take full control of the actions with the most sophisticated approaches

session.set_quota_supervisor(enabled=True, sleep_after=["likes", "comments_d", "follows", "unfollows", "server_calls_h"], sleepyhead=True, stochastic_flow=True, notify_me=True,
 peak_likes_hourly=57,
 peak_likes_daily=585,
 peak_comments_hourly=21,
 peak_comments_daily=182,
 peak_follows_hourly=48,
 peak_follows_daily=None,
 peak_unfollows_hourly=35,
 peak_unfollows_daily=402,
 peak_server_calls_hourly=None,
 peak_server_calls_daily=4700)

Parameters:

enabled: put True to activate or False to deactivate supervising any time

If you don’t want to supervise likes at all, simply remove peak_likes parameter OR use peak_likes=(None, None).Once likes reach peak, it will jump every other like, yet, will do all available actions (e.g. follow or unfollow).

	Only server calls does not jump, it exits the program once reaches the peak.

Although, you can put server calls to sleep once reaches peak, read sleep_after parameter.

	Every action will be jumped separately after reaching it’s peak, except comments. Cos commenting without a like isn’t welcomed that’s why as like peak is reached, it will jump comments, too.

sleep_after: is used to put InstaPy to sleep after reaching peak rather than jumping the action (or exiting- for server calls)Any action can be included ["likes", "comments", "follows", "unfollows", "server_calls"].As if you want to put sleep only after reaching hourly like peak, put "likes_h" OR put "likes_d" for sleeping only after reaching daily like peak.such as,

	sleep_after=['follows_h'] will sleep after reaching hourly follow peak

	sleep_after=['likes_d', 'follows', 'server_calls_h'] will sleep after reaching daily like peak, follow peaks (hourly and daily) and hourly server call peak.

Notice: there can be either "likes" (for both hourly and daily sleep) OR "likes_h" (for hourly sleep only) OR "likes_d" (for daily sleep only).

Once gone to sleep, it will wake up as new hour/day (according to the interval) arrives AND continue the activity.

sleepyhead: can help to sound more humanly which will wake up a little bit later in a randomly chosen time interval around accurate wake up time.

e.g., if remaining time is 17 minutes, it will sleep 20 minutes instead (random values each time)..

stochastic_flow: can provide smooth peak value generation by your original values.

	Every ~hour/day it will generate peaks at close range around your original peaks (but below them).

e.g., your peak likes hourly is 45, next hour that peak will be 39, the next 43, etc.

notify_me: sends toast notifications (directly to your OS) about the important states of supervisor- sleep, wake up and exit messages.

Mini-Examples:

	Claudio has written a new 😊 quickstart script where it mostly put likes and comments. He wants the program to comment safely cos he is afraid of exceeding hourly & daily comment limits,

session.set_quota_supervisor(enabled=True, peak_comments_daily=21, peak_comments_hourly=240)

That’s it! When it reaches the comments peak, it will just jump all of the comments and will again continue to put comments when is available [in the next hour/day].

	Alicia has a 24/7 🕦 working quickstart script and would like to keep server calls in control to AVOID excessive amount of requests to the server in hourly basis, also,

	wants the program to sleep after reaching hourly server calls peak: adds "server_calls_h" into sleep_after parameter

	wants the program to wake up a little bit later than real sleep time [once reaches the peaks]: uses sleepyhead=True parameter

session.set_quota_supervisor(enabled=True, peak_server_calls_daily=490, sleep_after=["server_calls_h"], sleepyhead=True)

It will sleep after hourly server calls reaches its peak given - 490 and never allow one more extra request to the server out of the peak and wake up when new hour comes in WHILST daily server calls will not be supervised at all- as Alicia wishes.

	Sam has a casual 🦆 quickstart script full of follow/unfollow features and he wants to do it safely, also,

	is gonna run on local computer and wants to receive toast notifications 😋 on supervising states: uses notify_me parameter

	wants QS to randomize his pre-defined peak values [at close range] each new hour/day: uses stochastic_flow=True parameter

	wants the program to sleep after reaching hourly follow peak and daily unfollow peak: adds "follows_h" and "unfollows_d"into sleep_after parameter

session.set_quota_supervisor(enabled=True, peak_follows_daily=560, peak_follows_hourly=56, peak_unfollows_hourly=49, peak_unfollows_daily=550, sleep_after=["follows_h", "unfollows_d"], stochastic_flow=True, notify_me=True)

Big Hint: Find your NEED 🤔 and supervise it!

	EITHER fully configure QS to supervise all of the actions all time

	OR just supervise the desired action(s) in desired interval(s) [hourly and/or daily] per your need

Restricting Likes

session.set_dont_like(['#exactmatch', '[startswith', ']endswith', 'broadmatch'])

.set_dont_like searches the description and owner comments for hashtags and
won’t like the image if one of those hashtags are in there

You have 4 options to exclude posts from your InstaPy session:

	words starting with # will match only exact hashtags (e. g. #cat matches #cat, but not #catpic)

	words starting with [will match all hashtags starting with your word (e. g. [cat matches #catpic, #caturday and so on)

	words starting with] will match all hashtags ending with your word (e. g.]cat matches #mycat, #instacat and so on)

	words without these prefixes will match all hashtags that contain your word regardless if it is placed at the beginning, middle or end of the hashtag (e. g. cat will match #cat, #mycat, #caturday, #rainingcatsanddogs and so on)

Ignoring Restrictions

will ignore the don't like if the description contains
one of the given words

session.set_ignore_if_contains(['glutenfree', 'french', 'tasty'])

Ignoring Users

completely ignore liking images from certain users

session.set_ignore_users(['random_user', 'another_username'])

Excluding friends

will prevent commenting on and unfollowing your good friends (the images will
still be liked)

session.set_dont_include(['friend1', 'friend2', 'friend3'])

Mandatory Words

session.set_mandatory_words(['#food', '#instafood'])

.set_mandatory_words searches the description, location and owner comments for words and
will like the image if any of those words are in there

Mandatory Language

session.set_mandatory_language(enabled=True, character_set=['LATIN'])
session.set_mandatory_language(enabled=True, character_set=['LATIN', 'CYRILLIC'])

.set_mandatory_language restrict the interactions, liking and following if any character of the description is outside of the character sets you selected (the location is not included and non-alphabetic characters are ignored). For example if you choose LATIN, any character in Cyrillic will flag the post as inappropriate. If you choose ‘LATIN’ and ‘CYRILLIC’, any other character sets will flag the post as inappropriate as well.

	Available character sets: LATIN, GREEK, CYRILLIC, ARABIC, HEBREW, CJK, HANGUL, HIRAGANA, KATAKANA and THAI

Don’t unfollow active users

Prevents unfollow followers who have liked one of your latest 5 posts

session.set_dont_unfollow_active_users(enabled=True, posts=5)

Blacklist Campaign

Controls your interactions by campaigns.
ex. this week InstaPy will like and comment interacting by campaign called
'soccer', next time InstaPy runs, it will not interact again with users in
blacklist
In general, this means that once we turn off the soccer_campaign again, InstaPy
will have no track of the people it interacted with about soccer.
This will help you target people only once but several times for different campaigns

session.set_blacklist(enabled=True, campaign='soccer_campaign')
session.set_do_comment(True, percentage=50)
session.set_comments(['Neymar is better than CR7', 'Soccer is cool'])
session.like_by_tags(['soccer', 'cr7', 'neymar'], amount=100, media='Photo')

Simulation

During indirect data retrieval, simulation happens to provide a genuine activity flow triggered by a wise algorithm.

To turn off simulation or to decrease its occurrence frequency, use set_simulation setting:

#use the value of `False` to permanently turn it off
session.set_simulation(enabled=False)

#use a desired occurrence percentage
session.set_simulation(enabled=True, percentage=66)

Skipping user for private account, no profile picture, business account

This is used to skip users with certain condition

session.set_skip_users(skip_private=True,
 private_percentage=100,
 skip_no_profile_pic=False,
 no_profile_pic_percentage=100,
 skip_business=False,
		 skip_non_business=False,
 business_percentage=100,
 skip_business_categories=[],
 dont_skip_business_categories=[])

Skip private account

This is done by default

session.set_skip_users(skip_private=True,
 private_percentage=100)

Will skip users that have private account, even if are followed by running account.
You can set a percentage of skipping:
private_percentage= 100 always skip private users
private_percentage= 0 never skip private users (so set skip_private=False)

Skip users that don’t have profile picture

session.set_skip_users(skip_private=True,
 skip_no_profile_pic=True,
 no_profile_pic_percentage=100)

Will skip users that haven’t uploaded yet a profile picture
You can set a percentage of skipping:
no_profile_pic_percentage= 100 always skip users without profile picture
no_profile_pic_percentage= 0 never skip users without profile picture (so set skip_no_profile_pic=False)

Skip users that have business account

session.set_skip_users(skip_private=True,
 skip_no_profile_pic=True,
		 skip_business=True,
		 business_percentage=100)

This will skip all users that have business account activated.
You can set a percentage of skipping:
business_percentage= 100 always skip business users
business_percentage= 0 never skip business users (so set skip_business=False)

N.B.: This business_percentage parameter works only if no skip_business_categories or dont_skip_business_categories are provided!

Skip only users that have certain business account

session.set_skip_users(skip_private=True,
 skip_no_profile_pic=True,
		 skip_business=True,
		 skip_business_categories=['Creators & Celebrities'])

This will skip all business accounts that have category in given list
N.B. In skip_business_categories you can add more than one category

Skip all business accounts, except from list given

session.set_skip_users(skip_private=True,
 skip_no_profile_pic=True,
		 skip_business=True,
		 dont_skip_business_categories=['Creators & Celebrities'])

This will skip all business accounts except the ones that have a category that matches one item in the list of dont_skip_business_categories
N.B. If both dont_skip_business_categories and skip_business_categories, InstaPy will skip only business accounts in the list given from skip_business_categories.

A list of all availlable business categories can be found here [https://github.com/InstaPy/instapy-docs/blob/master/BUSINESS_CATEGORIES]

Skip all non business and bussines accounts, except from list given

session.set_skip_users(skip_private=True,
 skip_no_profile_pic=True,
 skip_business=True,
 skip_non_business=True,
 dont_skip_business_categories=['Creators & Celebrities'])

Thiw will skip all non business and business accounts except categories in dont_skip_business_categories.

Liking based on the number of existing likes a post has

This is used to check the number of existing likes a post has and if it either exceed the maximum value set OR does not pass the minimum value set then it will not like that post

session.set_delimit_liking(enabled=True, max_likes=1005, min_likes=20)

Use enabled=True to activate and enabled=False to deactivate it, any timemax is the maximum number of likes to comparemin is the minimum number of likes to compare

You can use both max & min values OR one of them as you desire, just put the value of None to the one you don’t want to check for., e.g.,

session.set_delimit_liking(enabled=True, max_likes=242, min_likes=None)

at this configuration above, it will not check number of the existing likes against minimum value

	Example:

session.set_delimit_liking(enabled=True, max_likes=500, min_likes=7)

Now, if a post has more existing likes than maximum value of 500, then it will not like that post,
similarly, if that post has less existing likes than the minimum value of 7, then it will not like that post…

Commenting based on the number of existing comments a post has

This is used to check the number of existing comments a post has and if it either exceed the maximum value set OR does not pass the minimum value set then it will not comment on that post

session.set_delimit_commenting(enabled=True, max_comments=32, min_comments=0)

Use enabled=True to activate and enabled=False to deactivate it, any timemax is the maximum number of comments to comparemin is the minimum number of comments to compare

You can use both max & min values OR one of them as you desire, just leave it out or put it to None to the one you don’t want to check for., e.g.,

session.set_delimit_commenting(enabled=True, min_comments=4)
or
session.set_delimit_commenting(enabled=True, max_comments=None, min_comments=4)

at this configuration above, it will not check number of the existing comments against maximum value

	Example:

session.set_delimit_commenting(enabled=True, max_comments=70, min_comments=5)

Now, if a post has more comments than the maximum value of 70, then it will not comment on that post,
similarly, if that post has less comments than the minimum value of 5, then it will not comment on that post…

Commenting based on mandatory words in the description or first comment

This is used to check the description of the post and the first comment of the post (some users only put tags in the comments instead of the post description) for the occurence of mandatory words before commenting. If none of the mandatory words is present, the post will not be commented.

This feature is helpful when you want to comment only on specific tags.

session.set_delimit_commenting(enabled=True, comments_mandatory_words=['cat', 'dog'])

This will only comment on posts that contain either cat or dog in the post description or first comment.

Interactions based on the number of followers and/or following a user has

This is used to check the number of followers and/or following a user has and if these numbers either exceed the number set OR does not pass the number set OR if their ratio does not reach desired potency ratio then no further interaction happens

session.set_relationship_bounds(enabled=True,
				 potency_ratio=1.34,
				 delimit_by_numbers=True,
				 max_followers=8500,
				 max_following=4490,
				 min_followers=100,
				 min_following=56,
				 min_posts=10,
 max_posts=1000)

Use enabled=True to activate this feature, and enabled=False to deactivate it, any timedelimit_by_numbers is used to activate & deactivate the usage of max & min valuespotency_ratio accepts values in 2 formats according to your style: positive & negative

	potency_ratio with POSITIVE values can be used to route interactions to only potential (real) users WHOSE followers count is higher than following count (e.g., potency_ratio = 1.39)find desired potency_ratio with this formula: potency_ratio == followers count / following count (use desired counts)

e.g., target user has 5000 followers & 4000 following and you set potency_ratio=1.35.Now it will not interact with this user, cos the user’s relationship ratio is 5000/4000==1.25 and 1.25 is below desired potency_ratio of 1.35

	potency_ratio with NEGATIVE values can be used to route interactions to only massive followers WHOSE following count is higher than followers count (e.g., potency_ratio = -1.42)find desired potency_ratio with this formula: potency_ratio == following count / followers count (use desired counts)

e.g., target user has 2000 followers & 3000 following and you set potency_ratio = -1.7.Now it will not interact with this user, cos the user’s relationship ratio is 3000/2000==1.5 and 1.5 is below desired potency_ratio of 1.7 (note that, negative - sign is only used to determine your style, nothing more)

There are 3 COMBINATIONS available to use:

	1. You can use potency_ratio or not (e.g., potency_ratio=None, delimit_by_numbers=True) - will decide only by your pre-defined max & min values regardless of the potency_ratio

session.set_relationship_bounds(enabled=True, potency_ratio=None, delimit_by_numbers=True, max_followers=22668, max_following=10200, min_followers=400, min_following=240)

	2. You can use only potency_ratio (e.g., potency_ratio=-1.5, delimit_by_numbers=False) - will decide per potency_ratio regardless of the pre-defined max & min values

session.set_relationship_bounds(enabled=True, potency_ratio=-1.5, delimit_by_numbers=False, max_followers=400701, max_following=90004, min_followers=963, min_following=2310)

apparently, once delimit_by_numbers gets False value, max & min values do not matter

	3. You can use both potency_ratio and pre-defined max & min values together (e.g., potency_ratio=2.35, delimit_by_numbers=True) - will decide per potency_ratio & your pre-defined max & min values

session.set_relationship_bounds(enabled=True, potency_ratio=2.35, delimit_by_numbers=True, max_followers=10005, max_following=24200, min_followers=77, min_following=500)

All of the 4 max & min values are able to freely operate, e.g., you may want to only delimit max_followers and min_following (e.g., max_followers=52639, max_following=None, min_followers=None, min_following=2240)

session.set_relationship_bounds(enabled=True, potency_ratio=-1.44, delimit_by_numbers=True, max_followers=52639, max_following=None, min_followers=None, min_following=2240)

Interactions based on the number of posts a user has

This is used to check number of posts of a user and skip if they aren’t in the boundaries provided

session.set_relationship_bounds(min_posts=10,
 max_posts=1000)

Users that have more than 1000 posts or less than 10 will be discarded

N.B.: It is up to the user to check that min_posts < max_posts

You can also set only one parameter at a time:

session.set_relationship_bounds(max_posts=1000)

Will skip only users that have more than 1000 posts in their feed

Custom action delays

After doing each action- like, comment, follow, unfollow or story, there is a sleep delay to provide smooth activity flow.

But you can set a custom sleep delay for each action yourself by using the set_action_delays setting!

session.set_action_delays(enabled=True,
 like=3,
 comment=5,
 follow=4.17,
 unfollow=28,
 story=10)

Now it will sleep 3 seconds after putting every single like, 5 seconds for every single comment and similarly for the others..

You can also customize the sleep delay of e.g. only the likes:

session.set_action_delays(enabled=True, like=3)

Wanna go smarter? - use random_range_from and random_range_to

By just enabling randomize parameter, you can enjoy having random sleep delays at desired range, e.g.,

session.set_action_delays(enabled=True, like=5.2, randomize=True, random_range_from=70, random_range_to=140)

There, it will have a random sleep delay between 3.64 (70% of 5.2) and 7.28(140% of 5.2) seconds each time after putting a like.

	You can also put only the max range as- random_range_from=None, random_range_to=200Then, the min range will automatically be 100%- the same time delay itself.And the random sleep delays will be between 5.2 and 10.4 seconds.

	If you put only the min range as- random_range_from=70, random_range_to=NoneThen, the max range will automatically be 100%- the same time delay itself.And the random sleep delays will be between 3.64 and 5.2 seconds.

	But if you put None to both min & max ranges as- random_range_from=None, random_range_to=NoneThen no randomization will occur and the sleep delay will always be 5.2 seconds.

	Heh! You mistakenly put min range instead of max range as- random_range_from=100, random_range_to=70?No worries. It will automatically take the smaller number as min and the bigger one as max.

	Make sure to use the values bigger than 0 for the random_rage percentages.E.g. random_range_from=-10, random_range_to=140 is an invalid range and no randomization will happen.

	You can provide floating point numbers as percentages, too!random_range_from=70.7, random_range_to=200.45 will work greatly.

Note: There is a minimum default delay for each action and if you enter a smaller time of delay than the default value, then it will pick the default value. You can turn that behaviour off with safety_match parameter.

session.set_action_delays(enabled=True, like=0.15, safety_match=False)

It has been held due to safety considerations. Cos sleeping a respective time after doing actions- for example ~10 seconds after an unfollow, is very important to avoid possible temporary blocks and if you might enter e.g. 3 seconds for that without realizing the outcome…

Actions

Like by Tags

Like posts based on hashtags
session.like_by_tags(['natgeo', 'world'], amount=10)

Parameters:

tags: The tags that will be searched for and posts will be liked from

amount: The amount of posts that will be liked

skip_top_posts: Determines whether the first 9 top posts should be liked or not (default is True)

use_smart_hashtags: Make use of the smart hashtag feature

use_smart_location_hashtags: Make use of the smart location hashtag feature

interact: Defines whether the users of the given post should also be interacted with (needs set_user_interact to be also set)

randomize: Determines whether the first amount of posts should be liked or a random selection.

media: Determines which media should be liked, Photo or Video (default is None which is all)

Like by Tags and interact with user

Like posts based on hashtags and like 3 posts of its poster
session.set_user_interact(amount=3, randomize=True, percentage=100, media='Photo')
session.like_by_tags(['natgeo', 'world'], amount=10, interact=True)

Like by Feeds

This is used to perform likes on your own feeds
amount=100 specifies how many total likes you want to perform
randomize=True randomly skips posts to be liked on your feed
unfollow=True unfollows the author of a post which was considered
inappropriate interact=True visits the author's profile page of a
certain post and likes a given number of his pictures, then returns to feed

session.like_by_feed(amount=100, randomize=True, unfollow=True, interact=True)

Like by Locations

session.like_by_locations(['224442573/salton-sea/'], amount=100)
or
session.like_by_locations(['224442573'], amount=100)
or include media entities from top posts section

session.like_by_locations(['224442573'], amount=5, skip_top_posts=False)

You can find locations for the like_by_locations function by:

	Browsing https://www.instagram.com/explore/locations/

	Regular instagram search.

Example:

	Search ‘Salton Sea’ and select the result with a location icon

	The url is: https://www.instagram.com/explore/locations/224442573/salton-sea/

	Use everything after ‘locations/’ or just the number

Comment by Locations

session.comment_by_locations(['224442573/salton-sea/'], amount=100)
or
session.comment_by_locations(['224442573'], amount=100)
or include media entities from top posts section

session.comment_by_locations(['224442573'], amount=5, skip_top_posts=False)

This method allows commenting by locations, without liking posts. To get locations follow instructions in ‘Like by Locations’

Follow by Tags

Follow user based on hashtags (without liking the image)

session.follow_by_tags(['tag1', 'tag2'], amount=10)

Parameters:

tags: The tags that will be searched for and posts will be liked from

amount: The amount of posts that will be liked

skip_top_posts: Determines whether the first 9 top posts should be liked or not (default is True)

use_smart_hashtags: Make use of the smart hashtag feature

use_smart_location_hashtags: Make use of the smart location hashtag feature

interact: Defines whether the users of the given post should also be interacted with (needs set_user_interact to be also set)

randomize: Determines whether the first amount of posts should be liked or a random selection.

media: Determines which media should be liked, Photo or Video (default is None which is all)

Follow by Locations

session.follow_by_locations(['224442573/salton-sea/'], amount=100)
or
session.follow_by_locations(['224442573'], amount=100)
or include media entities from top posts section

session.follow_by_locations(['224442573'], amount=5, skip_top_posts=False)

This method allows following by locations, without liking or commenting posts. To get locations follow instructions in ‘Like by Locations’

Following by a list

This will follow each account from a list of instagram nicknames

follow_by_list(followlist=['samantha3', 'larry_ok'], times=1, sleep_delay=600, interact=False)

only follows a user once (if unfollowed again) would be useful for the precise targetingsleep_delay is used to define break time after some good following (averagely ~10 follows)For example, if one needs to get followbacks from followers of a chosen account/group of accounts.

accs = ['therock','natgeo']
session.follow_by_list(accs, times=1, sleep_delay=600, interact=False)

	You can also interact with the followed users by enabling interact=True which will use the configuration of set_user_interact setting:

session.set_user_interact(amount=4,
				 percentage=50,
 randomize=True,
 media='Photo')
session.follow_by_list(followlist=['samantha3', 'larry_ok'], times=2, sleep_delay=600, interact=True)

Follow someone else’s followers

Follows the followers of each given user
The usernames can be either a list or a string
The amount is for each account, in this case 30 users will be followed
If randomize is false it will pick in a top-down fashion

session.follow_user_followers(['friend1', 'friend2', 'friend3'], amount=10, randomize=False)

default sleep_delay=600 (10min) for every 10 user following, in this case
sleep for 60 seconds

session.follow_user_followers(['friend1', 'friend2', 'friend3'], amount=10, randomize=False, sleep_delay=60)

Note: simulation takes place while running this feature.

Follow users that someone else is following

Follows the people that a given users are following
The usernames can be either a list or a string
The amount is for each account, in this case 30 users will be followed
If randomize is false it will pick in a top-down fashion

session.follow_user_following(['friend1', 'friend2', 'friend3'], amount=10, randomize=False)

default sleep_delay=600 (10min) for every 10 user following, in this case
sleep for 60 seconds

session.follow_user_following(['friend1', 'friend2', 'friend3'], amount=10, randomize=False, sleep_delay=60)

Note: simulation takes place while running this feature.

Follow and interact someone else’s followers/following

For 50% of the 30 newly followed, move to their profile
and randomly choose 5 pictures to be liked.
Take into account the other set options like the comment rate
and the filtering for inappropriate words or users

session.set_user_interact(amount=5, randomize=True, percentage=50, media='Photo')
session.follow_user_followers(['friend1', 'friend2', 'friend3'], amount=10, randomize=False, interact=True)

Follow the likers of photos of users

This will follow the people those liked photos of given list of users

session.follow_likers(['user1' , 'user2'], photos_grab_amount = 2, follow_likers_per_photo = 3, randomize=True, sleep_delay=600, interact=False)

in this case 2 random photos from each given user will be analyzed and 3 people who liked them will be followed, so 6 follows in totalThe usernames can be any listThe photos_grab_amount is how many photos will I grat from users profile and analyze who liked itThe follow_likers_per_photo is how many people to follow per each photorandomize=False will take photos from newes, true will take random from first 12sleep_delay is used to define break time after some good following (averagely ~10 follows)

	You can also interact with the followed users by enabling interact=True which will use the configuration of set_user_interact setting:

session.set_user_interact(amount=2,
				 percentage=70,
 randomize=True,
 media='Photo')
session.follow_likers(['user1' , 'user2'], photos_grab_amount = 2, follow_likers_per_photo = 3, randomize=True, sleep_delay=600, interact=True)

Follow the commenters of photos of users

This will follow the people those commented on photos of given list of users

session.follow_commenters(['user1', 'user2', 'user3'], amount=100, daysold=365, max_pic = 100, sleep_delay=600, interact=False)

in this case (max 100 newest photos & maximum 365 days old) from each given user will be analyzed and 100 people who commented the most will be followedThe usernames can be any listThe amount is how many people to followThe daysold will only take commenters from photos no older than daysold daysThe max_pic will limit number of photos to analyzesleep_delay is used to define break time after some good following (averagely ~10 follows)

	You can also interact with the followed users by enabling interact=True which will use the configuration of set_user_interact setting:

session.set_user_interact(amount=3,
				 percentage=32,
 randomize=True,
 media='Video')
session.follow_commenters(['user1', 'user2', 'user3'], amount=100, daysold=365, max_pic = 100, sleep_delay=600, interact=True)

Unfollowing

Unfollows the accounts you’re following

It will unfollow ~10 accounts and sleep for ~10 minutes and then will continue to unfollow…

There are 4 Unfollow methods available to use:

|> customList |> InstapyFollowed |> nonFollowers |> allFollowing

1 - Unfollow specific users from a CUSTOM list (has 2 tracks- "all" and "nonfollowers"):when track is "all", it will unfollow all of the users in a given list;

custom_list = ["user_1", "user_2", "user_49", "user332", "user50921", "user_n"]
session.unfollow_users(amount=84, custom_list_enabled=True, custom_list=custom_list, custom_list_param="all", style="RANDOM", unfollow_after=55*60*60, sleep_delay=600)

if track is "nonfollowers", it will unfollow all of the users in a given list WHO are not following you back;

custom_list = ["user_1", "user_2", "user_49", "user332", "user50921", "user_n"]
session.unfollow_users(amount=84, custom_list_enabled=True, custom_list=custom_list, custom_list_param="nonfollowers", style="RANDOM", unfollow_after=55*60*60, sleep_delay=600)

	PRO: customList method can take any kind of iterable container, such as list, tuple or set.

2 - Unfollow the users WHO was followed by InstaPy (has 2 tracks- "all" and "nonfollowers"):again, if you like to unfollow all of the users followed by InstaPy, use the track- "all";

session.unfollow_users(amount=60, instapy_followed_enabled=True, instapy_followed_param="all", style="FIFO", unfollow_after=90*60*60, sleep_delay=501)

but if you like you unfollow only the users followed by InstaPy WHO do not follow you back, use the track- "nonfollowers";

session.unfollow_users(amount=60, instapy_followed_enabled=True, instapy_followed_param="nonfollowers", style="FIFO", unfollow_after=90*60*60, sleep_delay=501)

3 - Unfollow the users WHO do not follow you back:

session.unfollow_users(amount=126, nonFollowers=True, style="RANDOM", unfollow_after=42*60*60, sleep_delay=655)

4 - Just unfollow, regardless of a user follows you or not:

session.unfollow_users(amount=40, allFollowing=True, style="LIFO", unfollow_after=3*60*60, sleep_delay=450)

Parameters (all of these parameters apply to all of the 4 methods available):

styleYou can choose unfollow style as "FIFO" (First-Input-First-Output) OR "LIFO" (Last-Input-First-Output) OR "RANDOM".

	with "FIFO", it will unfollow users in the exact order they are loaded ("FIFO" is the default style unless you change it);

	with "LIFO” it will unfollow users in the reverse order they were loaded;

	with "RANDOM" it will unfollow users in the shuffled order;

unfollow_afterBy using this, you can unfollow users only after following them certain amount of time.it will help to provide seamless unfollow activity without the notice of the target userTo use it, just add unfollow_after parameter with the desired time interval, e.g.,

session.unfollow_users(amount=94, instapy_followed_enabled=True, instapy_followed_param="all", style="RANDOM", unfollow_after=48*60*60, sleep_delay=600)

will unfollow users only after following them 48 hours (2 days).

	Since unfollow_afters value is in seconds, you can simply give it unfollow_after=3600 to unfollow after 3600 seconds.Yeah, values kind of 1*60*60- which is also equal to 1 hour or 3600 seconds, is much more easier to use.

Sure if you like to not use it, give the value of None- unfollow_after=None.

sleep_delaySleep delay sets the time it will sleep after every ~10 unfollows (default delay is ~10 minutes).

NOTE: You should know that, in one RUN, unfollow_users feature can take only one method from all 4 above.That’s why, it is best to disable other 3 methods while using a one:

session.unfollow_users(amount=200, custom_list_enabled=True, custom_list=["user1", "user2", "user88", "user200"], instapy_followed_enabled=False, nonFollowers=False, allFollowing=False, style="FIFO", unfollow_after=22*60*60, sleep_delay=600)

here the unfollow method- customList is usedOR just keep the method you want to use and remove other 3 methods from the feature

session.unfollow_users(amount=200, allFollowing=True, style="FIFO", unfollow_after=22*60*60, sleep_delay=600)

here the unfollow method- alFollowing is used

Interact on posts at given URLs

Like, comment, follow on the post in the links provided, also can interact the owner of the post

session.interact_by_URL(urls=["some/URL/1", "some/URL/2" "other/URL"], randomize=True, interact=True)

To use, define all of the interaction settings and start the feature right away!

#define interaction settings
session.set_do_like(enabled=True, percentage=94)
session.set_do_comment(enabled=True, percentage=24)
session.set_comments(["Masterful shot", "Chilling!", "Unbelievably great..."])
session.set_do_follow(enabled=True, percentage=44)
session.set_user_interact(amount=6, randomize=True, percentage=72, media='Photo')

#start the feature
session.interact_by_URL(urls=["Fv0J4AJ3Y7r/?taken-at=628416252", "Vb0D4bJgY7r" "Dj0J4VJgY7r"], randomize=True, interact=True)

Parameters:

urls:Contains the URLs of the posts to be interacted.

	You can provide URLs in these formats:full: "https://www.IG.com/p/Aj0J4bJDY7r/?taken-at=128316221"just post link: "https://www.IG.com/p/Aj0J4bJDY7r/"just post handle: "Aj0J4bJDY7r/?taken-at=128316221"just post ID: "Aj0J4bJDY7r"

randomize:Shuffles the order of the URLs in the given list before starts to interact.

interact:Use it if you like to also interact the post owner after doing interactions on the post itself.

Interact with specific users

Interact with specific users
set_do_like, set_do_comment, set_do_follow are applicable

session.set_do_follow(enabled=False, percentage=50)
session.set_comments(["Cool", "Super!"])
session.set_do_comment(enabled=True, percentage=80)
session.set_do_like(True, percentage=70)
session.interact_by_users(['user1', 'user2', 'user3'], amount=5, randomize=True, media='Photo')

Interact with specific users’ tagged posts

Interact with specific users' tagged posts
set_do_like, set_do_comment, set_do_follow are applicable

session.set_do_follow(enabled=False, percentage=50)
session.set_comments(["Cool", "Super!"])
session.set_do_comment(enabled=True, percentage=80)
session.set_do_like(True, percentage=70)
session.interact_by_users_tagged_posts(['user1', 'user2', 'user3'], amount=5, randomize=True, media='Photo')

Interact with someone else’s followers

Interact with the people that a given user is followed by
set_do_comment, set_do_follow and set_do_like are applicable

session.set_user_interact(amount=5, randomize=True, percentage=50, media='Photo')
session.set_do_follow(enabled=False, percentage=70)
session.set_do_like(enabled=False, percentage=70)
session.set_comments(["Cool", "Super!"])
session.set_do_comment(enabled=True, percentage=80)
session.interact_user_followers(['natgeo'], amount=10, randomize=True)

Note: simulation takes place while running this feature.

Interact with users that someone else is following

Interact with the people that a given user is following
set_do_comment, set_do_follow and set_do_like are applicable

session.set_user_interact(amount=5, randomize=True, percentage=50, media='Photo')
session.set_do_follow(enabled=False, percentage=70)
session.set_do_like(enabled=False, percentage=70)
session.set_comments(["Cool", "Super!"])
session.set_do_comment(enabled=True, percentage=80)
session.interact_user_following(['natgeo'], amount=10, randomize=True)

Note: simulation takes place while running this feature.

Interact by Comments

Like comments on posts, reply to them and then interact by the users whose comment was liked on the post

session.interact_by_comments(usernames=["somebody", "other buddy"],
 posts_amount=10,
 comments_per_post=5,
 reply=True,
 interact=True,
 randomize=True,
 media="Photo")

Parameters

usernames
: A list containing the usernames of users on WHOSE posts’ comments will be interacted;

posts_amount
: Number of the posts to get from each user for interacting by comments;

comments_per_post
: Choose how many comments to interact (like and then reply) on each post;

reply
: Choose if it should reply to comments;

interact
: Use if you also like to interact the commenters after finishing liking (and then replying to) comments on the post;

randomize
: Shuffles the order of the posts from users’ feed and comments in the given post;

media
: Choose the type of media to be interacted - "Photo" for photos, "Video" for videos, None for any media;

Usage

To use, set replying and interaction configuration(s)

session.set_do_reply_to_comments(enabled=True, percentage=14)
session.set_comment_replies(replies=[u"😎😎😎", u"😁😁😁😁😁😁😁💪🏼", u"😋🎉", "😀🍬", u"😂😂😂👈🏼👏🏼👏🏼", u"🙂🙋🏼‍♂️🚀🎊🎊🎊", u"😁😁😁", u"😂", u"🎉", u"😎", u"🤓🤓🤓🤓🤓", u"👏🏼😉"],
 media="Photo")

session.set_user_interact(amount=2, percentage=70, randomize=False, media="Photo")
also configure [at least] liking to be used while interacting with the commenters ...
session.set_do_like(enabled=True, percentage=94)

start the feature
session.interact_by_comments(usernames=["somebody", "other.buddy"], posts_amount=10, comments_per_post=5, reply=True, interact=True, randomize=True, media="Photo")

Note: To be able to reply to comments, you have to turn on text analytics- Yandex & MeaningCloud.So that they will analyze the content of comments and if it is appropriate, will send a reply to the comment.To configure those text analytics, see the usage in their sections.

There are 3 COMBINATIONS available to use regarding text analysis:a-) ONLY Sentiment Analysis;MeaningCloud must be turned on and Yandex must be enabled with a valid API key,

session.set_use_meaningcloud(enabled=True, license_key='', polarity="P")
session.set_use_yandex(enabled=True, API_key='')

b-) ONLY Language Match;
Yandex must be turned on,

session.set_use_yandex(enabled=True, API_key='', match_language=False, language_code="en")

c-) BOTH Sentiment Analysis and Language Match;
MeaningCloud and Yandex must be turned on,

session.set_use_meaningcloud(enabled=True, license_key='', polarity="P")
session.set_use_yandex(enabled=True, API_key='', match_language=True, language_code="en")

If you have followed any of those 3 text analysis combinations:It will first analyze comments’ content and if it is appropriate, then it will first like, then will reply to it.All those inappropriate comments will neither be liked, nor replied to.

If you have not followed any of those 3 text analysis combinations OR misconfigured them:Comments’ content will not be able to be analyzed and that’s why no any comments will be replied.Yet, it will like all of the comments that are available.

In conclusion, the whole block SHOULD look like this,

session.set_use_meaningcloud(enabled=True, license_key='', polarity="P")
session.set_use_yandex(enabled=True, API_key='', match_language=True, language_code="en")

session.set_do_comment(enabled=True, percentage=14)
session.set_comment_replies(replies=[u"😎😎😎", u"😁😁😁😁😁😁😁💪🏼"], media="Photo")

session.set_user_interact(amount=2, percentage=70, randomize=False, media="Photo")
session.set_do_like(enabled=True, percentage=100)

session.interact_by_comments(usernames=["somebody", "other.buddy"], posts_amount=10, comments_per_post=5, reply=True, interact=True, randomize=True, media="Photo")

Extras

	comments from the poster are ignored (those comments are mostly poster’s replies);

	owner’s (logged in user) comments are also ignored;

	if the commenter is in blacklist or ignored_users list, that comment will also be ignored;

	it will take only one comment from each unique commenter;

	as if there are any usable comments, it will first like the post itself before interacting by comments cos liking comments and replying to them without liking the post can look spammy;

	it will reply to a comment only after liking it;

	it will not send the same reply again on overall posts per each username in the list provided by you;

PROs

	you can use this feature to auto-like comments, auto-reply to them on your own posts;

	else than interacting by the comments in your own posts, you can use this feature to like lots of comments from other users’ posts, reply to some of them and interact by those users just after liking & replying to their comments;

CONs

	liking a comment doesn’t fill up your like quota, but replying to a comment does it to the comment quota. Try to compensate it in your style and do not overuse;

	using auto-reply capability of this feature can result in unwanted miscommunication between you and the commenter IN CASE OF you do not make an efficient use of text analytics;

Accept pending follow requests

session.accept_follow_requests(amount=100, sleep_delay=1)

amountThe maximum amount of follow requests that will be accepted.

sleep_delaySleep delay sets the time it will sleep after every accepted request (_default delay is ~ 1 second).

Remove outgoing follow requests

Remove outgoing unapproved follow requests from private accounts

session.remove_follow_requests(amount=200, sleep_delay=600)

InstaPy Pods

In case you are unfamiliar with the concept do read a little. Here’s a blog to learn more about Pods [https://blog.hubspot.com/marketing/instagram-pods]

photo_comments = ['Nice shot! @{}',
 'I love your profile! @{}',
 'Your feed is an inspiration :thumbsup:',
 'Just incredible :open_mouth:',
 'What camera did you use @{}?',
 'Love your posts @{}',
 'Looks awesome @{}',
 'Getting inspired by you @{}',
 ':raised_hands: Yes!',
 'I can feel your passion @{} :muscle:']

session = InstaPy()

with smart_run(session):
 session.set_comments(photo_comments, media='Photo')
 session.join_pods()

Parameters:

topic:Topic of the posts to be interacted with. general by default.

Note : Topics allowed are {‘general’, ‘fashion’, ‘food’, ‘travel’, ‘sports’, ‘entertainment’}.

engagement_mode:
Desided engagement mode for your posts. There are four levels of engagement modes ‘no_comments’, ‘light’, ‘normal’ and ‘heavy’(normal by default). Setting engagement_mode to ‘no_comments’ makes you receive zero comments on your posts from pod members, ‘light’ encourages approximately 10% of pod members to comment on your post, similarly it’s around 30% and 90% for ‘normal’ and ‘heavy’ modes respectively. Note: Liking, following or any other kind of engagements doesn’t follow these modes.

Skip based on profile bio

session.set_skip_users(skip_bio_keyword = ['free shipping',' Order', 'visa', 'paypal'])

This will skip all users that have one these keywords on their bio.

Instapy Stories

Watching Stories with interact

Will add story watching while interacting with users

session.set_do_story(enabled = True, percentage = 70, simulate = True)

simulate:
If set to True InstaPy will simulate watching the stories (you won’t see it in the browser), we just send commands to Instagram saying we have watched the stories.
If set to False Instapy will perform the exact same action as a human user (clicking on stories, waiting until watching finishes, etc…)

Please note: simulate = False is the safest settings as it fully disables all additional, simulated interactions

Watch stories by Tags

Will watch up to 20 stories published with specified tags.

session.story_by_tags(['tag1', 'tag2'])

Watch stories from users

Take a list of users and watch their stories.

session.story_by_users(['user1', 'user2'])

Third Party Features

Clarifai ImageAPI

Note: Head over to https://developer.clarifai.com/signup/ and create a free account, once you’re logged in go to https://developer.clarifai.com/account/applications/ and create a new application. You can find the client ID and Secret there. You get 5000 API-calls free/month.

If you want the script to get your CLARIFAI_API_KEY for your environment, you can do:

export CLARIFAI_API_KEY="<API KEY>"

Example with Imagecontent handling

session.set_do_comment(True, percentage=10)
session.set_comments(['Cool!', 'Awesome!', 'Nice!'])
session.set_use_clarifai(enabled=True)
session.clarifai_check_img_for(['nsfw'])
session.clarifai_check_img_for(['food', 'lunch', 'dinner'], comment=True, comments=['Tasty!', 'Nice!', 'Yum!'])

session.end()

Enabling Imagechecking

default enabled=False , enables the checking with the Clarifai API (image
tagging) if secret and proj_id are not set, it will get the environment
variables 'CLARIFAI_API_KEY'.

session.set_use_clarifai(enabled=True, api_key='xxx')

Using Clarifai Public Models and Custom Models

If not specified by setting the models=['model_name1'] in session.set_use_clarifai, models will be set to general by default.

If you wish to check against a specific model or multiple models (see Support for Compound Model Queries below), you can specify the models to be checked as shown below.

To get a better understanding of the models and their associated concepts, see the Clarifai Model Gallery [https://clarifai.com/models] and Developer Guide [https://clarifai.com/developer/guide/]

NOTE ON MODEL SUPPORT: At this time, the support for theFocus, Face Detection, Face Embedding, and General Embedding has not been added.

Check image using the NSFW model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['nsfw'])

Check image using the Apparel model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['apparel'])

Check image using the Celebrity model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['celebrity'])

Check image using the Color model
session.set_use_clarifai(enabled=True, api_key=‘xxx’, models=[‘model’])

Check image using the Demographics model
session.set_use_clarifai(enabled=True, api_key=‘xxx’, models=[‘demographics’])

Check image using the Food model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['food'])

Check image using the Landscape Quality model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['landscape quality'])

Check image using the Logo model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['logo'])

Check image using the Moderation model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['moderation'])

Check image using the Portrait Quality model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['portrait quality'])

Check image using the Textures and Patterns model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['textures'])

Check image using the Travel model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['travel'])

Chaeck image using the Weddings model
session.set_use_clarifai(enabled=True, api_key='xxx', models=['weddings'])

Check image using a custom model where model_name is name of your choosing (see Clarifai documentation for using custom models)
session.set_use_clarifai(enabled=True, api_key='xxx', models=['your-model-name'])

Filtering Inappropriate Images

uses the clarifai api to check if the image contains nsfw content
by checking against Clarifai's NSFW model
-> won't comment if image is nsfw

session.set_use_clarifai(enabled=True, api_key='xxx', models=['nsfw'])
session.clarifai_check_img_for(['nsfw'])

uses the clarifai api to check if the image contains inappropriate content
by checking against Clarifai's Moderation model
-> won't comment if image is suggestive or explicit

session.set_use_clarifai(enabled=True, api_key='xxx', models=['moderation'])
session.clarifai_check_img_for(['suggestive', 'explicit'])

To adjust the threshold for accepted concept predictions and their
respective score (degree of confidence) you can set the default probability
parameter for Clarifai (default 50%). For example, you could set probability to 15%.
-> any image with a nsfw score of 0.15 of higher will not be commented on

session.set_use_clarifai(enabled=True, api_key='xxx', probability= 0.15, models=['nsfw'])
session.clarifai_check_img_for(['nsfw'])

Filtering by Keyword

uses the clarifai api to check if the image concepts contain the keyword(s)
-> won't comment if image contains the keyword

session.clarifai_check_img_for(['building'])

Specialized Comments for Images with Specific Content

checks the image for keywords food and lunch. To check for both, set full_match in
in session.set_use_clarifia to True, and if both keywords are found,
InstaPy will comment with the given comments. If full_match is False (default), it only
requires a single tag to match Clarifai results.

session.set_use_clarifai(enabled=True, api_key='xxx', full_match=True)
session.clarifai_check_img_for(['food', 'lunch'], comment=True, comments=['Tasty!', 'Yum!'])

If you only want to accept results with a high degree of confidence, you could
set a probability to a higher value, like 90%.

session.set_use_clarifai(enabled=True, api_key='xxx', probability=0.90, full_match=True)
session.clarifai_check_img_for(['food', 'lunch'], comment=True, comments=['Tasty!', 'Yum!'])

Querying Multiple Models with Workflow (Single API Call)

You can query multiple Clarifai models with a single API call by setting up a custom workflow. Using a workflow is the recommended way to query multiple models. Alternatively, it is possible to query multiple models separately (see Querying Multiple Models (Multiple API Calls) below).

To setup a workflow, see the Workflow Documentation [https://www.clarifai.com/developer/guide/workflow#workflow].

NOTE :As mentioned above, the Focus, Face Detection, Face Embedding, and General Embedding models are not current supported.

Once you have a workflow setup, you can use InstaPy to check images with the Clarifai Image API by setting the workflow parameter in session.set_use_clarifai to the name of your custom workflow.

Let’s say you want to comment ‘Great shot!’ on images of men or women with the hashtag #selfie, but you want to make sure not to comment on images which might contain inappropriate content. To get general concepts, e.g. woman, you would setup your workflow using General and to check the image for the concepts nsfw and explicit you would also want to add NSFW and Moderation models to your workflow.

For example:

session.set_use_clarifai(enabled=True, api_key='xxx', workflow=['your-workflow'], proxy='123.123.123.123:5555')
session.clarifai_check_img_for(['woman', 'man'], ['nsfw', 'explicit', 'suggestive'], comment=True, comments=['Great shot!'])

If Clarifai’s response includes the concepts of either woman or man but also includes at least nsfw, explicit, or suggestive, InstaPy will not comment. On the other hand, if Clarifai’s response includes the concepts of either woman or man but does not include any of the concepts nsfw, explicit, or suggestive, InstaPy will add the comment Great shot!

Querying Multiple Models (Multiple API Calls)

In the event that you do not want to set up a workflow, you can also query multiple models using multiple API calls.

WARNING: If you are using a free account with Clarifiai, be mindful that the using compound API queries could greatly increase your chances of exceeding your allotment of free 5000 operations per month. The number of Clarifai billable operations per image check equals the number of models selected. For example, if you check 100 images against models=['general', 'nsfw', 'moderation'], the total number of billable operations will be 300.

Following the example above, to get general concepts, e.g. woman, you would use the model general and to check the image for the concepts nsfw and explicit you would also want to check the image against the NSFW and Moderation models.

For example:

session.set_use_clarifai(enabled=True, api_key='xxx', models=['general', 'nsfw', 'moderation'], proxy=None)
session.clarifai_check_img_for(['woman', 'man'], ['nsfw', 'explicit', 'suggestive'], comment=True, comments=['Great shot!'])

Using proxy to access clarifai:
We have 3 options:

	ip:port

	user:pass@ip:port

	None

Checking Video

WARNING: Clarifai checks one frame of video for content for every second of video. That is, in a 60 second video, 60 billable operations would be run for every model that the video is being checked against. Running checks on video should only be used if you have special needs and are prepared to use a large number of billable operations.

To have Clarifai run a predict on video posts, you can set the check_video argument in session.set_use_clarifai to True. By default, this argument is set to False. Even if you do not choose to check the entire video, Clarifai will still check the video’s keyframe for content.

For example:

session.set_use_clarifai(enabled=True, api_key='xxx', check_video=True)

With video inputs, Clarifai’s Predict API response will return a list of concepts at a rate of one frame for every second of a video.

Be aware that you cannot check video using a workflow and that only a select number of public models are currently supported. Models currently supported are: Apparel, Food, General, NSFW, Travel, and Wedding. In the event that the models being used do not support video inputs or