

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Jekyll src for Articulate documentation

https://broham89.github.io/articulate-docs/

If you want to view this documentation locally you can use docker to kick-it-off without having to locally install jekyll. The following will get it running locally on port 4000 (assuming you run the command in the docs directory)

docker run -p 4000:4000 -v `pwd`:/srv/jekyll -it jekyll/jekyll jekyll

title: Basic Chatbots
layout: default
order: 0

Basic Chatbots

Articulate pulls several terms from the common language used in the chatbot and Natural language lingo. A basic understanding of these terms will go along way to understanding the Articulate interface, but also chatbots in general.

Common Terms

	Entities are…

	Intents are…

	Fulfillment is…

Articulate Specific Terms

	Domains are…

title: Dialogue
layout: default
order: 1

Dialogue

Although Articulate leverages Rasa NLU it does not use Rasa Core. Basic Dialogue is achieved through a basic set of rules, though we are actively designing a system where the rules can give way to an AI approach with enough online learning.

The decision tree

Common Dialogue Patterns

title: Basic Installation
layout: default
order: 0

Basic Installation

The easiest way to get started with Articulate is to use our included docker-compose file. Articulate relies on several services besides it’s own UI and API. These all get started when you use the provided compose.

	Warning / Be aware / Notice / Look out / etc…
———	——————————————————–
Memory Requirement	Loading and Training these language models dictates a certain amount of RAM. For experimenting with smaller agents 3Gb may be sufficient, but for larger agents much more RAM may be required. If training takes more than a few minutes for small agents or more than half an hour for large agents, it is a good indicator that you are running low on memory.
Windows Shared Drives	On Windows, make sure you have shared the drive with Docker so that it can mount directories inside of the container.
Docker Toolbox	The below instructions work best on Linux and when using Docker for Windows or Docker for Mac. If you are using Docker toolbox follow the remote installation instructions to specify the docker machine IP via the API_URL environment variable.

Setup

	Installing Prerequisites - Make sure you have Docker, Docker Compose, and Git installed:

	Docker [https://docs.docker.com/engine/installation/] (If faced with any choices, get the Community Edition (“CE”))

	Docker Compose [https://docs.docker.com/compose/install/] (should be auto-installed as part of Docker on mac and windows)

	Git (installed by default on mac and most linux varieties. To install on windows get it here [https://git-for-windows.github.io])

	Downloading - Download the current release from this page: https://github.com/samtecspg/articulate/releases/latest

	Extracting - Unzip and get a terminal or command prompt in the new directory

Once you’ve got everything extracted you’re ready to start Articulate. The below instructions cover running locally and in the cloud:

Running Locally

This is the simplest setup and for most people wont required anything more than:

docker-compose up

A few gotchas:

	sudo may be required

	On Windows this will only work on Windows 10 running Docker for Windows

After Docker downloads the images and starts all of them Articulate should be available at http://localhost:3000 and the API documentation should be available at http://localhost:7500/documentation

Running Remotely

The only extra requirement when running this way is an environment variable which informs the UI where to look for the API (the public url).

API_URL=http://xxx.xx.xx.xx:7500 docker-compose up

Exceptions:

	replace the xs with your public IP or url

	sudo may be required

	On Windows specifying environment variables is a little bit more involved. The easiest way is to modify the docker-compose.yml file. Replace the ui service with something like this:

ui:
 image: samtecspg/articulate-ui:repo-head
 ports: ['0.0.0.0:3000:3000']
 networks: ['alpha-nlu-network']
 environment:
 - API_URL=http://xxx.xx.xx.xx:7500

title: Custom Installation
layout: default
order: 1

Custom Installation

| Advistory |
|——————————————————–|
| Articulate is configured to where running locally, on a cloud, and behind a reverse proxy are as straightforward as can be. Those options are all documented in the Basic Installation page. The below configuration options are for special circumstances. |

API Advanced Configuration

Environment Variables

	SWAGGER_HOST

	SWAGGER_SCHEMES

	SWAGGER_BASE_PATH

UI Advanced Configuration

title: Create Agent
layout: default
order: 1

Create Agent Screen

This screen allows you to name and provide other details for your agent.

![Starting screen for conveyor]({{ “/img/screens/createAgent.png” | absolute_url }})

	Agent Name - Pretty self explanatory, name your agent. Names are unique within a single instance of Articulate.

	Agent Description - If you’re only creating one agent this may not seem useful, but as you create multiple versions of agent to experiment with different solutions or as the number of agents grows the description can become more and more useful.

	Language - Choose the language for your agent. For the moment a single agent can only have a single language. But we’re working on making agents multi-lingual capabale.

	Default Time Zone - Articualte used Duckling to parse dates and times. Those dates and times are normalized to UTC based on this field. But don’t worry it’s just a default request to converse with your agent can specify a custom timezone.

	Domain Recognition Threshold - This one is a bit harder to explain. For more info see the Concepts/Dialogue. But in summary this slider controls when the bot uses the fallback responses. For example if you set it to .5 (50%) and a request gets parsed, but the best match only has a confidence of .43 then the fallback response would kick in.

	Fallback Responses - These responses can be used when you agent doesn’t understand requests. This is a last case fallback.

title: Create Domain
layout: default
order: 2

Create Domain Screen

This screen allows you to create a domain. For more information on domains see Concepts/Basic Chatbots and Concepts/Domains.

![Starting screen for conveyor]({{ “/img/screens/createDomain.png” | absolute_url }})

	Domain Name - Give your Domain a name.

	Intent Recognition Threshold - For an in depth review of how this is used see Concepts/Dialogue, but for the most part this slider indicated how much confidence your agent must have before it actually responds with an intent.

title: Create Entity
layout: default
order: 3

Create Entity Screen

This screen allows you to create entities for you Agent. For a better understanding of what entities are check out Concepts/Basic Chatbots.

![Starting screen for conveyor]({{ “/img/screens/createEntity.png” | absolute_url }})

	Entity Name - Give your entity a name.

	Example Values - Type in an entity value and hit enter.

	Synonyms - It’s often helpful for similar terms to be resolved to the same value. For example NYC, New York City, the Big Apple all refer to the same location. If you define all of those values as a synonym for NYC then any user request which uses them would get identified as NYC. This helps a lot for Concepts/Fulfillment.

	Entity Color - In the Create Intent screen you’ll highlight entities in example sentences. The highlight color is chosen from this list. You can customize the color fo each entity so that they better stand out when you are editing intents.

title: Create Intent
layout: default
order: 4

Create Intent Screen

This screen allows you to create intents from user examples. It also allows management of slots, webhooks, and responses. For more on all of those see below.

![Starting screen for conveyor]({{ “/img/screens/createIntent1.png” | absolute_url }})

	Domain - Select an already existing domain from this dropdown list.

	Intent Name - Give your intent a name.

	User Says - In the first input box you can type in user examples and then press enter to add them to the list of examples. The se cond input box can be used to search through all of your examples. Simple intents may only require a few examples, but larger ones may benefit from the search bar. Finally in area below the inputs is where the examples you add will show up. Once they are here you can highlight any word or group of words to label them as an entity. Make sure to create the entities first!

	Slots - Slots are values that an entity needs in order to be fulfilled. Sometimes slots are required (toppings on a pizza). They can also be lists (again pizza toppings is a good example). This box will automatially be populated by rows by highlighting entities in the User Says section. Once a slot shows up you can change it’s name and indicate whether it is required and/or a list. Finally you can provide a prompt. If the slot is required the prompt is how the agent will ask for it if the user doesn’t provide it (What toppings would you like on your pizza?).

	Webhook - This toggle enables or disable webhook calls for Fulfillment. For more information on what fulfillment is see Concepts/Basic Chatbots/Fulfillment. Use this toggle to turn on a webhook call. This call will be made after the user request has been processed and after all required slots are filled. See below for configuring the webhook.

![Starting screen for conveyor]({{ “/img/screens/createIntent2.png” | absolute_url }})

	Agent Response - You can use this section to build the response of your agent. Responses can be simple like Hello or Goodbye, but they can also use handlebars [https://handlebarsjs.com] for advanced templating. By default they have access to a lot of template variables, for a complete list see Concepts/Conversation State Object. The logic here pre-filters the list to only those whose template parameters are available. If more than one response is deemed appropriate then a random one is chosen.

	Webhook Definition - In an effort to make Articulate flexible in how it connects to APIs for fulfillment you can use this section to change the HTTP method. You can also use handlebars templating in the URL {% raw %}http://my-api:8888/intent/{{intent.intentName}}{% endraw %} and in the payload (JSON/XML):

{% raw %}
{
 "intent": {{intent.intentName}},
 "slots": {{JSONstringify slots}}
}
{% endraw %}

title: Domain List
layout: default
order: 5

Domain List Screen

From this screen you can see the domains that you’ve created, edit, and delete them.

![Starting screen for conveyor]({{ “/img/screens/domainList.png” | absolute_url }})

	Search - Use this input to search through you’re existing domains.

	Domain Table - Each row represents a domain that you’ve created. The table also indicated whether the domain is enabled and what the current Intent threshold is for that domain.

	Domain Menu - Use these three dots to open a menu, which will allow you to edit or delete the domain.

title: Entity List
layout: default
order: 6

Entity List Screen

Use this screen to manage your existing entities or to create new ones.

![Starting screen for conveyor]({{ “/img/screens/entityList.png” | absolute_url }})

	Entity Table - Each row represents an entity that you’ve created. You can quickly see what color the entity is in highlighted examples.

	Used In - Clicking the toggle by each entity expands a list: showing you which intents are using that entity.

	Entity Menu - Use these three dots to open a menu, which will allow you to edit or delete the entity.

title: Intent List
layout: default
order: 7

Intent List Screen

Use this screen to see all existing intents, edit or delete them, and create new ones.

![Starting screen for conveyor]({{ “/img/screens/intentList.png” | absolute_url }})

	Domain Filter - use this dropdown to filter the table to only include intents in a certain domain.

	Search - Use this to search for existing intents.

	Intent Table - each row represents an existing intent. You can also quickly see hoe many examples were provided for each intent.

	Intent Menu - Use these three dots to manage a specific intent. You can delete it or edit it.

title: Welcome Screen
layout: default
order: 0

Welcome Screen

The welcome screen will be the first screen you see. If you follow along with the green buttons along the top you’ll be guided through creating your first agent, entity and intent.

![Starting screen for conveyor]({{ “/img/screens/welcome.png” | absolute_url }})

	To follow the guide when first getting started click on this button to create your first agent. Though if you want to explore on your own feel free to use the side navigation.

title: Ubiquity Basics
layout: default
order: 0

Ubiquity Basics

We’re moving towards one click connections for common front end platforms. These connections will also implement translations for common functionality like text, images, buttons, maps, etc. For the moment only text responses are supported and the below three channels are the only ones implemented. Look for more channels and functionality in the near future.

Available Channels

	Slack

Slack

	Create a Slack app https://api.slack.com/apps

	Add a Bot User

	POST a request similar to the below to the ubiquity API. The botToken comes from the OAuth & Permissions page under features.

curl --request POST \
 --url http://localhost:7500/ubiquity \
 --header 'content-type: application/json' \
 --data '{
	"agent": 1,
	"service": "slack",
	"details": {
 "botToken": "xoxb-135120406320-387310332693-jaHymbKH6jfLPpXrC4MiqbAF"
	}
}'

You should receive a response back similar to this:

{
	"id": "ByKl0EaWQ",
	"agent": 1,
	"service": "slack",
	"botToken": "xoxb-135120406320-387310332693-jaHymbKH6jfLPpXrC4MiqbAF",
	"status": "Created",
	"dateCreated": "2018-06-24T15:51:13.396Z",
	"dateModified": "2018-06-24T15:51:13.396Z"
}

	Save Changes and test your bot by mentioning them in a channel.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

