

ARouteServer

A Python tool to automatically build (and test) feature-rich configurations for BGP route servers.

How it works

	Two YAML files provide general policies and clients configurations options:

cfg:
 rs_as: 64496
 router_id: "192.0.2.2"
 filtering:
 irrdb:
 enforce_origin_in_as_set: True
 enforce_prefix_in_as_set: True
 rpki_bgp_origin_validation:
 enabled: True
 reject_invalid: True
 ...

clients:
 - asn: 64511
 ip:
 - "192.0.2.11"
 - "2001:db8:1:1::11"
 irrdb:
 as_sets:
 - "RIPE::AS-FOO"
 ...

	ARouteServer acquires external information to enrich them: i.e. bgpq4 [https://github.com/bgp/bgpq4]/bgpq3 [https://github.com/snar/bgpq3] for IRR data, PeeringDB [https://www.peeringdb.com/] for max-prefix limit and AS-SETs, RPKI ROAs, …

	Jinja2 [http://jinja.pocoo.org/] built-in templates are used to render the final route server’s configuration file.

Currently, BIRD (>= 1.6.3 up to 1.6.8), BIRD v2 (starting from 2.0.7), BIRD v3 (only for testing, still in pre-release/alpha) and OpenBGPD (OpenBSD >= 7.0 also OpenBGPD Portable >= 7.0) are supported, with almost feature parity [https://arouteserver.readthedocs.io/en/latest/SUPPORTED_SPEAKERS.html#supported-features] between them.

Validation and testing of the configurations generated with this tool are performed using the built-in live tests framework: Docker [https://www.docker.com/] instances are used to simulate several scenarios and to validate the behaviour of the route server after configuring it with ARouteServer. More details on the Live tests [https://arouteserver.readthedocs.io/en/latest/LIVETESTS.html] section.

A Docker-based playground [https://github.com/pierky/arouteserver/tree/master/tools/playground] is available to experiment with the tool in a virtual IXP environment.

Also, a Docker image [https://hub.docker.com/r/pierky/arouteserver] is provided to start building rich and secure configurations in a couple of minutes.

Features

	Path hiding mitigation techniques (RFC7947 [https://tools.ietf.org/html/rfc7947] section 2.3.1 [https://tools.ietf.org/html/rfc7947#section-2.3.1]).

	Basic filters (mostly enabled by default):

	NEXT_HOP enforcement (strict / same AS - RFC7948 [https://tools.ietf.org/html/rfc7948] section 4.8 [https://tools.ietf.org/html/rfc7948#section-4.8]);

	minimum and maximum IPv4/IPv6 prefix length;

	maximum AS_PATH length;

	reject invalid AS_PATHs (containing private/invalid ASNs [http://mailman.nanog.org/pipermail/nanog/2016-June/086078.html]);

	reject AS_PATHs containing transit-free or never via route-servers ASNs (using PeeringDB info_never_via_route_servers attribute [https://github.com/peeringdb/peeringdb/issues/394]);

	reject bogons;

	max-prefix limit based on global or client-specific values or on PeeringDB data.

	Prefixes and origin ASNs validation (also in tag-only mode):

	IRR-based filters (RFC7948 [https://tools.ietf.org/html/rfc7948] section 4.6.2 [https://tools.ietf.org/html/rfc7948#section-4.6.2]);

	AS-SETs configured manually or fetched from PeeringDB;

	support for IRR sources (RIPE::AS-FOO, RADB::AS-BAR);

	white lists support;

	extended dataset for filters generation:

	RPKI ROAs used as route objects;

	Origin AS [https://mailman.nanog.org/pipermail/nanog/2017-December/093525.html] from ARIN Whois database dump;

	NIC.BR Whois data [https://ripe76.ripe.net/presentations/43-RIPE76_IRR101_Job_Snijders.pdf] (slide n. 26) from Registro.br;

	RPKI-based filtering (BGP Prefix Origin Validation);

	ROAs can be retrieved from publicly available JSON files or from a local validating cache;

	Route Leak Prevention and Detection Using BGP Roles (RFC9234 [https://tools.ietf.org/html/rfc9234]).

	Blackhole filtering support:

	optional NEXT_HOP rewriting;

	signalling via BGP Communities (BLACKHOLE [https://tools.ietf.org/html/rfc7999#section-5] and custom communities);

	client-by-client control over propagation.

	Graceful shutdown support:

	honor the GRACEFUL_SHUTDOWN BGP community received from clients (draft-ietf-grow-bgp-gshut-11 [https://tools.ietf.org/html/draft-ietf-grow-bgp-gshut-11]);

	allow to perform a graceful shutdown of the route server itself.

	Control and informative BGP communities:

	prefix/origin ASN present/not present in IRRDBs data;

	do (not) announce to any / peer / on RTT basis;

	prepend to any / peer / on RTT basis;

	add NO_EXPORT / NO_ADVERTISE to any / peer;

	32bit ASNs mapping to 16bit ASNs for announcement control BGP communities;

	Euro-IX large BGP communities [https://www.euro-ix.net/en/forixps/large-bgp-communities/] to track reject reasons;

	custom informational BGP communities.

	Optional session features on a client-by-client basis:

	prepend route server ASN (RFC7947 [https://tools.ietf.org/html/rfc7947] section 2.2.2.1 [https://tools.ietf.org/html/rfc7947#section-2.2.2.1]);

	active sessions;

	GTSM (Generalized TTL Security Mechanism - RFC5082 [https://tools.ietf.org/html/rfc5082]);

	ADD-PATH capability (RFC7911 [https://tools.ietf.org/html/rfc7911]).

	RFC8950 [https://tools.ietf.org/html/rfc8950] IPv6 NEXT_HOP for IPv4 routes.

	Automatic building of clients list:

	integration [https://arouteserver.readthedocs.io/en/latest/USAGE.html#ixp-manager-integration] with IXP-Manager;

	fetch lists [https://arouteserver.readthedocs.io/en/latest/USAGE.html#automatic-clients] from PeeringDB records and Euro-IX member list JSON files.

	IX-F Member Export JSON files creation [https://arouteserver.readthedocs.io/en/latest/USAGE.html#ixf-member-export-command].

	Related tools:

	The Playground [https://github.com/pierky/arouteserver/tree/master/tools/playground], to experiment with the tool in a virtual IXP environment.

	Invalid routes reporter [https://arouteserver.readthedocs.io/en/latest/TOOLS.html#invalid-routes-reporter], to log or report invalid routes and their reject reason.

A comprehensive list of features can be found within the comments of the distributed configuration file on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/general.yml] or on the documentation web page [https://arouteserver.readthedocs.io/en/latest/GENERAL.html].

More feature are already planned: see the Future work [https://arouteserver.readthedocs.io/en/latest/FUTUREWORK.html] section for more details.

Contents

	Installation

	Usage

	Supported BGP speakers and features

	Configuration

	Logging

	Examples of configurations

	Tools

	Live tests

	Testing realistic scenarios

	Future work

	Contributing

	Change log

Presentations

	Euro-IX “Learn with us: ARouteServer tutorial”, 28 July 2021: video [https://www.youtube.com/watch?v=aiBeFs6xnYs] (33:13)

	RIPE74, 10 May 2017, Connect Working Group: video [https://ripe74.ripe.net/archives/video/87/] (9:53), slides [https://ripe74.ripe.net/presentations/22-RIPE74-ARouteServer.pdf] (PDF)

	Salottino MIX, 30 May 2017: slides [https://www.slideshare.net/PierCarloChiodi/salottino-mix-2017-arouteserver-ixp-automation-made-easy]

Mentions / endorsements:

	Job Snijders, LACNIC29, 3 May 2018: slides [https://www.lacnic.net/innovaportal/file/2621/1/lacnic29_peering_tutorial.pdf] (PDF)

	Anurag Bhatia, APNIC46, 12 September 2018: video [https://www.youtube.com/watch?v=XfSNQbiR1cg&t=3140], slides [https://conference.apnic.net/46/assets/files/APNC402/Automate-your-IX-config.pdf] (PDF)

	Claudio Jeker, RIPE Labs, 28 November 2018: OpenBGPD - Adding Diversity to the Route Server Landscape [https://labs.ripe.net/Members/claudio_jeker/openbgpd-adding-diversity-to-route-server-landscape].

Who is using ARouteServer?

	BharatIX [https://www.bharatix.net/], BIRD.

	CATNIX [http://www.catnix.net/en/], BIRD.

	CHIX [https://chix.ch/], BIRD and OpenBGPD.

	CNX [http://cnx.net.kh/], BIRD v2.

	DO-IX [https://www.do-ix.net/], BIRD.

	EVIX [https://evix.org/], BIRD.

	FCIX [https://fcix.net/], BIRD.

	GAVLIX [https://gavlix.se/].

	GigaPIX [https://gigapix.pt/], BIRD and BIRD v2.

	IX Australia [https://www.ix.asn.au/], BIRD v2.

	IX-Denver [http://ix-denver.org/], BIRD.

	MBIX [http://www.mbix.ca/], BIRD.

	MIX [https://www.mix-it.net/], BIRD.

	Netnod [https://www.netnod.se/], BIRD and GoBGP1.

	NIXI Mumbai (GPX) [https://nixi.in/], BIRD.

	NZIX [https://ix.nz/], BIRD v2.

	PIT-IX [https://pit-ix.net/], BIRD.

	QCIX [http://www.qcix.net/], BIRD.

	RO-CIX [https://roix.net/], OpenBGPD.

	SFMIX [https://sfmix.org/], BIRD and OpenBGPD.

	SwissIX [https://www.swissix.ch/], OpenBGPD.

	Unmetered.Exchange [https://unmetered.exchange/], BIRD.

	VANIX [https://vanix.ca/].

	YEGIX [https://yegix.ca], OpenBGPD.

	YXEIX [http://yxeix.ca/], OpenBGPD.

	YYCIX [https://yycix.ca], OpenBGPD.

Are you using it? Do you want to be listed here? Drop me a message [https://pierky.com/#contactme]!

1: GoBGP configurations are generated using a fork of the project which is still WIP and that hopefully will be merged upstream in the future.

Bug? Issues? Support requests?

But also suggestions? New ideas?

Please create an issue on GitHub [https://github.com/pierky/arouteserver/issues] or drop me a message [https://pierky.com/#contactme].

A Slack channel is also available on the network.toCode() [https://networktocode.herokuapp.com/] community: arouteserver.

Author

Pier Carlo Chiodi - https://pierky.com

Blog: https://blog.pierky.com Twitter: @pierky [https://twitter.com/pierky]

Installation

Hint

A Docker-based playground [https://github.com/pierky/arouteserver/tree/master/tools/playground] is available to experiment with the installation and configuration steps reported in this section.

For a quick start, please also see the official Docker image [https://hub.docker.com/r/pierky/arouteserver].

Dependencies

Some components used by ARouteServer need Python dev header files and static libraries: some distributions have them already included, others may need to manually install them:

Debian Jessie, Ubuntu Trusty
apt-get install python-dev # for Python 2
apt-get install python3-dev # for Python 3

CentOS
yum -y install gcc python-devel

Please note that ARouteServer also needs bgpq4 [https://github.com/bgp/bgpq4] (preferred) or bgpq3 [https://github.com/snar/bgpq3] to build IRR-based filters: details on their installation can be found within the External programs section.

Install using pip (suggested)

If you plan to just use the program to build configurations or to run your own live tests scenarios, you can install it using pip.

Strongly suggested: setup a Virtualenv [https://virtualenv.pypa.io/].

on Debian/Ubuntu:
sudo apt-get install python-pip python-virtualenv

on CentOS:
sudo yum install epel-release
sudo yum install python-pip python-virtualenv

on OpenBSD
pkg_add python3
pkg_add py3-packaging py3-wheel py3-pip py3-virtualenv

setup a virtualenv
mkdir -p ~/.virtualenvs/arouteserver
virtualenv ~/.virtualenvs/arouteserver
source ~/.virtualenvs/arouteserver/bin/activate

install the program
pip install arouteserver

More: virtualenv installation [https://virtualenv.pypa.io/en/latest/installation.html] and usage [https://virtualenv.pypa.io/en/latest/userguide.html].

Note

If you receive the following error while installing the program (or its requirements): error in setup command: ‘install_requires’ must be a string or list of strings containing valid project/version requirement specifiers then please upgrade the setuptools package that is used in your virtualenv: pip install --upgrade setuptools.

Note

In the case the pip installation process breaks with the Failed building wheel for py-radix / fatal error: Python.h: No such file or directory error, please verify that the dependencies are satisfied.

Install from GitHub

If you plan to run built-in Live tests on your own or to contribute to the project, clone the GitHub repository locally and install dependencies:

mkdir -p ~/src/arouteserver
cd ~/src/arouteserver

use the URL of your fork here:
git clone https://github.com/USERNAME/arouteserver.git ./

export PYTHONPATH="`pwd`"
pip install -r requirements.txt

Setup and initialization

	Setup your system layout (confirmation will be asked before each action):

if you used pip
arouteserver setup

if you installed from GitHub
export PYTHONPATH="`pwd`"
./scripts/arouteserver setup

The program will ask you to create some directories (under ~/arouteserver by default) and to copy some files there.
These paths can be changed by editing the arouteserver.yml program configuration file or by using command line arguments. More information in the configuration section.

	Define the route server configuration policies, using the configure command or manually by editing the general.yml file:

if you used pip
arouteserver configure

if you installed from GitHub
./scripts/arouteserver configure

The configure command asks some questions about the route server environment (ASN, router ID, local subnets) and then it builds a policy definition file based on best practices and suggestions which also includes a rich BGP communities list.

	If you plan to use features that are based on PeeringDB data (some of them are enabled by default or proposed as part of the policies generated by the configure command above) it is strongly suggested that you create a PeeringDB API key and configure it in the system where ARouteServer runs.

Using an API key allows to mitigate the effect of the anonymous API throttling mechanism. The key can be exposed via the environment variable SECRET_PEERINGDB_API_KEY, or stored inside a local file, at one of the following well-known paths: ~/.arouteserver/peeringdb_api.key, ~/.peeringdb_api.key.

Details on how to obtain an API key can be found on the PeeringDB web site [https://docs.peeringdb.com/howto/api_keys/].

External programs

ARouteServer uses the following external programs:

	(mandatory) bgpq4 [https://github.com/bgp/bgpq4] or bgpq3 [https://github.com/snar/bgpq3] are used to gather information from IRRDBs: at least one of them must be installed on the system where ARouteServer is executed.

Please note: the libtool package may need to be added to the system in order to compile bgpq4: apt-get install libtool / yum install -y libtool.

To install bgpq4:

mkdir /path/to/bgpq4/directory
cd /path/to/bgpq4/directory
git clone https://github.com/bgp/bgpq4.git ./
automake, autoconf, make and gcc packages required
./bootstrap
./configure
make
sudo make install

To install bgpq3:

mkdir /path/to/bgpq3/directory
cd /path/to/bgpq3/directory
git clone https://github.com/snar/bgpq3.git ./
make and gcc packages required
./configure
make
sudo make install

On OpenBSD you can also install the package directly:

pkg_add bgpq3

	(optional) Docker [https://www.docker.com/] is used to perform live validation of configurations.

To install it, please refer to its official guide [https://www.docker.com/products/overview].

	(optional) KVM [https://www.linux-kvm.org/page/Main_Page] is also used to perform live tests of OpenBGPD configurations on an OpenBSD virtual machine.

To install it:

apt-get install qemu-kvm virtinst

More details: https://wiki.debian.org/KVM

	(optional) rtrlib [https://github.com/rtrlib] and bird-rtrlib-cli [https://github.com/rtrlib/bird-rtrlib-cli]; ARouteServer can use these tools to load RPKI data into BIRD 1.6.x. More details in ROAs sources.

To install them:

curl -o rtrlib.zip -L https://github.com/rtrlib/rtrlib/archive/v0.3.6.zip
unzip rtrlib.zip

cd rtrlib-0.3.6 && \
 cmake -D CMAKE_BUILD_TYPE=Release . && \
 make && \
 make install

curl -o bird-rtrlib-cli.zip -L https://github.com/rtrlib/bird-rtrlib-cli/archive/v0.1.1.zip
unzip bird-rtrlib-cli.zip

cd bird-rtrlib-cli-0.1.1 && \
 cmake . && \
 make

More details: https://github.com/rtrlib/rtrlib/wiki/Installation

To configure bird-rtrlib-cli please refer to the README [https://github.com/rtrlib/bird-rtrlib-cli].

Upgrading

Often upgrades bring new features and new options, sometimes they also introduce changes that might break backward compatibility with previous versions.
It is advisable to always check the CHANGELOG to verify what’s new: the arouteserver show_config command can also be used to verify if new configuration options are available and how they are set by default.

To upgrade the program, download the new version…

if you cloned the repository from GitHub,
from within the local repository's directory:
git pull origin master

if you installed it with pip:
pip install --upgrade arouteserver

… then sync the local templates with those distributed in the new version:

arouteserver setup-templates

If local templates have been edited, make a backup of your files in order to merge your changes in the new ones later.
To customize the configuration of the route server with your own options, please consider using Site-specific custom configuration files instead of editing the template files.

Development and pre-release versions

Note

Consider your needs carefully before using a version other than the current production versions. These are preview releases, and their use is not recommended in production settings.

The dev branch [https://github.com/pierky/arouteserver/tree/dev] is used for the development of the project, while the master branch always contains the latest, (hopefully) stable production-ready code.

To install or to upgrade to the latest pre-release version [https://test.pypi.org/project/arouteserver/] use the TestPyPI [https://packaging.python.org/guides/using-testpypi/] instance of the Python Package Index (PyPI):

pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple --pre arouteserver

Ansible role

An Ansible role to install and configure ARouteServer can be found on Galaxy [https://galaxy.ansible.com/pierky/arouteserver/] or on GitHub [https://github.com/pierky/ansible-role-arouteserver].

It is tested on Debian (Jessie, Stretch), Ubuntu (Trusty, Xenial) and CentOS 7.

Usage

The script can be executed via command-line:

if cloned from GitHub, from the repository's root directory:
export PYTHONPATH="`pwd`"
./scripts/arouteserver bird --ip-ver 4 -o /etc/bird/bird4.conf

if installed using pip:
arouteserver bird --ip-ver 4 -o /etc/bird/bird4.conf

It produces the route server configuration for BIRD and saves it on /etc/bird/bird4.conf.
To build the configuration for OpenBGPD, the bird sub-command must be replaced with openbgpd.

The --target-version argument can be used to set the version of the target BGP daemon for which the configuration is generated: this allows to enable features that are supported only by more recent versions of BGP speakers and that, otherwise, would produce an error.

To build configuration for BIRD v2, --target-version must be used and set to 2.0.7 or higher; in that case, since BIRD v2 is able to process dual-stack configurations using a single process, the --ip-ver argument can be omitted, so that a single file that contains both IPv4 and IPv6 and configurations will be generated:

arouteserver bird --target-version 2.0.9 -o /etc/bird/bird.conf

The script exits with 0 if everything is fine or with an exit code different than zero if something wrong occurs.

It can be scheduled at regular intervals to re-build the configuration (for example to add new clients or to update IRRDB information), test it and finally to deploy it in production:

The following assumes that ARouteServer runs on the
route server itself, that is a thing that you may want
to avoid.
arouteserver bird --ip-ver 4 -o /etc/bird/bird4.new && \
 bird -p -c /etc/bird/bird4.new && \
 cp /etc/bird/bird4.new /etc/bird/bird4.conf && \
 birdcl configure

Hint

A Docker-based playground [https://github.com/pierky/arouteserver/tree/master/tools/playground] is available to experiment with the tool.

For a quick start, please also see the official Docker image [https://hub.docker.com/r/pierky/arouteserver].

Environment variables

The following environment variables can be set to customise the way ARouteServer works:

	SECRET_PEERINGDB_API_KEY: the API key to be used to perform PeeringDB queries.

Using an API key allows to mitigate the effect of the anonymous API throttling mechanism. The same API key can also be stored on a local file, at one of the following well-known paths: ~/.arouteserver/peeringdb_api.key, ~/.peeringdb_api.key.

Details on how to obtain an API key can be found on the PeeringDB web site [https://docs.peeringdb.com/howto/api_keys/].

Route server graceful shutdown

Prior to a maintenance that requires the route server shutdown a graceful shutdown can be triggered by using the --perform-graceful-shutdown argument. This option allows to build a temporary configuration that includes an outbound policy which is applied to BGP sessions toward the clients and which adds the GRACEFUL_SHUTDOWN [https://tools.ietf.org/html/draft-ietf-grow-bgp-gshut-11] BGP community (65535:0) to all the routes that the route server announces to them.

Please note that the configuration built when using this argument should be used only temporarly before starting the maintenance; it should be replaced with the production configuration before the route server is reloaded.

Resources and MemoryError error messages

When building large configurations, for example those generated when huge AS-SETs need to be expanded, the program may crash with a MemoryError message or other memory related exceptions. In this case, raising ulimits for max locked memory (-l) and stack size (-s) has proven to be effective in solving the problem:

$ ulimit -l 2097152; ulimit -s 8192; arouteserver openbgpd ...

Library

ARouteServer can be used as a Python library too: see Using ARouteServer as a library for more details.

Textual representation

To build an HTML or Markdown textual representation of route server’s options and policies, the html or md commands can be used:

arouteserver html -o /var/www/html/rs_description.html

arouteserver md -o /var/www/html/rs_description.md

These commands write an HTML page or Markdown .md file that contain a brief textual representation of the route server’s policies. Some examples can be found here or on GitHub, inside the “examples” directory [https://github.com/search?q=repo%3Apierky%2Farouteserver+extension%3Amd+extension%3Ahtml+path%3A%2Fexamples+-filename%3AREADME.md&type=Code&ref=advsearch&l=&l=].

Automatic clients.yml creation

Create clients.yml file from PeeringDB records

The clients-from-peeringdb command can be used to automatically create a clients.yml file on the basis of PeeringDB records.
Given an IX LAN ID, it collects all the networks which are registered as route server clients on that LAN, then it builds the clients file accordingly.

If the IX LAN ID argument is not given, the script uses the IX-F database [http://www.ix-f.net/ixp-database.html] to show a list of IXPs and their PeeringDB ID; this can be used to easily search for the IXP PeeringDB ID.

$ arouteserver clients-from-peeringdb
Loading IX-F database... OK

Select the IXP for which the clients list must be built
Enter the text to search for (IXP name, country, city): LINX
 ID IXP description
 18 GB, London, London Internet Exchange LON1 (LINX LON1)
 777 US, Ashburn, LINX NoVA (LINX NoVA)
 321 GB, London, London Internet Exchange LON2 (LINX LON2)

Enter the ID of the IXP you want to use to build the clients list: 18

Create clients.yml file from Euro-IX member list JSON file

The Euro-IX member list JSON schema [https://github.com/euro-ix/json-schemas] defines a portable output format to export the list of members connected to an Internet Exchange. These files can be used to fetch the list of clients and their attributes (AS-SETs, max-prefix limits) and to use them to automatically build the clients.yml file used by ARouteServer to generate route server’s configuration.

The clients-from-euroix command can be used for this purpose.

arouteserver clients-from-euroix --url <URL> <ixp_id> -o <output_file>

The JSON file may contain information about more than one IXP for every IX. For example, AMS-IX has ‘AMS-IX’, ‘AMS-IX Caribbean’, ‘AMS-IX Hong Kong’ and more. To filter only those clients which are connected to the IXP of interest an identifier (ixp_id) is needed. When executed without the ixp_id argument, the command prints the list of IXPs and VLANs reported in the JSON file; the ID can be found on this list:

$ arouteserver clients-from-euroix --url https://my.ams-ix.net/api/v1/members.json
IXP ID 1, short name 'AMS-IX'
 - VLAN ID 502, name 'GRX', IPv4 prefix 193.105.101.0/25, IPv6 prefix 2001:7f8:86:1::/64
 - VLAN ID 504, name 'MDX', IPv4 prefix 195.60.82.128/26
 - VLAN ID 600, name 'PI'
 - VLAN ID 501, name 'ISP', IPv4 prefix 103.247.139.0/25, IPv6 prefix 2001:13c7:6004::/64
IXP ID 3, short name 'AMS-IX Caribbean'
 - VLAN ID 600, name 'PI'
 - VLAN ID 501, name 'ISP', IPv4 prefix 103.247.139.0/25, IPv6 prefix 2001:13c7:6004::/64
IXP ID 2, short name 'AMS-IX Hong Kong'
 - VLAN ID 501, name 'ISP', IPv4 prefix 103.247.139.0/25, IPv6 prefix 2001:13c7:6004::/64
...

Finally, the list of clients and their attributes can be fetched:

$ arouteserver clients-from-euroix --url https://my.ams-ix.net/api/v1/members.json 1 --vlan 502
clients:
- asn: 58453
 description: China Mobile International Limited
 ip: 193.105.101.100
- asn: 33849
 description: Comfone AG
 ip: 193.105.101.30
- asn: 8959
 description: Emirates Telecommunications Corporation (Etisalat) (GRX)
 ip: 193.105.101.22
- asn: 8959
 description: Emirates Telecommunications Corporation (Etisalat) (GRX)
 ip: 193.105.101.62
- asn: 12322
 description: Free SAS
 ip: 193.105.101.28
...

An example from the LONAP:

$ arouteserver clients-from-euroix --url https://portal.lonap.net/apiv1/member-list/list 1
clients:
- asn: 42
 cfg:
 filtering:
 irrdb:
 as_sets:
 - AS-PCH
 max_prefix:
 limit_ipv4: 100
 description: Packet Clearing House AS42
 ip: 5.57.80.238
- asn: 42
 cfg:
 filtering:
 irrdb:
 as_sets:
 - AS-PCH
 max_prefix:
 limit_ipv6: 100
 description: Packet Clearing House AS42
 ip: 2001:7f8:17::2a:1
- asn: 714
 cfg:
 filtering:
 irrdb:
 as_sets:
 - AS-APPLE
 max_prefix:
 limit_ipv4: 1000
 description: Apple Europe Ltd
 ip: 5.57.81.57
...

Local customisations are possible using the --merge-from-custom-file command line argument, that allows to merge custom settings from a local YAML file into the one generated by this command: more details on how to use this option can be found running arouteserver clients-from-euroix --help-merge-from-custom-file.

To get a list of all the available options, run the arouteserver clients-from-euroix --help command.

Integration with IXP-Manager

Since the popular IXP-Manager [https://github.com/inex/IXP-Manager] allows to export the list of members in Euro-IX JSON format [https://github.com/inex/IXP-Manager/wiki/Euro-IX-Member-Data-Export], the arouteserver clients-from-euroix command can also be used to integrate the two tools and to build ARouteServer’s list of clients automatically:

#!/bin/bash

set -e

Setup an API key on IXP-Manager and write it below.
http://docs.ixpmanager.org/features/api/#creating-an-api-key
api_key="YOURAPIKEY"

Adjust the URL below and point it to your IXP-Manager application.
url="http://www.example.com/api/v4/member-export/ixf/0.6?apikey=$api_key"

This is the IXP ID you want to export members from.
It must match with the 'ixp_id' field.
ixp_id=1

Path of the output clients file that will be built.
clients_file=~/ars/clients-from-ixpmanager.yml

Build the clients file using info from IXP-Manager.
arouteserver clients-from-euroix \
 -o $clients_file \
 --url "$url" $ixp_id

Build the route server configuration.
arouteserver bird \
 --clients $clients_file \
 --ip-ver 4 \
 -o /etc/bird/bird4.new

Now test the new configuration and, finally,
push it to the route server.
...

IX-F Member Export JSON file from clients.yml

The ixf-member-export command can be used to generate IX-F Member Export JSON files [https://github.com/euro-ix/json-schemas] from the list of clients that are configured on the route server.
Although the clients.yml file used by ARouteServer to build the route server configuration contains only those clients that are supposed to connect to the route server itself, it’s a quite common practice to preconfigure passive BGP sessions for all the IXP members there. When that’s true the clients file contains a comprehensive representation of all the IXP participants.

Please note: the output file generated with this command contains only a subset of the attributes available in the IX-F JSON schema: ASN, IP addresses, max-prefix limits and AS macros. Only information that are hard-coded in the clients.yml file are exported: AS-SETs or max prefix limits that during the configuration building process are fetched from PeeringDB or other external data sources are not included in the output file.

$ arouteserver ixf-member-export --clients examples/rich/clients.yml "Test IXP" 1
{
 "version": "1.0",
 "timestamp": "2021-02-27T13:38:05Z,
 "ixp_list": [
 {
 "ixp_id": 0,
 "ixf_id": 1,
 "shortname": "Test IXP",
 "vlan": [
 {
 "id": 0
 }
]
 }
],
 "member_list": [
 {
 "asnum": 10745,
 "connection_list": [
 {
 "ixp_id": 0,
 "vlan_list": [
 {
 "vlan_id": 0,
 "ipv4": {
 "address": "192.0.2.22"
 }
 },
[...]

To enrich the output generated by this command, an optional user-created file can be merged into it, using the --merge-file CLI option. That option takes a YML or JSON file that will be used as the baseline content, on top of which the member_list build by ARouteServer will be injected. The user can craft, for example, a JSON file that contains more information about the Internet Exchange, like the following:

{
 "ixp_list": [
 {
 "shortname": "IX short name",
 "name": "IX full name",
 "country": "IT",
 "url": "https://www.example.com/",
 "peeringdb_id": 1,
 "ixf_id": 2,
 "ixp_id": 1,
 "support_email": "operations@example.com",
 "support_phone": "+123 456789",
 "support_contact_hours": "24/7",
 "peering_policy_list": [
 "open",
 "selective",
 "mandatory",
 "closed"
],
 "vlan": [
 {
 "id": 1,
 "name": "LAN1",
 "ipv4": {
 "prefix": "192.0.2.0",
 "mask_length": 24
 },
 "ipv6": {
 "prefix": "2001:db8::",
 "mask_length": 32
 }
 }
]
 }
]
}

Generation of route server AS-SET RPSL object

The command arouteserver irr-as-set can be used to build the AS-SET RPSL object that describes the ASes and AS-SETs of route server clients. This object can then be used to update the relevant IRR DBs so that peering networks will also be able to build filters on their side.

At this time, ARouteServer is not able to perform any actual update on the IRR databases; it’s up to the network operator to implement a mechanism to update the information on the appropriate IRRDB. It is not excluded that an automatic update feature will be implemented in the future.

Different templates can be used to build the object, depending on the output format that it is desired for it. Those templates are:

	plain_rpsl.j2, to produce an output in plain RPSL format (can be used, for example, to update registries that are leveraging the email system to receive updates)

	ripe_ripeinator_yml.j2, to build a YAML file that can be consumed by ripeinator [https://github.com/xens/ripeinator], to update AS-SET objects using the RIPE REST-API [https://www.ripe.net/manage-ips-and-asns/db/support/documentation/ripe-database-documentation/updating-objects-in-the-ripe-database/6-1-restful-api]

To select the desired template, the CLI argument --template-file-name must be set. See instructions below for more details.

The template files contained in the templates/irr-as-set directory must be edited by the operator to set some mandatory attributes.
Instead of editing the original files distributed with the tool, it’s strongly suggested to make a copy of them in a different directory, and then pass the path of the new dir to the command via the CLI option --templates-dir. This will help to keep a consistent version of the local custom files and to avoid the ARouteServer upgrade process to raise warnings about the local file not being in sync with the upstream one.

Instructions:

	create a directory where custom templates will be
stored (example: ~/arouteserver/custom_templates)

	inside the new directory, create a new directory for
the templates used by the irr-as-set command; the
name of this sub-directory must be irr-as-set, as
the command itself

	copy the original files into the newly-created
irr-as-set directory

	edit the new files and customise them as needed
(vim ~/arouteserver/custom_templates/irr-as-set/<file_to_edit>)

	run the arouteserver irr-as-set command and pass
the path of the main directory created in step 1 as
the --template-dir argument, and pass the name of
the template file to be used via the
--template-file-name argument.

Example:

$ mkdir -p ~/arouteserver/custom_templates
$ mkdir ~/arouteserver/custom_templates/irr-as-set
$ # assuming that ARouteServer config files were
$ # installed in /etc/arouteserver
$ cp \
 /etc/arouteserver/templates/irr-as-set/plain_rpsl.j2 \
 ~/arouteserver/custom_templates/irr-as-set/plain_rpsl.j2
$ vim ~/arouteserver/custom_templates/irr-as-set/plain_rpsl.j2
$ arouteserver \
 irr-as-set \
 --output ~/arouteserver/my_as_set.txt \
 --templates-dir ~/arouteserver/custom_templates \
 --template-file-name plain_rpsl.j2

Output example:

as-set: AS-AS999-RS
descr: AS999 route server IPv4 and IPv6 routes
remarks: List of ASes and AS-SETs announced by IPv4 and IPv6
remarks: clients to the AS999 route servers.
tech-c: <to be set by the user>
admin-c: <to be set by the user>
mnt-by: <to be set by the user>
members: AS-RIPENCC
members: AS10745
members: AS197000
members: AS3333
source: <to be set by the user>

To avoid ambiguity with the output list of members, the tool does not include any as-set whose source is specified and different from the registry set in the source: of the template. For example, if source: ARIN is set in the template, an as-set in the format RADB::AS-ACME would not be included, and a warning log message would be generated.

In order to customise that list and forcedly include or exclude members, the --include-members and --exclude-members options can be used.

Live tests, development and customization

Template context data

To dump the list of variables and data that can be used inside a template, the template-context command can be used:

arouteserver template-context

It produces a YAML document that contains the context variables and their values as they are passed to the template engine used to build configurations.

Initialize a custom live test scenario

To setup a new live test scenario:

arouteserver init-scenario ~/ars_scenarios/myscenario

More details on How to build custom scenarios.

Supported BGP speakers and features

Supported features

This section contains a list of the features offered by route server configurations which are generated by ARouteServer.

For each feature, the compatibility with the supported BGP speakers is also shown.

Legend:

	Yes = feature supported by the BGP speaker and
implemented in the configuration generated by
ARouteServer.

	No = feature supported by the BGP speaker but not
implemented in the configuration generated by
ARouteServer.

	N/A = feature not available in the BGP speaker.

Warning

Please note: support for BIRD v3 is in very early stages, and BIRD v3 itself is only in alpha version, testing release only.

	Feature

	BIRD

	BIRD v2

	BIRD v3
(alpha)

	OpenBGPD

	OpenBGPD
Portable

	Path hiding mitigation (RFC7947, 2.3.1)

	Yes

	Yes

	Yes

	Yes

	Yes

	Basic filters:

	NEXT_HOP enforcement - strict (RFC7948, 4.8)

	Yes

	Yes

	Yes

	Yes

	Yes

	NEXT_HOP enforcement - same AS (RFC7948, 4.8)

	Yes

	Yes

	Yes

	Yes

	Yes

	Min and max IPv4/IPv6 prefix length

	Yes

	Yes

	Yes

	Yes

	Yes

	Max AS_PATH length

	Yes

	Yes

	Yes

	Yes

	Yes

	Reject invalid AS_PATHs (private/invalid ASNs)

	Yes

	Yes

	Yes

	Yes

	Yes

	Reject AS_PATHs containing transit-free ASNs

	Yes

	Yes

	Yes

	Yes

	Yes

	Reject ‘never via route-servers’ ASNs

	Yes

	Yes

	Yes

	Yes

	Yes

	Reject bogons

	Yes

	Yes

	Yes

	Yes

	Yes

	Max-prefix limit

	Yes

	Yes

	Yes

	Yes 1

	Yes 1

	Route Leak Prevention and Detection Using BGP Roles (RFC9234)

	Yes

	Yes

	Yes 3

	Yes

	Yes

	Prefixes and origin ASNs validation:

	IRR-based filters (RFC7948, 4.6.2)

	Yes

	Yes

	Yes

	Yes

	Yes

	RPKI ROAs used as route objects

	Yes

	Yes

	Yes

	Yes

	Yes

	Origin AS from ARIN Whois database dump

	Yes

	Yes

	Yes

	Yes

	Yes

	NIC.BR Whois data (slide n. 26) from Registro.br

	Yes

	Yes

	Yes

	Yes

	Yes

	RPKI-based filtering (BGP Prefix Origin Validation)

	Yes

	Yes

	Yes

	Yes

	Yes

	RPKI ROAs retrieved via RTR protocol

	Yes

	Yes

	Yes

	Yes

	Yes

	Blackhole filtering support:

	Optional NEXT_HOP rewriting

	Yes

	Yes

	Yes

	Yes

	Yes

	Signalling via BLACKHOLE and custom communities)

	Yes

	Yes

	Yes

	Yes

	Yes

	Client-by-client control over propagation

	Yes

	Yes

	Yes

	Yes

	Yes

	Graceful shutdown support:

	GRACEFUL_SHUTDOWN BGP Community

	Yes

	Yes

	Yes

	Yes

	Yes

	Graceful shutdown of the route server itself

	Yes

	Yes

	Yes

	Yes

	Yes

	Control and informative communities:

	Prefix/origin ASN in IRRDBs data

	Yes

	Yes

	Yes

	Yes

	Yes

	Do (not) announce to any / peer / on RTT basis

	Yes

	Yes

	Yes

	Yes

	Yes

	Prepend to any / peer / on RTT basis

	Yes

	Yes

	Yes

	Yes

	Yes

	Add NO_EXPORT / NO_ADVERTISE to any / peer

	Yes

	Yes

	Yes

	Yes

	Yes

	Custom informational BGP communities

	Yes

	Yes

	Yes

	Yes

	Yes

	Optional session features on a client-by-client basis:

	Prepend route server ASN (RFC7947, 2.2.2.1)

	Yes

	Yes

	Yes

	Yes

	Yes

	Active sessions

	Yes

	Yes

	Yes

	Yes

	Yes

	GTSM (Generalized TTL Security Mechanism)

	Yes

	Yes

	Yes

	Yes

	Yes

	Multihop sessions

	Yes 2

	Yes 2

	Yes 2

	Yes

	Yes

	ADD_PATH capability (RFC7911)

	Yes

	Yes

	Yes

	Yes

	Yes

	IPv6 NEXT_HOP for IPv4 routes (RFC8950)

	No

	Yes

	Yes

	No

	No

	
	
	
	
	
	

1: For max-prefix filtering, only the shutdown and the restart actions are supported by OpenBGPD. Restart is configured with a 15 minutes timer.

2: Multihop can be enabled only when path-hiding mitigation is turned off.

3: Support available in ARouteServer, but feature not implemented yet in the target BGP speaker.

For more details on the features which are not supported or partially supported, please see also the Caveats and limitations section of this documentation.

Integration testing coverage

This is a list of all the integration test cases which have been verified using the Live tests framework.

An actual instance of the BGP speaker which is under testing is spun up and configured in a way that some specific features could be tested; some expectations are set, then other instances of BIRD (the clients) are used to generate a set of announcements whose behaviour is supposed to match those expectations.

Finally, the expectations are verified against the route server instance and the outcome of the tests reported in an output file, that is used to automatically build this matrix.

Note

Some test names are a bit cryptic: to get a better understanding of them, please refer to the README file inside the tests/live_tests/scenarios sub-directory of the scenario they refer to (or to the Built-in scenarios section of this documentation).

Total test cases per BGP speaker

	BGP speaker

	Total

	Passed ✔

	Failed ✖

	Skipped

	BIRD

	830

	821

	0

	9

	BIRD v2

	940

	930

	0

	10

	BIRD v3

	846

	837

	0

	9

	OpenBGPD 8.4

	458

	455

	0

	3

Scenarios

‘tag’ reject policy scenario, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS_PATH too long

	✔

	✔

	✔

	✔

	RPKI INVALID route

	✔

	✔

	✔

	✔

	announced by ASN derived via 16bit_mapped_asn

	✔

	✔

	✔

	✔

	bogon prefix

	✔

	✔

	✔

	✔

	bogon prefix, wrong announcing ASN

	✔

	✔

	✔

	✔

	good routes not received

	✔

	✔

	✔

	✔

	invalid ASN in AS_PATH

	✔

	✔

	✔

	✔

	invalid NEXT_HOP

	✔

	✔

	✔

	✔

	invalid left-most ASN

	✔

	✔

	✔

	✔

	local black list

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	origin not in as-macro

	✔

	✔

	✔

	✔

	prefix in client’s blacklist

	✔

	✔

	✔

	✔

	prefix is not in IPv6 global unicast space

	skip

	skip

	skip

	skip

	prefix length

	✔

	✔

	✔

	✔

	prefix not in as-macro

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	✔

	prefixes received by clients: AS2

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	transit-free ASN in AS_PATH

	✔

	✔

	✔

	✔

‘tag’ reject policy scenario, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS_PATH too long

	✔

	✔

	✔

	✔

	RPKI INVALID route

	✔

	✔

	✔

	✔

	announced by ASN derived via 16bit_mapped_asn

	✔

	✔

	✔

	✔

	bogon prefix

	✔

	✔

	✔

	✔

	bogon prefix, wrong announcing ASN

	✔

	✔

	✔

	✔

	good routes not received

	✔

	✔

	✔

	✔

	invalid ASN in AS_PATH

	✔

	✔

	✔

	✔

	invalid NEXT_HOP

	✔

	✔

	✔

	✔

	invalid left-most ASN

	✔

	✔

	✔

	✔

	local black list

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	origin not in as-macro

	✔

	✔

	✔

	✔

	prefix in client’s blacklist

	✔

	✔

	✔

	✔

	prefix is not in IPv6 global unicast space

	✔

	✔

	✔

	✔

	prefix length

	✔

	✔

	✔

	✔

	prefix not in as-macro

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	✔

	prefixes received by clients: AS2

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	transit-free ASN in AS_PATH

	✔

	✔

	✔

	✔

BGP communities, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	announce to AS1 only (ext)

	✔

	✔

	✔

	✔

	announce to AS1 only (lrg)

	✔

	✔

	✔

	✔

	announce to AS1 only (std)

	✔

	✔

	✔

	✔

	announce to AS131073 only (ext)

	✔

	✔

	✔

	✔

	announce to AS131073 only (lrg)

	✔

	✔

	✔

	✔

	custom BGP community (ext)

	✔

	✔

	✔

	✔

	custom BGP community (lrg)

	✔

	✔

	✔

	✔

	custom BGP community (std)

	✔

	✔

	✔

	✔

	custom BGP community scrubbed

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

BGP communities, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	announce to AS1 only (ext)

	✔

	✔

	✔

	✔

	announce to AS1 only (lrg)

	✔

	✔

	✔

	✔

	announce to AS1 only (std)

	✔

	✔

	✔

	✔

	announce to AS131073 only (ext)

	✔

	✔

	✔

	✔

	announce to AS131073 only (lrg)

	✔

	✔

	✔

	✔

	custom BGP community (ext)

	✔

	✔

	✔

	✔

	custom BGP community (lrg)

	✔

	✔

	✔

	✔

	custom BGP community (std)

	✔

	✔

	✔

	✔

	custom BGP community scrubbed

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

BOV custom comms, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, AS2 invalid prefix, bad ASN

	✔

	✔

	✔

	

	RPKI, AS2 valid prefix, exact match

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

BOV custom comms, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, AS2 invalid prefix, bad ASN

	✔

	✔

	✔

	

	RPKI, AS2 valid prefix, exact match

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

RFC8950

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	IPv4 prefix length within ipv6_pref_len but outside ipv4_pref_len

	
	✔

	
	

	RPKI VALID routes

	
	✔

	
	

	RPKI rejected routes, AS0

	
	✔

	
	

	RPKI rejected routes, INVALID

	
	✔

	
	

	accepted routes

	
	✔

	
	

	dropped routes, not in r_set

	
	✔

	
	

	log contains errors

	
	✔

	
	

	next hop authorized address AS2_1

	
	✔

	
	

	next hop same-as AS1_2

	
	✔

	
	

	next hop strict mode on AS1_1

	
	✔

	
	

RPKI INVALID tagging, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, AS2 invalid prefix, bad ASN

	✔

	✔

	✔

	

	RPKI, AS2 invalid prefix, bad length

	✔

	✔

	✔

	

	RPKI, AS2 unknown prefix

	✔

	✔

	✔

	

	RPKI, AS2 valid prefix, exact match

	✔

	✔

	✔

	

	RPKI, AS2 valid prefix, sub prefix

	✔

	✔

	✔

	

	RPKI, AS3 invalid prefix, bad ASN

	✔

	✔

	✔

	

	RPKI, AS3 invalid prefix, bad length

	✔

	✔

	✔

	

	RPKI, AS3 unknown prefix

	✔

	✔

	✔

	

	RPKI, AS3 valid prefix, exact match

	✔

	✔

	✔

	

	RPKI, AS3 valid prefix, sub prefix

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

RPKI INVALID tagging, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, AS2 invalid prefix, bad ASN

	✔

	✔

	✔

	

	RPKI, AS2 invalid prefix, bad length

	✔

	✔

	✔

	

	RPKI, AS2 unknown prefix

	✔

	✔

	✔

	

	RPKI, AS2 valid prefix, exact match

	✔

	✔

	✔

	

	RPKI, AS2 valid prefix, sub prefix

	✔

	✔

	✔

	

	RPKI, AS3 invalid prefix, bad ASN

	✔

	✔

	✔

	

	RPKI, AS3 invalid prefix, bad length

	✔

	✔

	✔

	

	RPKI, AS3 unknown prefix

	✔

	✔

	✔

	

	RPKI, AS3 valid prefix, exact match

	✔

	✔

	✔

	

	RPKI, AS3 valid prefix, sub prefix

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

RTR protocol

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	check the RTR session is up

	
	✔

	✔

	✔

	log contains errors

	
	✔

	✔

	✔

	restart OpenBGPD to speed up RTR session establishment

	
	
	
	✔

	restart the RTR protocol on BIRD to speed up session establishment

	
	✔

	✔

	

	route accepted because validator not running

	
	✔

	✔

	✔

	route dropped after spinning the validator up

	
	✔

	✔

	✔

	spin up the validator

	
	✔

	✔

	✔

default config, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	log contains errors

	✔

	✔

	✔

	✔

default config, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	log contains errors

	✔

	✔

	✔

	✔

examples, rich config, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	log contains errors

	✔

	✔

	✔

	✔

examples, rich config, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	log contains errors

	✔

	✔

	✔

	✔

global scenario, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, blackhole request for a covered prefix

	✔

	✔

	✔

	✔

	RPKI, invalid prefix (bad ASN) not propagated to clients

	✔

	✔

	✔

	✔

	RPKI, invalid prefix (bad ASN) received by rs

	✔

	✔

	✔

	✔

	RPKI, invalid prefix (bad length) received by rs

	✔

	✔

	✔

	✔

	RPKI, valid prefix propagated to clients

	✔

	✔

	✔

	✔

	RPKI, valid prefix received by rs

	✔

	✔

	✔

	✔

	bad communities as seen by AS101 upstreams

	✔

	✔

	✔

	✔

	bad communities scrubbed by rs (lrg)

	✔

	✔

	✔

	✔

	bad communities scrubbed by rs (std)

	✔

	✔

	✔

	✔

	bad prefixes not received by clients

	✔

	✔

	✔

	✔

	bad prefixes received by rs: AS_PATH len

	✔

	✔

	✔

	✔

	bad prefixes received by rs: AS_SET origin, RFC6907 7.1.9

	✔

	✔

	✔

	✔

	bad prefixes received by rs: IRR check for AS_SET origin, BIRD

	✔

	✔

	✔

	skip

	bad prefixes received by rs: IRR check for AS_SET origin, OpenBGPD

	skip

	skip

	skip

	✔

	bad prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	✔

	bad prefixes received by rs: RPKI ROAs as route objects failed

	✔

	✔

	✔

	✔

	bad prefixes received by rs: bogon

	✔

	✔

	✔

	✔

	bad prefixes received by rs: bogon (wrong tag)

	
	
	
	✔

	bad prefixes received by rs: client blacklist

	✔

	✔

	✔

	✔

	bad prefixes received by rs: default route

	✔

	✔

	✔

	✔

	bad prefixes received by rs: global blacklist

	✔

	✔

	✔

	✔

	bad prefixes received by rs: global blacklist (wrong tag)

	
	
	
	✔

	bad prefixes received by rs: invalid ASN in AS-PATH

	✔

	✔

	✔

	✔

	bad prefixes received by rs: invalid NEXT_HOP

	✔

	✔

	✔

	✔

	bad prefixes received by rs: invalid prefix-len

	✔

	✔

	✔

	✔

	bad prefixes received by rs: left-most ASN

	✔

	✔

	✔

	✔

	bad prefixes received by rs: never via route servers ASN in AS-PATH (PeeringDB)

	✔

	✔

	✔

	✔

	bad prefixes received by rs: never via route servers ASN in AS-PATH (asns list)

	✔

	✔

	✔

	✔

	bad prefixes received by rs: not IPv6 global unicast space

	✔

	✔

	✔

	✔

	bad prefixes received by rs: origin not in AS-SET

	✔

	✔

	✔

	✔

	bad prefixes received by rs: prefix not in AS-SET

	✔

	✔

	✔

	✔

	bad prefixes received by rs: transit-free ASN in AS-PATH

	✔

	✔

	✔

	✔

	bad prefixes received by rs: transit-free ASN in AS-PATH from a transit peer

	✔

	✔

	✔

	✔

	bad prefixes received by rs: unknown NEXT_HOP

	✔

	✔

	✔

	✔

	blackhole filtering requests as seen by rs (BLACKHOLE)

	✔

	✔

	✔

	✔

	blackhole filtering requests as seen by rs (lrg cust)

	✔

	✔

	✔

	✔

	blackhole filtering requests as seen by rs (std cust)

	✔

	✔

	✔

	✔

	blackholed prefixes as seen by enabled clients (BLACKHOLE)

	✔

	✔

	✔

	✔

	blackholed prefixes as seen by enabled clients (lrg_cust)

	✔

	✔

	✔

	✔

	blackholed prefixes as seen by enabled clients (std_cust)

	✔

	✔

	✔

	✔

	blackholed prefixes not seen by not enabled clients

	✔

	✔

	✔

	✔

	control communities, NO_EXPORT to AS1

	✔

	✔

	✔

	✔

	control communities, NO_EXPORT to AS151866

	✔

	✔

	✔

	✔

	control communities, NO_EXPORT to any

	✔

	✔

	✔

	✔

	control communities, RFC1997 NO_EXPORT

	✔

	✔

	✔

	✔

	control communities, RTT, blackhole, not peers > 20 ms

	✔

	✔

	✔

	✔

	control communities, RTT, ext comms, prepend 1x > 10 ms, 2x > 20 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers <= 5 and > 100 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers > 15 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers > 5 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers > 5 ms + AS3

	✔

	✔

	✔

	✔

	control communities, RTT, only peers <= 15 ms

	✔

	✔

	✔

	✔

	control communities, RTT, only peers <= 5 ms

	✔

	✔

	✔

	✔

	control communities, RTT, prepend 3x <= 5 ms, 2x <= 20 ms, 1x any

	✔

	✔

	✔

	✔

	control communities, RTT, prepend 3x > 100 ms, 2x > 10 ms

	✔

	✔

	✔

	✔

	control communities, announce to AS1 only

	✔

	✔

	✔

	✔

	control communities, announce to all except AS1

	✔

	✔

	✔

	✔

	control communities, don’t announce to any

	✔

	✔

	✔

	✔

	control communities, prepend once to AS1

	✔

	✔

	✔

	✔

	control communities, prepend once to any

	✔

	✔

	✔

	✔

	control communities, prepend thrice to AS1, once to others

	✔

	✔

	✔

	✔

	control communities, prepend thrice to any

	✔

	✔

	✔

	✔

	control communities, prepend twice to AS151866

	✔

	✔

	✔

	✔

	control communities, prepend twice to AS2

	✔

	✔

	✔

	✔

	control communities, prepend twice to any

	✔

	✔

	✔

	✔

	good prefixes because of use_arin_bulk_whois_data

	✔

	✔

	✔

	✔

	good prefixes because of use_registrobr_bulk_whois_data

	✔

	✔

	✔

	✔

	good prefixes because of use_rpki_roas_as_route_objects: covering

	✔

	✔

	✔

	✔

	good prefixes because of use_rpki_roas_as_route_objects: exact

	✔

	✔

	✔

	✔

	good prefixes received by rs

	✔

	✔

	✔

	✔

	good prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	✔

	good prefixes received by rs: non-client NEXT_HOP

	✔

	✔

	✔

	✔

	gshut by a not enabled client

	✔

	✔

	✔

	✔

	gshut by an enabled client

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	other communities not scrubbed by rs (lrg)

	✔

	✔

	✔

	✔

	other communities not scrubbed by rs (std)

	✔

	✔

	✔

	✔

	prefixes from AS101 received by its upstreams

	✔

	✔

	✔

	✔

	prefixes from AS101 received by rs

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	✔

	prefixes received by clients: AS2

	✔

	✔

	✔

	✔

	prefixes received by clients: AS3

	✔

	✔

	✔

	✔

	prefixes received by clients: AS3 (with ADD-PATH)

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	session configured via local include files

	✔

	✔

	✔

	✔

global scenario, IPv4, tag

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, blackhole request for a covered prefix

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) not propagated to clients

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) received by rs

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad length) received by rs

	✔

	✔

	✔

	

	RPKI, valid prefix propagated to clients

	✔

	✔

	✔

	

	RPKI, valid prefix received by rs

	✔

	✔

	✔

	

	bad communities as seen by AS101 upstreams

	✔

	✔

	✔

	

	bad communities scrubbed by rs (lrg)

	✔

	✔

	✔

	

	bad communities scrubbed by rs (std)

	✔

	✔

	✔

	

	bad prefixes not received by clients

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_PATH len

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_SET origin, RFC6907 7.1.9

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, BIRD

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, OpenBGPD

	skip

	skip

	skip

	

	bad prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	bad prefixes received by rs: RPKI ROAs as route objects failed

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: client blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: default route

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid NEXT_HOP

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid prefix-len

	✔

	✔

	✔

	

	bad prefixes received by rs: left-most ASN

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (PeeringDB)

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (asns list)

	✔

	✔

	✔

	

	bad prefixes received by rs: not IPv6 global unicast space

	✔

	✔

	✔

	

	bad prefixes received by rs: origin not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: prefix not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH from a transit peer

	✔

	✔

	✔

	

	bad prefixes received by rs: unknown NEXT_HOP

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (BLACKHOLE)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (lrg cust)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (std cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (BLACKHOLE)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (lrg_cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (std_cust)

	✔

	✔

	✔

	

	blackholed prefixes not seen by not enabled clients

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS1

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS151866

	✔

	✔

	✔

	

	control communities, NO_EXPORT to any

	✔

	✔

	✔

	

	control communities, RFC1997 NO_EXPORT

	✔

	✔

	✔

	

	control communities, RTT, blackhole, not peers > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, ext comms, prepend 1x > 10 ms, 2x > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers <= 5 and > 100 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 15 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms + AS3

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 15 ms

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 5 ms

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x <= 5 ms, 2x <= 20 ms, 1x any

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x > 100 ms, 2x > 10 ms

	✔

	✔

	✔

	

	control communities, announce to AS1 only

	✔

	✔

	✔

	

	control communities, announce to all except AS1

	✔

	✔

	✔

	

	control communities, don’t announce to any

	✔

	✔

	✔

	

	control communities, prepend once to AS1

	✔

	✔

	✔

	

	control communities, prepend once to any

	✔

	✔

	✔

	

	control communities, prepend thrice to AS1, once to others

	✔

	✔

	✔

	

	control communities, prepend thrice to any

	✔

	✔

	✔

	

	control communities, prepend twice to AS151866

	✔

	✔

	✔

	

	control communities, prepend twice to AS2

	✔

	✔

	✔

	

	control communities, prepend twice to any

	✔

	✔

	✔

	

	good prefixes because of use_arin_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_registrobr_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: covering

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: exact

	✔

	✔

	✔

	

	good prefixes received by rs

	✔

	✔

	✔

	

	good prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	good prefixes received by rs: non-client NEXT_HOP

	✔

	✔

	✔

	

	gshut by a not enabled client

	✔

	✔

	✔

	

	gshut by an enabled client

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	other communities not scrubbed by rs (lrg)

	✔

	✔

	✔

	

	other communities not scrubbed by rs (std)

	✔

	✔

	✔

	

	prefixes from AS101 received by its upstreams

	✔

	✔

	✔

	

	prefixes from AS101 received by rs

	✔

	✔

	✔

	

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	

	prefixes received by clients: AS2

	✔

	✔

	✔

	

	prefixes received by clients: AS3

	✔

	✔

	✔

	

	prefixes received by clients: AS3 (with ADD-PATH)

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

	session configured via local include files

	✔

	✔

	✔

	

global scenario, IPv4, tag&reject

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, blackhole request for a covered prefix

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) not propagated to clients

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) received by rs

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad length) received by rs

	✔

	✔

	✔

	

	RPKI, valid prefix propagated to clients

	✔

	✔

	✔

	

	RPKI, valid prefix received by rs

	✔

	✔

	✔

	

	bad communities as seen by AS101 upstreams

	✔

	✔

	✔

	

	bad communities scrubbed by rs (lrg)

	✔

	✔

	✔

	

	bad communities scrubbed by rs (std)

	✔

	✔

	✔

	

	bad prefixes not received by clients

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_PATH len

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_SET origin, RFC6907 7.1.9

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, BIRD

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, OpenBGPD

	skip

	skip

	skip

	

	bad prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	bad prefixes received by rs: RPKI ROAs as route objects failed

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: client blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: default route

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid NEXT_HOP

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid prefix-len

	✔

	✔

	✔

	

	bad prefixes received by rs: left-most ASN

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (PeeringDB)

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (asns list)

	✔

	✔

	✔

	

	bad prefixes received by rs: not IPv6 global unicast space

	✔

	✔

	✔

	

	bad prefixes received by rs: origin not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: prefix not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH from a transit peer

	✔

	✔

	✔

	

	bad prefixes received by rs: unknown NEXT_HOP

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (BLACKHOLE)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (lrg cust)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (std cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (BLACKHOLE)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (lrg_cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (std_cust)

	✔

	✔

	✔

	

	blackholed prefixes not seen by not enabled clients

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS1

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS151866

	✔

	✔

	✔

	

	control communities, NO_EXPORT to any

	✔

	✔

	✔

	

	control communities, RFC1997 NO_EXPORT

	✔

	✔

	✔

	

	control communities, RTT, blackhole, not peers > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, ext comms, prepend 1x > 10 ms, 2x > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers <= 5 and > 100 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 15 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms + AS3

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 15 ms

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 5 ms

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x <= 5 ms, 2x <= 20 ms, 1x any

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x > 100 ms, 2x > 10 ms

	✔

	✔

	✔

	

	control communities, announce to AS1 only

	✔

	✔

	✔

	

	control communities, announce to all except AS1

	✔

	✔

	✔

	

	control communities, don’t announce to any

	✔

	✔

	✔

	

	control communities, prepend once to AS1

	✔

	✔

	✔

	

	control communities, prepend once to any

	✔

	✔

	✔

	

	control communities, prepend thrice to AS1, once to others

	✔

	✔

	✔

	

	control communities, prepend thrice to any

	✔

	✔

	✔

	

	control communities, prepend twice to AS151866

	✔

	✔

	✔

	

	control communities, prepend twice to AS2

	✔

	✔

	✔

	

	control communities, prepend twice to any

	✔

	✔

	✔

	

	good prefixes because of use_arin_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_registrobr_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: covering

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: exact

	✔

	✔

	✔

	

	good prefixes received by rs

	✔

	✔

	✔

	

	good prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	good prefixes received by rs: non-client NEXT_HOP

	✔

	✔

	✔

	

	gshut by a not enabled client

	✔

	✔

	✔

	

	gshut by an enabled client

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	other communities not scrubbed by rs (lrg)

	✔

	✔

	✔

	

	other communities not scrubbed by rs (std)

	✔

	✔

	✔

	

	prefixes from AS101 received by its upstreams

	✔

	✔

	✔

	

	prefixes from AS101 received by rs

	✔

	✔

	✔

	

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	

	prefixes received by clients: AS2

	✔

	✔

	✔

	

	prefixes received by clients: AS3

	✔

	✔

	✔

	

	prefixes received by clients: AS3 (with ADD-PATH)

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

	session configured via local include files

	✔

	✔

	✔

	

global scenario, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, blackhole request for a covered prefix

	✔

	✔

	✔

	✔

	RPKI, invalid prefix (bad ASN) not propagated to clients

	✔

	✔

	✔

	✔

	RPKI, invalid prefix (bad ASN) received by rs

	✔

	✔

	✔

	✔

	RPKI, invalid prefix (bad length) received by rs

	✔

	✔

	✔

	✔

	RPKI, valid prefix propagated to clients

	✔

	✔

	✔

	✔

	RPKI, valid prefix received by rs

	✔

	✔

	✔

	✔

	bad communities as seen by AS101 upstreams

	✔

	✔

	✔

	✔

	bad communities scrubbed by rs (lrg)

	✔

	✔

	✔

	✔

	bad communities scrubbed by rs (std)

	✔

	✔

	✔

	✔

	bad prefixes not received by clients

	✔

	✔

	✔

	✔

	bad prefixes received by rs: AS_PATH len

	✔

	✔

	✔

	✔

	bad prefixes received by rs: AS_SET origin, RFC6907 7.1.9

	✔

	✔

	✔

	✔

	bad prefixes received by rs: IRR check for AS_SET origin, BIRD

	✔

	✔

	✔

	skip

	bad prefixes received by rs: IRR check for AS_SET origin, OpenBGPD

	skip

	skip

	skip

	✔

	bad prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	✔

	bad prefixes received by rs: RPKI ROAs as route objects failed

	✔

	✔

	✔

	✔

	bad prefixes received by rs: bogon

	✔

	✔

	✔

	✔

	bad prefixes received by rs: bogon (wrong tag)

	
	
	
	✔

	bad prefixes received by rs: client blacklist

	✔

	✔

	✔

	✔

	bad prefixes received by rs: default route

	✔

	✔

	✔

	✔

	bad prefixes received by rs: global blacklist

	✔

	✔

	✔

	✔

	bad prefixes received by rs: global blacklist (wrong tag)

	
	
	
	✔

	bad prefixes received by rs: invalid ASN in AS-PATH

	✔

	✔

	✔

	✔

	bad prefixes received by rs: invalid NEXT_HOP

	✔

	✔

	✔

	✔

	bad prefixes received by rs: invalid prefix-len

	✔

	✔

	✔

	✔

	bad prefixes received by rs: left-most ASN

	✔

	✔

	✔

	✔

	bad prefixes received by rs: never via route servers ASN in AS-PATH (PeeringDB)

	✔

	✔

	✔

	✔

	bad prefixes received by rs: never via route servers ASN in AS-PATH (asns list)

	✔

	✔

	✔

	✔

	bad prefixes received by rs: not IPv6 global unicast space

	✔

	✔

	✔

	✔

	bad prefixes received by rs: origin not in AS-SET

	✔

	✔

	✔

	✔

	bad prefixes received by rs: prefix not in AS-SET

	✔

	✔

	✔

	✔

	bad prefixes received by rs: transit-free ASN in AS-PATH

	✔

	✔

	✔

	✔

	bad prefixes received by rs: transit-free ASN in AS-PATH from a transit peer

	✔

	✔

	✔

	✔

	bad prefixes received by rs: unknown NEXT_HOP

	✔

	✔

	✔

	✔

	blackhole filtering requests as seen by rs (BLACKHOLE)

	✔

	✔

	✔

	✔

	blackhole filtering requests as seen by rs (lrg cust)

	✔

	✔

	✔

	✔

	blackhole filtering requests as seen by rs (std cust)

	✔

	✔

	✔

	✔

	blackholed prefixes as seen by enabled clients (BLACKHOLE)

	✔

	✔

	✔

	✔

	blackholed prefixes as seen by enabled clients (lrg_cust)

	✔

	✔

	✔

	✔

	blackholed prefixes as seen by enabled clients (std_cust)

	✔

	✔

	✔

	✔

	blackholed prefixes not seen by not enabled clients

	✔

	✔

	✔

	✔

	control communities, NO_EXPORT to AS1

	✔

	✔

	✔

	✔

	control communities, NO_EXPORT to AS151866

	✔

	✔

	✔

	✔

	control communities, NO_EXPORT to any

	✔

	✔

	✔

	✔

	control communities, RFC1997 NO_EXPORT

	✔

	✔

	✔

	✔

	control communities, RTT, blackhole, not peers > 20 ms

	✔

	✔

	✔

	✔

	control communities, RTT, ext comms, prepend 1x > 10 ms, 2x > 20 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers <= 5 and > 100 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers > 15 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers > 5 ms

	✔

	✔

	✔

	✔

	control communities, RTT, not peers > 5 ms + AS3

	✔

	✔

	✔

	✔

	control communities, RTT, only peers <= 15 ms

	✔

	✔

	✔

	✔

	control communities, RTT, only peers <= 5 ms

	✔

	✔

	✔

	✔

	control communities, RTT, prepend 3x <= 5 ms, 2x <= 20 ms, 1x any

	✔

	✔

	✔

	✔

	control communities, RTT, prepend 3x > 100 ms, 2x > 10 ms

	✔

	✔

	✔

	✔

	control communities, announce to AS1 only

	✔

	✔

	✔

	✔

	control communities, announce to all except AS1

	✔

	✔

	✔

	✔

	control communities, don’t announce to any

	✔

	✔

	✔

	✔

	control communities, prepend once to AS1

	✔

	✔

	✔

	✔

	control communities, prepend once to any

	✔

	✔

	✔

	✔

	control communities, prepend thrice to AS1, once to others

	✔

	✔

	✔

	✔

	control communities, prepend thrice to any

	✔

	✔

	✔

	✔

	control communities, prepend twice to AS151866

	✔

	✔

	✔

	✔

	control communities, prepend twice to AS2

	✔

	✔

	✔

	✔

	control communities, prepend twice to any

	✔

	✔

	✔

	✔

	good prefixes because of use_arin_bulk_whois_data

	✔

	✔

	✔

	✔

	good prefixes because of use_registrobr_bulk_whois_data

	✔

	✔

	✔

	✔

	good prefixes because of use_rpki_roas_as_route_objects: covering

	✔

	✔

	✔

	✔

	good prefixes because of use_rpki_roas_as_route_objects: exact

	✔

	✔

	✔

	✔

	good prefixes received by rs

	✔

	✔

	✔

	✔

	good prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	✔

	good prefixes received by rs: non-client NEXT_HOP

	✔

	✔

	✔

	✔

	gshut by a not enabled client

	✔

	✔

	✔

	✔

	gshut by an enabled client

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	other communities not scrubbed by rs (lrg)

	✔

	✔

	✔

	✔

	other communities not scrubbed by rs (std)

	✔

	✔

	✔

	✔

	prefixes from AS101 received by its upstreams

	✔

	✔

	✔

	✔

	prefixes from AS101 received by rs

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	✔

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	✔

	prefixes received by clients: AS2

	✔

	✔

	✔

	✔

	prefixes received by clients: AS3

	✔

	✔

	✔

	✔

	prefixes received by clients: AS3 (with ADD-PATH)

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	session configured via local include files

	✔

	✔

	✔

	✔

global scenario, IPv6, tag

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, blackhole request for a covered prefix

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) not propagated to clients

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) received by rs

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad length) received by rs

	✔

	✔

	✔

	

	RPKI, valid prefix propagated to clients

	✔

	✔

	✔

	

	RPKI, valid prefix received by rs

	✔

	✔

	✔

	

	bad communities as seen by AS101 upstreams

	✔

	✔

	✔

	

	bad communities scrubbed by rs (lrg)

	✔

	✔

	✔

	

	bad communities scrubbed by rs (std)

	✔

	✔

	✔

	

	bad prefixes not received by clients

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_PATH len

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_SET origin, RFC6907 7.1.9

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, BIRD

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, OpenBGPD

	skip

	skip

	skip

	

	bad prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	bad prefixes received by rs: RPKI ROAs as route objects failed

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: client blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: default route

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid NEXT_HOP

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid prefix-len

	✔

	✔

	✔

	

	bad prefixes received by rs: left-most ASN

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (PeeringDB)

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (asns list)

	✔

	✔

	✔

	

	bad prefixes received by rs: not IPv6 global unicast space

	✔

	✔

	✔

	

	bad prefixes received by rs: origin not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: prefix not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH from a transit peer

	✔

	✔

	✔

	

	bad prefixes received by rs: unknown NEXT_HOP

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (BLACKHOLE)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (lrg cust)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (std cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (BLACKHOLE)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (lrg_cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (std_cust)

	✔

	✔

	✔

	

	blackholed prefixes not seen by not enabled clients

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS1

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS151866

	✔

	✔

	✔

	

	control communities, NO_EXPORT to any

	✔

	✔

	✔

	

	control communities, RFC1997 NO_EXPORT

	✔

	✔

	✔

	

	control communities, RTT, blackhole, not peers > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, ext comms, prepend 1x > 10 ms, 2x > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers <= 5 and > 100 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 15 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms + AS3

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 15 ms

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 5 ms

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x <= 5 ms, 2x <= 20 ms, 1x any

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x > 100 ms, 2x > 10 ms

	✔

	✔

	✔

	

	control communities, announce to AS1 only

	✔

	✔

	✔

	

	control communities, announce to all except AS1

	✔

	✔

	✔

	

	control communities, don’t announce to any

	✔

	✔

	✔

	

	control communities, prepend once to AS1

	✔

	✔

	✔

	

	control communities, prepend once to any

	✔

	✔

	✔

	

	control communities, prepend thrice to AS1, once to others

	✔

	✔

	✔

	

	control communities, prepend thrice to any

	✔

	✔

	✔

	

	control communities, prepend twice to AS151866

	✔

	✔

	✔

	

	control communities, prepend twice to AS2

	✔

	✔

	✔

	

	control communities, prepend twice to any

	✔

	✔

	✔

	

	good prefixes because of use_arin_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_registrobr_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: covering

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: exact

	✔

	✔

	✔

	

	good prefixes received by rs

	✔

	✔

	✔

	

	good prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	good prefixes received by rs: non-client NEXT_HOP

	✔

	✔

	✔

	

	gshut by a not enabled client

	✔

	✔

	✔

	

	gshut by an enabled client

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	other communities not scrubbed by rs (lrg)

	✔

	✔

	✔

	

	other communities not scrubbed by rs (std)

	✔

	✔

	✔

	

	prefixes from AS101 received by its upstreams

	✔

	✔

	✔

	

	prefixes from AS101 received by rs

	✔

	✔

	✔

	

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	

	prefixes received by clients: AS2

	✔

	✔

	✔

	

	prefixes received by clients: AS3

	✔

	✔

	✔

	

	prefixes received by clients: AS3 (with ADD-PATH)

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

	session configured via local include files

	✔

	✔

	✔

	

global scenario, IPv6, tag&reject

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, blackhole request for a covered prefix

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) not propagated to clients

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad ASN) received by rs

	✔

	✔

	✔

	

	RPKI, invalid prefix (bad length) received by rs

	✔

	✔

	✔

	

	RPKI, valid prefix propagated to clients

	✔

	✔

	✔

	

	RPKI, valid prefix received by rs

	✔

	✔

	✔

	

	bad communities as seen by AS101 upstreams

	✔

	✔

	✔

	

	bad communities scrubbed by rs (lrg)

	✔

	✔

	✔

	

	bad communities scrubbed by rs (std)

	✔

	✔

	✔

	

	bad prefixes not received by clients

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_PATH len

	✔

	✔

	✔

	

	bad prefixes received by rs: AS_SET origin, RFC6907 7.1.9

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, BIRD

	✔

	✔

	✔

	

	bad prefixes received by rs: IRR check for AS_SET origin, OpenBGPD

	skip

	skip

	skip

	

	bad prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	bad prefixes received by rs: RPKI ROAs as route objects failed

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon

	✔

	✔

	✔

	

	bad prefixes received by rs: bogon (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: client blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: default route

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist

	✔

	✔

	✔

	

	bad prefixes received by rs: global blacklist (wrong tag)

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid NEXT_HOP

	✔

	✔

	✔

	

	bad prefixes received by rs: invalid prefix-len

	✔

	✔

	✔

	

	bad prefixes received by rs: left-most ASN

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (PeeringDB)

	✔

	✔

	✔

	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (asns list)

	✔

	✔

	✔

	

	bad prefixes received by rs: not IPv6 global unicast space

	✔

	✔

	✔

	

	bad prefixes received by rs: origin not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: prefix not in AS-SET

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH

	✔

	✔

	✔

	

	bad prefixes received by rs: transit-free ASN in AS-PATH from a transit peer

	✔

	✔

	✔

	

	bad prefixes received by rs: unknown NEXT_HOP

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (BLACKHOLE)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (lrg cust)

	✔

	✔

	✔

	

	blackhole filtering requests as seen by rs (std cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (BLACKHOLE)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (lrg_cust)

	✔

	✔

	✔

	

	blackholed prefixes as seen by enabled clients (std_cust)

	✔

	✔

	✔

	

	blackholed prefixes not seen by not enabled clients

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS1

	✔

	✔

	✔

	

	control communities, NO_EXPORT to AS151866

	✔

	✔

	✔

	

	control communities, NO_EXPORT to any

	✔

	✔

	✔

	

	control communities, RFC1997 NO_EXPORT

	✔

	✔

	✔

	

	control communities, RTT, blackhole, not peers > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, ext comms, prepend 1x > 10 ms, 2x > 20 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers <= 5 and > 100 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 15 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms

	✔

	✔

	✔

	

	control communities, RTT, not peers > 5 ms + AS3

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 15 ms

	✔

	✔

	✔

	

	control communities, RTT, only peers <= 5 ms

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x <= 5 ms, 2x <= 20 ms, 1x any

	✔

	✔

	✔

	

	control communities, RTT, prepend 3x > 100 ms, 2x > 10 ms

	✔

	✔

	✔

	

	control communities, announce to AS1 only

	✔

	✔

	✔

	

	control communities, announce to all except AS1

	✔

	✔

	✔

	

	control communities, don’t announce to any

	✔

	✔

	✔

	

	control communities, prepend once to AS1

	✔

	✔

	✔

	

	control communities, prepend once to any

	✔

	✔

	✔

	

	control communities, prepend thrice to AS1, once to others

	✔

	✔

	✔

	

	control communities, prepend thrice to any

	✔

	✔

	✔

	

	control communities, prepend twice to AS151866

	✔

	✔

	✔

	

	control communities, prepend twice to AS2

	✔

	✔

	✔

	

	control communities, prepend twice to any

	✔

	✔

	✔

	

	good prefixes because of use_arin_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_registrobr_bulk_whois_data

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: covering

	✔

	✔

	✔

	

	good prefixes because of use_rpki_roas_as_route_objects: exact

	✔

	✔

	✔

	

	good prefixes received by rs

	✔

	✔

	✔

	

	good prefixes received by rs: IRRdb white-list

	✔

	✔

	✔

	

	good prefixes received by rs: non-client NEXT_HOP

	✔

	✔

	✔

	

	gshut by a not enabled client

	✔

	✔

	✔

	

	gshut by an enabled client

	✔

	✔

	✔

	

	log contains errors

	✔

	✔

	✔

	

	other communities not scrubbed by rs (lrg)

	✔

	✔

	✔

	

	other communities not scrubbed by rs (std)

	✔

	✔

	✔

	

	prefixes from AS101 received by its upstreams

	✔

	✔

	✔

	

	prefixes from AS101 received by rs

	✔

	✔

	✔

	

	prefixes received by clients: AS1_1

	✔

	✔

	✔

	

	prefixes received by clients: AS1_2

	✔

	✔

	✔

	

	prefixes received by clients: AS2

	✔

	✔

	✔

	

	prefixes received by clients: AS3

	✔

	✔

	✔

	

	prefixes received by clients: AS3 (with ADD-PATH)

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	

	session configured via local include files

	✔

	✔

	✔

	

global scenario, RFC8950

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	RPKI, blackhole request for a covered prefix

	
	✔

	
	

	RPKI, invalid prefix (bad ASN) not propagated to clients

	
	✔

	
	

	RPKI, invalid prefix (bad ASN) received by rs

	
	✔

	
	

	RPKI, invalid prefix (bad length) received by rs

	
	✔

	
	

	RPKI, valid prefix propagated to clients

	
	✔

	
	

	RPKI, valid prefix received by rs

	
	✔

	
	

	bad communities as seen by AS101 upstreams

	
	✔

	
	

	bad communities scrubbed by rs (lrg)

	
	✔

	
	

	bad communities scrubbed by rs (std)

	
	✔

	
	

	bad prefixes not received by clients

	
	✔

	
	

	bad prefixes received by rs: AS_PATH len

	
	✔

	
	

	bad prefixes received by rs: AS_SET origin, RFC6907 7.1.9

	
	✔

	
	

	bad prefixes received by rs: IRR check for AS_SET origin, BIRD

	
	✔

	
	

	bad prefixes received by rs: IRR check for AS_SET origin, OpenBGPD

	
	skip

	
	

	bad prefixes received by rs: IRRdb white-list

	
	✔

	
	

	bad prefixes received by rs: RPKI ROAs as route objects failed

	
	✔

	
	

	bad prefixes received by rs: bogon

	
	✔

	
	

	bad prefixes received by rs: client blacklist

	
	✔

	
	

	bad prefixes received by rs: default route

	
	✔

	
	

	bad prefixes received by rs: global blacklist

	
	✔

	
	

	bad prefixes received by rs: invalid ASN in AS-PATH

	
	✔

	
	

	bad prefixes received by rs: invalid NEXT_HOP

	
	✔

	
	

	bad prefixes received by rs: invalid prefix-len

	
	✔

	
	

	bad prefixes received by rs: left-most ASN

	
	✔

	
	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (PeeringDB)

	
	✔

	
	

	bad prefixes received by rs: never via route servers ASN in AS-PATH (asns list)

	
	✔

	
	

	bad prefixes received by rs: not IPv6 global unicast space

	
	✔

	
	

	bad prefixes received by rs: origin not in AS-SET

	
	✔

	
	

	bad prefixes received by rs: prefix not in AS-SET

	
	✔

	
	

	bad prefixes received by rs: transit-free ASN in AS-PATH

	
	✔

	
	

	bad prefixes received by rs: transit-free ASN in AS-PATH from a transit peer

	
	✔

	
	

	bad prefixes received by rs: unknown NEXT_HOP

	
	✔

	
	

	blackhole filtering requests as seen by rs (BLACKHOLE)

	
	✔

	
	

	blackhole filtering requests as seen by rs (lrg cust)

	
	✔

	
	

	blackhole filtering requests as seen by rs (std cust)

	
	✔

	
	

	blackholed prefixes as seen by enabled clients (BLACKHOLE)

	
	✔

	
	

	blackholed prefixes as seen by enabled clients (lrg_cust)

	
	✔

	
	

	blackholed prefixes as seen by enabled clients (std_cust)

	
	✔

	
	

	blackholed prefixes not seen by not enabled clients

	
	✔

	
	

	control communities, NO_EXPORT to AS1

	
	✔

	
	

	control communities, NO_EXPORT to AS151866

	
	✔

	
	

	control communities, NO_EXPORT to any

	
	✔

	
	

	control communities, RFC1997 NO_EXPORT

	
	✔

	
	

	control communities, RTT, blackhole, not peers > 20 ms

	
	✔

	
	

	control communities, RTT, ext comms, prepend 1x > 10 ms, 2x > 20 ms

	
	✔

	
	

	control communities, RTT, not peers <= 5 and > 100 ms

	
	✔

	
	

	control communities, RTT, not peers > 15 ms

	
	✔

	
	

	control communities, RTT, not peers > 5 ms

	
	✔

	
	

	control communities, RTT, not peers > 5 ms + AS3

	
	✔

	
	

	control communities, RTT, only peers <= 15 ms

	
	✔

	
	

	control communities, RTT, only peers <= 5 ms

	
	✔

	
	

	control communities, RTT, prepend 3x <= 5 ms, 2x <= 20 ms, 1x any

	
	✔

	
	

	control communities, RTT, prepend 3x > 100 ms, 2x > 10 ms

	
	✔

	
	

	control communities, announce to AS1 only

	
	✔

	
	

	control communities, announce to all except AS1

	
	✔

	
	

	control communities, don’t announce to any

	
	✔

	
	

	control communities, prepend once to AS1

	
	✔

	
	

	control communities, prepend once to any

	
	✔

	
	

	control communities, prepend thrice to AS1, once to others

	
	✔

	
	

	control communities, prepend thrice to any

	
	✔

	
	

	control communities, prepend twice to AS151866

	
	✔

	
	

	control communities, prepend twice to AS2

	
	✔

	
	

	control communities, prepend twice to any

	
	✔

	
	

	good prefixes because of use_arin_bulk_whois_data

	
	✔

	
	

	good prefixes because of use_registrobr_bulk_whois_data

	
	✔

	
	

	good prefixes because of use_rpki_roas_as_route_objects: covering

	
	✔

	
	

	good prefixes because of use_rpki_roas_as_route_objects: exact

	
	✔

	
	

	good prefixes received by rs

	
	✔

	
	

	good prefixes received by rs: IRRdb white-list

	
	✔

	
	

	good prefixes received by rs: non-client NEXT_HOP

	
	✔

	
	

	gshut by a not enabled client

	
	✔

	
	

	gshut by an enabled client

	
	✔

	
	

	log contains errors

	
	✔

	
	

	other communities not scrubbed by rs (lrg)

	
	✔

	
	

	other communities not scrubbed by rs (std)

	
	✔

	
	

	prefixes from AS101 received by its upstreams

	
	✔

	
	

	prefixes from AS101 received by rs

	
	✔

	
	

	prefixes received by clients: AS1_1

	
	✔

	
	

	prefixes received by clients: AS1_2

	
	✔

	
	

	prefixes received by clients: AS2

	
	✔

	
	

	prefixes received by clients: AS3

	
	✔

	
	

	prefixes received by clients: AS3 (with ADD-PATH)

	
	✔

	
	

	reconfigure

	
	✔

	
	

	session configured via local include files

	
	✔

	
	

gshut, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	clients receive routes tagged with GRACEFUL_SHUTDOWN

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

gshut, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	clients receive routes tagged with GRACEFUL_SHUTDOWN

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

hooks example, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	log contains errors

	✔

	✔

	✔

	

hooks example, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	log contains errors

	✔

	✔

	✔

	

max-prefix, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS5 session is down (max-prefix hit, action == shutdown)

	✔

	✔

	✔

	

	clients log max-prefix notification

	
	
	
	✔

	log contains errors

	✔

	✔

	✔

	✔

	log is populated: import limit, no warning in the log file (AS6)

	✔

	✔

	✔

	

	log is populated: receive limit, routes blocked

	✔

	✔

	✔

	

	log is populated: receive limit, session shutdown (AS5)

	✔

	✔

	✔

	

	number of prefixes received by rs from AS1

	✔

	✔

	✔

	

	number of prefixes received by rs from AS2

	✔

	✔

	✔

	

	number of prefixes received by rs from AS3

	✔

	✔

	✔

	

	number of prefixes received by rs from AS4

	✔

	✔

	✔

	

	number of prefixes received by rs from AS6

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	✔

	sessions are down

	
	
	
	✔

max-prefix, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS5 session is down (max-prefix hit, action == shutdown)

	✔

	✔

	✔

	

	clients log max-prefix notification

	
	
	
	✔

	log contains errors

	✔

	✔

	✔

	✔

	log is populated: import limit, no warning in the log file (AS6)

	✔

	✔

	✔

	

	log is populated: receive limit, routes blocked

	✔

	✔

	✔

	

	log is populated: receive limit, session shutdown (AS5)

	✔

	✔

	✔

	

	number of prefixes received by rs from AS1

	✔

	✔

	✔

	

	number of prefixes received by rs from AS2

	✔

	✔

	✔

	

	number of prefixes received by rs from AS3

	✔

	✔

	✔

	

	number of prefixes received by rs from AS4

	✔

	✔

	✔

	

	number of prefixes received by rs from AS6

	✔

	✔

	✔

	

	reconfigure

	✔

	✔

	✔

	✔

	sessions are down

	
	
	
	✔

path hiding, mitigation off, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS1 wants rs to not announce to AS3 and AS4

	✔

	✔

	✔

	✔

	AS3 does not receive prefix at all

	✔

	✔

	✔

	✔

	AS4 receives the prefix via AS2 because of ADD-PATH

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	rs should have best toward AS1

	✔

	✔

	✔

	✔

	rs should receive prefix from both AS1 and AS2

	✔

	✔

	✔

	✔

path hiding, mitigation off, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS1 wants rs to not announce to AS3 and AS4

	✔

	✔

	✔

	✔

	AS3 does not receive prefix at all

	✔

	✔

	✔

	✔

	AS4 receives the prefix via AS2 because of ADD-PATH

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	rs should have best toward AS1

	✔

	✔

	✔

	✔

	rs should receive prefix from both AS1 and AS2

	✔

	✔

	✔

	✔

path hiding, mitigation on, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	2nd best is withdrawn and AS3 should not see it anymore

	skip

	skip

	skip

	✔

	AS1 wants rs to not announce to AS3 and AS4

	✔

	✔

	✔

	✔

	AS3 and AS4 don’t receive prefix via AS1

	✔

	✔

	✔

	✔

	AS3 and AS4 receive prefix with sub-optimal path via AS2

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	rs should have best toward AS1

	✔

	✔

	✔

	✔

	rs should receive prefix from both AS1 and AS2

	✔

	✔

	✔

	✔

path hiding, mitigation on, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	2nd best is withdrawn and AS3 should not see it anymore

	skip

	skip

	skip

	✔

	AS1 wants rs to not announce to AS3 and AS4

	✔

	✔

	✔

	✔

	AS3 and AS4 don’t receive prefix via AS1

	✔

	✔

	✔

	✔

	AS3 and AS4 receive prefix with sub-optimal path via AS2

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

	rs should have best toward AS1

	✔

	✔

	✔

	✔

	rs should receive prefix from both AS1 and AS2

	✔

	✔

	✔

	✔

roles, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	OTC is attached to routes without it

	
	✔

	✔

	✔

	log contains errors

	
	✔

	✔

	✔

	routes expected on AS2

	
	✔

	✔

	✔

	routes with OTC from AS1

	
	✔

	✔

	✔

	routes with OTC from AS2 are dropped

	
	✔

	✔

	✔

roles, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	OTC is attached to routes without it

	
	✔

	✔

	✔

	log contains errors

	
	✔

	✔

	✔

	routes expected on AS2

	
	✔

	✔

	✔

	routes with OTC from AS1

	
	✔

	✔

	✔

	routes with OTC from AS2 are dropped

	
	✔

	✔

	✔

tag prefix/origin empty AS-SET, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS2 ARIN Whois DB: tag only (w/o prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 ROA + ARIN Whois DB: tag only (w/o comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	AS2 RPKI ROAs as route objects: tag only (w/o prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 no enforcement, prefix and origin not in AS-SET

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ARIN: tag only (w/o prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ROA: tag only (w/o prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS2 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS4 origin enforcement

	✔

	✔

	✔

	✔

	AS4 prefix enforcement

	✔

	✔

	✔

	✔

	AS4 route white list, ok (exact)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (origin any)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (origin KO)

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS4 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS5 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS6 ARIN Whois DB: ok (solely because of route white list)

	✔

	✔

	✔

	✔

	AS6 ROA + ARIN Whois DB: enforced (rejected)

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: invalid origin ASN

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: ko

	✔

	✔

	✔

	✔

	AS6 prefix ok, origin ok, ROA + ARIN: rejected

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

tag prefix/origin empty AS-SET, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS2 ARIN Whois DB: tag only (w/o prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 ROA + ARIN Whois DB: tag only (w/o comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	AS2 RPKI ROAs as route objects: tag only (w/o prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 no enforcement, prefix and origin not in AS-SET

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ARIN: tag only (w/o prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ROA: tag only (w/o prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS2 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS4 origin enforcement

	✔

	✔

	✔

	✔

	AS4 prefix enforcement

	✔

	✔

	✔

	✔

	AS4 route white list, ok (exact)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (origin any)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (origin KO)

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS4 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS5 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS6 ARIN Whois DB: ok (solely because of route white list)

	✔

	✔

	✔

	✔

	AS6 ROA + ARIN Whois DB: enforced (rejected)

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: invalid origin ASN

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: ko

	✔

	✔

	✔

	✔

	AS6 prefix ok, origin ok, ROA + ARIN: rejected

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

tag prefix/origin in AS-SET, IPv4

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS2 ARIN Whois DB: tag only (w/ prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 ROA + ARIN Whois DB: tag only (w/ comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	AS2 RPKI ROAs as route objects: tag only (w/ prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 prefix ko origin ko

	✔

	✔

	✔

	✔

	AS2 prefix ko origin ok

	✔

	✔

	✔

	✔

	AS2 prefix ok origin ko

	✔

	✔

	✔

	✔

	AS2 prefix ok origin ok

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ARIN: tag only (w/ prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ROA: tag only (w/ prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS2 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS4 prefix ko origin ok

	✔

	✔

	✔

	✔

	AS4 prefix ok origin ok

	✔

	✔

	✔

	✔

	AS4 route filtered (origin ko)

	✔

	✔

	✔

	✔

	AS4 route filtered (prefix ko, origin ko)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (exact)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (origin any)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (origin KO)

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS4 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS5 prefix ok origin ko

	✔

	✔

	✔

	✔

	AS5 prefix ok origin ok

	✔

	✔

	✔

	✔

	AS5 route filtered (prefix ko)

	✔

	✔

	✔

	✔

	AS5 route filtered (prefix ko, origin ko)

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS5 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS6 ARIN Whois DB: ok

	✔

	✔

	✔

	✔

	AS6 ROA + ARIN Whois DB: enforce (w/ comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: invalid origin ASN

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: ok

	✔

	✔

	✔

	✔

	AS6 prefix ok, origin ok, ROA + ARIN: enforce (w/ comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

tag prefix/origin in AS-SET, IPv6

	Test

	BIRD

	BIRD v2

	BIRD v3

	OpenBGPD 8.4

	AS2 ARIN Whois DB: tag only (w/ prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 ROA + ARIN Whois DB: tag only (w/ comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	AS2 RPKI ROAs as route objects: tag only (w/ prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 prefix ko origin ko

	✔

	✔

	✔

	✔

	AS2 prefix ko origin ok

	✔

	✔

	✔

	✔

	AS2 prefix ok origin ko

	✔

	✔

	✔

	✔

	AS2 prefix ok origin ok

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ARIN: tag only (w/ prefix_validated_via_arin_whois_db_dump)

	✔

	✔

	✔

	✔

	AS2 prefix ok, origin ok, ROA: tag only (w/ prefix_validated_via_rpki_roas)

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS2 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS2 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS2 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS4 prefix ko origin ok

	✔

	✔

	✔

	✔

	AS4 prefix ok origin ok

	✔

	✔

	✔

	✔

	AS4 route filtered (origin ko)

	✔

	✔

	✔

	✔

	AS4 route filtered (prefix ko, origin ko)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (exact)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, ok (origin any)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (more spec)

	✔

	✔

	✔

	✔

	AS4 route white list, reject (origin KO)

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS4 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS4 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS4 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS5 prefix ok origin ko

	✔

	✔

	✔

	✔

	AS5 prefix ok origin ok

	✔

	✔

	✔

	✔

	AS5 route filtered (prefix ko)

	✔

	✔

	✔

	✔

	AS5 route filtered (prefix ko, origin ko)

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ko

	✔

	✔

	✔

	✔

	AS5 white list, prefix WL, origin ok

	✔

	✔

	✔

	✔

	AS5 white list, prefix ko, origin WL

	✔

	✔

	✔

	✔

	AS5 white list, prefix ok, origin WL

	✔

	✔

	✔

	✔

	AS6 ARIN Whois DB: ok

	✔

	✔

	✔

	✔

	AS6 ROA + ARIN Whois DB: enforce (w/ comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: invalid origin ASN

	✔

	✔

	✔

	✔

	AS6 RPKI ROAs as route objects: ok

	✔

	✔

	✔

	✔

	AS6 prefix ok, origin ok, ROA + ARIN: enforce (w/ comms [arin_whois_db_dump, rpki_roas])

	✔

	✔

	✔

	✔

	log contains errors

	✔

	✔

	✔

	✔

	reconfigure

	✔

	✔

	✔

	✔

Configuration

Program configuration

ARouteServer needs the following files to read its own configuration and to determine the policies to be implemented in the route server:

	arouteserver.yml: the main ARouteServer configuration file; it contains options and paths to other files (templates, cache directory, external tools…). By default, ARouteServer looks for this file in ~/arouteserver and /etc/arouteserver. This path can be changed using the --cfg command line argument. See its default content on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/arouteserver.yml].

The logging_config_file parameter here included can be used to configure logging.

For details regarding the rtt_getter_path option please see RTT getter program for RTT-based actions.

	general.yml: this is the most important configuration file, where the route server’s options and policies are configured.
By default, it is located in the same directory of the main configuration file; its path can be set with the cfg_general option in arouteserver.yml.
See its default content on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/general.yml].

An automatically generated reStructuredText version of the file with all its options and comments can be found in the Route server configuration - options and features page.

	clients.yml: the list of route server’s clients and their options and policies.
By default, it is located in the same directory of the main configuration file; its path can be set with the cfg_clients option in arouteserver.yml.
See its default content on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/clients.yml].

	bogons.yml: the list of bogon prefixes automatically discarded by the route server.
By default, it is located in the same directory of the main configuration file; its path can be set with the cfg_bogons option in arouteserver.yml.
See its default content on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/bogons.yml].

The arouteserver setup command can be used to setup the environment where ARouteServer is executed and to install the aforementioned files in the proper places.

Route server’s configuration

Route server’s general configuration and policies are outlined in the general.yml file.

Configuration details and options can be found within the distributed general [https://github.com/pierky/arouteserver/blob/master/config.d/general.yml] and clients [https://github.com/pierky/arouteserver/blob/master/config.d/clients.yml] configuration files on GitHub or in the Route server configuration - options and features page.

A Docker-based playground [https://github.com/pierky/arouteserver/tree/master/tools/playground] is available to experiment with the settings in a virtual IXP environment.

Details about some particular topics are reported below.

	YAML files inclusion and environment variables expansion

	Building configurations for multiple route servers

	Client-level options inheritance

	IRRDBs-based filtering

	Use RPKI ROAs as if they were route objects

	Use ARIN Whois database to accept routes

	White lists

	RPKI

	ROAs sources

	Origin validation

	BGP Communities

	Mapping of 32bit ASNs to 16bit ASNs

	Custom BGP Communities

	Customization

	Site-specific custom configuration files

	Logging configuration of the BGP daemon

	BIRD hooks

	Client custom options

	Reject policy and invalid routes tracking

	Reject reasons

	Additional custom BGP communities to track reject reasons

	Caveats and limitations

YAML files inclusion and environment variables expansion

ARouteServer’s general.yml and clients.yml configuration files can contain a custom directive (!include <filepath>) that can be used to include other files.
Moreover, environment variables (${VAR_NAME}) are expanded when the configuration files are loaded.
This can be useful, for example, when the same configuration is shared by two route servers that differ only in their router ID.

Hint

For an alternative way to build configurations for multiple router servers, all running on the same BGP daemon but with just different router IDs, see Building configurations for multiple route servers.

Example with environment variables expansion:

general.yml

cfg:
 router_id: "${ROUTER_ID}"
 rs_as: 999
 passive: True
 gtsm: True
 filtering:
 [...]

Example with file inclusion:

general-rs1.yml

cfg:
 router_id: "192.0.2.1"
 !include general-shared.yml

general-rs2.yml

cfg:
 router_id: "192.0.2.2"
 !include general-shared.yml

general-shared.yml

#cfg:
keep the indentation level of the line where
the !include statement is placed
 rs_as: 999
 passive: True
 gtsm: True
 filtering:
 [...]

Building configurations for multiple route servers

A single execution of ARouteServer can be used to generate configurations for multiple route servers, all for the same BGP daemon and with the same characteristics. This helps to reduce the time needed to gather all the external information needed to build the configuration, like IRR objects, RPKI data, and so on, and to guarantee that all the router servers will behave exactly in the same way, on top of a shared set of input records.

It can be accomplished by setting the router_id in the general.yml file with a list of router IDs instead of just a single one.

general.yml

cfg:
 rs_as: 999
 router_id: ["192.0.2.2", "192.0.2.3"]
 # ...

In this way, when arouteserver is executed, the path of the file that is passed via the -o / --output argument is used as the root name for the various files that the tool will create, one for each value of router_id, where the router ID is appended to the base name of the file provided.

Example:

arouteserver bird --ip-ver 4 --output /etc/bird/bird.cfg

Using the example YAML file above, when this command is executed, the following files will be generated:

	/etc/bird/bird-192.0.2.2.cfg, with the configuration for router ID 192.0.2.2;

	/etc/bird/bird-192.0.2.3.cfg, with the same configuration above, but for router ID 192.0.2.3;

	/etc/bird/bird.cfg, with the following text, just for reference:

Configuration for router_id 192.0.2.2: /etc/bird/bird-192.0.2.2.cfg
Configuration for router_id 192.0.2.3: /etc/bird/bird-192.0.2.3.cfg

If stdout is used as the output, then a comment string will be used to separate the two configurations generated by the tool.

When multiple configurations are desired for route servers that run on different BGP daemons, setting a list of router IDs in general.yml would not work. In this situation, the suggestion is to tune the cache_expiry settings in the arouteserver.yml file, so that once the external objects are gathered by the first execution of the program, they can be re-used for the following ones, if performed within a reasonable amount of time. More info on the comments of arouteserver.yml on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/arouteserver.yml].

Client-level options inheritance

Clients, which are configured in the clients.yml file, inherit most of their options from those provided in the general.yml file, unless their own configuration sets more specific values.

Options that are inherited by clients and that can be overwritten by their configuration are highlighted in the general.yml template file that is distributed with the project.

Example:

general.yml

cfg:
 rs_as: 999
 router_id: "192.0.2.2"
 passive: True
 gtsm: True

clients.yml

clients:
 - asn: 11
 ip: "192.0.2.11"
 - asn: 22
 ip: "192.0.2.22"
 passive: False
 - asn: 33
 ip: "192.0.2.33"
 cfg:
 passive: False
 gtsm: False

In this scenario, the route server’s configuration will look like this:

	a passive session with GTSM enabled toward AS11 client;

	an active session with GTSM enabled toward AS22 client;

	an active session with GTSM disabled toward AS33 client.

IRRDBs-based filtering

The filtering.irrdb section of the configuration files allows to use IRRDBs information to filter or to tag routes entering the route server. Information are acquired using the external program bgpq4 [https://github.com/bgp/bgpq4] or bgpq3 [https://github.com/snar/bgpq3]: installations details on Installation page.

One or more AS-SETs can be used to gather information about authorized origin ASNs and prefixes that a client can announce to the route server. AS-SETs can be set in the clients.yml file on a two levels basis:

	within the asns section, one or more AS-SETs can be given for each ASN of the clients configured in the rest of the file;

	for each client, one or more AS-SETs can be configured in the cfg.filtering.irrdb section.

To gather information from the IRRDBs, at first the script uses the AS-SETs provided in the client-level configuration; if no AS-SETs are provided there, it looks to the ASN configuration.
If no AS-SETs are found in both the client and the ASN configuration, if the cfg.filtering.irrdb.peering_db option is set to True the AS-SET from PeeringDB is used (“IRR Record” field).
The ASN’s autnum object will be used in any case.

Example:

clients.yml

asns:
 AS22:
 as_sets:
 - "AS-AS22MAIN"
 AS33:
 as_sets:
 - "AS-AS33GLOBAL"
clients:
 - asn: 11
 ip: "192.0.2.11"
 cfg:
 filtering:
 irrdb:
 as_sets:
 - "AS-AS11NETS"
 - asn: 22
 ip: "192.0.2.22"
 - asn: 33
 ip: "192.0.2.33"
 cfg:
 filtering:
 irrdb:
 as_sets:
 - "AS-AS33CUSTOMERS"
 - asn: 44
 ip: "192.0.2.44"

With this configuration, the following values will be used to run the bgpq4/bgpq3 program:

	AS-AS11NETS will be used for 192.0.2.11 (it’s configured at client-level for that client);

	AS-AS22MAIN for the 192.0.2.22 client (it’s inherited from the asns-level configuration of AS22, client’s AS);

	AS-AS33CUSTOMERS for the 192.0.2.33 client (the asns-level configuration is ignored because a more specific one is given at client-level);

	AS44 for the 192.0.2.44 client, because no AS-SETs are given at any level. In this case, if the cfg.filtering.irrdb.peering_db was set to True, the AS-SET from PeeringDB would be used.

Optionally, the source that must be used to expand the AS macro can be prepended, followed by two colon characters: RIPE::AS-FOO, RADB::AS64496:AS-FOO.

Use RPKI ROAs as if they were route objects

If the filtering.irrdb.use_rpki_roas_as_route_objects option is enabled, RPKI ROAs are used as if they were route objects to validate routes whose origin ASN is already authorized by a client’s AS-SET but whose prefix is not. A lookup into the ROA table is made on the basis of the route origin ASN and, if a covering ROA is found, the route is validated. In this case, if the filtering.irrdb.tag_as_set general option is True the prefix_validated_via_rpki_roas informative community is added to the route.

Please refer to ROAs sources in order to configure the source that should be used to gather RPKI ROAs.

Use ARIN Whois database to accept routes

Warning

Please note that the ARIN Advisory Counsel recommended the ARIN Board of Trustees to deprecate the “ARIN AS Origins” feature in the ARIN WHOIS database. See https://www.arin.net/participate/policy/drafts/2021_8/ and also https://github.com/pierky/arouteserver/issues/116. Consequently, this feature will be removed in future releases of ARouteServer, and starting from v1.19.0 a warning message will be logged during the route server config generation process if it is enabled.

Similarly to the previous option, filtering.irrdb.use_arin_bulk_whois_data allows to support IRR-based filters with additional data. Records from the ARIN Whois database are used to accept those routes whose origin ASN is authorized by the client’s AS-SET but whose prefix has not a registered route object. In this case, a lookup into the ARIN Whois database is made on the basis of the origin ASN and if a covering entry is found the route is accepted.

The ARIN Whois database can be obtained by signing an agreement with ARIN [https://www.arin.net/resources/request/bulkwhois.html]. It must be then converted into the appropriate JSON format that ARouteServer expects to find; the arin-whois-bulk-parser [https://github.com/NLNOG/arin-whois-bulk-parser] script can be used for this purpose.

Further details can be found in this message [https://mailman.nanog.org/pipermail/nanog/2017-December/093525.html] appeared on the NANOG mailing list.

White lists

In addition to prefixes and ASNs gathered as said above, white lists can be configured at client level to manually enter prefixes and origin ASNs that will be treated as if they were included within clients’ AS-SET.

If the filtering.irrdb.tag_as_set general option is also set to True, routes that fail the basic IRR filters but that are accepted solely because they match a white list entry are tagged with the prefix_not_present_in_as_set and origin_not_present_in_as_set informational communities.

Example:

clients:
 - asn: 11
 ip: "192.0.2.11"
 cfg:
 filtering:
 irrdb:
 as_sets:
 - "AS-AS11NETS"
 white_list_route:
 - prefix: "203.0.113.0"
 length: 24
 asn: 65534

This configuration allows to authorize routes for 203.0.113.0/24{24-32} with origin ASN 65534 received from the client.

RPKI

ROAs sources

A couple of methods can be used to acquire RPKI data (ROAs):

	the builtin method based on RIPE RPKI Validator format [https://rpki-validator.ripe.net] JSON export file (also generated by other validators like Routinator, rpki-client, OctoRPKI): the URL of a local and trusted instance of a RPKI validator should be provided to ensure that a trusted dataset is used. By default, the URLs of some public instances are used.

	RTR protocol (only on BIRD and OpenBGPD >= 6.9):

	BIRD 1.6.x: the rtrlib [http://rpki.realmv6.org/] suite: rtrlib [https://github.com/rtrlib] and bird-rtrlib-cli [https://github.com/rtrlib/bird-rtrlib-cli].

	BIRD v2/v3: the built-in RTR protocol [https://bird.network.cz/?get_doc&v=20&f=bird-6.html#ss6.13] implementation.

	OpenBGPD >= 6.9: the built-in RTR protocol [https://man.openbsd.org/bgpd.conf#rtr] implementation.

One or more trusted local validating caches should be used to get and validate ROAs before pushing them to BIRD or OpenBGPD. Extensive information on RPKI and how to setup validating caches can be found on https://rpki.readthedocs.io/.
For BIRD v2/v3 and OpenBGPD, an example of how to configure the RTR protocol and use it with ARouteServer can be found in the examples/rpki_rtr directory (also on GitHub [https://github.com/pierky/arouteserver/tree/master/examples/rpki_rtr]).

The configuration of ROAs source can be done within the rpki_roas section of the general.yml file.

Origin validation

RPKI-based validation of routes can be configured using the general filtering.rpki_bgp_origin_validation section.
RFC8097 BGP extended communities are used to mark routes on the basis of their validity state.
Depending on the reject_invalid configuration, INVALID routes can be rejected before entering the route server or accepted for further processing by external tools or functions provided within .local files.
INVALID routes are not propagated to clients.

BGP Communities

BGP communities can be used for many features in the configurations built using ARouteServer: blackhole filtering, AS_PATH prepending, announcement control, various informative purposes (valid origin ASN, valid prefix, …) and more. All these communities are referenced by name (or tag) in the configuration files and their real values are reported only once, in the communities section of the general.yml file.
For each community, values can be set for any of the three formats: standard (RFC1997 [https://tools.ietf.org/html/rfc1997]), extended (RFC4360 [https://tools.ietf.org/html/rfc4360]/RFC5668 [https://tools.ietf.org/html/rfc5668]) and large (RFC8092 [https://tools.ietf.org/html/rfc8092]).

Mapping of 32bit ASNs to 16bit ASNs

To allow clients to use announcement control standard BGP communities (like do not announce to $PEER) with 32bit ASN clients, it’s possible to associate a private 16bit ASN to the 32bit ASN of the client. In this way the 32bit ASN client can be represented by the 16bit ASN from the mapping when those communities are used.

Example:

general.yml

cfg:
 # ...
 communities:
 do_not_announce_to_peer:
 std: "0:peer_as"

clients.yml

clients:
 - asn: 197000
 ip:
 - "192.0.2.33"
 16bit_mapped_asn: 64512

In the example above, the client with ASN 197000 (32 bit) is mapped to the private ASN 64512 via the 16bit_mapped_asn option. The do not announce to $PEER standard BGP community 0:64512 can be used by other clients to suppress the announcements of their routes towards the client with ASN 197000.

Please note that the 16bit ASN from 16bit_mapped_asn can be used only in standard BGP communities and not in extended or large communities.

Route server operators who generate their clients.yml file starting from the Euro-IX JSON file can use the --merge-from-custom-file option to keep track of the private ASN assigned to each client, and get it automatically added to the output file. See Create clients.yml file from Euro-IX member list JSON file.

Custom BGP Communities

Custom, locally significant BGP communities can also be used for informational purposes, for example to keep track of the geographical origin of a route or the nature of the relation with the announcing route server client.

Custom communities are declared once in the general.yml configuration file and then are referenced by clients definitions in the clients.yml file.

Example:

general.yml

cfg:
 rs_as: 6777
 router_id: "80.249.208.255"
custom_communities:
 colo_digitalrealty_ams01:
 std: "65501:1"
 lrg: "6777:65501:1"
 colo_equinix_am3:
 std: "65501:2"
 lrg: "6777:65501:2"
 colo_evoswitch:
 std: "65501:3"
 lrg: "6777:65501:3"
 member_type_peering:
 std: "65502:1"
 lrg: "6777:65502:1"
 member_type_probono:
 std: "65502:2"
 lrg: "6777:65502:2"

clients.yml

clients:
 - asn: 112
 ip: "192.0.2.112"
 cfg:
 attach_custom_communities:
 - "colo_digitalrealty_ams01"
 - "member_type_probono"
 - asn: 22
 ip: "192.0.2.22"
 passive: False
 cfg:
 attach_custom_communities:
 - "colo_equinix_am3"
 - "member_type_peering"
 - asn: 33
 ip: "192.0.2.33"
 cfg:
 attach_custom_communities:
 - "colo_evoswitch"
 - "member_type_peering"

Customization

Site-specific custom configuration files

Local configuration files can be used to load static site-specific snippets of configuration into the BGP daemon, bypassing the dynamic ARouteServer configuration building mechanisms. These files can be used to configure, for example, neighborship with peers which are not route server members or that require custom settings, or to customize the BGP daemon logging levels and targets.

Local files inclusion can be enabled by a command line argument, --use-local-files: there are some fixed points in the configuration files generated by ARouteServer where local files can be included:

	BIRD:

	
BIRDConfigBuilder.LOCAL_FILES_IDS = ['logging', 'header', 'header4', 'header6', 'footer', 'footer4', 'footer6', 'client', 'client4', 'client6']

	

	OpenBGPD:

	
OpenBGPDConfigBuilder.LOCAL_FILES_IDS = ['logging', 'header', 'pre-irrdb', 'post-irrdb', 'pre-clients', 'post-clients', 'client', 'pre-filters', 'post-filters', 'footer']

	

To determine in which point of the configuration file the local files identified by the labels above are inserted, please refer to the template files of each BGP speaker (you can search for include_local_file):

	BIRD [https://github.com/pierky/arouteserver/tree/master/templates/bird]: see main.j2 [https://github.com/pierky/arouteserver/blob/master/templates/bird/main.j2], header.j2 [https://github.com/pierky/arouteserver/blob/master/templates/bird/header.j2], clients.j2 [https://github.com/pierky/arouteserver/blob/master/templates/bird/clients.j2] and rpki.j2 [https://github.com/pierky/arouteserver/blob/master/templates/bird/rpki.j2].

	OpenBGPD [https://github.com/pierky/arouteserver/tree/master/templates/openbgpd]: see main.j2 [https://github.com/pierky/arouteserver/blob/master/templates/openbgpd/main.j2], header.j2 [https://github.com/pierky/arouteserver/blob/master/templates/openbgpd/header.j2], filters.j2 [https://github.com/pierky/arouteserver/blob/master/templates/openbgpd/filters.j2], rpki.j2 [https://github.com/pierky/arouteserver/blob/master/templates/openbgpd/rpki.j2], clients.j2 [https://github.com/pierky/arouteserver/blob/master/templates/openbgpd/clients.j2], irrdb.j2 [https://github.com/pierky/arouteserver/blob/master/templates/openbgpd/irrdb.j2].

One or more of these labels must be used as the argument’s value in order to enable the relative inclusion points.
For each enabled label, an include statement is added to the generated configuration in the point identified by the label itself. To modify the base directory, the --local-files-dir command line option can be used.

These files must be present on the host running the route server.

	Example, BIRD, file name “footer4.local” in “/etc/bird” directory:

protocol bgp RouteCollector {
 local as 999;
 neighbor 192.0.2.99 as 65535;
 rs client;
 secondary;

 import none;
 export all;
}

	Example, OpenBGPD, header and post-clients:

$ arouteserver openbgpd --use-local-files header post-clients
include "/etc/bgpd/header.local"

AS 999
router-id 192.0.2.2

[...]

group "clients" {

 neighbor 192.0.2.11 {
 [...]
 }
}

include "/etc/bgpd/post-clients.local"

[...]

In the example above, the header and post-clients inclusion points are enabled and allow to insert two include statements into the generated configuration: one at the start of the file and one between clients declaration and filters.

	Example, OpenBGPD, client and footer:

$ arouteserver openbgpd --use-local-files client footer --local-files-dir /etc/
AS 999
router-id 192.0.2.2

[...]

group "clients" {

 neighbor 192.0.2.11 {
 include "/etc/client.local"
 [...]
 }

 neighbor 192.0.2.22 {
 include "/etc/client.local"
 [...]
 }
}

[...]

include "/etc/footer.local"

The example above uses the client label, that is used to add an include statement into every neighbor configuration. Also, the base directory is set to /etc/.

Logging configuration of the BGP daemon

The logging label has a special meaning: when it’s used in the --local-files-dir option, the default logging settings of the BGP speaker are omitted, and they are replaced by the include statement.

To determine the default logging configuration, please refer to the template files:

	BIRD [https://github.com/pierky/arouteserver/tree/master/templates/bird]: see header.j2 [https://github.com/pierky/arouteserver/blob/master/templates/bird/header.j2]

	OpenBGPD [https://github.com/pierky/arouteserver/tree/master/templates/openbgpd]: see header.j2 [https://github.com/pierky/arouteserver/blob/master/templates/openbgpd/header.j2]

As you can see in the next example, the default logging settings are omitted and replaced with the include statement for logging.local.

	Example, BIRD, logging being used:

router id 192.0.2.123;
define rs_as = 65500;

include "/etc/bird/logging.local";

timeformat base iso long;
timeformat log iso long;
timeformat protocol iso long;
timeformat route iso long;

BIRD hooks

In BIRD, hook functions can also be used to tweak the configuration generated by ARouteServer.
Hooks are enabled by the --use-hooks command line argument, that accepts one or more of the following hook IDs:

	
BIRDConfigBuilder.HOOKS = ['pre_receive_from_client', 'post_receive_from_client', 'pre_announce_to_client', 'post_announce_to_client', 'route_can_be_announced_to', 'announce_rpki_invalid_to_client', 'scrub_communities_in', 'scrub_communities_out', 'apply_blackhole_filtering_policy']

	

Functions with name hook_<HOOK_ID> must then be implemented within .local configuration files, in turn included using the --use-local-files command line argument.

Example:

$ arouteserver bird --ip-ver 4 --use-local-files header --use-hooks pre_receive_from_client
router id 192.0.2.2;
define rs_as = 999;

log "/var/log/bird.log" all;
log syslog all;
debug protocols all;

protocol device {};

table master sorted;

include "/etc/bird/header.local";

[...]

filter receive_from_AS3333_1 {
 if !(source = RTS_BGP) then
 reject "source != RTS_BGP - REJECTING ", net;

 if !hook_pre_receive_from_client(3333, 192.0.2.11, "AS3333_1") then
 reject "hook_pre_receive_from_client returned false - REJECTING ", net;

 scrub_communities_in();

[...]

Details about hook functions can be found in the BIRD hooks specifications page.

An example (including functions’ prototypes) is provided within the “examples/bird_hooks” directory (also on GitHub [https://github.com/pierky/arouteserver/tree/master/examples/bird_hooks]).

Client custom options

BGP speakers can also be configured using custom options defined on a client basis.

In the client YAML definition file, the custom_options key can be set inside the cfg section to define custom lines of configuration that are eventually added to the configuration file generated by ARouteServer, on a client-by-client basis.

The expected format follows:

clients:
- ... # client definition here
 cfg:
 custom_options:
 bird | openbgpd:
 ipv4 | ipv6 | any:
 protocol | channel | client:
 config_lines:
 - "BGP-speaker specific line of config 1"
 - "BGP-speaker specific line of config 2"

These custom lines of configuration are pulled into the final output file on an BGP-speaker and Address-Family basis: when the target BGP speaker is BIRD, only the custom_options.bird section is considered, and similarly for custom_options.openbgpd when OpenBGPD is used. The custom lines of configuration from the ipv4 or ipv6 sub-sections are applied only to the IPv4 or IPv6 session of the client to which they belong, while the lines from the any sub-section are always applied. For BIRD, two levels exist, protocol and channel: the former is used on BIRD 1.6 and BIRD 2 configurations, the latter only on BIRD 2 (depending on which BIRD config stanza the custom lines are desired to be added to, protocol-level of channel-level). For OpenBGPD, only the client level exists.

An example follows:

clients:
- asn: 123
 ip:
 - "192.0.2.11"
 - "fe80::123:456"
 cfg:
 custom_options:
 bird:
 any:
 protocol:
 config_lines:
 - interface "eth0";
 ipv6:
 channel:
 config_lines:
 - extended next hop on;
 openbgpd:
 any:
 client:
 config_lines:
 - holdtime 30

In the example above, we can see that for the AS123 client the BIRD 2 route-server will be configured to use eth0 for both the IPv4 and IPv6 sessions; Extended Next-Hop will be enabled on the IPv6 session; the OpenBGPD configuration for that client will have a holdtime of 30 seconds for both the IPv4 and IPv6 sessions.

Warning

ARouteServer functionalities may be adversely affected by the usage of custom options; the tool does not check the content of the custom_options section, so if options that contradict or overlap with those used by ARouteServer are set, the output configuration may not reflect the expected results. Please double check the settings provided here and test them carefully before releasing them in production.

Reject policy and invalid routes tracking

Invalid routes, that is those routes that failed the validation process, can be simply discarded as they enter the route server (default behaviour) or, optionally, they can be kept for troubleshooting purposes, analysis or statistic reporting (for example using a looking glass).

The reject_policy configuration option can be set to tag in order to have invalid routes tagged with a user-configurable BGP Community (reject_reason) whose purpose is to keep track of the reason for which they are considered to be invalid. These routes are also set with a low local-pref value (1) and tagged with a control BGP Community that prevents them from being exported to clients. If configured, the rejected_route_announced_by community is used to track the ASN of the client that announced the invalid route to the route server.

The goal of this feature is to allow the deployment of route collectors that can be used to further process invalid routes announced by clients. These route collectors can be configured using site-specific .local files. The InvalidRoutesReporter [https://github.com/pierky/invalidroutesreporter] is an example of this kind of route collector.

The reason that led the server to reject the route is identified using a numeric value in the last part of the BGP Community; the list of reject reasons follow:

Reject reasons

	ID

	Reason

	0

	Special meaning: the route must be treated as rejected. *

	1

	Invalid AS_PATH length

	2

	Prefix is bogon

	3

	Prefix is in global blacklist

	4

	Invalid AFI

	5

	Invalid NEXT_HOP

	6

	Invalid left-most ASN

	7

	Invalid ASN in AS_PATH

	8

	Transit-free ASN in AS_PATH

	9

	Origin ASN not in IRRDB AS-SETs

	10

	IPv6 prefix not in global unicast space

	11

	Prefix is in client blacklist

	12

	Prefix not in IRRDB AS-SETs

	13

	Invalid prefix length

	14

	RPKI INVALID route

	15

	Never via route-servers ASN in AS_PATH

	65535

	Unknown

* This is not really a reject reason code, it only means that the route must be treated as rejected and must not be propagated to clients.

On BIRD, it’s also possible to configure the reject_policy using the tag_and_reject value: doing this, the reject_reason and optionally the rejected_route_announced_by BGP communities are still attached to the invalid routes, but then they are rejected by BIRD. Since the BIRD-specific import keep filtered on configuration statement is used, those routes remain available within the BIRD daemon and can be seen using BIRD-specific commands like show route filtered all.

Additional custom BGP communities to track reject reasons

When the reject policy is set to tag (or tag_and_reject), in addition to the reject_reason community some custom BGP communities can be configured for each reject code of those implemented in ARouteServer (see the list above).

This can be done using the reject_cause_map option:

cfg:
 # ...
 communities:
 # ...
 reject_cause_map:
 1:
 lrg: rs_as:1101:5
 2:
 lrg: rs_as:1101:3

When a route that doesn’t pass the inbound validation process is received, the communities corresponding to the reject code that led to its refusal are attached to the route itself.

In the example above, routes towards bogon IP prefixes (reject code 2) are tagged with the large BGP community rs_as:1101:3 (in addition to the community configured in reject_reason).

This option is leveraged by the configure command to automatically generate policies (general.yml files) that use the Euro-IX Large BGP Communities [https://www.euro-ix.net/en/forixps/large-bgp-communities/] to track the discard reasons.

Caveats and limitations

Not all features offered by ARouteServer are supported by both BIRD and OpenBGPD.
The following list of limitations is based on the currently supported versions of BIRD and OpenBGPD.

	IRR filtering of routes whose AS_PATH ends with an AS_SET

	BIRD: routes are rejected by the IRR filters.

	OpenBGPD: if the last non-aggregated AS in the AS_PATH is included in the list of ASNs generated from the IRR records, the routes pass the IRR filters.

More details on GitHub PR56 [https://github.com/pierky/arouteserver/pull/56] (commit a65934a [https://github.com/pierky/arouteserver/commit/a65934ad0ca636d7d381f705508f128b0ac17e5e]).

	BIRD

	Multihop sessions are only supported on configurations for which path hiding mitigation is turned off.

More details on GitHub PR61 [https://github.com/pierky/arouteserver/pull/61].

	OpenBGPD

	ADD-PATH is not supported by OpenBGPD.

	For max-prefix filtering, only the shutdown and the restart actions are supported by OpenBGPD. Restart is configured with a 15 minutes timer.

	The Site of Origin Extended BGP communities in the range 65535:* are reserved for internal reasons.

A list of all the features and their support level among the BGP speakers is maintained on the Supported BGP speakers and features section of this documentation.

Depending on the features that are enabled in the general.yml and clients.yml files, compatibility issues may arise; in this case, ARouteServer logs one or more errors, which can be then acknowledged and ignored using the --ignore-issues command line option:

$ arouteserver openbgpd
ARouteServer 2017-03-23 21:39:45,955 ERROR Compatibility issue ID 'path_hiding'. The 'path_hiding'
general configuration parameter is set to True, but the configuration generated by ARouteServer for
OpenBGPD does not support path-hiding mitigation techniques.
ARouteServer 2017-03-23 21:39:45,955 ERROR One or more compatibility issues have been found.

Please check the errors reported above for more details.
To ignore those errors, use the '--ignore-issues' command line argument and list the IDs of the
issues you want to ignore.
$ arouteserver openbgpd --ignore-issues path_hiding
AS 999
router-id 192.0.2.2

fib-update no
log updates
...

Logging

ARouteServer’s logging is based on the Python logging facility and can be configured using the fileConfig() format [https://docs.python.org/2/library/logging.config.html#configuration-file-format].

The logging_config_file parameter which can be found in the main program configuration file (arouteserver.yml) must be set with the path of the INI file that contains the logging configuration statements. By default, it is set to point to the log.ini file that ships with the program and that contains a basic configuration which simply prints log messages to stderr.

The log.ini shipped with the program contains some commented sections that can be used as guidance for setting up other logging methods: files, syslog (both local and remote via UDP), email, Slack.

Logging levels

	INFO: quite verbose, informational messages are logged using this level to inform the user about the progress of the building process.

	WARN: minor issues which do not prevent the configuration file from being built but that should be analyzed by a route server operator are logged using this level. This includes, for example, peers with missing AS-SETs when IRR-based filters are enabled, or empty AS-SETs, or new release notices.

	ERROR: this level is used to log messages related to issues that prevent the configuration file from being built.

For example, >=INFO messages could be logged to stderr, >=WARN messages via a buffered email [https://github.com/pierky/bufferedsmtphandler] and >=ERROR via email and Slack (using a third-party component like slacker-log-handler [https://pypi.python.org/pypi/slacker-log-handler]).

Output of an example execution is reported below:

WARNING The 'filtering.global_black_list_pref' option is missing or empty. It is strongly suggested to provide at least the list of local IPv4/IPv6 networks here.
WARNING The 'filtering.irrdb.tag_as_set' option is set but no BGP communities are provided to tag prefixes.
INFO Started processing configuration for /home/pierky/arouteserver/templates/bird/main.j2
INFO Enricher 'IRRdb origin ASNs' started
WARNING No AS-SETs provided for the 'AS3333_1' client. Only AS3333 will be expanded.
WARNING No AS-SETs provided for the 'AS10745_1' client. Only AS10745 will be expanded.
INFO Enricher 'IRRdb origin ASNs' completed successfully after 0 seconds
INFO Enricher 'IRRdb prefixes' started
INFO Enricher 'IRRdb prefixes' completed successfully after 0 seconds
INFO Enricher 'PeeringDB max-prefix' started
INFO Enricher 'PeeringDB max-prefix' completed successfully after 0 seconds
INFO Configuration processing completed after 0 seconds.
INFO Started template rendering for /home/pierky/arouteserver/templates/bird/main.j2
INFO Template rendering completed after 1 seconds.

Examples of configurations

Default

Configurations built using the default general.yml and clients.yml files distributed with the project.

https://github.com/pierky/arouteserver/blob/master/examples/default

See the textual representation (HTML) of this configuration.

Feature-rich example

Configurations built using the files provided in the examples/rich directory.

	GTSM and ADD-PATH are enabled by default on the route server.

	Next-hop filtering allows clients to set NEXT_HOP of any client in the same AS.

	Local networks are filtered, and also transit-free ASNs, “never via route-servers” networks, invalid paths and prefixes/origin ASNs which are not authorized by clients’ AS-SETs (which are fetched from PeeringDB).

	Dataset used for prefix validation extended using NIC.BR Whois DB dump and RPKI ROAs.

	RPKI-based Origin Validation is enabled; INVALID routes are rejected.

	RFC9234 route leak prevention using roles is configured.

	A max-prefix limit is enforced on the basis of PeeringDB information.

	Blackhole filtering is implemented with a rewrite-next-hop policy and can be triggered with BGP communities BLACKHOLE, 65534:0 and 999:666:0.

	Control communities allow selective announcement control and prepending, also on the basis of peers RTT.

	32bit ASNs are mapped to 16bit ASNs for usage in standard BGP communities.

	Graceful BGP session shutdown is enabled.

	Client timers are configured using the custom, site-specific .local file.

	Informational custom BGP communities are used to tag routes from European or American clients.

Please note: for the sake of readability of the configuration files built in this example the set of RPKI ROAs is artificially limited to just a bunch of them.

https://github.com/pierky/arouteserver/blob/master/examples/rich

See the textual representation (HTML) of this configuration.

BIRD hooks example

The BIRD configurations provided in this example have been generated enabling BIRD hooks [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#site-specific-custom-config]:

$ arouteserver bird --ip-ver 4 --use-local-files header --use-hooks pre_receive_from_client post_receive_from_client [...]

The above list of hooks passed to the bird command has been truncated for the sake of readability; the complete list used in this example is provided below.

The command line argument --use-local-files enables the header inclusion point, in order to add the include "/etc/bird/header.local"; configuration statement to the BIRD configuration generated by ARouteServer.

define rs_as = 999;

log "/var/log/bird.log" all;
log syslog all;
debug protocols all;

protocol device {};

table master sorted;

include "/etc/bird/header.local";
...

This file must be present on the route server where BIRD is executed and must contain the custom functions used to implement the hooks. See the header.local file for the functions declaration.

List of hooks used in this example:

	pre_receive_from_client

	post_receive_from_client

	pre_announce_to_client

	post_announce_to_client

	scrub_communities_in

	scrub_communities_out

	apply_blackhole_filtering_policy

	route_can_be_announced_to

	announce_rpki_invalid_to_client

https://github.com/pierky/arouteserver/blob/master/examples/bird_hooks

Clients from Euro-IX member list JSON file

Some clients files automatically built from Euro-IX member list JSON files [https://github.com/euro-ix/json-schemas] are reported here.

https://github.com/pierky/arouteserver/blob/master/examples/clients-from-euroix

configure command output

The configure command can be used to quickly generate policy definition files (general.yml) which are based on suggested settings and best practices.

A list of BGP communities is also automatically built.

$ arouteserver configure --output examples/auto-config/bird-general.yml

BGP daemon
==========

Depending on the BGP daemon used for the route server some features may not be
available.

Details here:
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#caveats-and-
limitations

Which BGP daemon will be used? [bird/openbgpd] bird
Which version? [1.6.3/1.6.4/1.6.6/1.6.7/1.6.8/2.0.7/2.0.7+b962967e/2.0.8/2.0.9/2.0.10/2.0.11/2.13/2.14/2.15/3.0] 2.15

Router server's ASN
===================

What's the ASN of the route server? 64496

Route server's BGP router-id
============================

Please enter the route server BGP router-id: 192.0.2.1

List of local networks
======================

A list of local IPv4/IPv6 networks must be provided here: routes announced by
route server clients for these prefixes will be filtered out.

Please enter a comma-separated list of local networks: 192.0.2.0/24,2001:db8::/32

Route server policy definition file generated successfully!
===

The content of the general configuration file will now be written to
examples/auto-config/bird-general.yml

Some notes:

 - Accepted prefix lengths are 8-24 for IPv4 and 12-48 for IPv6.
 - Routes with 'transit-free networks' or 'never via route-server' (PeeringDB)
ASNs in the middle of AS_PATH are rejected.
 - IRR-based filters are enabled; prefixes that are more specific of those
registered are accepted.
 - PeeringDB is used to fetch AS-SETs for those clients that are not explicitly
configured.
 - RPKI ROAs are used as if they were route objects to further enrich IRR data.
 - NIC.BR Whois database dump is fetched from Registro.br to further enrich IRR
data.
 - RPKI BGP Origin Validation is enabled. INVALID routes are rejected.
 - PeeringDB is used to fetch networks prefix count.
 - Route leak prevention using roles (RFC9234) is enabled.
 - Routes tagged with the GRACEFUL_SHUTDOWN well-known community (65535:0) are
processed accordingly to draft-ietf-grow-bgp-gshut.

The textual description (HTML and Markdown) generated on the basis of the general.yml files produced by this command is also reported here.

https://github.com/pierky/arouteserver/blob/master/examples/auto-config

bird-general.yml.html - See the textual representation (HTML) of this configuration.

openbgpd-general.yml.html - See the textual representation (HTML) of this configuration.

IX-F Member Export files

The files reported within this directory were generated using the ixf-member-export command [https://arouteserver.readthedocs.io/en/latest/USAGE.html#ixf-member-export-command].

https://github.com/pierky/arouteserver/blob/master/examples/ixf-member-export

BIRD v2/v3 and OpenBGPD RPKI RTR configuration

This is an example of how to use BIRD v2/v3 or OpenBGPD with an external source for RPKI ROAs based on the RTR protocol.

BIRD v2/v3 and OpenBGPD (starting with release 6.9) have built-in support for the RTR protocol, that allows to connect the BGP daemon directly to a local cache (a “validator”).

To configure the daemons with ARouteServer in order to fetch ROAs using RTR, the rpki_roas.source option must be set to rtr and a local rpki_rtr_config.local file must be placed inside the same directory where the main configuration file is created (/etc/bird or /etc/bgpd by default, or a custom one set using the --local-files-dir command line argument of ARouteServer).

The rpki_rtr_config.local file is expected to contain the snippet of BIRD or OpenBGPD config needed to setup one or more RTR sessions:

	BIRD v2/v3: https://bird.network.cz/?get_doc&v=20&f=bird-6.html#ss6.13

Please note: the names of the tables where ROAs will be injected into must be RPKI4 and RPKI6.

	OpenBGPD: https://man.openbsd.org/bgpd.conf#rtr

Example configurations are reported in the rpki_rtr_config.local.BIRD and rpki_rtr_config.local.OpenBGPD files that can be found within this directory.

https://github.com/pierky/arouteserver/blob/master/examples/rpki_rtr

Tools

Playground

This is a Docker-based playground that can be use to experiment with ARouteServer.

It offers and environment with several actors, configured to represent specific scenarios that can often be found on a real IX platform: a route server, some clients that announce some good and some bad routes, a looking glass.

The idea is to let the users play with the whole environment and see how easy it is to deploy a secure, feature-rich route server.

For more information: https://github.com/pierky/arouteserver/tree/master/tools/playground

Invalid routes reporter

This script is intended to be used as an ExaBGP [https://github.com/Exa-Networks/exabgp] process to elaborate and report/log invalid routes received by route servers that have been previously configured using the “tag” reject policy option [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy] of ARouteServer.

For more information: https://invalidroutesreporter.readthedocs.io

Live tests

Live tests are used to validate configurations built by ARouteServer and to test compliance between expected and real results.

A mix of Python unittest and Docker (and KVM too for OpenBGPD tests) allows to create scenarios where some instances of BGP speakers (the clients) connect to a route server whose configuration has been generated using this tool.

Some built-in tests are included within the project and have been used during the development of the tool; new custom scenarios can be easily built by users and IXP managers to test their own policies.

Example: in a configuration where blackhole filtering is enabled, an instance of a route server client (AS1) is used to announce some tagged prefixes (203.0.113.1/32) and the instances representing other clients (AS2, AS3) are queried to ensure they receive those prefixes with the expected blackhole NEXT_HOP (192.0.2.66).

def test_071_blackholed_prefixes_as_seen_by_enabled_clients(self):
 for inst in (self.AS2, self.AS3):
 self.receive_route(inst, "203.0.113.1/32", self.rs,
 next_hop="192.0.2.66",
 std_comms=["65535:666"], lrg_comms=[])

GitHub Actions log file [https://github.com/pierky/arouteserver/actions/workflows/cicd.yml] contains the latest built-in live tests results.
Since (AFAIK) OpenBGPD can’t be run on GitHub Actions platform, the full live tests results, including those run on OpenBGPD, can be found on this file [https://github.com/pierky/arouteserver/blob/master/tests/last].
Starting with version 6.5, the Portable edition of OpenBGPD has been used to run some tests on GitHub Actions too.

A summary of the integration testing results and the BGP speakers which are tested can be found on the Integration testing coverage section of this documentation.

Setting up the environment to run live tests

	To run live tests, Docker must be present on the system. Some info about its installation can be found on the External programs installation section.

	In order to have instances of the route server and its clients to connect each other, a common network must be used. Live tests are expected to be run on a Docker bridge network with name arouteserver and subnet 192.0.2.0/24/2001:db8:1:1::/64.
The following command can be used to create this network:

docker network create --ipv6 --subnet=192.0.2.0/24 --subnet=2001:db8:1:1::/64 arouteserver

	Route server client instances used in live tests are based on BIRD 1.6.8, as well as the BIRD-based version of the route server used in built-in live tests; the pierky/bird:1.6.8 image is expected to be found on the local Docker repository. Also, for OpenBGPD Portable edition tests, pierky/openbgpd:6.6p0 must be there.
Build the Docker image (or pull it from Dockerhub [https://hub.docker.com/r/pierky/bird/]):

build the image using the Dockerfile
from https://github.com/pierky/dockerfiles
mkdir ~/dockerfiles
cd ~/dockerfiles
curl -o Dockerfile.bird -L https://raw.githubusercontent.com/pierky/dockerfiles/master/bird/1.6.8/Dockerfile
docker build -t pierky/bird:1.6.8 -f Dockerfile.bird .
curl -o Dockerfile.openbgpd -L https://raw.githubusercontent.com/pierky/dockerfiles/master/openbgpd/6.6p0/Dockerfile
docker build -t pierky/openbgpd:6.6p0 -f Dockerfile.openbgpd .

or pull it from Dockerhub
docker pull pierky/bird:1.6.8
docker pull pierky/openbgpd:6.6p0

If there is no plan to run tests on the OpenBGPD-based version of the route server, no further settings are needed.
To run tests on the OpenBGPD-based version too, the following steps must be done as well.

OpenBGPD live-tests environment

	To run an instance of OpenBGPD, KVM is needed. Some info about its installation can be found on the External programs installation section.

	Setup and install a KVM virtual-machine running one of the supported versions of OpenBSD. This VM will be started and stopped many times during tests: don’t use a production VM.

	By default, the VM name must be arouteserver_openbgpd60 or arouteserver_openbgpd61 or arouteserver_openbgpd62; this can be changed by setting the VIRSH_DOMAINNAME environment variable before running the tests.

	The VM must be connected to the same Docker network created above: the commands ip link show and ifconfig can be used to determine the local network name needed when creating the VM:

$ ifconfig
br-2d2956ce4b64 Link encap:Ethernet HWaddr 02:42:57:82:bc:91
 inet addr:192.0.2.1 Bcast:0.0.0.0 Mask:255.255.255.0
 inet6 addr: fe80::42:57ff:fe82:bc91/64 Scope:Link
 inet6 addr: 2001:db8:1:1::1/64 Scope:Global
 inet6 addr: fe80::1/64 Scope:Link
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 ...

	In order to run built-in live test scenarios, the VM must be reachable at 192.0.2.2/24 and 2001:db8:1:1::2/64.

On the following example, the virtual disk will be stored in ~/vms, the VM will be reachable by connecting to any IP address of the host via VNC, the installation disk image is expected to be found in the install60.iso file and the network name used is br-2d2956ce4b64:

sudo virsh pool-define-as --name vms_pool --type dir --target ~/vms
sudo virsh pool-start vms_pool
sudo virt-install \
 -n arouteserver_openbgpd66 \
 -r 512 \
 --vcpus=1 \
 --os-variant=openbsd4.2 \
 --accelerate \
 -v -c install66.iso \
 -w bridge:br-2d2956ce4b64 \
 --graphics vnc,listen=0.0.0.0 \
 --disk path=~/vms/arouteserver_openbgpd66.qcow2,size=5,format=qcow2

Finally, add the current user to the libvirtd group to allow management of the VM:

sudo adduser `id -un` libvirtd

	To interact with this VM, the live tests framework will use SSH; by default, the connection will be established using the root username and the local key file ~/.ssh/arouteserver, so the VM must be configured to accept SSH connections using SSH keys:

mkdir /root/.ssh
cat << EOF > .ssh/authorized_keys
ssh-rsa [public_key_here] arouteserver
EOF

The StrictHostKeyChecking option is disabled via command line argument in order to allow to connect to multiple different VMs with the same IP address.

The SSH username and key file path can be changed by setting the SSH_USERNAME and SSH_KEY_PATH environment variables before running the tests.

Be sure that the bgpd daemon will startup automatically at boot and that the bgpctl tool can be executed correctly on the OpenBSD VM:

echo "bgpd_flags=" >> /etc/rc.conf.local
chmod 0555 /var/www/bin/bgpctl

How to run built-in live tests

To run built-in live tests, the full repository must be cloned locally and the environment must be configured as reported above.

To test both the BIRD- and OpenBGPD-based route servers, run the Python unittest using pytest:

from within the repository's root
pytest -vs tests/live_tests/

How it works

Each directory in tests/live_tests/scenarios represents a scenario: the route server configuration is stored in the usual general.yml and clients.yml files, while other BGP speaker instances (route server clients and their peers) are configured through the ASxxx.j2 files.
These files are Jinja2 templates and are expanded by the Python code at runtime. Containers’ configuration files are saved in the local var directory and are used to mount the BGP speaker configuration file (currenly, /etc/bird/bird.conf for BIRD and /etc/bgpd.conf for OpenBGPD).
The unittest code sets up a Docker network (with name arouteserver) used to attach instances and finally brings instances up. Regular Python unittest tests are then performed and can be used to match expectations to real results.

Details about the code behind the live tests can be found in the Live tests code documentation section.

Built-in scenarios

Some notes about the built-in scenarios that are provided with the program follow.

	BGP communities

	Default configuration

	Global scenario

	Route server graceful shutdown scenario

	Max-prefix limits

	Path hiding mitigation technique

	RFC8950 scenario

	Rich configuration example

	RFC9234 Route leak prevention using roles

	RPKI INVALID routes tagging

	RPKI BGP Origin Validation custom communities

	RTR protocol

	Tag prefixes/origin ASNs present/not-present in IRRDb

	Reject policy: tag

How to build custom scenarios

A live test scenario skeleton is provided in the pierky/arouteserver/tests/live_tests/skeleton directory.

It seems to be a complex thing but actually most of the work is already done in the underlying Python classes and prepared in the skeleton.

To configure the route server and its clients, please consider that the Docker network used by the framework is on 192.0.2.0/24 and 2001:db8:1:1::/64 subnets.

	Initialize the new scenario into a new directory:

	using the init-scenario command:

arouteserver init-scenario ~/ars_scenarios/myscenario

	manually, by cloning the provided skeleton directory:

mkdir -p ~/ars_scenarios/myscenario
cp pierky/arouteserver/tests/live_tests/skeleton/* ~/ars_scenarios/myscenario

	Document the scenario, for example in the README.rst file: write down which BGP speakers are involved, how they are configured, which prefixes they announce and what the expected result should be with regards of the route server’s configuration and its policies.

	Put the general.yml, clients.yml and bogons.yml configuration files you want to test in the new directory.

	Configure your scenario and write your test functions in the base.py file.

	Declare the BGP speakers you want to use in the _setup_rs_instance() and _setup_instances() methods of the base class.

	
classmethod SkeletonScenario._setup_instances()

	Declare the BGP speaker instances that are used in this scenario.

The cls.INSTANCES attribute is a list of all the instances that
are used in this scenario. It is used to render local Jinja2 templates
and to transform them into real BGP speaker configuration files.

The cls.RS_INSTANCE_CLASS and cls.CLIENT_INSTANCE_CLASS
attributes are set by the derived classes (test_XXX.py) and
represent the route server class and the other BGP speakers class
respectively.

	The first argument is the instance name.

	The second argument is the IP address that is used to run the
instance. Here, the cls.DATA dictionary is used to lookup the
real IP address to use, which is configured in the derived classes
(test_XXX.py).

	The third argument is a list of files that are mounted from the local
host (where Docker is running) to the container (the BGP speaker).
The list is made of pairs in the form
(local_file, container_file).
The cls.build_rs_cfg and cls.build_other_cfg helper functions
allow to render Jinja2 templates and to obtain the path of the local
output files.

For the route server, the configuration is built using ARouteServer’s
library on the basis of the options given in the YAML files.

For the other BGP speakers, the configuration must be provided in the
Jinja2 files within the scenario directory.

Example:

@classmethod
def _setup_instances(cls):
 cls.INSTANCES = [
 cls._setup_rs_instance(),

 cls.CLIENT_INSTANCE_CLASS(
 "AS1",
 cls.DATA["AS1_IPAddress"],
 [
 (
 cls.build_other_cfg("AS1.j2"),
 "/etc/bird/bird.conf"
)
]
),
 ...
]

	To ease writing the test functions, set instances names in the set_instance_variables() method.

	
SkeletonScenario.set_instance_variables()

	Simply set local attributes for an easier usage later

The argument of self._get_instance_by_name() must be one of
the instance names used in _setup_instances().

Example:

def set_instance_variables(self):
 self.AS1 = self._get_instance_by_name("AS1")
 self.AS2 = self._get_instance_by_name("AS2")
 self.rs = self._get_instance_by_name("rs")

	Write test functions to verify that scenario’s expectations are met.

Some helper functions can be used:

	
	
LiveScenario.session_is_up(inst_a, inst_b)

	Test if a BGP session between the two instances is up.

If a BGP session between the two instances is not up, the
TestCase.fail() method is called and the test fails.

	Parameters:

	
	inst_a – the BGPSpeakerInstance instance where the
BGP session is looked for.

	inst_b – the BGPSpeakerInstance instance that inst_a is
expected to peer with.

Example:

 def test_020_sessions_up(self):
 """{}: sessions are up"""
 self.session_is_up(self.rs, self.AS1)
 self.session_is_up(self.rs, self.AS2)

	
	
LiveScenario.receive_route(inst, prefix, other_inst=None, as_path=None, next_hop=None, std_comms=None, lrg_comms=None, ext_comms=None, local_pref=None, as_set=None, otc=None, filtered=None, only_best=None, reject_reason=None)

	Test if the BGP speaker receives the expected route(s).

If no routes matching the given criteria are found, the
TestCase.fail() method is called and the test fails.

	Parameters:

	
	inst – the BGPSpeakerInstance instance where the routes
are searched on.

	prefix (str) – the IPv4/IPv6 prefix of the routes to search for.

	other_inst – if given, only routes received from this
BGPSpeakerInstance instance are considered.

	as_path (str) – if given, only routes with this AS_PATH are
considered.

	next_hop – can be a string or a BGPSpeakerInstance
instance; if given, only routes that have a NEXT_HOP
address matching this one are considered.

	std_comms (list) – if given, only routes
that carry these BGP communities are considered. Use an
empty list ([]) to consider only routes with no BGP comms.

	lrg_comms (list) – if given, only routes
that carry these BGP communities are considered. Use an
empty list ([]) to consider only routes with no BGP comms.

	ext_comms (list) – if given, only routes
that carry these BGP communities are considered. Use an
empty list ([]) to consider only routes with no BGP comms.

	local_pref (int) – if given, only routes with local-pref equal
to this value are considered.

	as_set (str) – if given, only routes with this AS_SET are
considered.

	otc (int) – if provided, only routes with the OTC attribute set
to this value are considered. Use ‘0’ to match only routes
NOT having the OTC value set.

	filtered (bool) – if given, only routes that have been (not)
filtered are considered.

	only_best (bool) – if given, only best routes are considered.

	reject_reason (int) – valid only if filtered is True: if given
the route must be reject with this reason code.
It can be also a set of codes: in this case, the route must
be rejected with one of those codes.

The list of valid codes is reported in docs/CONFIG.rst or at
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy

Example:

 def test_030_rs_receives_AS2_prefix(self):
 """{}: rs receives AS2 prefix"""
 self.receive_route(self.rs, self.DATA["AS2_prefix1"],
 other_inst=self.AS2, as_path="2")

	
	
LiveScenario.log_contains(inst, msg, instances={}, opposite=False)

	Test if the BGP speaker’s log contains the expected message.

This only works for BGP speaker instances that support message
logging: currently only BIRD.

If no log entries are found, the TestCase.fail() method is
called and the test fails. If opposite is True, the
failure is reported if a log entry is found.

	Parameters:

	
	inst – the BGPSpeakerInstance instance where the
expected message is searched on.

	msg (str) – the text that is expected to be found within
BGP speaker’s log.

	instances (dict) – a dictionary of pairs
“<macro>: <BGPSpeakerInstance>” used to expand macros on
the msg argument. Macros are expanded using the BGP
speaker’s specific client ID or protocol name.

	opposite (bool) – when set to True, the call fails if a match
is found.

Example

Given self.rs the instance of the route server, and self.AS1 the
instance of one of its clients, the following code expands the “{AS1}”
macro using the BGP speaker specific name for the instance self.AS1
and then looks for it within the route server’s log:

self.log_contains(self.rs, "{AS1} bad ASN", {"AS1": self.AS1})

On BIRD, “{AS1}” will be expanded using the “protocol name” that BIRD
uses to identify the BGP session with AS1.

Example:

 def test_030_rs_rejects_bogon(self):
 """{}: rs rejects bogon prefix"""
 self.log_contains(self.rs,
 "prefix is bogon - REJECTING {}".format(
 self.DATA["AS2_bogon1"]))
 self.receive_route(self.rs, self.DATA["AS2_bogon1"],
 other_inst=self.AS2, as_path="2",
 filtered=True)
 # AS1 should not receive the bogon prefix from the route server
 with self.assertRaisesRegex(AssertionError, "Routes not found"):
 self.receive_route(self.AS1, self.DATA["AS2_bogon1"])

	Edit IP version specific and BGP speaker specific classes within the test_XXX.py files and set the prefix ID / real IP addresses mapping schema.

	
class pierky.arouteserver.tests.live_tests.skeleton.test_bird4.SkeletonScenario_BIRDIPv4(methodName='runTest')

	BGP speaker specific and IP version specific derived class.

This class inherits all the test functions from the base class.
Here, only IP version specific attributes are set, such as the
prefix IDs / real IP prefixes mapping schema.

The prefix IDs reported within the DATA dictionary must be
used in the parent class’ test functions to reference the real
IP addresses/prefixes used in the scenario. Also the other
BGP speakers’ configuration templates must use these IDs.
For an example plase see the “AS2.j2” file.

The SHORT_DESCR attribute can be set with a brief description
of this scenario.

Example:

class SkeletonScenario_BIRDIPv4(SkeletonScenario):

 # Leave this to True in order to allow pytest to use this class
 # to run tests.
 __test__ = True

 SHORT_DESCR = "Live test, BIRD, skeleton, IPv4"
 CONFIG_BUILDER_CLASS = BIRDConfigBuilder
 RS_INSTANCE_CLASS = BIRDInstanceIPv4
 CLIENT_INSTANCE_CLASS = BIRDInstanceIPv4
 IP_VER = 4

 DATA = {
 "rs_IPAddress": "99.0.2.2",
 "AS1_IPAddress": "99.0.2.11",
 "AS2_IPAddress": "99.0.2.22",

 "AS2_prefix1": "2.0.1.0/24",
 "AS2_bogon1": "192.168.2.0/24"
 }

	Edit (or add) the template files that, once rendered, will produce the configuration files for the other BGP speakers (route server clients) that are involved in the scenario (the skeleton includes two template files, AS1.j2 and AS2.j2).

Example:

router id 192.0.2.22;

This is the path where Python classes look for
to search BIRD's log files.
log "/var/log/bird.log" all;
log syslog all;
debug protocols all;

protocol device { }

Prefixes announced by this BGP speaker to the route server.
#
The Jinja2 'data' variable refers to the class 'DATA' attribute.
#
IP prefixes are not configured directly here, only a reference
to their ID is given in order to maintain a single configuration
file that can be used for both the IPv4 and the IPv6 versions
of the scenario.
protocol static own_prefixes {
	route {{ data.AS2_prefix1 }} reject;
	route {{ data.AS2_bogon1 }} reject;
}

protocol bgp the_rs {
	local as 2;
	neighbor {{ data.rs_IPAddress }} as 999;
	import all;
	export all;
	connect delay time 1;
	connect retry time 1;
}

	Run the tests using pytest:

pytest -vs ~/ars_scenarios/myscenario

Details about the code behind the live tests can be found in the Live tests code documentation section.

Debugging live tests scenarios

To debug custom scenarios some utilities are provided:

	the REUSE_INSTANCES environment variable can be set when executing pytest to avoid Docker instances to be torn down at the end of a run.
When this environment variable is set, BGP speaker instances are started only the first time tests are executed, then are left up and running to allow debugging. When tests are executed again, the BGP speakers’ configuration is rebuilt and reloaded. Be careful: this mode can be used only when running tests of the same scenario, otherwise Bad Things (tm) may happen.

Example:

REUSE_INSTANCES=1 pytest -vs tests/live_tests/scenarios/global/test_bird4.py

	once the BGP speaker instances are up (using the REUSE_INSTANCES environment variable seen above), they can be queried using standard Docker commands:

$ # list all the running Docker instances
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
142f88379428 pierky/bird:1.6.3 "bird -c /etc/bird..." 18 minutes ago Up 18 minutes 179/tcp ars_AS101
26a9ec58dcf1 pierky/bird:1.6.3 "bird -c /etc/bird..." 18 minutes ago Up 18 minutes 179/tcp ars_AS2

$ # run 'birdcl show route' on ars_AS101
$ docker exec -it 142f88379428 birdcl show route

Some utilities are provided whitin the /utils directory to ease these tasks:

execute the 'show route' command on the route server BIRD Docker instance
./utils/birdcl rs show route

print the log of the route server
./utils/run rs cat /var/log/bird.log

The first argument (“rs” in the examples above) is the name of the instance as set in the _setup_instances() method.

	the BUILD_ONLY environment variable can be set to skip all the tests and only build the involved BGP speakers’ configurations.
Docker instances are not started in this mode.

Example:

BUILD_ONLY=1 pytest -vs tests/live_tests/scenarios/global/test_bird4.py

BGP communities

Communities:

	fmt

	do_not_announce_to_peer

	announce_to_peer

	do_not_announce_to_any

	std

	0:peer_as

	999:peer_as

	0:999

	ext

	rt:0:peer_as

	rt:999:peer_as

	rt:0:999

	lrg

	999:0:peer_as

	999:999:peer_as

	999:0:999

AS2

	announced prefixes:

	Prefix ID

	Comms

	Prefix

	Expected result

	AS2_only_to_AS1_s

	0:999, 999:1

	2.0.1.0/24

	only AS1 receives the prefix

	AS2_only_to_AS1_e

	rt:0:999, rt:999:1

	2.0.2.0/24

	only AS1 receives the prefix

	AS2_only_to_AS1_l

	999:0:999, 999:999:1

	2.0.3.0/24

	only AS1 receives the prefix

	AS2_only_to_AS131073_e

	0:999, rt:999:131073

	2.0.4.0/24

	only AS131073 receives the prefix

	AS2_only_to_AS131073_l

	999:0:999, 999:999:131073

	2.0.5.0/24

	only AS131073 receives the prefix

	AS2_bad_cust_comm1

	65501:65501

	2.0.6.0/24

	AS1 and AS131073 receive the prefix without the cust
community (scrubbed by the rs)

AS1

	configured to have its routes tagged with cust_comm1 (65501:65501, 999:65501:65501, rt:65501:65501)

	announced prefixes:

	Prefix ID

	Comms

	Prefix

	Expected result

	AS1_good1

	
	1.0.1.0/24

	AS2 and AS131073 receive the prefix, tagged with the
custom community

AS131073

Default configuration

A simple scenario to verify that the default general.yml and clients.yml files distributed with the program lead to a working configuration.

The files used here are links to those provided within the config.d directory.

Global scenario

Built to group as many tests as possible in a single scenario.

	AS1:

AS-SETs:

	AS-AS1 (AS1, 1.0.0.0/8, 128.0.0.0/7)

	AS-AS1_CUSTOMERS (AS101, AS103, 101.0.0.0/16, 103.0.0.0/16, AS104)

	white list: 11.1.0.0/16, ASN 1011

	white list routes: exact 11.3.0.0/16 AS1011, 11.4.0.0/16 or more spec w/o origin AS

Enabled to perform graceful BGP session shutdown.

clients:

	AS1_1 (192.0.2.11, RTT 0.1 ms)

	next-hop-self configured in AS1_1.conf

	next_hop.policy: strict (inherited from general config)

Originated prefixes:

	Prefix ID

	Prefix

	AS_PATH

	Expected result

	AS1_good1

	1.0.1.0/24

	
	pass

	AS1_good2

	1.0.2.0/24

	
	pass

	bogon1

	10.0.0.0/24

	
	fail prefix_is_bogon

	local1

	192.0.2.0/24

	
	fail prefix_is_in_global_blacklist

	pref_len1

	128.0.0.0/7

	
	fail prefix_len_is_valid

	peer_as1

	128.0.0.0/8

	[2, 1]

	fail bgp_path.first != peer_as

	invalid_asn1

	128.0.0.0/9

	[1, 65536 1]

	fail as_path_contains_invalid_asn

	aspath_len1

	128.0.0.0/10

	[1, 2x6]

	fail bgp_path.len > 6

	AS1_whitel_1

	11.1.1.0/24

	[1, 1011]

	accepted, cause in white list

	AS1_whitel_2

	11.1.2.0/24

	[1, 1000]

	rejected, bad ASN even if prefix in
white list

	AS1_whitel_3

	11.2.1.0/24

	[1, 1011]

	rejected, bad prefix even if ASN in
white list

	AS1_whitel_4

	11.3.0.0/16

	[1, 1011]

	accepted because in white_list_route

	AS1_whitel_5

	11.4.1.0/24

	[1, 1000]

	accepted because in white_list_route

	AS1_whitel_6

	11.3.1.0/24

	[1, 1011]

	rejected, more specific of prefix
allowed by white list route

	AS1_2 (192.0.2.12, RTT 5 ms)

	NO next-hop-self in AS1_2.conf (next-hop of AS101 used for AS101_good == 101.0.1.0/24)

	next_hop.policy: same-as (from clients config)

	not enabled to receive blackhole requests

Originated prefixes:

	Prefix ID

	Prefix

	Feature

	Expected result

	AS1_good1

	1.0.1.0/24

	
	

	AS1_good2

	1.0.2.0/24

	
	

	AS1_good3

	1.0.3.0/24

	next_hop=AS1_1

	win next_hop_is_valid_for_AS1_2 (same-as)

	AS2:

AS-SETs:

	AS-AS2 (AS2, 2.0.0.0/16)

	AS-AS2_CUSTOMERS (AS101, AS103, 101.0.0.0/16, 103.0.0.0/16)

Not enabled to perform graceful BGP session shutdown.

clients:

	AS2 (192.0.2.21, RTT 17.3 ms)

	next-hop-self configured in AS2.conf

	next_hop.policy: authorized_addresses (from clients config)

	next_hop.authorized_addresses_list:
- 192.0.2.21 and 2001:db8:1:1::21, its own IP addresses
- 192.0.2.22 and 2001:db8:1:1::22, IP addresses not configured as route server client

Originated prefixes:

	Prefix ID

	Prefix

	Feature

	Expected result

	AS2_good1

	2.0.1.0/24

	
	

	AS2_good2

	2.0.2.0/24

	
	

	AS2_blackhole1

	2.0.3.1/32

	announced with BLACKHOLE 65535:666 comm

	propagated with only 65535:666 to AS1_1 and AS3
(AS1_2 has “announce_to_client” = False) and
next-hop 192.0.2.66; NO_EXPORT also added

	AS2_blackhole2

	2.0.3.2/32

	announced with local 65534:0 comm

	as above

	AS2_blackhole3

	2.0.3.3/32

	announced with local 65534:0:0 comm

	as above

	AS2_nonclient_nexthop1

	2.0.4.0/24

	announce with an authorized next-hop

	received by other clients

	AS2_nonclient_nexthop2

	2.0.5.0/24

	announce with an unknown next-hop

	not received by other clients

	AS3:

AS-SETs: none

clients:

	AS3 (192.0.2.31, RTT 123.8)

	no enforcing of origin in AS-SET

	no enforcing of prefix in AS-SET

	ADD-PATH enabled

	passive client-side (no passive on the route server)

Originated prefixes:

	Prefix ID

	Prefix

	Communities

	Expected result

	AS3_blacklist1

	3.0.1.0/24

	
	fail prefix_is_in_AS3_1_blacklist

	AS3_cc_AS1only

	3.0.2.0/24

	0:999, 65501:1

	seen on AS1_1/_2 only

	AS3_cc_not_AS1

	3.0.3.0/24

	0:1

	seen on AS2 only

	AS3_cc_none

	3.0.4.0/24

	0:999

	not seen

	AS3_prepend1any

	3.0.5.0/24

	65521:65521

	AS_PATH 3, 3

	AS3_prepend2any

	3.0.6.0/24

	65522:65522

	AS_PATH 3, 3, 3

	AS3_prepend3any

	3.0.7.0/24

	65523:65523

	AS_PATH 3, 3, 3, 3

	AS3_prepend1_AS1

	3.0.8.0/24

	65521:1

	AS_PATH 3, 3 on AS1 clients

	AS3_prepend2_AS2

	3.0.9.0/24

	65522:2

	AS_PATH 3, 3, 3 on AS2 clients

	AS3_prep3AS1_1any

	3.0.10.0/24

	65523:1
65521:65521

	AS_PATH 3, 3, 3, 3
on AS1 clients, 3, 3 on AS2 clients

	AS3_noexport_any

	3.0.11.0/24

	65507:999

	received by all with NO_EXPORT

	AS3_noexport_AS1

	3.0.12.0/24

	65509:1 65523:2

	(prepend x3 to AS2) received by AS1 with
NO_EXPORT

	AS3_rfc1997_noexp

	3.0.13.0/24

	NO_EXPORT

	received by all with NO_EXPORT

	AS3_transitfree_2

	3.0.14.0/24

	
	AS_PATH 3, 174, 33: rejected even if 3 is in
the transit-free ASN list

	AS3_prep2AS151866

	3.0.15.0/24

	65522:64512

	using the 16bit_mapped_asn

	AS3_noexpAS151866

	3.0.16.0/24

	65509:64512

	using the 16bit_mapped_asn

	Default_route

	0.0.0.0/0

	
	rejected by rs

	AS4:

AS-SETs: none

clients:

	AS4 (192.0.2.41, RTT 600)

	no enforcing of origin in AS-SET

	no enforcing of prefix in AS-SET

	RTT thresholds configured on rs: 5, 10, 15, 20, 30, 50, 100, 200, 500

	other peers RTTs:
- AS1_1: 0.1
- AS1_2: 5
- AS2: 17.3
- AS3: 123.8

Originated prefixes:

	Prefix ID

	Prefix

	Communities

	Goal

	Who receives it

	AS4_rtt_1

	4.0.1.0/24

	0:999 64532:15

	Do not announce to any + announce to peers
with RTT <= 15 ms

	AS1_1, AS1_2

	AS4_rtt_2

	4.0.2.0/24

	0:999 64532:5

	Do not announce to any + announce to peers
with RTT <= 5 ms

	AS1_1, AS1_2

	AS4_rtt_3

	4.0.3.0/24

	64531:15

	Do not announce to peers with RTT > 15 ms

	AS1_1, AS1_2

	AS4_rtt_4

	4.0.4.0/24

	64531:5

	Do not announce to peers with RTT > 5 ms

	AS1_1, AS1_2

	AS4_rtt_5

	4.0.5.0/24

	64531:5 65501:3

	Do not announce to peers with RTT > 5 ms but
announce to AS3

	AS1_1, AS1_2, AS3

	AS4_rtt_6

	4.0.6.0/24

	64530:5 64531:100

	Do not announce to peers with RTT <= 5 and
Do not announce to peers with RTT > 100

	AS2

	AS4_rtt_7

	4.0.7.1/32

	65535:666
64531:20

	BLACKHOLE request, do not announce to peers
with RTT > 20

	AS1_1, AS2
(AS1_2 not enabled to
receive blackhole
requests)

	AS4_rtt_8

	4.0.8.0/24

	64539:100
64538:10

	Prepend 3x to > 100 ms, 2x to > 10 ms

	AS1_1, AS1_2,
AS2 2x, AS3 3x

	AS4_rtt_9

	4.0.9.0/24

	64536:5 64535:20
65521:65521

	Prepend 3x to <= 5 ms, 2x to <= 20, 1x to
any

	AS1_1 & AS1_2 3x,
AS2 2x, AS3 1x

	AS4_rtt_10

	4.0.10.0/24

	rt:64537:10
rt:64538:20

	Prepend 1x to > 10 ms, 2x to > 20 ms

	AS1_1 & AS1_2 no prep,
AS2 1x, AS3 2x

	AS151866:

Used to verify that the control communities applied by other clients work fine towards 32bit ASN clients.

Originated prefixes:

	Prefix ID

	Prefix

	Expected result

	AS151866_bogon_1

	192.168.1.0/24

	Dropped (bogon), used to test that the
rejected_route_announced_by std comm
is properly set.

	AS222:

AS-SETs:

	AS-AS222 (AS333, 222.0.0.0/8)

	white list routes: exact 222.1.1.0/24 w/o origin AS

Used for tests about RFC 6907 7.1.9 and BCP172/RFC 6472.

clients:

	AS222_1 (192.0.2.222)

Originated prefixes:

	Prefix ID

	Prefix

	AS_PATH

	Expected result

	AS222_aggregate1

	222.1.1.0/24

	222, 333, {333 333}

	rejected because RPKI INVALID (this
route passes IRR filters because of
a client-level white_list_route

	AS222_aggregate2

	222.2.2.0/24

	222, 333, {333 333}

	BIRD: rejected because IRR origin
invalid

	AS222_aggregate3

	222.3.3.0/24

	222, 333, {444 555}

	OpenBGPD: accepted because IRR
origin validation is done on the
last non-aggregated ASN

	AS101:

clients:

	Not a route server client, it only peers with AS1_1, AS1_2 and AS2 on 192.0.2.101.

	RPKI ROAs:

	ID

	Prefix

	Max

	ASN

	1

	101.0.8.0/24

	
	101

	2

	101.0.9.0/24

	
	102

	3

	101.0.128.0/20

	23

	101

	4

	101.2.0.0/17

	
	101

	5

	101.2.128.0/17

	24

	101

	6

	101.3.0.0/16

	24

	105

Originated prefixes:

	Prefix ID

	Prefix

	AS_PATH

	Expected result

	AS101_good1

	101.0.1.0/24

	
	fail next_hop_is_valid_for_AS1_2 (for the prefix announced by AS101 to AS1_2)

	AS101_no_rset

	101.1.0.0/24

	
	fail prefix_is_in_AS1_1_r_set and prefix_is_in_AS2_1_r_set

	AS102_no_asset

	102.0.1.0/24

	[101 102]

	fail origin_as_in_AS1_1_as_set and origin_as_in_AS2_1_as_set

	AS101_bad_std_comm

	101.0.2.0/24

	
	add 65530:0, scrubbed by rs

	AS101_bad_lrg_comm

	101.0.3.0/24

	
	add 999:65530:0, scrubbed by rs

	AS101_other_s_comm

	101.0.4.0/24

	
	add 888:0, NOT scrubbed by rs

	AS101_other_l_comm

	101.0.5.0/24

	
	add 888:0:0, NOT scrubbed by rs

	AS101_bad_good_comms

	101.0.6.0/24

	
	add 65530:1,999:65530:1,777:0,777:0:0, 65530 are scrubbed by rs, 777:** are kept

	AS101_transitfree_1

	101.0.7.0/24

	[101 174]

	fail as_path_contains_transit_free_asn

	AS101_neverviars_1

	101.0.10.0/24

	[101 666]

	fail never via route-servers ASNs (PeeringDB)

	AS101_neverviars_2

	101.0.11.0/24

	[101 777]

	fail never via route-servers ASNs (‘asns’ list)

	AS101_roa_valid1

	101.0.8.0/24

	
	roa check ok (roa n. 1), tagged with 64512:1 / 999:64512:1

	AS101_roa_invalid1

	101.0.9.0/24

	
	roa check fail (roa n. 2, bad origin ASN), rejected

	AS101_roa_badlen

	101.0.128.0/24

	
	roa check fail (roa n. 3, bad length), rejected

	AS101_roa_blackhole

	101.0.128.1/32

	
	65535:666, pass because blackhole filtering request

	AS101_roa_routeobj_1

	101.2.0.0/17

	
	accepted because roa_as_route_objects, add 65530:2

	AS101_roa_routeobj_2

	101.2.1.0/24

	
	fail, roa_as_route_objects but prefix is more specific than ROA

	AS101_roa_routeobj_3

	101.2.128.0/24

	
	accepted because roa_as_route_objects, add 65530:2

	AS101_roa_routeobj_4

	101.3.0.0/24

	[101 105]

	fail, roa_as_route_objects but origin ASN not allowed by AS-SETs

	AS101_no_ipv6_gl_uni

	8000:1::/32

	
	fail IPv6 global unicast space check

	AS103_gshut_1

	103.0.1.0/24

	to AS1:
[101 103]

to AS2:
[101*2 103]

	AS1 (best) performs gshut of this route;
AS3 and AS4 receive the route via AS2 (sub-optimal path)

	AS103_gshut_2

	103.0.2.0/24

	to AS1:
[101*2 103]

to AS2:
[101 103]

	AS2 (best) tries gshut of this route but it’s not enabled;
AS3 and AS4 receive the route via AS2

	AS104_arin_1

	104.0.1.0/24

	[101 104]

	Accepted from AS1 via ARIN Whois DB dump; rejected by others

	AS104_nicbr_1

	104.1.1.0/24

	[101 104]

	Accepted from AS1 via NIC.BR Whois DB dump; rejected by others

Route server graceful shutdown scenario

AS1 and AS2 are route server clients.

Route server performs a graceful shutdown and propagates the routes after adding the GRACEFUL_SHUTDOWN BGP community to them.

Max-prefix limits

General policy:

	limit: 4

	peering DB: True (increment: 1 / 20%)

	action: block

AS1:

	no peering DB

	no specific limits

	expected limit: 4

	
	of announced routes: 5 (all valid)

	expectations:

	BIRD: only 4 routes received

	OpenBGPD: session down

AS2 (client with peering_db.increment set to 0/0):

	peering DB (3)

	no specific limits

	expected limit: 3

	
	of announced routes: 5 (all valid)

	expectations:

	BIRD: only 3 routes received

	OpenBGPD: session down

AS3:

	specific limit: 2

	expected limit: 2

	
	of announced routes: 5 (all valid)

	expectations:

	BIRD 1.6.x: only 2 routes received

	OpenBGPD: session down

AS4:

	peering DB (4)

	no specific limits

	expected limit: 6 (given by (4 + 1) * 1.20)

	
	of announced routes: 7 (all valid)

	expectations:

	BIRD 1.6.x: only 6 routes received

	OpenBGPD: session down

AS5 (only for BIRD):
- specific limit: 3
- expected limit: 3
- configured with count_rejected_routes: True (default value) and action: shutdown

	
	of announced routes: 4 (2 valid, 2 bogons)

	expectations:

	BIRD 1.6.x: session down

AS6 (only for BIRD):
- specific limit: 3
- expected limit: 3
- configured with count_rejected_routes: False (client specific value) and action: shutdown

	
	of announced routes: 4 (2 valid, 2 bogons)

	expectations:

	BIRD 1.6.x: all 4 routes received

Path hiding mitigation technique

AS1, AS2, AS3 and AS4 are clients of the route server. AS4 has ADD-PATH rx on.

Only one prefix is used, AS101_pref_ok1, announced by AS101 to AS1 and AS2:

	AS101 -> AS1, AS_PATH = [101]

	AS101 -> AS2, AS_PATH = [101 101 101 101]

The route server has the path toward AS1 as the preferred one.

AS1 announces this prefix to the rs after having added the do not announce to AS3 and do not announce to AS4 BGP communities.

	When mitigation is on, AS3 and AS4 receive the prefix via the sub-optimal path toward AS2.

	When mitigation is off, AS3 does not receive the prefix at all, AS4 receives it because of ADD-PATH capability.

RFC8950 scenario

A scenario to test announcements of IPv4 routes with an IPv6 NEXT_HOP, over an IPv6 session.

AS1_1

	AS1_v4_route1: accepted.

	AS1_v4_route2: rejected, not in IRR data.

	AS1_v4_route3, announced by AS1_1 with AS1_2 NEXT_HOP: rejected.

	AS1_v4_route4: accepted (white list - pref).

	AS1_v4_route5: accepted (white list - route).

	AS1_v4_route7: accepted (ARIN Whois).

	AS1_v4_route8: accepted (RegistroBR).

	AS1_v4_route9: rejected (RPKI BOV AS0).

	AS1_v4_route10: accepted (RPKI BOV VALID).

	AS1_v4_route11: rejected (RPKI BOC INVALID).

	AS1_v4_route13: accepted (/8, within the ipv4_pref_len range).

	AS1_v4_route14: reject (/25, outise the ipv4_pref_len range).

AS1_2

	AS1_v4_route6: announced with AS1_1 NEXT_HOP: accepted (same-as).

AS2_1

	AS2_v4_route12: accepted (NEXT_HOP authorized-next-hop)

Rich configuration example

A simple scenario to verify that the general.yml and clients.yml files distributed within the rich configuration example (examples/rich) lead to a working configuration.

The files used here are links to those provided within the examples/rich directory.

RFC9234 Route leak prevention using roles

Please note: role is NOT configured on the AS1-rs session, AS side.

 ◄──────────────────────────◄──────────── 101.1.0.0/16
 ▲
 ◄────────────── 1.0.0.0/16 │
 ▲ │
 │ │
 ┌────┴──────┐ ┌────┴──────┐
┌─────────────┐rs │ │peer peer│ │
│ route ├──────────────┤ AS1 ├─────────────┤ AS101 │
│ │ │ │ │ │
│ server ├───────┐ └───────────┘ └───────────┘
└─────────────┘rs │
 │
 │
 ▲ │
 │ │ ┌───────────┐
 │ │ │ │
 │ └──────┤ AS2 │
 │ rs_client│ │
 │ └────┬──────┘
 │ │
 │ │
 │ ▼
 └───────────────── 2.0.0.0/16
 force OTC = 202

RPKI INVALID routes tagging

Mostly to test hooks and include files in a scenario where a custom configuration allows to propagate RPKI INVALID routes to some selected clients and to tag them with locally significant BGP communities.

Hooks used:

	announce_rpki_invalid_to_client, implemented in the header[4|6] include files and used to discriminate which clients should receive INVALIDs;

	post_announce_to_client, implemented in the header include file and used to convert RFC8097 extended communities into locally significant ones.

	RPKI ROAs:

	ID

	Prefix

	Max

	ASN

	1

	2.0.8.0/24

	
	101

	2

	2.0.9.0/24

	
	102

	3

	2.0.128.0/20

	23

	101

	4

	3.0.8.0/24

	
	103

	5

	3.0.9.0/24

	
	102

	6

	3.0.128.0/20

	23

	103

	ID

	Prefix

	Max

	ASN

	1

	3002:0:8::/48

	
	101

	2

	3002:0:9::/48

	
	102

	3

	3002:0:8000::/33

	34

	101

	4

	3003:0:8::/48

	
	103

	5

	3003:0:9::/48

	
	102

	6

	3003:0:8000::/33

	34

	103

	Locally significant communities:

	Validity state

	BGP community

	VALID

	64512:1

	INVALID

	64512:2

	UNKNOWN

	64512:3

	AS1, receives only

Configured to receive INVALID routes using the hook announce_rpki_invalid_to_client, implemented in the local header[4|6] file.

	AS2:

Configured with reject_invalid False.

Annouced prefixes:

	Prefix ID

	Prefix

	AS_PATH

	Expected result and BGP community received by AS1

	AS2_valid1

	2.0.8.0/24,
3002:0:8::/48

	2 101

	roa check ok, 64512:1 on AS1 and AS4

	AS2_valid2

	2.0.128.0/21,
3002:0:8000::/34

	2 101

	roa check ok, 64512:1 on AS1 and AS4

	AS2_invalid1

	2.0.9.0/24,
3002:0:9::/48

	2

	roa check fail (roa n. 2, bad origin ASN), 64512:2 on AS1 only

	AS2_badlen

	2.0.128.0/24,
3002:0:8000::/35

	2 101

	roa check fail (roa n. 3, bad length), 64512:2 on AS1 only

	AS2_unknown1

	2.2.0.0/16
3002:3002::/32

	2

	roa check unknown, 64512:3 on AS1 and AS4

	AS3:

Configured with reject_invalid True.

Annouced prefixes:

	Prefix ID

	Prefix

	AS_PATH

	Expected result and BGP community received by AS1

	AS3_valid1

	3.0.8.0/24,
3003:0:8::/48

	3 103

	roa check ok, 64512:1 on AS1 and AS4

	AS3_valid2

	3.0.128.0/21,
3003:0:8000::/34

	3 103

	roa check ok, 64512:1 on AS1 and AS4

	AS3_invalid1

	3.0.9.0/24,
3003:0:9::/48

	3

	roa check fail (roa n. 2, bad origin ASN), rejected

	AS3_badlen

	3.0.128.0/24,
3003:0:8000::/35

	3 103

	roa check fail (roa n. 3, bad length), rejected

	AS3_unknown1

	3.2.0.0/16
3003:3003::/32

	2

	roa check unknown, 64512:3 on AS1 and AS4

	AS4, receives only with no particular configuration.

RPKI BGP Origin Validation custom communities

This scenario uses the same BGP announcements of the rpki one. It’s used to test the behaviour of the route servers when custom BGP communities are configured to keep track of the validation state of the routes when BOV is performed.

Contrary to what is configured in the rpki scenario, no hooks are used here, and reject_invalid is alwasy False.

	Custom BOV state communities:

	Validity state

	BGP community

	VALID

	64512:1

	INVALID

	64512:2

	UNKNOWN

	64512:3

RTR protocol

A simple scenario to verify the rpki_roas.source setting when an external resource must be used to pull ROAs (like an external validator).

The files used here are links to those provided within the examples/rpki_rtr directory.

AS1 announces 193.0.0.0/24 with origin AS 1.

Initially, no RTR sessions are active on the route-server, and the route is accepted.

In a second stage, a validator instance is spun up and connected to the route-server. The local file routinator_local_exceptions.json is used to instruct the RPKI validator to advertise a ROA for 193.0.0.0/21 with origin AS 3333.

Once the RTR session is up, the route-server is checked again to verify that the route from AS1 is no longer accepted and tagged with the RPKI INVALID ext community (BIRD only).

Tag prefixes/origin ASNs present/not-present in IRRDb

Built to test the irrdb.tag_as_set option.

Two sub-scenarios exist for this test:

	AS-SETs are populated with origin ASNs and prefixes reported below.

	AS-SETs are empty.

Communities:

	OK / Not OK

	Comm

	prefix OK

	64512

	prefix NOT OK

	64513

	origin OK

	64514

	origin NOT OK

	64515

	RPKI ROA OK

	64516

	ARIN Whois OK

	64518

	route wht list

	64517

RPKI ROAs:

	prefix

	ASN

	2.4.0.0/16

	AS2

	2.5.0.0/16

	AS2

	2.7.0.0/16

	AS2

	2.0.4.0/24

	AS2

	3.1.0.0/16

	AS3

	3.3.0.0/16

	AS3

	6.0.1.0/24

	AS6

ARIN Whois DB entries:

	prefix

	ASN

	2.6.0.0/16

	AS2

	2.7.0.0/16

	AS2

	3.2.0.0/16

	AS3

	3.3.0.0/16

	AS3

	2.0.5.0/24

	AS3

	6.0.1.0/24

	AS6

AS2

	allowed objects:

	prefix: 2.0.0.0/16

	origin: [2]

	configuration:

	enforcing: no

	tagging: yes

	white lists:

	prefixes: 2.2.0.0/16

	asns: 21

AS2 announces:

	id

	prefix

	AS_PATH

	prefix ok?

	origin ok?

	expected result 1

	expected result 2

	AS2_pref_ok_origin_ok1

	2.0.1.0/24

	2

	yes

	yes

	64512 64514

	64513 64515

	AS2_pref_ko_origin_ok1

	2.1.0.0/24

	2

	no

	yes

	64513 64514

	64513 64515

	AS3_pref_ok_origin_ko1

	2.0.2.0/24

	2 3

	yes

	no

	64512 64515

	64513 64515

	AS3_pref_ko_origin_ko1

	3.0.1.0/24

	2 3

	no

	no

	64513 64515

	64513 64515

	AS2_pref_wl_origin_ok

	2.2.1.0/24

	2

	yes (WL)

	yes

	64512 64514

	64512 64515

	AS2_pref_wl_origin_ko

	2.2.2.0/24

	2 3

	yes (WL)

	no

	64512 64515

	the same

	AS2_pref_wl_origin_wl

	2.2.3.0/24

	2 21

	yes (WL)

	yes (WL)

	64512 64514

	the same

	AS2_pref_ko_origin_wl

	2.3.1.0/24

	2 21

	no

	yes (WL)

	64513 64514

	the same

	AS2_pref_ok_origin_wl

	2.0.3.0/24

	2 21

	yes

	yes (WL)

	64512 64514

	64513 64514

	AS2_roa2

	2.5.0.0/16

	2

	no

	yes

	64513 64514 64516

	64513 64515

	AS2_arin1

	2.6.0.0/16

	2

	no

	yes

	64513 64514 64518

	64513 64515

	AS2_roa3_arin2

	2.7.0.0/16

	2

	no

	yes

	64513 64514 64516
64518

	64513 64515

	AS2_ok_ok_roa3

	2.0.4.0/24

	2

	yes

	yes

	64512 64514 64516

	64513 64515

	AS2_ok_ok_arin3

	2.0.5.0/24

	2

	yes

	yes

	64512 64514 64518

	64513 64515

AS3

Not a route server client here, used just to track RPKI ROAs and ARIN Whois DB entries:

AS4

	allowed objects:

	prefix: 4.0.0.0/16

	origin: 4

	configuration:

	enforcing: origin only

	tagging: yes

	white lists:

	prefixes: 4.2.0.0/16

	asns: 41

	routes:

	exact 4.4.0.0/16, AS 44

	4.5.0.0/16, AS 43

	4.6.0.0/16, no origin AS

AS4 announces:

	id

	prefix

	AS_PATH

	prefix ok?

	origin ok?

	expected result 1

	expected result 2

	AS4_pref_ok_origin_ok1

	4.0.1.0/24

	4

	yes

	yes

	64512 64514

	rejected

	AS4_pref_ko_origin_ok1

	4.1.0.0/24

	4

	no

	yes

	64513 64514

	rejected

	AS3_pref_ok_origin_ko2

	4.0.2.0/24

	4 3

	yes

	no

	rejected

	rejected

	AS3_pref_ko_origin_ko1

	3.0.1.0/24

	4 3

	no

	no

	rejected

	rejected

	AS4_pref_wl_origin_ok

	4.2.1.0/24

	4

	yes (WL)

	yes

	64512 64514

	rejected

	AS4_pref_wl_origin_ko

	4.2.2.0/24

	4 3

	yes (WL)

	no

	rejected

	rejected

	AS4_pref_wl_origin_wl

	4.2.3.0/24

	4 41

	yes (WL)

	yes (WL)

	64512 64514

	the same

	AS4_pref_ko_origin_wl

	4.3.1.0/24

	4 41

	no

	yes (WL)

	64513 64514

	the same

	AS4_pref_ok_origin_wl

	4.0.3.0/24

	4 41

	yes

	yes (WL)

	64512 64514

	64513 64514

	AS4_routewl_1

	4.4.0.0/16

	4 44

	r WL

	r WL

	64513 64515 64517

	the same

	AS4_routewl_2

	4.4.1.0/24

	4 44

	r WL KO

	r WL

	rejected

	rejected

	AS4_routewl_3

	4.5.1.0/24

	4 43

	r WL

	r WL

	64513 64515 64517

	the same

	AS4_routewl_4

	4.5.2.0/24

	4 45

	r WL

	r WL KO

	rejected

	rejected

	AS4_routewl_5

	4.6.1.0/24

	4 45

	r WL

	r WL

	64513 64515 64517

	the same

AS5

	allowed objects (AS-SET from PeeringDB):

	prefix: 5.0.0.0/16

	origin: 5

configuration:

	enforcing: prefix only

	tagging: yes

	white lists:

	prefixes: 5.2.0.0/16

	asns: 51

AS5 announces:

	id

	prefix

	AS_PATH

	prefix ok?

	origin ok?

	expected result 1

	expected results 2

	AS5_pref_ok_origin_ok1

	5.0.1.0/24

	5

	yes

	yes

	64512 64514

	rejected

	AS5_pref_ko_origin_ok1

	5.1.0.0/24

	5

	no

	yes

	rejected

	rejected

	AS3_pref_ok_origin_ko3

	5.0.2.0/24

	5 3

	yes

	no

	64512 64515

	rejected

	AS3_pref_ko_origin_ko1

	3.0.1.0/24

	5 3

	no

	no

	rejected

	rejected

	AS5_pref_wl_origin_ok

	5.2.1.0/24

	5

	yes (WL)

	yes

	64512 64514

	64512 64515

	AS5_pref_wl_origin_ko

	5.2.2.0/24

	5 3

	yes (WL)

	no

	64512 64515

	the same

	AS5_pref_wl_origin_wl

	5.2.3.0/24

	5 51

	yes (WL)

	yes (WL)

	64512 64514

	the same

	AS5_pref_ko_origin_wl

	5.3.1.0/24

	5 51

	no

	yes (WL)

	rejected

	rejected

	AS5_pref_ok_origin_wl

	5.0.3.0/24

	5 51

	yes

	yes (WL)

	64512 64514

	rejected

AS6

	allowed objects:

	prefix: 6.0.0.0/16

	origin: 6, 3

configuration:

	enforcing: both origin ASN and prefix

	tagging: yes

	white lists:

	routes:

	3.2.0.0/16+, AS3 (1)

AS6 announces:

	id

	prefix

	AS_PATH

	prefix ok?

	origin ok?

	expected result 1

	expected results 2

	AS2_roa1

	2.4.0.0/16

	6 2

	no

	no

	rejected

	rejected

	AS3_roa2

	3.1.0.0/16

	6 3

	ROA

	yes

	64513 64514 64516

	rejected

	AS3_arin1

	3.2.1.0/24

	6 3

	ARIN (1)

	yes

	64513 64514 64518

	64513 64515 64517

	AS3_roa3_arin2

	3.3.0.0/16

	6 3

	no

	yes

	64513 64514 64516
64518

	rejected

	AS6_ok_ok_roa6_arin6

	6.0.1.0/24

	6

	yes

	yes

	64512 64514 64516
64518

	rejected

1) The route white list is used to verify that:
- in scenario 1, 3.2.1.0/24 AS3 is accepted and tagged with the ARIN db community, and not because of the white list entry;
- in scenario 2, 3.2.1.0/24 AS3 is accepted anyway, but solely because of the route white list

Reject policy: tag

This scenario uses the same base layout of the global one, with the addition of an Invalid routes collector that receives only the routes that have been classified as invalid by the route server.

All the test cases used here inherit from the LiveScenario_TagRejectPolicy class, that dynamically changes the general.yml content to reflect the use of the tag reject_policy: the BGP community used to mark the rejected routes and the reject reasons is 65520:x. Additionally, some reject codes are mapped to specific BGP communities in the rs_as:1101:* range via reject_cause_map.

BIRD and OpenBGPD are configured using .local files to setup the sessions with the route collector and to properly announce only the invalid routes that have been previously marked with the reject_reason BGP community.

Testing realistic scenarios

Some realistic scenarios have been tested using ARouteServer by feeding it with lists of clients pulled from actual IXPs’ members lists.

	Euro-IX JSON member list files exposed by the IXPs reported below have been used to automatically generate ARouteServer clients.yml file.
AS-SETs and max-prefix limits from PeeringDB have been taken into account when they were not available in the Euro-IX JSON file.

List of IXPs used to run these tests:

	AMS-IX, VLAN ID 501 (“ISP”)

	BCIX, VLAN ID 1 (“BCIX Peering LAN”)

	BIX, VLAN ID 1 (“IPv4 Peeing LAN”) and 2 (“IPv6 Peeing LAN”)

	GR-IX

	INEX, VLAN ID 2 (“Peering VLAN #1”)

	LONAP, VLAN ID 1 (“LONAP Peering LAN #1”)

	SIX, VLAN ID 2 (“MTU 1500”)

	STHIX - Stockholm

	SwissIX

The files produced by the clients-from-euroix command can be found within the tests/real/clients directory (see it on GitHub [https://github.com/pierky/arouteserver/tree/master/tests/real/clients]).

	A rich ARouteServer setup has been used to build BIRD and OpenBGPD configurations, in order to enable as many features as possible: filters based on “same AS” NEXT_HOP, invalid AS_PATHs, transit-free ASNs, IRRDB information, and also max-prefix limits and BGP communities for blackhole filtering, selective announcement, prepending…

The full description of the configuration can be found in the general.html file, automatically generated from the general.yml file [https://github.com/pierky/arouteserver/blob/master/tests/real/general.yml].

	For each IXP, configurations for BIRD and OpenBGPD (both 6.0 and 6.2) have been finally built using ARouteServer and loaded into an instance of their respective daemon, to verify that no errors occurred:

	for BIRD, a Docker container has been used;

	for OpenBGPD 6.0, a virtual server has been instantiated on Vultr [https://www.vultr.com/] in order to have enough resources to process the configuration;

	for OpenBGPD 6.2, only a few configurations were tested because of lack of resources on my machines :-/

Results can be found within the tests/real/last file (here on GitHub [https://github.com/pierky/arouteserver/blob/master/tests/real/last]).
They are also reported below.

Real configs: AMS-IX, BIRD, IPv4, build ... ok
Real configs: AMS-IX, BIRD, IPv6, build ... ok

--
Ran 2 tests in 801.256s

OK
Building config for bird, IPv4: 664 seconds
Building config for bird, IPv6: 137 seconds

==
Real configs: AMS-IX, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 625.545s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 626 seconds

==
Real configs: AMS-IX, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 642.808s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 643 seconds

==
Real configs: AMS-IX, BIRD, IPv4, load ... ok
Real configs: AMS-IX, BIRD, IPv6, load ... ok

--
Ran 2 tests in 23.333s

OK
Loading config for bird, IPv4: 5 seconds
Loading config for bird, IPv6: 3 seconds

==
Real configs: AMS-IX, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 2474.119s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 2469 seconds

==
Real configs: AMS-IX, OpenBGPD 6.2, load ... SKIP: Lack of resources

--
Ran 1 test in 0.004s

OK (SKIP=1)

==
Real configs: BCIX, BIRD, IPv4, build ... ok
Real configs: BCIX, BIRD, IPv6, build ... ok

--
Ran 2 tests in 252.759s

OK
Building config for bird, IPv4: 206 seconds
Building config for bird, IPv6: 46 seconds

==
Real configs: BCIX, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 195.231s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 196 seconds

==
Real configs: BCIX, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 192.919s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 193 seconds

==
Real configs: BCIX, BIRD, IPv4, load ... ok
Real configs: BCIX, BIRD, IPv6, load ... ok

--
Ran 2 tests in 18.258s

OK
Loading config for bird, IPv4: 3 seconds
Loading config for bird, IPv6: 3 seconds

==
Real configs: BCIX, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 275.215s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 271 seconds

==
Real configs: BCIX, OpenBGPD 6.2, load ... SKIP: Lack of resources

--
Ran 1 test in 0.004s

OK (SKIP=1)

==
Real configs: BIX_IPv4, BIRD, IPv4, build ... ok
Real configs: BIX_IPv4, BIRD, IPv6, build ... SKIP: IPv4 only
Real configs: BIX_IPv6, BIRD, IPv4, build ... SKIP: IPv6 only
Real configs: BIX_IPv6, BIRD, IPv6, build ... ok

--
Ran 4 tests in 142.915s

OK (SKIP=2)
Building config for bird, IPv4: 111 seconds

==
Building config for bird, IPv6: 32 seconds

==
Real configs: BIX_IPv4, OpenBGPD 6.0, build ... ok
Real configs: BIX_IPv6, OpenBGPD 6.0, build ... ok

--
Ran 2 tests in 201.500s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 103 seconds

==
Building config for openbgpd 6.0, IPv4 & IPv6: 98 seconds

==
Real configs: BIX_IPv4, OpenBGPD 6.2, build ... ok
Real configs: BIX_IPv6, OpenBGPD 6.2, build ... ok

--
Ran 2 tests in 205.375s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 106 seconds

==
Building config for openbgpd 6.2, IPv4 & IPv6: 99 seconds

==
Real configs: BIX_IPv4, BIRD, IPv4, load ... ok
Real configs: BIX_IPv4, BIRD, IPv6, load ... SKIP: IPv4 only
Real configs: BIX_IPv6, BIRD, IPv4, load ... SKIP: IPv6 only
Real configs: BIX_IPv6, BIRD, IPv6, load ... ok

--
Ran 4 tests in 18.206s

OK (SKIP=2)
Loading config for bird, IPv4: 3 seconds

==
Loading config for bird, IPv6: 3 seconds

==
Real configs: BIX_IPv4, OpenBGPD 6.0, load ... ok
Real configs: BIX_IPv6, OpenBGPD 6.0, load ... ok

--
Ran 2 tests in 128.880s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 59 seconds

==
Loading config for openbgpd 6.0, IPv4 & IPv6: 60 seconds

==
Real configs: BIX_IPv4, OpenBGPD 6.2, load ... SKIP: Lack of resources
Real configs: BIX_IPv6, OpenBGPD 6.2, load ... SKIP: Lack of resources

--
Ran 2 tests in 0.008s

OK (SKIP=2)

==

==
Real configs: GR-IX, BIRD, IPv4, build ... ok
Real configs: GR-IX, BIRD, IPv6, build ... ok

--
Ran 2 tests in 50.569s

OK
Building config for bird, IPv4: 33 seconds
Building config for bird, IPv6: 18 seconds

==
Real configs: GR-IX, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 61.728s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 62 seconds

==
Real configs: GR-IX, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 61.141s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 61 seconds

==
Real configs: GR-IX, BIRD, IPv4, load ... ok
Real configs: GR-IX, BIRD, IPv6, load ... ok

--
Ran 2 tests in 18.477s

OK
Loading config for bird, IPv4: 4 seconds
Loading config for bird, IPv6: 3 seconds

==
Real configs: GR-IX, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 40.555s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 35 seconds

==
Real configs: GR-IX, OpenBGPD 6.2, load ... ok

--
Ran 1 test in 135.300s

OK
Loading config for openbgpd 6.2, IPv4 & IPv6: 120 seconds

==
Real configs: INEX, BIRD, IPv4, build ... ok
Real configs: INEX, BIRD, IPv6, build ... ok

--
Ran 2 tests in 55.797s

OK
Building config for bird, IPv4: 36 seconds
Building config for bird, IPv6: 20 seconds

==
Real configs: INEX, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 73.090s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 73 seconds

==
Real configs: INEX, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 73.857s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 73 seconds

==
Real configs: INEX, BIRD, IPv4, load ... ok
Real configs: INEX, BIRD, IPv6, load ... ok

--
Ran 2 tests in 18.180s

OK
Loading config for bird, IPv4: 3 seconds
Loading config for bird, IPv6: 3 seconds

==
Real configs: INEX, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 44.156s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 39 seconds

==
Real configs: INEX, OpenBGPD 6.2, load ... ok

--
Ran 1 test in 155.570s

OK
Loading config for openbgpd 6.2, IPv4 & IPv6: 138 seconds

==
Real configs: LONAP, BIRD, IPv4, build ... ok
Real configs: LONAP, BIRD, IPv6, build ... ok

--
Ran 2 tests in 109.184s

OK
Building config for bird, IPv4: 77 seconds
Building config for bird, IPv6: 32 seconds

==
Real configs: LONAP, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 135.533s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 136 seconds

==
Real configs: LONAP, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 137.810s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 138 seconds

==
Real configs: LONAP, BIRD, IPv4, load ... ok
Real configs: LONAP, BIRD, IPv6, load ... ok

--
Ran 2 tests in 18.279s

OK
Loading config for bird, IPv4: 4 seconds
Loading config for bird, IPv6: 4 seconds

==
Real configs: LONAP, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 86.025s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 81 seconds

==
Real configs: LONAP, OpenBGPD 6.2, load ... SKIP: Lack of resources

--
Ran 1 test in 0.005s

OK (SKIP=1)

==
Real configs: SIX, BIRD, IPv4, build ... ok
Real configs: SIX, BIRD, IPv6, build ... ok

--
Ran 2 tests in 244.815s

OK
Building config for bird, IPv4: 194 seconds
Building config for bird, IPv6: 51 seconds

==
Real configs: SIX, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 226.218s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 226 seconds

==
Real configs: SIX, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 228.808s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 228 seconds

==
Real configs: SIX, BIRD, IPv4, load ... ok
Real configs: SIX, BIRD, IPv6, load ... ok

--
Ran 2 tests in 18.345s

OK
Loading config for bird, IPv4: 3 seconds
Loading config for bird, IPv6: 4 seconds

==
Real configs: SIX, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 202.955s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 198 seconds

==
Real configs: SIX, OpenBGPD 6.2, load ... SKIP: Lack of resources

--
Ran 1 test in 0.004s

OK (SKIP=1)

==
Real configs: STHIX, BIRD, IPv4, build ... ok
Real configs: STHIX, BIRD, IPv6, build ... ok

--
Ran 2 tests in 115.921s

OK
Building config for bird, IPv4: 86 seconds
Building config for bird, IPv6: 30 seconds

==
Real configs: STHIX, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 126.877s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 127 seconds

==
Real configs: STHIX, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 127.479s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 128 seconds

==
Real configs: STHIX, BIRD, IPv4, load ... ok
Real configs: STHIX, BIRD, IPv6, load ... ok

--
Ran 2 tests in 18.163s

OK
Loading config for bird, IPv4: 3 seconds
Loading config for bird, IPv6: 3 seconds

==
Real configs: STHIX, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 87.129s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 82 seconds

==
Real configs: STHIX, OpenBGPD 6.2, load ... SKIP: Lack of resources

--
Ran 1 test in 0.004s

OK (SKIP=1)

==
Real configs: SwissIX, BIRD, IPv4, build ... ok
Real configs: SwissIX, BIRD, IPv6, build ... ok

--
Ran 2 tests in 195.399s

OK
Building config for bird, IPv4: 152 seconds
Building config for bird, IPv6: 43 seconds

==
Real configs: SwissIX, OpenBGPD 6.0, build ... ok

--
Ran 1 test in 177.015s

OK
Building config for openbgpd 6.0, IPv4 & IPv6: 177 seconds

==
Real configs: SwissIX, OpenBGPD 6.2, build ... ok

--
Ran 1 test in 179.282s

OK
Building config for openbgpd 6.2, IPv4 & IPv6: 179 seconds

==
Real configs: SwissIX, BIRD, IPv4, load ... ok
Real configs: SwissIX, BIRD, IPv6, load ... ok

--
Ran 2 tests in 18.255s

OK
Loading config for bird, IPv4: 3 seconds
Loading config for bird, IPv6: 3 seconds

==
Real configs: SwissIX, OpenBGPD 6.0, load ... ok

--
Ran 1 test in 189.827s

OK
Loading config for openbgpd 6.0, IPv4 & IPv6: 185 seconds

==
Real configs: SwissIX, OpenBGPD 6.2, load ... SKIP: Lack of resources

--
Ran 1 test in 0.004s

OK (SKIP=1)

==

Future work

Short term

	RTT-based communities: extend support to add NO_EXPORT / NO_ADVERTISE

	Informative community with the measured RTT of the announcing peer

	New feature: CLI option to build configs based on templates/groups only and avoid client specific settings

Mid term

	New feature: group clients by AFI/ASN (OpenBGPD only)

	Split configuration in multiple files

	Doc: better documentation

	Doc: contributing section

	Doc: schema of data that can be used within J2 templates

Long term

	New feature: routing policies based on RPSL import-via/export-via

	New feature: other BGP speakers support (GoBGP, …)

	New feature: balance clients among n different configurations (for multiple processes - see Scaling BIRD Routeservers [https://ripe73.ripe.net/presentations/115-e-bru-20161026-RIPE73-scaling-bird-routeservers-final.pdf])

Contributing

Enrichers

Live tests code documentation

Change log

Note

Upgrade notes: after upgrading, run the arouteserver setup-templates command to sync the local templates with those distributed with the new version. More details on the Upgrading [https://arouteserver.readthedocs.io/en/latest/INSTALLATION.html#upgrading] section of the documentation.

1.22.1

	Fix: IPv4 prefix length verification when RFC8950 is enabled.

When a peer is configured for RFC8950 support, the prefix length is checked for the IPv6 limits only. This will permit too long IPv4 (up to /48) prefixes and will reject short IPv4 (< /12) prefixes.

See also GitHub issue 130 [https://github.com/pierky/arouteserver/issues/130].

1.22.0

	New: add support of IPv6 NEXT_HOP for IPv4 routes (RFC8950 [https://tools.ietf.org/html/rfc8950]).

Only available for BIRD 2.x.

1.21.7

	New: add support for BIRD 2.15 [https://www.mail-archive.com/bird-users@network.cz/msg07905.html] and OpenBGPD 8.4 [https://www.undeadly.org/cgi?action=article;sid=20240308064655], also added to the integration testing suite.

1.21.6

	Fix: fetching Registro.br dataset via HTTPS.

A “Can’t decode Registro.br Whois DB raw file” error was raised when trying to fetch the dataset from Registro.br using HTTPS.

See also GitHub PR 128 [https://github.com/pierky/arouteserver/issues/128].

1.21.5

	Fix: irr-as-set command, the parser considers hierarchical AS-SET names.

Names in the format AS<n>:<s> were considered as in the format source:name.

See also GitHub issue 126 [https://github.com/pierky/arouteserver/issues/126].

1.21.4

	Fix: irr-as-set command, omit AS-SETs having a source different from the target registry.

The list of members used to build the IRR object no longer includes client’s AS-SETs if their origin does not match the registry for which the object is being created.

See also GitHub issue 126 [https://github.com/pierky/arouteserver/issues/126].

	Improvement: irr-as-set command, --include-members and --exclude-members options.

Add options to the command that allow the operator to include/exclude AS-SETs from the members list of the object being generated.

1.21.3

	Fix: --merge-from-custom-file overriding configs from clients-from-euroix.

The --merge-from-custom-file option of the clients-from-euroix command is supposed to merge the configurations from a local file into the final content that it generates for clients.yml. However, a bug was triggering an undesired behaviour, for which the cfg settings from the local file were overriding those automatically generated by the command. This was leading to the removal of information such as max-prefix and as-set that were originally populated using the Euro-IX records.

1.21.2

	New: add support for BIRD 2.14 [http://trubka.network.cz/pipermail/bird-users/2023-October/017161.html] and OpenBGPD 8.3 [https://www.mail-archive.com/tech@openbsd.org/msg76545.html], also added to the integration testing suite.

1.21.1

	New: add support for OpenBGPD 8.0 [https://undeadly.org/cgi?action=article;sid=20230505054214], also added to the integration testing suite.

	New: add early support for BIRD v3 (current release 3.0alpha2 [https://bird.network.cz/pipermail/bird-users/2023-May/016913.html]), for testing purposes only.

1.21.0

This release breaks backward compatibility (BIRD configs only): the default target version used to build BIRD configurations (when the --target-version argument is not given) is now the latest from the version 2 of BIRD (2.13 at the moment); previously it was 1.6.8. Use the --target-version 1.6.8 command line argument to build 1.6 compatible configurations.

Please note: BIRD 1 will reach end of life at the end of the year 2023 [https://www.mail-archive.com/bird-users@network.cz/msg07316.html].

	New: add support for BIRD 2.13 [https://www.mail-archive.com/bird-users@network.cz/msg07305.html], also added to the integration testing suite.

	New: support to build configurations for multiple route servers at once.

Providing a list of values in the router_id setting of the general.yml file allows ARouteServer to build configurations for multiple route servers during the same execution.

For more details see Building configurations for multiple route servers [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#building-configurations-for-multiple-route-servers] on the doc web site.

	Fix: ixf-member-export (to build an Euro-IX JSON export file from clients.yml) now sets the routeserver flag of members to True.

See also GitHub issue 120 [https://github.com/pierky/arouteserver/issues/120].

1.20.1

	New: add support for OpenBGPD 7.8 [https://www.mail-archive.com/tech@openbsd.org/msg74147.html], also added to the integration testing suite.

1.20.0

	Deprecation: support for overly old OpenBGPD versions (< 7.0) is removed.

See GitHub PR 117 [https://github.com/pierky/arouteserver/pull/117].

	New: add support for BIRD 2.0.11 [https://bird.network.cz/pipermail/bird-users/2022-December/016431.html], also added to the integration testing suite.

	New: mapping of 32bit ASNs to 16bit private ASNs for announcement control standard BGP communities.

A new feature is added to allow 32bit ASN clients to be mapped to 16bit ASNs in the standard BGP communities used for announcement control. This feature allows clients to use the 16bit mapped ASN as the peer_as value for standard BGP communities like do not announce to $PEER. In those communities, the 32bit ASN will be represented by the 16bit value which is mapped to it.

For details on how to configure this feature, see the documentation, “BGP Communities” section [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#bgp-communities].

See also GitHub issue 101 [https://github.com/pierky/arouteserver/issues/101].

	New: add support for RFC9234 Route Leak Prevention and Detection Using Roles [https://www.rfc-editor.org/rfc/rfc9234].

A new configuration option is available in general.yml to enable RFC9234 roles (supported by BIRD >= 2.0.11 and OpenBGPD >= 7.5, even though discouraged until 7.8 will be out [https://github.com/openbgpd-portable/openbgpd-portable/issues/51]).
When that’s set, BGP sessions on the route server are configured to announce the route-server role and routes received from clients and tagged with the OTC (Only To Customer) attribute are dropped.

This option can be enabled in backward compatibility mode in the general.yml file, and can also be tuned on a client-by-client basis via the clients.yml file.

Details can be found in the documentation page of general.yml [https://arouteserver.readthedocs.io/en/latest/GENERAL.html#rfc9234-roles-roles].

	New: anchors in HTML pages.

The route server policy textual representation HTML files generated via the html command now have anchors at the various headers and sub-headers, so when referring other parties to the policy they can be pointed directly to the relevant section.

See also GitHub issue 119 [https://github.com/pierky/arouteserver/issues/119].

	Fix: minor issues with the HTML pages.

Wrong URL in some links and a misleading reference to a wrong mailing list post about private ASNs.

See also GitHub issue 119 [https://github.com/pierky/arouteserver/issues/119].

Please note: starting with the next release, the default target version used to build BIRD configurations (when the --target-version argument is not given) will be the latest from the 2.x major version; until now it was 1.6.8. Operators will need to use the --target-version 1.6.8 command line argument to build BIRD 1.x compatible configurations.

1.19.0

	Deprecation: the ARIN Whois OriginAS feature (config knob use_arin_bulk_whois_data, documented in Use ARIN Whois database to accept routes [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#use-arin-whois-database-to-accept-routes]) is being deprecated.

Per Recommended Draft Policy ARIN-2021-8 [https://www.arin.net/participate/policy/drafts/2021_8/], the “Autonomous System Originations” field is going to be removed from the ARIN database. Consequentially, this feature that is based on that is going to be deprecated as well and will be dropped in future releases of ARouteServer.

Operators that will run ARouteServer with use_arin_bulk_whois_data.enabled set to True will see a warning message being logged, about the deprecation.

The publicly available intermediate data relay which was running on the NLNOG infrastructure already removed the source file, which was used to fetch those records. So, operators willing to support this feature will need to provide their own version of the file.

See also GitHub issue 116 [https://github.com/pierky/arouteserver/issues/116].

1.18.0

No new functionalities nor bug fixes here, just a change in the releases of Python which are supported and tested.

	Tests are no longer performed for Python 3.6 (EoL).

	Tests for Python 3.10 and 3.11 are introduced: 3.11 is the release used to perform the integration tests.

	Docker images are built on top of Python 3.11 and PyPy 3.9.

1.17.1

	New: add support for OpenBGPD 7.6 and 7.7, also added to the integration testing suite (portable edition only).

1.17.0

	New: add support for BIRD 2.0.10 [https://www.mail-archive.com/bird-users@network.cz/msg06819.html], also added to the integration testing suite.

	New: add support for OpenBGPD 7.5 [https://undeadly.org/cgi?action=article;sid=20220716101930], also added to the integration testing suite (portable edition only).

	New (OpenBGPD): add support for ADD-PATH (on version 7.5 or above).

	Improvement: abort the configuration building process as soon as one enricher fails.

This shorten the user feedback in case of errors that unavoidably would make the final configuration broken and not usable.

	Fix: remove RGNET from the list of default IRR sources.

To remove it from existing deployments, or to add it back, users can edit the arouteserver.yml file, bgpq3_sources section.

See also GitHub issue 111 [https://github.com/pierky/arouteserver/issues/111].

1.16.1

	New: add support for OpenBGPD 7.4, also added to the integration testing suite (portable edition only).

	Fix: pin down urllib3 version to avoid issues on upgrade.

See also GitHub issue 110 [https://github.com/pierky/arouteserver/issues/110].

	Fix: the playground [https://github.com/pierky/arouteserver/tree/master/tools/playground] Docker image was not building anymore.

Go and AliceLG birdwatcher versions have been bumped to the latest available.

1.16.0

	Improvement: use bulk queries to get clients’ records from PeeringDB.

Clients’ details (such as IRR records and max-prefix limits) are now retrieved from PeeringDB using bulk API queries, where multiple ASNs are checked at once.

This speeds up the configuration building process and reduces the number of queries to PeeringDB, reducing the risk of hitting the API rate limit.

See also GitHub issue 107 [https://github.com/pierky/arouteserver/issues/107].

1.15.1

	Fix: update the requirements.

The min. version of Jinja2 reported in the requirements file was not enough to satisfy the needs of the templates.

See also GitHub issue 106 [https://github.com/pierky/arouteserver/issues/106].

	Fix: allow setting PeeringDB API key to mitigate anonymous API throttling mechanism.

ARouteServer can now be instructed to use an API key to perform authentication against the PeeringDB API server. This can be done by setting the environment variable SECRET_PEERINGDB_API_KEY or by storing the same key inside one of the following well-known files: ~/.arouteserver/peeringdb_api.key, ~/.peeringdb_api.key.

This should mitigate the effects of the anonymous API throttling mechanism introduced on PeeringDB.

See also GitHub issue 107 [https://github.com/pierky/arouteserver/issues/107].

	Improvement: retry on PeeringDB API failure or rate-limit.

In case of failure or rate-limit of the PeeringDB API the tool now retries the same query multiple times.

See also GitHub issue 107 [https://github.com/pierky/arouteserver/issues/107].

1.15.0

	New: add support for OpenBGPD 7.3, also added to the integration testing suite (portable edition only).

	New: md command, to build a textual representation in Markdown format.

This command works like the html command and can be used to build a textual representation of the route server’s configuration policy in Markdown format.

For more details see the Textual representation [https://arouteserver.readthedocs.io/en/latest/USAGE.html#textual-representation] section of the documentation.

	New: add custom_options to the clients definition file.

This new section can be used to add BGP-speaker-specific arbitrary lines of configuration to the file generated by ARouteServer.

For more details see the Client custom options [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#custom_options].>`__ section of the documentation.

See also GitHub PR 104 [https://github.com/pierky/arouteserver/pull/104].

	Improvement (BIRD): skip NEXT_HOP check for IPv6 link-local clients.

Due to a limitation of BIRD, it is not possible to verify the NEXT_HOP attribute of routes announced by IPv6 clients configured using link-local addresses.
The configurations generated using this release skip that check (upon operator’s approval if such clients are present).

See also GitHub PR 104 [https://github.com/pierky/arouteserver/pull/104].

	Fix: detect infeasible extended BGP communities when a 32bit ASN is used for the route server.

When the route server uses a 32bit ASN, certain extended BGP communities may end being configured to match multiple 32bit values, which is not possible because the way they are encoded.

This release detects similar situations in advance and aborts the configuration building process.

See also GitHub PR 104 [https://github.com/pierky/arouteserver/pull/104].

1.14.1

	Fix: import limit is not set if PeeringDB records are not found.

For clients not configured with a specific max-prefix value, when a PeeringDB record was not found the value from the general limit was not used to build the import limit configuration. The tool was expected to fallback to the general_limit_ipv4 value instead.

See also GitHub issue 105 [https://github.com/pierky/arouteserver/issues/105].

1.14.0

	New: Add support for BIRD 2.0.9 [https://www.mail-archive.com/bird-users@network.cz/msg06594.html] (also included into the integration testing suite).

	Improvement (OpenBGPD): improve readability of the configurations.

A better formatting of the output configuration allows a better readability. Also, wherever possible, extended communities are removed using wildcard matching, allowing a more compact configuration.

See also GitHub issue 97 [https://github.com/pierky/arouteserver/issues/97] and 99 [https://github.com/pierky/arouteserver/issues/99].

	Improvement (Docker image): use bgpq4 version 1.4.

The Docker image was using version 1.2.

	Improvement (Docker image): PyPy3-based image added.

The Docker images based on PyPy3 will have tags in the form latest-pypy3 and <version>-pypy3 (like 1.14.0-pypy3).

	Improvements: drop dependencies on libraries needed for Python 2 compatibility.

Also, tests are now performed using Python 3.6, 3.8 and 3.9 too.

1.13.1

	Fix: avoid running bgpq4 using the -3 option.

It seems that the -3 CLI option has been dropped in bgpq4 and is no longer supported (it was added as a way to not break compatibility with bgpq3 syntax).

See also GitHub issue 95 [https://github.com/pierky/arouteserver/issues/95].

	Fix (OpenBGPD): syntax error when prepend functionalities were configured with ‘std’ communities only and 32bit ASN clients were present.

See also GitHub issue 98 [https://github.com/pierky/arouteserver/issues/98].

	Improvement: better explaination of when error messages can be ignored.

See also GitHub issue 96 [https://github.com/pierky/arouteserver/issues/96].

1.13.0

	New (OpenBGPD): use the expires attribute of ROAs from rpki-client format.

In OpenBGPD configurations (starting with 7.2), the expires attribute of ROAs gathered from JSON feeds that contain it is passed on into the configuration of the roa-set.

See also GitHub issue 92 [https://github.com/pierky/arouteserver/issues/92].

1.12.0

	New: add the --merge-file option to the ixf-member-export command, to include user-created content into the IX-F Member Export JSON file.

For more details on how it works please check the documentation [https://arouteserver.readthedocs.io/en/latest/USAGE.html#ixf-member-export-command].

See also GitHub issue 89 [https://github.com/pierky/arouteserver/issues/89].

	Improvement: in the ixf-member-export command, the value of IXP ID can now be set via the --ixp-id in addition to the existing --ixp_id option.

In the future, the --ixp_id version of the option will be dropped. A warning message will be shown when the deprecated version of that command line argument is used.

	Improvement: ask for 16bit placeholder ASN in configure when the route-server is on a 32bit ASN.

When the configure command is used to generate the policy for a route-server running on a 32bit ASN, a prompt asks the operator which 16bit placeholder ASN should be used to setup the BGP communities. So far, the fixed value 65534 was used.

See also GitHub issue 88 [https://github.com/pierky/arouteserver/issues/88].

	Improvement (OpenBGPD): use as-set to configure the list of “never via route server” ASNs.

This change reduces the size of the configuration and hopefully makes the filter processing faster.

See also GitHub issue 90 [https://github.com/pierky/arouteserver/issues/90].

	Fix: when the route-server ASN was a 32bit value, the Euro-IX Large BGP Communities [https://www.euro-ix.net/en/forixps/large-bgp-communities/] automatically configured via configure were using the 16bit placeholder ASN.

When the configure command was used to build the genera.yml policy for route-servers running on 32bit ASNs, the Large BGP Communities used to map route reject causes to Euro-IX codes were using the 16bit placeholder ASN instead of the actual route-server’s 32bit ASN.

1.11.1

	Fix: better error handling for clients configured with no IP address.

When a client was mistakenly configured with no IP addresses, the program raised an unhandled exception, instead of providing a good feedback to the user.

See also GitHub issue 87 [https://github.com/pierky/arouteserver/issues/87].

1.11.0

	New: add support for OpenBGPD 7.2 [https://marc.info/?l=openbsd-announce&m=163239274430211&w=2], also added to the integration testing suite (portable edition only).

	Improvement: better handling of IRRd query failures.

Multiple hosts can now be configured as servers used for the IRR queries performed via bgpq3/bgpq4. In case of timeout or failure, the next host in the list is used.
A timeout of 2 minutes is used by default. These settings can be modified in the arouteserver.yml file.

See also GitHub issue 85 [https://github.com/pierky/arouteserver/issues/85].

1.10.1

	Fix: the HTML representation of RPKI validation custom communities was broken.

After adding custom RPKI validation communities implemented as part of v1.10.0 the route server configuration textual representation file hada small cosmetic problem.

See also GitHub issue 83 [https://github.com/pierky/arouteserver/issues/83].

1.10.0

	New: add support for custom BGP communities to track rejected routes.

A new section of the general.yml file (reject_cause_map) allows to configure custom BGP communities for each reject reason (the list can be found on the Reject reasons [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-reasons] paragraph of on the doc site).

When this is implemented along with reject_policy set to tag or tag_and_reject, ad-hoc custom BGP communities can be used to describe why a route was rejected by the route server.

	New: add support for custom BGP communities to internally track the outcome of BGP Origin Validation (or the lack of it).

3 new BGP communities are introduced to track the outcome of BGP Origin Validation (if enabled): rpki_bgp_origin_validation_valid, rpki_bgp_origin_validation_unknown and rpki_bgp_origin_validation_invalid. These communities can be used to classify routes depending on the their validation state using custom values, in addition to RFC8097 communities [https://datatracker.ietf.org/doc/html/rfc8097]. They are not announced to clients, but rather they are meant to be used only internally within the route server, just to make it easier the integration with external tools, like looking glasses.

An additional fourth BGP community is also introduced, to classify routes for which BGP Origin Validation has not been performed: rpki_bgp_origin_validation_not_performed. When configured, this community is added when BOV is not enabled, or when it is not performed for some specific reasons (only blackhole route processing at the moment). Contrary to the 3 previous ones, this community is announced to the clients.

See also GitHub issue 78 [https://github.com/pierky/arouteserver/issues/78].

	New: Euro-IX Large BGP Communities are included into the policy generated by the configure command.

This feature leverages the new reject_cause_map option commented above.

The general.yml file generated by the configure command now includes a mapping between internal reject codes and the communities proposed in the Euro-IX Large BGP Community standard [https://www.euro-ix.net/en/forixps/large-bgp-communities/] document.

Please note: to make the policies generated by configure consistent between BIRD and OpenBGPD, the reject_policy option for the latter is now set to tag (so rejected routes are kept in OpenBGPD but are still not advertised to the route server clients).

In addition to this, some of the BGP communities set by the configure command have been changed in order to match those suggested in the Euro-IX document above.

	New: check-config command, to verify configuration files (general.yml and clients.yml).

This command can be used to verify that the content of the two main configuration files is valid, without building the configurations.

See also GitHub PR 82 [https://github.com/pierky/arouteserver/pull/82] and issue 79 [https://github.com/pierky/arouteserver/issues/79].

	Improvement (OpenBGPD): informational extended BGP communities are now scrubbed from outbound routes.

Certain informational extended BGP communities that need dynamic values (like the one used to track the reject code of a route that is discarded when reject_policy is set to tag) were not scrubbed from outbound routes, because of lack of wildcard matching in OpenBGPD. Since this feature was recently added to the BGP speaker, they are now removed.

	Fix (OpenBGPD): make behaviour of rpki_bgp_origin_validation.reject_invalid consistent with BIRD.

Contrary to what reject_invalid: False might seem doing, the actual behaviour it is designed for is to still prevent the propagation of INVALID routes when RPKI BOV is enabled. When it’s set to True (the default value) the BGP daemons are configured to immediately drop INVALID routes in the inbound filters; when it’s set to False those routes are accepted but not propagated to clients, they are blocked in the outbound filters: basically they are just kept internally within the route server to allow analysis and troubleshooting.

While the BIRD implementation of reject_invalid: False was working fine, a bug was found in the OpenBGPD one that prevented those routes from being blocked in the outbound direction, letting them to be propagated to clients.

1.9.0

	New: Add support for OpenBGPD 7.1 [https://marc.info/?l=openbgpd-users&m=162461267419135&w=2], also added to the integration testing suite (portable edition only).

	Improvement: provide hint on how to change URL for external IRR DB data sources.

See also GitHub issue 77 [https://github.com/pierky/arouteserver/issues/77].

	Fix (OpenBGPD only): RFC8097 communities [https://datatracker.ietf.org/doc/html/rfc8097] were not added after BGP Origin Validation.

The BGP Prefix Origin Validation State Extended Communities were not added when RPKI OV was performed. INVALID routes were still dropped when the route server was configured to do so (those routes are internally marked using locally-meaningful communities).

	Improvement: RPKI ROAs files are checked for stale data.

The JSON files fetched from validating caches are now checked to detect stale data (rpki-client and OctoRPKI formats include this information) and they are ignored if the data they contain is no longer valid. In this case, the next URL in the rpki_roas.ripe_rpki_validator_url list is used.

By default, files whose content is older than 21600 seconds (6 hours) are ignored; it’s possible to change this option via the newly introduced rpki_roas.ignore_cache_files_older_than setting.

Where available (rpki-client format only at this time), also the VRP expiration time [https://github.com/openbsd/src/commit/a66158d7f8cdffc32bf2f8aa5d8bbed1f08a3a3d#diff-b2e9c61c4c7cfd2d5a0cde6066efe9a7c18dd1bdf06b1e473abc054261ea315c] is checked.

As a consequence of this, the default ARouteServer cache expiration time for RPKI ROAs JSON files has been reduced to 60 minutes, to avoid caching ROAs that would turn out being expired at the next use of their cached copy.

	Improvement: new order for the default URLs of the RPKI JSON files.

Since the RIPE NCC RPKI Validator is now in EoL [https://labs.ripe.net/author/nathalie_nathalie/lifecycle-of-the-ripe-ncc-rpki-validator/], the URL of the JSON file that points to rpki-validator.ripe.net has been moved as the last resort option for rpki_roas.ripe_rpki_validator_url.
The one exposed in the rpki-client dashboard [https://console.rpki-client.org/] has been added.

Please note: this change only affects the default configuration file that ships with ARouteServer and is not be automatically reflected in existing configurations that route-servers operators are already using. If you wish this setup to be reflected in your configuration, please update your general.yml file accordingly.

1.8.0

	Improvement: add the logging option to --use-local-files argument, to allow customization of logging settings.

Details on the documentation: Logging configuration of the BGP daemon [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#logging-configuration-of-the-bgp-daemon].

See also GitHub issue 75 [https://github.com/pierky/arouteserver/issues/75].

1.7.0

	New: Add support for OpenBGPD 7.0 [https://marc.info/?l=openbgpd-users&m=162282647904441&w=2], also added to the integration testing suite (portable edition only).

Please note: starting with this release, since the default target version for OpenBGPD is 7.0, path-hiding mitigation will be enabled by default by the configure command. This option can be modified in the general.yml file.

1.6.0

Starting with this release, the default target version for OpenBGPD will be the latest stable (6.9 in this case). Use the --target-version CLI option if you want to build your configurations for a previous release of OpenBGPD.

	New: Add support for OpenBGPD/OpenBSD 6.9 and OpenBGPD Portable 6.9p0, also added to the integration testing suite.

	New (OpenBGPD): add support for RTR sessions starting with version 6.9.

Please note the following issues with OpenBGPD 6.9 if you want to enable RTR sessions; you might want to apply the available patches:

	Invalid argument error and RTR session not coming up (issue #23 on GitHub [https://github.com/openbgpd-portable/openbgpd-portable/issues/23] and “bgpd, fix RTR connect” [https://marc.info/?l=openbsd-tech&m=162004696829635&w=2] post on openbsd-tech)

	non blocking connect() call for RTR session establishment (“bgpd behaviour when RTR endpoint is not available” [https://marc.info/?l=openbgpd-users&m=161997334304946&w=2] post on openbgpd-users and “bgpd, non-blocking rtr connect” [https://marc.info/?l=openbsd-tech&m=162005636502085&w=2] post on openbsd-tech)

	New (OpenBGPD): enable support for path-hiding mitigation.

Even though OpenBGPD supports path-hiding mitigation starting with version 6.9, the feature is not automatically enabled by the configure command because of some issues that might impair the stability of the routing ecosystem:

	withdrawal of 2nd best route with rde evaluate all (issue #21 on GitHub [https://github.com/openbgpd-portable/openbgpd-portable/issues/21] and “bgpd fix for rde evaluate all” [https://marc.info/?l=openbsd-tech&m=162011500326166&w=2] post on openbsd-tech)

	advertisement of 2nd best routes on reload with rde evaluate all (issue #21 on GitHub [https://github.com/openbgpd-portable/openbgpd-portable/issues/21] and “bgpd better reload behaviour” [https://marc.info/?l=openbsd-tech&m=162021735205669&w=2] post on openbsd-tech)

Please apply the existing patches before enabling it on a production environment, and acknowledge the error produced by ARouteServer using the --ignore-issues path_hiding_69 CLI option.

	Improvement: the default list of “transit free” [https://arouteserver.readthedocs.io/en/latest/GENERAL.html#transit-free-networks-transit-free] ASNs has been updated and some networks have been removed.

See also GitHub PR73 [https://github.com/pierky/arouteserver/pull/73].

v1.5.1

	Improvement (Docker image): generate HTML representation of the route server configuration through the Docker image.

See also GitHub PR70 [https://github.com/pierky/arouteserver/pull/70] and issue 69 [https://github.com/pierky/arouteserver/issues/69].

	Fix (Docker image): make RS_ASN, ROUTER_ID and LOCAL_PREFIXES environment variables not required when a custom general.yml file is used.

See also GitHub PR68 [https://github.com/pierky/arouteserver/pull/68].

	Fix: the “Reject reasons” table in the HTML representation was rendered improperly.

See also GitHub issue 71 [https://github.com/pierky/arouteserver/issues/71].

v1.5.0

	New: Add support for BIRD 2.0.8 [https://www.mail-archive.com/bird-users@network.cz/msg05937.html] (also included into the integration testing suite).

v1.4.0

	New: Docker image to easily build route-server configurations.

For more details, see the docker directory [https://github.com/pierky/arouteserver/tree/master/docker].

	Improvement: change the default value of bgpq3_path to bgpq4.

The bgpq4 tool is now referenced as the default one in the bgpq3_path configuration line of arouteserver.yml.

Please note: operators who are using the tool and who left the bgpq3_path configuration line unset will now need to either explicitly configure that line to point to their bgpq3 binary or to make sure bgpq4 is available on their system.

	Fix: the ixf-member-export command now produces a JSON file compliant with version 1.0 [https://github.com/euro-ix/json-schemas/blob/master/versions/ixp-member-list-1.0.schema.json] of the Euro-IX schema [https://github.com/euro-ix/json-schemas].

See also GitHub PR65 [https://github.com/pierky/arouteserver/pull/65].

v1.3.0

	New: irr-as-set command, to build the route server AS-SET object for IRR databases.

This new command can be used to build the AS-SET RPSL object that describes the ASes and AS-SETs of route server clients. Details and usage: https://arouteserver.readthedocs.io/en/latest/USAGE.html#irr-as-set

Related: issue #49 on GitHub [https://github.com/pierky/arouteserver/issues/49].

v1.2.0

	Improvement (BIRD only): tag_and_reject is now the default reject policy set by the configure command.

When the configure command is initially used to setup ARouteServer and to generate the general.yml file, the reject policy [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy-and-invalid-routes-tracking] that it configures is tag_and_reject if BIRD is specified as the route server daemon.

	Fix: setup-templates was not generating the correct backup of customized templates.

The bug only affected the upgrade procedure of deployments where the Jinja2 templates were locally customized. More details on the comments of commit 2ea6df69106d473f9f4170c65f929bab4a0d7676 [https://github.com/pierky/arouteserver/commit/2ea6df69106d473f9f4170c65f929bab4a0d7676].

v1.1.0

	Improvement: multihop support.

For BIRD, this option can be configured only when path-hiding mitigation is turned off.

More details on GitHub PR61 [https://github.com/pierky/arouteserver/pull/61].

	Improvement (BIRD only): allow count_rejected_routes: True in BIRD 2.0.7 when the patch is used.

A patch for BIRD 2.0.7 [https://www.mail-archive.com/bird-users@network.cz/msg05638.html] was released to address the bug that leads the daemon to crash when a configuration is built using count_rejected_routes: True. This release adds a new locally meaningful fictitious version of BIRD that can be used to overcome the limitation enforced in ARouteServer 1.0.1, by signalling to the tool the usage of a patched version of BIRD (--target-version 2.0.7+b962967e).

See the notes for the 1.0.1 release for more details.

	New: Add support for OpenBGPD/OpenBSD 6.8 and OpenBGPD Portable 6.8p1, also added to the integration testing suite.

v1.0.1

	Fix (BIRD only): change default behaviour to count rejected routes towards the max-prefix limit threshold.

So far, routes received by the route server and rejected as a result of ingress filtering were not counted towards the max-prefix limit threshold; this release changes the default behaviour in a way that they are now taken into account.

Example: a peer is configured with max-prefix limit 10 and action ‘shutdown’. It announces 15 routes, 5 of which are rejected due to inbound filters.
BIRD route servers configured using previous releases will not perform any action on that peer, while a configuration generated with this release will lead to the shutdown of the BGP session with that peer.

In case the previous implementation of the max-prefix limit is the desired one, it can be restored by setting the new configuration statement that has been introduced with this release, count_rejected_routes, to False. More details in the general.yml file [https://github.com/pierky/arouteserver/blob/master/config.d/general.yml].

BIRD 2.0.7 users, please note: if you are using ARouteServer to configure route servers which are based on BIRD 2.0.7, you’ll get an error message at configuration build time. This is due to the fact that in BIRD 2.0.7 there is a bug [https://www.mail-archive.com/bird-users@network.cz/msg05597.html] that affects configurations generated using the statement that implements the new default behaviour for max-prefix limit handling. The error message will show you the options to unblock the config generation, but in any case it will not be possible to implement this new way of handling the max-prefix limit.

v1.0.0

	No changes, just make it “stable”!

v0.26.0

	New: Add support for OpenBGPD/OpenBSD 6.7 and OpenBGPD Portable 6.7p0, also added to the integration testing suite.

v0.25.1

	Fix: BIRD, use bgp_path.last since it’s consistent with RFC 6907 7.1.9-11 <https://tools.ietf.org/html/rfc6907#section-7.1.9> (RPKI BOV of routes whose AS_PATH ends with an AS_SET).

More info: https://www.mail-archive.com/bird-users@network.cz/msg05152.html

Related: PR #56 on GitHub [https://github.com/pierky/arouteserver/pull/56].

v0.25.0

	New feature: tag_and_reject reject policy for BIRD.

Invalid routes can be tagged with informational BGP communities and then discarded by BIRD.
With this option, alice-lg reject reasons are supported nicely, whilst keeping show routes all filtered working to keep birdwatcher happy.

Related: PR #57 on GitHub [https://github.com/pierky/arouteserver/pull/57].

	Improvement: clients-from-euroix command, option --merge-from-custom-file to customise the list of clients generated from an Euro-IX JSON file.

More details on how to use this option can be found running arouteserver clients-from-euroix --help-merge-from-custom-file.

v0.24.1

	Improvement: add support for bgpq4 [https://github.com/bgp/bgpq4].

At least version 0.0.5 is required.

Related: PR #53 on GitHub [https://github.com/pierky/arouteserver/pull/53].

	Fix: clients-from-euroix command, route server detection on Euro-IX schema versions 0.7 and 1.0.

In version 0.7 and 1.0 of the Euro-IX member list JSON file [https://github.com/euro-ix/json-schemas] the way the route server information are exported changed. The clients-from-euroix command was no longer able to filter out the IP addresses that represent the route server of the same IXP for which the members are processed, basically generating a client entry for the same route server being configured.

v0.24.0

	New feature: never via route-servers ASNs filtering.

To drop routes containing an ASN which is classified as “never via route-servers” on PeeringDB (info_never_via_route_servers attribute [https://github.com/peeringdb/peeringdb/issues/394]).

Please note: this feature is enabled by default.

Related: issue #55 on GitHub [https://github.com/pierky/arouteserver/issues/55].

	Improvement: add alice-lg/birdwatcher [https://github.com/alice-lg/birdwatcher] support to BIRD configs.

Changes the default BIRD time format to support alice-lg/birdwatcher [https://github.com/alice-lg/birdwatcher] out of the box.

	Improvement: include a table with the reject codes in the HTML output.

Related: issue #54 on GitHub [https://github.com/pierky/arouteserver/issues/54].

v0.23.0

	New: add support for BIRD v2.

Please note: BIRD v2 support is in early stages. Before moving any production platform to instances of BIRD v2 configured with this tool, please review the configurations carefully and run some simulations.

	New: OpenBGPD/OpenBSD 6.6, OpenBGPD Portable 6.6p0 and BIRD 1.6.8 added to the integration testing suite.

v0.22.2

	Fix: prevent environment variables with unknown escapes (like u) from interrupting the execution.

Related: issue #50 on GitHub [https://github.com/pierky/arouteserver/issues/50].

v0.22.1

	Fix: handle more formats for ROAs exported from the public instances of RIPE and NTT validators.

A new way of representing ASNs (without the “AS” prefix) and new TA names which were not matched by the default values of rpki_roas.allowed_trust_anchors prevented ROAs from being imported and correctly processed when the default settings were used.

v0.22.0

This is the last release of ARouteServer for which Python 2.7 compatibility is guaranteed. From the next release, any new feature will not be tested against that version of Python.

	New: OpenBGPD Portable <https://github.com/openbgpd-portable/openbgpd-portable> (release 6.5p1) also supported.

Release 6.5p1 of OpenBGPD Portable edition passed the integration testing suite.

	New: add support for OpenBGPD/OpenBSD 6.5 enhancements.

Support for matching multiple communities at the same time allows to create more readable configurations.

	Improvement: OpenBGPD, some filters refinement.

Avoid checking AS0 in AS_PATH since 6.4.
No needs to check routes of an address family different than the one used for the session.

As announced with release 0.20.0, OpenBGPD/OpenBSD 6.2 is no longer tested. Also OpenBGPD/OpenBSD 6.3 tests have been decommissioned.
Starting with this release, tests will be executed only against the 2 most recent releases of OpenBGPD/OpenBSD and against the last release of the supported major versions of BIRD.
The implementation of new features may break compatibility of the configurations built for unsupported releases.

v0.21.1

	Deprecation: SAVVIS IRR removed from the list of default sources used by bgpq3.

	Fix (minor): truncate the max length of AS-SET names to 64 characters.

BIRD supports only names no longer than 64 characters.

Related: issue #47 on GitHub [https://github.com/pierky/arouteserver/issues/47].

v0.21.0

	Improvement: when ripe-rpki-validator-cache is set as the source of ROAs, multiple URLs can now be specified to fetch data from.

URLs will be tried in the same order as they are configured; if the attempt to download ROAs from the first URL fails, the second URL will be tried, an so on.

By default, the RIPE NCC public instance [https://rpki-validator.ripe.net/] of the RIPE RPKI Validator will be tried first, then the NTT instance [https://rpki.gin.ntt.net/]. The list of URLs can be set in the general.yml configuration file, roas.ripe_rpki_validator_url option.

v0.20.0

This is the last release of ARouteServer for which OpenBGPD/OpenBSD 6.1 and 6.2 CI tests are ran. From the next release, any new feature will not be tested against these versions of OpenBGPD. Users are encouraged to move to newer releases.

	New: add support for OpenBGPD/OpenBSD 6.4 enhancements [https://ripe77.ripe.net/presentations/143-openbsd-status.pdf].

Use new sets for prefixes, ASNum, and origins (prefix + source-as), and also RPKI ROA sets.

	Improvement: OpenBGPD, reduce the number of rules by combining some into the same rule.

	Improvement: route server policies definition files built using the configure command now have RPKI BGP Origin Validation and “use-ROAs-as-route-objects” enabled by default.

As announced with release 0.19.0, OpenBGPD/OpenBSD 6.0 is no longer tested.
The implementation of new features may break compatibility of the configurations built for unsupported releases.

Most of this release is based on the work made by Claudio Jeker [https://github.com/cjeker].

v0.19.1

	Fix (BIRD configuration only): change bgp_path.last with bgp_path.last_nonaggregated.

When a route is originated from the aggregation of two different routes using the AS_SET, bgp_path.last always returns 0, so the origin ASN validation against IRR always fails.

Related: issue #34 on GitHub [https://github.com/pierky/arouteserver/issues/34].

v0.19.0

This is the last release of ARouteServer for which OpenBGPD/OpenBSD 6.0 CI tests are ran. Starting with the next release, any new feature will not be tested against version 6.0 of OpenBGPD. Users are encouraged to move to newer releases.

	New: use NIC.BR Whois data from Registro.br to enrich the dataset used for route validation.

Details: RIPE76, Practical Data Sources For BGP Routing Security [https://ripe76.ripe.net/presentations/43-RIPE76_IRR101_Job_Snijders.pdf].

Related: issue #28 on GitHub [https://github.com/pierky/arouteserver/issues/28].

	New: introduce support for OpenBGPD/OpenBSD 6.4.

OpenBSD 6.4 is not released yet, this is just in preparation of it.

Related: issue #31 on GitHub [https://github.com/pierky/arouteserver/issues/31].

	Fix (minor): RIPE NCC RPKI Validator v3 expects Accept: text/json as HTTP header.

Related: PR #29 on GitHub [https://github.com/pierky/arouteserver/issues/29].

v0.18.0

	New: add support for BIRD 1.6.4 and OpenBGPD/OpenBSD 6.3.

This release breaks backward compatibility (OpenBGPD configs only): the default target version used to build OpenBGPD configurations (when the --target-version argument is not given) is now 6.2; previously it was 6.0. Use the --target-version 6.0 command line argument to build 6.0 compatible configurations.

	Improvement: transit-free ASNs filters are applied also to sessions toward transit-free peers.

Related: issue #21 on GitHub [https://github.com/pierky/arouteserver/issues/21].

	Fix (minor): better handling of user answers in configure and setup commands.

	Fix: clients-from-peeringdb, list of IXPs retrieved from PeeringDB and no longer from IXFDB.

v0.17.3

	Fix: clients-from-euroix command, use the configured cache directory.

v0.17.2

	Fix: configure command, omit extended communities for OpenBGPD configurations.

This is to avoid the need of using the --ignore-issues extended_communities command line argument.

	Improvement: environment variables expansion when YAML configuration files are read.

v0.17.1

	Fix: minor installation issues.

v0.17.0

	New feature: allow to set the source of IRR objects.

AS-SETs can be prepended with an optional source: RIPE::AS-FOO, RIPE::AS64496:AS-FOO.

	New feature: support for RPKI-based Origin Validation added to OpenBGPD configurations.

RPKI ROAs must be loaded from a RIPE RPKI Validator cache file (local or via HTTP).
Mostly inspired by Job Snijders’ tool https://github.com/job/rtrsub

	Improvement: RPKI ROAs can be loaded from a local file too.

The file must be in RIPE RPKI Validator cache format.

	Fix (minor): remove internal communities before accepting blackhole routes tagged with a custom blackhole community.

This bug did not affect routes tagged with the BLACKHOLE community; anyway, the internal communities were scrubbed before routes were announced to clients.

v0.16.2

	Fix: avoid empty lists of prefixes when a client’s white_list_pref contains only prefixes for an IP version different from the current one.

v0.16.1

	Fix: handle the new version of the JSON schema built by arin-whois-bulk-parser [https://github.com/NLNOG/arin-whois-bulk-parser].

v0.16.0

	Improvement: OpenBGPD, more flexibility for inbound communities values.

This allows to use inbound ‘peer_as’ communities which overlap with other inbound communities whose last part is a private ASN.

	New feature: use ARIN Whois database dump to authorize routes.

This feature allows to accept those routes whose origin ASN is authorized by a client AS-SET, whose prefix has not a corresponding route object but is covered by an ARIN Whois record for the same origin ASN.

	Improvement: extend the use of RPKI ROAs as route objects and ARIN Whois database dump to tag_as_set-only mode.

Before of this, the RPKI ROAs as route objects and ARIN Whois DB dump features were used only when origin AS and prefix enforcing was set.
Starting with this release they are used even when enforcing is not configured and only the tag_as_set mode is used.

v0.15.0

	New feature: configure and show_config support commands.

	configure: it can be used to quickly generate a route server policy definition file (general.yml) on the basis of best practices and suggestions.

	show_config: to display current configuration settings and also options that have been left to their default values.

	New feature: ixf-member-export command, to build IX-F Member Export JSON files [https://github.com/euro-ix/json-schemas] from the list of clients.

	Improvement: cache expiry time values can be set for each external resource type: PeeringDB info, IRR data, …

v0.14.1

	Fix: BIRD, “Unknown instruction 8574 in same (~)” error when reloading IPv6 configurations.

A missing case [http://bird.network.cz/pipermail/bird-users/2017-January/010880.html] for the !~ operator triggers this bug when neighbors are established and trying to reload bird6 configuration.

Related: issue #20 on GitHub [https://github.com/pierky/arouteserver/issues/20].

v0.14.0

This release breaks backward compatibility (OpenBGPD configs only): for OpenBGPD configurations, starting with this release the Site of Origin Extended BGP communities in the range 65535:* (soo 65535:*) are reserved for internal reasons.

	New feature: use RPKI ROAs as if they were route objects.

This feature allows to accept those routes whose origin ASN is authorized by a client AS-SET, whose prefix is not but it is covered by a RPKI ROA for the same origin ASN.

Related: issue #19 on GitHub [https://github.com/pierky/arouteserver/issues/19].

	New feature: automatic checking for new releases.

This can be disabled by setting check_new_release to False in arouteserver.yml.

	Improvement: routes accepted solely because of a white_list_route entry are now tagged with the route_validated_via_white_list BGP community.

	Fix: on OpenBGPD configurations, in case of duplicate definition of a client’s AS-SETs, duplicate BGP informational communities were added after the IRR validation process.

v0.13.0

	New feature: an option to set RFC1997 well-known communities (NO_EXPORT/NO_ADVERTISE) handling policy: pass-through or strict RFC1997 behaviour.

This breaks backward compatibility: previously, NO_EXPORT/NO_ADVERTISE communities were treated accordingly to the default implementation of the BGP speaker daemon (BIRD, OpenBGPD). Now, ARouteServer’s default setting is to treat routes tagged with those communities transparently, that is to announce them to other clients and to pass-through the original RFC1997 communities.

	Improvement: when using PeeringDB records to configure the max-prefix limits, a margin is took into account to accomodate networks that fill the PeeringDB records with their exact route announcement count.

This breaks backward compatibility: if using max-prefix from PeeringDB, current limits will be raised by the default increment values (+100, +15%): this behaviour can be reverted to the pre-v0.13.0 situation by explicitly setting the max_prefix.peering_db.increment configuration section to 0/0.

Related: issue #12 on GitHub [https://github.com/pierky/arouteserver/issues/12].

	New feature: client-level white lists for IRRdb-based filters.

This allows to manually enter routes that must always be accepted by IRRdb-level checks and prefixes and ASNs that must be treated as if they were included within client’s AS-SETs.

Related: issue #16 on GitHub [https://github.com/pierky/arouteserver/issues/16].

v0.12.3

	Improvement: always take the AS*n* macro into account when building IRRdb-based filters.

Related: issue #15 on GitHub [https://github.com/pierky/arouteserver/issues/15].

v0.12.2

	Fix: an issue on OpenBGPD builder class was preventing features offered via large BGP communities only from being actually implemented into the final configuration.

Related: issue #11 on GitHub [https://github.com/pierky/arouteserver/issues/11].

v0.12.1

	Fix an issue that was impacting templates upgrading under certain circumstances.

Related: issue #10 on GitHub [https://github.com/pierky/arouteserver/issues/10].

v0.12.0

	OpenBGPD 6.2 support.

	New feature: Graceful BGP session shutdown [https://tools.ietf.org/html/draft-ietf-grow-bgp-gshut-11] support, to honor GRACEFUL_SHUTDOWN communities received from clients and also to perform graceful shutdown of the route server itself (--perform-graceful-shutdown command line argument [https://arouteserver.readthedocs.io/en/latest/USAGE.html#perform-graceful-shutdown]).

v0.11.0

	Python 3.4 support.

	Improvement: GT registry removed from the sources used to gather info from IRRDB.

Related: PR #8 on GitHub [https://github.com/pierky/arouteserver/pull/8].

	Improvement: multiple AS-SETs used for the same client are now grouped together and queried at one time.
This allows to leverage bgpq3’s ability and speed to aggregate results in order to have smaller configuration files.

v0.10.0

	New feature: when IRRDB-based filters are enabled and no AS-SETs are configured for a client, if the cfg.filtering.irrdb.peering_db option is set ARouteServer tries to fetch their values from the client’s ASN record on PeeringDB.

Related: issue #7 on GitHub [https://github.com/pierky/arouteserver/issues/7].

	Improvement: config building process performances,

	reduced memory consumption by moving IRRDB information from memory to temporary files;

	responses for empty/missing resources are also cached;

	fix a wrong behaviour that led to multiple PeeringDB requests for the same ASN.

	Improvement: clients-from-euroix command, the new --merge-from-peeringdb option can be used to integrate missing information into the output clients list by fetching AS-SETs and max-prefix limit from PeeringDB.

v0.9.3

	Fix: OpenBGPD, an issue was causing values > 65535 to be used in standard BGP communities matching.

v0.9.2

	Fix: remove quotes from clients description.

	Fix: OpenBGPD, syntax error for prefix lists with ‘range X - X’ format.

	Fix: clients-from-euroix command, members with multiple vlan objects with the same vlan_id were not properly listed in the output, only the first object was used.

v0.9.1

	Improvement: BIRD, new default debug options (states, routes, filters, interfaces, events, was all).

If needed, they can be overwritten using the header custom .local file [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#site-specific-custom-config].

	Fix: enrichers errors handling reported a generic message with no further details.

	Fix: HTTP 404 error handling for “Entity not found” error from PeeringDB.

	Fix: OpenBGPD, large prefix lists were causing a “string too long” error.

	Fix: OpenBGPD, clients descriptions longer than 31 characters were not properly truncated.

v0.9.0

	New feature: RTT-based communities to control propagation of routes on the basis of peers round trip time.

	Improvement: in conjunction with the “tag” reject policy, the rejected_route_announced_by BGP community can be used to track the ASN of the client that announced an invalid route to the server.

	Fix: when the “tag” reject policy is used, verify that the reject_cause BGP community is also set.

v0.8.1

	Fix: default user configuration path not working.

v0.8.0

	New feature: reject policy [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy] configuration option, to control how invalid routes must be treated: immediately discarded or kept for troubleshooting purposes, analysis or statistic reporting.

	New tool: invalid routes reporter [https://arouteserver.readthedocs.io/en/latest/TOOLS.html].

	Fix: the following networks have been removed from the bogons.yml file: 193.239.116.0/22, 80.249.208.0/21, 164.138.24.80/29.

v0.7.0

	New feature: custom BGP communities [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#custom-bgp-communities] can be configured on a client-by-client basis to tag routes entering the route server (for example, for informative purposes).

	Fix: validation of BGP communities configuration for OpenBGPD.

Error is given if a peer-AS-specific BGP community overlaps with another community, even if the last part of the latter is a private/reserved ASN.

	Improvement: the custom !include <filepath> statement can be used now in YAML configuration files to include other files.

More details here [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#yaml-files-inclusion].

	Improvement: IRRDB-based filters can be configured to allow more specific prefixes (allow_longer_prefixes option).

v0.6.0

	OpenBGPD 6.1 support: enable large BGP communities support.

	Improvement: the clients-from-peeringdb command now uses the IX-F database [http://www.ix-f.net/ixp-database.html] to show a list of IXP and their PeeringDB ID.

	Improvement: enable NEXT_HOP rewriting for IPv6 blackhole filtering requests on OpenBGPD after OpenBSD 6.1 fixup [https://github.com/openbsd/src/commit/f1385c8f4f9b9e193ff65d9f2039862d3e230a45].

Related: issue #3 [https://github.com/pierky/arouteserver/issues/3].

	Improvement: BIRD, client-level .local file [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#site-specific-custom-config].

	Improvement: next-hop checks, the authorized_addresses option allows to authorize IP addresses of non-client routers for NEXT_HOP attribute of routes received from a client.

v0.5.0

	Fix: avoid the use of standard communities in the range 65535:x.

	Improvement: option to set max-prefix restart timer for OpenBGPD.

	Deleted feature: tagging of routes a’ la RPKI-Light has been removed.

	The reject_invalid flag, that previously was on general scope only, now can be set on a client-by-client basis.

	The roa_valid, roa_invalid, and roa_unknown communities no longer exist.

Related: issue #4 on GitHub [https://github.com/pierky/arouteserver/issues/4]

This breaks backward compatibility.

	New feature: BIRD hooks [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#bird-hooks] to add site-specific custom implementations.

	Improvement: BIRD local files [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#site-specific-custom-config].

This breaks backward compatibility: previously, *.local, *.local4 and *.local6 files that were found in the same directory where the BIRD configuration was stored were automatically included. Now, only the header([4|6]).local and footer([4|6]).local files are included, depending on the values passed to the --use-local-files command line argument.

	Improvement: setup command and program’s configuration file.

The default path of the cache directory (cache_dir option) has changed: it was /var/lib/arouteserver and now it is cache, that is a directory which is relative to the cfg_dir option (by default, the directory where the program’s configuration file is stored).

v0.4.0

	OpenBGPD support (some limitations [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#caveats-and-limitations] apply).

	Add MD5 password support on clients configuration.

	The build command used to generate route server configurations has been removed in favor of BGP-speaker-specific sub-commands: bird and openbgpd.

v0.3.0

	New --test-only flag for builder commands.

	New --clients-from-euroix command [https://arouteserver.readthedocs.io/en/latest/USAGE.html#create-clients-yml-file-from-euro-ix-member-list-json-file] to build the clients.yml file on the basis of records from an Euro-IX member list JSON file [https://github.com/euro-ix/json-schemas].

This also allows the integration [https://arouteserver.readthedocs.io/en/latest/USAGE.html#ixp-manager-integration] with IXP-Manager [https://github.com/inex/IXP-Manager].

	New BGP communities: add NO_EXPORT and/or NO_ADVERTISE to any client or to specific peers.

	New option (set by default) to automatically add the NO_EXPORT community to blackhole filtering announcements.

v0.2.0

	setup-templates command to just sync local templates with those distributed within a new release.

	Multithreading support for tasks that acquire data from external sources (IRRDB info, PeeringDB max-prefix).

Can be set using the threads option in the arouteserver.yml configuration file.

	New template-context command, useful to dump the list of context variables and data that can be used inside a template.

	New empty AS-SETs handling: if an AS-SET is empty, no errors are given but only a warning is logged and the configuration building process goes on.

Any client with IRRDB enforcing enabled and whose AS-SET is empty will have its routes rejected by the route server.

v0.1.2

	Fix local files usage among IPv4/IPv6 processes.

Before of this release, only .local files were included into the route server configuration, for both the IPv4 and IPv6 configurations.
After this, .local files continue to be used for both the address families but .local4 and .local6 files can also be used to include IP version specific options, depending on the IP version used to build the configuration. Details here [https://arouteserver.readthedocs.io/en/latest/CONFIG.html#site-specific-custom-configuration-files].

To upgrade:

pull from GitHub master branch or use pip:
pip install --upgrade arouteserver

install the new template files into local system
arouteserver setup

v0.1.1

	Add local static files into the route server’s configuration.

v0.1.0

	First beta version.

v0.1.0a11

	The filtering.rpsl section of general and clients configuration files has been renamed into filtering.irrdb.

	The command line argument --template-dir has been renamed into --templates-dir.

	New options in the program’s configuration file: bgpq3_host and bgpq3_sources, used to set bgpq3 -h and -S arguments when gathering info from IRRDBs.

v0.1.0a10

	New command to build textual representations of configurations: html.

v0.1.0a9

	New command to initialize a custom live test scenario: init-scenario.

v0.1.0a8

	New feature: selective path prepending via BGP communities.

	The control_communities general option has been removed: it was redundant.

v0.1.0a7

	Improved communities configuration and handling.

	Fix issue on standard communities matching against 32-bit ASNs.

	Fix issue on IPv6 prefix validation.

v0.1.0a6

	New feature: RPKI-based filtering/tagging.

v0.1.0a5

	New feature: transit-free ASNs filtering.

	Program command line: subcommands + clients-from-peeringdb.

	More logging and some warning.

v0.1.0a4

	Fix issue with GTSM default value.

	Add default route to bogons.

	Better as-sets handling and cache handling.

	Config syntax change: clients ‘as’ -> ‘asn’.

	AS-SETs at AS-level.

	Live tests: path hiding mitigation scenario.

	Improvements in templates.

v0.1.0a3

	Fix some cache issues.

v0.1.0a2

	Packaging.

	System setup via arouteserver --setup.

v0.1.0a1

First push on GitHub.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pierky	

 	
 	
 pierky.arouteserver.tests.live_tests.base	

 	
 	
 pierky.arouteserver.tests.live_tests.bird	

 	
 	
 pierky.arouteserver.tests.live_tests.instances	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (pierky.arouteserver.builder.ConfigBuilder method)

A

 	
 	as_path (pierky.arouteserver.tests.live_tests.instances.Route attribute)

 	
 	AVAILABLE_VERSION (pierky.arouteserver.builder.BIRDConfigBuilder attribute)

 	(pierky.arouteserver.builder.OpenBGPDConfigBuilder attribute)

B

 	
 	bgp_session_is_up() (pierky.arouteserver.tests.live_tests.instances.BGPSpeakerInstance method)

 	BGPSpeakerInstance (class in pierky.arouteserver.tests.live_tests.instances)

 	BIRD2Instance (class in pierky.arouteserver.tests.live_tests.bird)

 	BIRD3Instance (class in pierky.arouteserver.tests.live_tests.bird)

 	BIRDConfigBuilder (class in pierky.arouteserver.builder)

 	
 	BIRDInstance (class in pierky.arouteserver.tests.live_tests.bird)

 	BIRDInstanceIPv4 (class in pierky.arouteserver.tests.live_tests.bird)

 	BIRDInstanceIPv6 (class in pierky.arouteserver.tests.live_tests.bird)

 	build_other_cfg() (pierky.arouteserver.tests.live_tests.base.LiveScenario class method)

 	build_rs_cfg() (pierky.arouteserver.tests.live_tests.base.LiveScenario class method)

C

 	
 	clear_cached_routes() (pierky.arouteserver.tests.live_tests.bird.BIRDInstance method)

 	(pierky.arouteserver.tests.live_tests.instances.BGPSpeakerInstance method)

D

 	
 	DEFAULT_VERSION (pierky.arouteserver.builder.BIRDConfigBuilder attribute)

 	(pierky.arouteserver.builder.OpenBGPDConfigBuilder attribute)

E

 	
 	ext_comms (pierky.arouteserver.tests.live_tests.instances.Route attribute)

F

 	
 	filtered (pierky.arouteserver.tests.live_tests.instances.Route attribute)

G

 	
 	get_bgp_session() (pierky.arouteserver.tests.live_tests.bird.BIRDInstance method)

 	(pierky.arouteserver.tests.live_tests.instances.BGPSpeakerInstance method)

 	
 	get_routes() (pierky.arouteserver.tests.live_tests.bird.BIRDInstance method)

 	(pierky.arouteserver.tests.live_tests.instances.BGPSpeakerInstance method)

H

 	
 	HOOKS (pierky.arouteserver.builder.BIRDConfigBuilder attribute), [1]

I

 	
 	InstanceError

 	
 	InstanceNotRunning

L

 	
 	LiveScenario (class in pierky.arouteserver.tests.live_tests.base)

 	LiveScenario_TagAndRejectRejectPolicy (class in pierky.arouteserver.tests.live_tests.base)

 	LiveScenario_TagRejectPolicy (class in pierky.arouteserver.tests.live_tests.base)

 	LOCAL_FILES_BASE_DIR (pierky.arouteserver.builder.BIRDConfigBuilder attribute)

 	(pierky.arouteserver.builder.OpenBGPDConfigBuilder attribute)

 	LOCAL_FILES_IDS (pierky.arouteserver.builder.BIRDConfigBuilder attribute), [1]

 	(pierky.arouteserver.builder.OpenBGPDConfigBuilder attribute), [1]

 	
 	localpref (pierky.arouteserver.tests.live_tests.instances.Route attribute)

 	log_contains() (pierky.arouteserver.tests.live_tests.base.LiveScenario method)

 	(pierky.arouteserver.tests.live_tests.bird.BIRDInstance method)

 	(pierky.arouteserver.tests.live_tests.instances.BGPSpeakerInstance method)

 	log_contains_errors() (pierky.arouteserver.tests.live_tests.bird.BIRDInstance method)

 	(pierky.arouteserver.tests.live_tests.instances.BGPSpeakerInstance method)

 	lrg_comms (pierky.arouteserver.tests.live_tests.instances.Route attribute)

M

 	
 	
 module

 	pierky.arouteserver.tests.live_tests.base

 	pierky.arouteserver.tests.live_tests.bird

 	pierky.arouteserver.tests.live_tests.instances

N

 	
 	next_hop (pierky.arouteserver.tests.live_tests.instances.Route attribute)

O

 	
 	OpenBGPDConfigBuilder (class in pierky.arouteserver.builder)

 	
 	otc (pierky.arouteserver.tests.live_tests.instances.Route attribute)

P

 	
 	
 pierky.arouteserver.tests.live_tests.base

 	module

 	
 pierky.arouteserver.tests.live_tests.bird

 	module

 	
 	
 pierky.arouteserver.tests.live_tests.instances

 	module

 	prefix (pierky.arouteserver.tests.live_tests.instances.Route attribute)

R

 	
 	receive_route() (pierky.arouteserver.tests.live_tests.base.LiveScenario method)

 	reject_reasons (pierky.arouteserver.tests.live_tests.instances.Route attribute)

 	reload_config() (pierky.arouteserver.tests.live_tests.bird.BIRDInstance method)

 	
 	render_template() (pierky.arouteserver.builder.ConfigBuilder method)

 	restart() (pierky.arouteserver.tests.live_tests.bird.BIRDInstance method)

 	Route (class in pierky.arouteserver.tests.live_tests.instances)

S

 	
 	session_exists() (pierky.arouteserver.tests.live_tests.base.LiveScenario method)

 	
 	session_is_up() (pierky.arouteserver.tests.live_tests.base.LiveScenario method)

 	std_comms (pierky.arouteserver.tests.live_tests.instances.Route attribute)

T

 	
 	test_999_log_contains_errors() (pierky.arouteserver.tests.live_tests.base.LiveScenario method)

U

 	
 	use_static_file() (pierky.arouteserver.tests.live_tests.base.LiveScenario class method)

V

 	
 	via (pierky.arouteserver.tests.live_tests.instances.Route attribute)

BIRD hooks specifications

pre_receive_from_client and post_receive_from_client

	function name: hook_pre_receive_from_client / hook_post_receive_from_client

	arguments:

	int client_asn: ASN of the client that announces the route to the route server.

	ip client_ip: IP address of the client that announces the route to the route server.

	string client_id: the client ID internally used by ARouteServer and BIRD.

	return value: true or false

These functions are called within the filter that handles routes entering the route server from clients.
The pre_ version is called as soon as the processing is started; the post_ version is called just before the route is being accepted and after ARouteServer features and filters have been applied.
The return value determines whether the route is accepted (true) or rejected (false) by the route server.

pre_announce_to_client and post_announce_to_client

	function name: hook_pre_announce_to_client / hook_post_announce_to_client

	arguments:

	int client_asn: ASN of the client that the route is announced to by the route server.

	ip client_ip: IP address of the client that the route is announced to by the route server.

	string client_id: the client ID internally used by ARouteServer and BIRD.

	return value: true or false

These functions are called within the filter that handles routes leaving the route server toward its clients.
The pre_ version is called as soon as the processing is started; the post_ version is called just before the route is being announced and after ARouteServer features and filters have been applied.
The return value determines whether the route is announced (true) or not (false) by the route server to the client identified by the arguments.

route_can_be_announced_to

	function name: hook_route_can_be_announced_to

	arguments:

	int client_asn: ASN of the client that the route is announced to by the route server.

	ip client_ip: IP address of the client that the route is announced to by the route server.

	string client_id: the client ID internally used by ARouteServer and BIRD.

	return value: true or false

This function is called within the filter that handles routes leaving the route server toward its clients, more precisely when BGP control communities are processed to determine whether the route can be announced to a specific client.
The return value determines whether the route is announced (true) or not (false) by the route server to the client identified by the arguments.

announce_rpki_invalid_to_client

	function name: hook_announce_rpki_invalid_to_client

	arguments:

	int client_asn: ASN of the client that the route is announced to by the route server.

	ip client_ip: IP address of the client that the route is announced to by the route server.

	string client_id: the client ID internally used by ARouteServer and BIRD.

	return value: true or false

This function is called when RPKI validation is enabled and an INVALID route is processed before being announced to a client.
The return value determines whether the RPKI INVALID route is announced (true) or not (false) by the route server to the client identified by the arguments.

scrub_communities_in and scrub_communities_out

	function name: hook_scrub_communities_in / hook_scrub_communities_out

	arguments: none

	return value: none

These functions are called for route entering / leaving the route server; their purpose is only to remove/adjust any custom BGP community used by the route server.

apply_blackhole_filtering_policy

	function name: hook_apply_blackhole_filtering_policy

	arguments:

	int ip_ver: IP version (4 or 6)

	return value: none

This function is called when a blackhole filtering request is processed. It can be used to perform custom manipulation of the route before it is announced to clients.

Enrichers

	Enrichers (BaseConfigEnricher derived classes) run in the main thread; they start as many worker threads (BaseConfigEnricherThread derived classes) as those configured.

	Each enricher has its own worker thread class (WORKER_THREAD_CLASS attribute).

	The ConfigBuilder instance that has in charge the whole config building process is passed as the first parameter during the __init__(), so that enrichers have full access over the builder and its internal data structure.

	The prepare() method is called to allow the setup of the enricher. This code run in the main thread.

	Worker threads are then setted up (and, optionally, configured via the _config_thread() method). This code run in the main thread.

	The add_tasks() method of the enricher is called; its purpose is to add tasks to the self.tasks_q queue. This code run in the main thread.

	Threads are then started; here, tasks are fetched from the tasks queue and passed to the do_task() method. This code run in the worker threads.

	When the method returns, its return value is passed to the save_data() along with the original task; save_data() is executed inside a lock.

	Exceptions raised within the worker threads are added to the worker thread’s self.errors_q queue, that is finally read by the enricher; if one exception occurred in any of the worker threads a BuilderError() exception is raised.

Example

class MyOwn_ConfigEnricher(BaseConfigEnricher):

 WORKER_THREAD_CLASS = MyOwn_ConfigEnricher_WorkerThread

 def add_tasks(self):
 task = read_from_config_builder()
 self.tasks_q.put(task)

class MyOwn_ConfigEnricher_WorkerThread(BaseConfigEnricherThread):

 DESCR = "MyOwnEnricher"

 def do_task(self, task):
 # Perform some time-wasting job related to task, for example
 # acquire external data from slow sources...
 myown_data = do_something_with(task)

 def save_data(self, task, data):
 myown_data = data
 modify_something_on_config_builder(myown_data)

How it works

	Two YAML files provide general policies and clients configurations options:

cfg:
 rs_as: 64496
 router_id: "192.0.2.2"
 filtering:
 irrdb:
 enforce_origin_in_as_set: True
 enforce_prefix_in_as_set: True
 rpki_bgp_origin_validation:
 enabled: True
 reject_invalid: True
 ...

clients:
 - asn: 64511
 ip:
 - "192.0.2.11"
 - "2001:db8:1:1::11"
 irrdb:
 as_sets:
 - "RIPE::AS-FOO"
 ...

	ARouteServer acquires external information to enrich them: i.e. bgpq4 [https://github.com/bgp/bgpq4]/bgpq3 [https://github.com/snar/bgpq3] for IRR data, PeeringDB [https://www.peeringdb.com/] for max-prefix limit and AS-SETs, RPKI ROAs, …

	Jinja2 [http://jinja.pocoo.org/] built-in templates are used to render the final route server’s configuration file.

Currently, BIRD (>= 1.6.3 up to 1.6.8), BIRD v2 (starting from 2.0.7), BIRD v3 (only for testing, still in pre-release/alpha) and OpenBGPD (OpenBSD >= 7.0 also OpenBGPD Portable >= 7.0) are supported, with almost feature parity [https://arouteserver.readthedocs.io/en/latest/SUPPORTED_SPEAKERS.html#supported-features] between them.

Validation and testing of the configurations generated with this tool are performed using the built-in live tests framework: Docker [https://www.docker.com/] instances are used to simulate several scenarios and to validate the behaviour of the route server after configuring it with ARouteServer. More details on the Live tests [https://arouteserver.readthedocs.io/en/latest/LIVETESTS.html] section.

A Docker-based playground [https://github.com/pierky/arouteserver/tree/master/tools/playground] is available to experiment with the tool in a virtual IXP environment.

Also, a Docker image [https://hub.docker.com/r/pierky/arouteserver] is provided to start building rich and secure configurations in a couple of minutes.

Features

	Path hiding mitigation techniques (RFC7947 [https://tools.ietf.org/html/rfc7947] section 2.3.1 [https://tools.ietf.org/html/rfc7947#section-2.3.1]).

	Basic filters (mostly enabled by default):

	NEXT_HOP enforcement (strict / same AS - RFC7948 [https://tools.ietf.org/html/rfc7948] section 4.8 [https://tools.ietf.org/html/rfc7948#section-4.8]);

	minimum and maximum IPv4/IPv6 prefix length;

	maximum AS_PATH length;

	reject invalid AS_PATHs (containing private/invalid ASNs [http://mailman.nanog.org/pipermail/nanog/2016-June/086078.html]);

	reject AS_PATHs containing transit-free or never via route-servers ASNs (using PeeringDB info_never_via_route_servers attribute [https://github.com/peeringdb/peeringdb/issues/394]);

	reject bogons;

	max-prefix limit based on global or client-specific values or on PeeringDB data.

	Prefixes and origin ASNs validation (also in tag-only mode):

	IRR-based filters (RFC7948 [https://tools.ietf.org/html/rfc7948] section 4.6.2 [https://tools.ietf.org/html/rfc7948#section-4.6.2]);

	AS-SETs configured manually or fetched from PeeringDB;

	support for IRR sources (RIPE::AS-FOO, RADB::AS-BAR);

	white lists support;

	extended dataset for filters generation:

	RPKI ROAs used as route objects;

	Origin AS [https://mailman.nanog.org/pipermail/nanog/2017-December/093525.html] from ARIN Whois database dump;

	NIC.BR Whois data [https://ripe76.ripe.net/presentations/43-RIPE76_IRR101_Job_Snijders.pdf] (slide n. 26) from Registro.br;

	RPKI-based filtering (BGP Prefix Origin Validation);

	ROAs can be retrieved from publicly available JSON files or from a local validating cache;

	Route Leak Prevention and Detection Using BGP Roles (RFC9234 [https://tools.ietf.org/html/rfc9234]).

	Blackhole filtering support:

	optional NEXT_HOP rewriting;

	signalling via BGP Communities (BLACKHOLE [https://tools.ietf.org/html/rfc7999#section-5] and custom communities);

	client-by-client control over propagation.

	Graceful shutdown support:

	honor the GRACEFUL_SHUTDOWN BGP community received from clients (draft-ietf-grow-bgp-gshut-11 [https://tools.ietf.org/html/draft-ietf-grow-bgp-gshut-11]);

	allow to perform a graceful shutdown of the route server itself.

	Control and informative BGP communities:

	prefix/origin ASN present/not present in IRRDBs data;

	do (not) announce to any / peer / on RTT basis;

	prepend to any / peer / on RTT basis;

	add NO_EXPORT / NO_ADVERTISE to any / peer;

	32bit ASNs mapping to 16bit ASNs for announcement control BGP communities;

	Euro-IX large BGP communities [https://www.euro-ix.net/en/forixps/large-bgp-communities/] to track reject reasons;

	custom informational BGP communities.

	Optional session features on a client-by-client basis:

	prepend route server ASN (RFC7947 [https://tools.ietf.org/html/rfc7947] section 2.2.2.1 [https://tools.ietf.org/html/rfc7947#section-2.2.2.1]);

	active sessions;

	GTSM (Generalized TTL Security Mechanism - RFC5082 [https://tools.ietf.org/html/rfc5082]);

	ADD-PATH capability (RFC7911 [https://tools.ietf.org/html/rfc7911]).

	RFC8950 [https://tools.ietf.org/html/rfc8950] IPv6 NEXT_HOP for IPv4 routes.

	Automatic building of clients list:

	integration [https://arouteserver.readthedocs.io/en/latest/USAGE.html#ixp-manager-integration] with IXP-Manager;

	fetch lists [https://arouteserver.readthedocs.io/en/latest/USAGE.html#automatic-clients] from PeeringDB records and Euro-IX member list JSON files.

	IX-F Member Export JSON files creation [https://arouteserver.readthedocs.io/en/latest/USAGE.html#ixf-member-export-command].

	Related tools:

	The Playground [https://github.com/pierky/arouteserver/tree/master/tools/playground], to experiment with the tool in a virtual IXP environment.

	Invalid routes reporter [https://arouteserver.readthedocs.io/en/latest/TOOLS.html#invalid-routes-reporter], to log or report invalid routes and their reject reason.

A comprehensive list of features can be found within the comments of the distributed configuration file on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/general.yml] or on the documentation web page [https://arouteserver.readthedocs.io/en/latest/GENERAL.html].

More feature are already planned: see the Future work [https://arouteserver.readthedocs.io/en/latest/FUTUREWORK.html] section for more details.

Route server configuration - options and features

This is the reStructuredText representation of the content of the general.yml configuration file.

Here you can find all the options and settings that can be configured on a route server by using this tool, along with the comments needed to understand how to properly edit that file.

The YAML version of the general.yml configuration file can be found on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/general.yml].

	General options: cfg

	Filtering: filtering

	NEXT_HOP: next_hop

	Prefix length: ipv4_pref_len and ipv6_pref_len

	Filtered prefixes: global_black_list_pref

	Max AS_PATH length: max_as_path_len

	Invalid ASNs in AS_PATH: reject_invalid_as_in_as_path

	Transit-free networks: transit_free

	‘Never via route-servers’ networks: never_via_route_servers

	IRRDB filters: irrdb

	RPKI BGP Origin Validation: rpki_bgp_origin_validation

	Max prefix: max_prefix

	RFC9234 roles: roles

	Reject policy: reject_policy

	RPKI ROAs: rpki_roas

	Blackhole filtering: blackhole_filtering

	Graceful shutdown: graceful_shutdown

	RFC1997 well-known communities: rfc1997_wellknown_communities

	RTT thresholds: rtt_thresholds

	BGP Communities: communities

	Prefix/origin AS present in client’s AS-SET

	RPKI BGP Origin Validation communities

	Blackhole filtering

	Propagation control

	Prepending

	NO_EXPORT / NO_ADVERTISE

	Reject cause

	Custom BGP communities: custom_communities

General options: cfg

	rs_as:
The route server AS number.

Example:

rs_as: 999

	router_id:
The route server’s router ID.

This can be set using a single router ID or a list
of multiple router IDs. If multiple values are provided,
then a single execution of ARouteServer will generate
multiple configurations, one for each router ID, all
having the same characteristics, but just a different
value for the “router ID” setting of the target BGP
daemon.

More details on the Configuration page on ReadTheDocs:
https://arouteserver.readthedocs.io/en/latest/CONFIG.html

Example of how to configure multiple values:
router_id: [“192.0.2.2”, “192.0.2.3”]

Example:

router_id: "192.0.2.2"

	prepend_rs_as:
Prepend the route server’s AS number to the AS_PATH of routes
that it announces to clients.
https://tools.ietf.org/html/rfc7947#section-2.2.2.1

Can be overwritten on a client-by-client basis.

Default: False

Example:

prepend_rs_as: False

	path_hiding:
Path-hiding mitigation technique: if True, enable path
hiding mitigation.
(https://tools.ietf.org/html/rfc7947#section-2.3.1)

BIRD: the “secondary” option is used.
“Usually, if an export filter rejects a selected route, no
other route is propagated for that network. This option
allows to try the next route in order until one that is
accepted is found or all routes for that network are rejected.”
(http://bird.network.cz/?get_doc&f=bird-6.html#bgp-secondary)

OpenBGPD: ‘rde evaluate all’ is used.
(https://man.openbsd.org/bgpd.conf#rde)

Default: True

Example:

path_hiding: True

	passive:
Configure passive sessions.

Can be overwritten on a client-by-client basis.

Default: True

Example:

passive: True

	multihop:
Configure sessions as multihop.
To be set with the maximum TTL permitted.

BIRD: this option can be used only when
path_hiding is False for the whole configuration.

Can be overwritten on a client-by-client basis.

Default: not set.

Example:

multihop: 0

	gtsm:
Use GTSM (Generalized TTL Security Mechanism).
https://tools.ietf.org/html/rfc5082

Can be overwritten on a client-by-client basis.

Default: False

Example:

gtsm: False

	add_path:
Use ADD-PATH (RFC7911).
The route server will be configured as “able to send multiple
paths to its peer”.

OpenBGPD: supported only from version 7.5.

Can be overwritten on a client-by-client basis.

Default: False

Example:

add_path: False

	rfc8950:
Support IPv6 next-hop for IPv4 NLRI (RFC8950).
Will only be enabled for IPv6 BGP sessions.
https://tools.ietf.org/html/rfc8950

BIRD: enables extended next-hop (available since 2.0)

OpenBGPD: not yet supported

Can be overwritten on a client-by-client basis.

Default: False

Example:

rfc8950: False

Filtering: filtering

NEXT_HOP: next_hop

NEXT_HOP checks

	policy:
The policy option can be set using the following values:

	strict: “check that the BGP NEXT_HOP attribute for BGP
routes received from a route server client matches the
interface address of the client.”

	same-as: permit next-hop rewriting for the same AS; this
“allows an organization with multiple connections into an
IXP configured with different IP addresses to direct traffic
off the IXP infrastructure through any of their connections
for traffic engineering or other purposes.”
In this mode, all the IP addresses of clients that fall
under the same ASN will be allowed. This is limited to the
IP addresses of known clients configured in the clients.yml
file.

	authorized_addresses: check that the BGP NEXT_HOP attribute
for routes received from a route server client matches one
of the IP addresses reported in the client-specific
authorized_addresses_list option.
This allows a route server client to announce routes whose
NEXT_HOP attribute is the IP address of a non-client router.
The authorized_addresses_list option must be configured
in the clients.yml file for those clients that have
policy set to authorized_addresses.

https://tools.ietf.org/html/rfc7948#section-4.8

Can be overwritten on a client-by-client basis.

Default: strict

Example:

policy: "strict"

Prefix length: ipv4_pref_len and ipv6_pref_len

Min and max prefix length for IPv4 and IPv6 prefixes accepted
by the route server. Boundaries are inclusive.

Can be overwritten on a client-by-client basis.

Default: 8-24 for IPv4, 12-48 for IPv6

Filtered prefixes: global_black_list_pref

List of prefixes that are unconditionally rejected.
For example: local networks.

A list of prefixes is expected to be found here, like the one
reported in the bogons.yml file.

Default: none

Example:

global_black_list_pref:
 - prefix: "192.0.2.0"
 length: 24
 comment: "Local network"

Max AS_PATH length: max_as_path_len

Max length of AS_PATH attribute.

Can be overwritten on a client-by-client basis.

Default: 32

Example:

max_as_path_len: 32

Invalid ASNs in AS_PATH: reject_invalid_as_in_as_path

Reject routes that carry private/invalid AS numbers in
their AS_PATH.
http://mailman.nanog.org/pipermail/nanog/2016-June/086078.html

Can be overwritten on a client-by-client basis.

Default: True

Example:

reject_invalid_as_in_as_path: True

Transit-free networks: transit_free

Transit-free networks’ ASNs should appear in AS_PATH only
in the left-most position.

	action:
If a policy is given here, it is applied to routes whose
AS_PATH contains one of the following ASN in any position
different from the first:

	reject: the route is discarded.

	warning: a warning is logged.

OpenBGPD: used only if action is reject.

Default: none

Example:

action: "reject"

	asns:
Comma separated list of ASNs which are considered
transit-free. Used only if an action is provided above.

Example:

asns: >
 174, 701, 1299, 2914, 3257, 3320, 3356, 5511, 6453,
 6461, 6762, 6830, 7018, 12956

‘Never via route-servers’ networks: never_via_route_servers

Similarly to what happens with the transit_free config
knob, any route with one of these ASNs in the AS_PATH
will be rejected.
If the peering_db option below within this section is
set to True, ARouteServer acquires the list of ASNs from
PeeringDB (based on the info_never_via_route_servers
attribute).
If peering_db is False and asns is not set or empty,
the feature will be implicitly disabled.

	peering_db:
When set to True, the list of networks is automatically
retrieved from PeeringDB.

Default: True

Example:

peering_db: True

	asns:
Comma separated list of ASNs which will be used to filter
incoming routes. When peering_db is True, the ASNs
listed here are added to those retrieved from PeeringDB.

Default: none

IRRDB filters: irrdb

With regards of the following two options, if no AS-SET
is given in the clients configuration file for the
specific client nor for its AS, then only the ASN
of the announcing client is expanded and used to gather
authorized origin ASNs and prefixes.
If the peering_db option below within this section is set
to True, ARouteServer acquires the AS-SET of the client ASN
from PeeringDB.

More details on the Configuration page on ReadTheDocs:
https://arouteserver.readthedocs.io/en/latest/CONFIG.html

	enforce_origin_in_as_set:
Accept only routes whose origin ASN is registered in
the expanded AS-SET of the announcing client.

Can be overwritten on a client-by-client basis.

Default: True

Example:

enforce_origin_in_as_set: True

	enforce_prefix_in_as_set:
Accept only prefixes which are present in the expanded
AS-SET of the announcing client.

Can be overwritten on a client-by-client basis.

Default: True

Example:

enforce_prefix_in_as_set: True

	allow_longer_prefixes:
By default, only prefixes that have a strict correspondence
in the route-set obtained by expading the AS-SET are
allowed.
If this is set to True, more specific prefixes that don’t
have a strict correspondence with but that are covered by a
prefix from the route-set are accepted as well.

Default: False

Example:

allow_longer_prefixes: False

	tag_as_set:
Tag routes whose prefix is (not) present in a client’s AS-SET.
If a client’s enforce_[origin|prefix]in_as_set is True
then unauthorized routes are rejected and not tagged
(unless they match a client-level white_list_route entry).
BGP communities used to tag these routes are:

	[origin|prefix]_(not_)present_in_as_set

	prefix_validated_via_rpki_roas

	prefix_validated_via_arin_whois_db_dump

	prefix_validated_via_registrobr_whois_db_dump

	route_validated_via_white_list (only for routes validated
solely because of a client-level white_list_route entry)

Default: True

Example:

tag_as_set: True

	peering_db:
If this option is set to True and no AS-SETs are given for
a client nor for its ASN then ARouteServer tries to acquire
the AS-SET from PeeringDB.
Please note that data quality in PeeringDB has large
variations; setting this option to True could lead to
unwanted and unpredictable behaviours.

Default: False

Example:

peering_db: False

	use_rpki_roas_as_route_objects:
With regards of prefix validation, when this option is
enabled ARouteServer uses RPKI ROAs as if they were route
objects.
Routes whose origin ASN is authorized by a client’s AS-SET
but whose prefix has not a corresponding route object will
be accepted if a covering ROA exists for that origin
ASN. In this case, if tag_as_set is True, these routes
are tagged with the prefix_validated_via_rpki_roas
community.

	enabled:
Set this to True to enable this feature.

When enabled, the rpki_roas section must be configured in
order to set the method used to gather RPKI ROAs.

Default: False

Example:

enabled: False

	use_arin_bulk_whois_data:
Similarly to the use_rpki_roas_as_route_objects option,
this one allows to back IRR filters up by using “Origin AS”
data from an ARIN bulk Whois database dump. It is a dump
of the whole ARIN Whois database that contains all the
prefixes for which one or more authorized origin ASNs
have been set by the resource holder.
Routes whose origin ASN is authorized by a client’s AS-SET
but whose prefix has not a corresponding route object will
be accepted if an entry exists in this database for that
origin ASN.
In this case, if tag_as_set is True, these routes
are tagged with the
prefix_validated_via_arin_whois_db_dump community.

The setting of the allow_longer_prefixes option will be
honored.

See also:
https://mailman.nanog.org/pipermail/nanog/2017-December/093525.html

	enabled:
Set this to True to enable this feature.

Please note that the ARIN Advisory Counsel recommended the
ARIN Board of Trustees to deprecate the “ARIN AS Origins”
feature in the ARIN WHOIS database.
See https://www.arin.net/participate/policy/drafts/2021_8/ and
also https://github.com/pierky/arouteserver/issues/116.
Consequently, this feature will be removed in future releases of
ARouteServer, and starting from v1.19.0 a warning message will be
logged during the route server config generation process if it is
enabled.

Default: False

Example:

enabled: False

	source:
The source of the data must be set here.

It can be an http:// or https:// URL or a local file
path. The file must be in JSON format, according to the
following schema:

{
“json_schema”: “0.0.2”,
“source”: “ARIN-WHOIS”,
“whois_records”: {
“v4”: [{“originas”: “ASxxx”, “prefix”: “w.x.y.z/l”}],
“v6”: [{“originas”: “ASxxx”, “prefix”: “a:b:c:d::/l”}]
}
}

Optionally it can be compressed in BZ2 format. In that
case the filename must end with the “.bz2” extension.

The following script can be used to convert the original
XML file provided by ARIN into the expected JSON format:

https://github.com/NLNOG/arin-whois-bulk-parser

Default: none

Example:

source: ""

	use_registrobr_bulk_whois_data:
Similarly to the use_arin_bulk_whois_data option,
this one allows to back IRR filters up by using “Registro.br”
data from the NIC.BR Whois database.
In this case, if tag_as_set is True, these routes
are tagged with the
prefix_validated_via_registrobr_whois_db_dump community.

The setting of the allow_longer_prefixes option will be
honored.

	enabled:
Set this to True to enable this feature.

Default: False

Example:

enabled: False

	source:
The source of the data must be set here.

It can be an http://, https://, ftp:// URL or a local
file path. The file must be in CSV format, with | as a
field separator, accordingly to the following schema:

ASxxx|Organization|OrgID|w.x.y.z/l|a:b:c:d::/l|…

Default: URL of the dump published by Registro.br.

Example:

source: "ftp://ftp.registro.br/pub/numeracao/origin/nicbr-asn-blk-latest.txt"

RPKI BGP Origin Validation: rpki_bgp_origin_validation

	enabled:
Enable BGP Prefix Origin Validation for routes received from
clients.
https://tools.ietf.org/html/rfc6811

When enabled, the rpki_roas section must be configured in
order to set the method used to gather RPKI ROAs.

Default: False

Example:

enabled: False

	reject_invalid:
If reject_invalid is True, when an INVALID route is received
the route server rejects it.
If it is False, INVALID routes are accepted and tagged with
RFC8097 BGP communities for further internal processing or
to be used by external custom functions implemented in .local
files.
In any case, INVALID routes are not announced to clients.

Can be overwritten on a client-by-client basis.

Default: True

Example:

reject_invalid: True

Max prefix: max_prefix

Dynamically adjust max-prefix limit of each client on the
basis of the following criteria, in priority order:

	client’s limit_ipv[4|6] configuration statement, if
given;

	client’s ASN PeeringDB record, if enabled by the
peering_db option;

	general limit set in general_limit_ipv[4|6], if given.

In the end, if no limit is found for a given AF or if
it is 0, no max-prefix limit is configured for the
specific client.

	action:
If action is not given, no max-prefix enforcement
will be implemented.

Action to be taken when the limit is hit by clients:

	shutdown: the BGP session is disabled.

	restart: the BGP session is restarted.

	block: new routes are discarded.

	warning: log a warning message.

OpenBGPD: used only if action is shutdown or restart.

Can be overwritten on a client-by-client basis.

Default: none

Example:

action: "shutdown"

	restart_after:
OpenBGPD only: for the restart action, sessions will be
restarted after restart_after minutes.

Example:

restart_after: 15

	count_rejected_routes:
BIRD only: when set to True, routes received by the route
server and rejected by the filters are also counted
towards the limit; when set to False, only routes that
are accepted are taken into account.
In OpenBGPD, the only available behaviour is to have the
rejected routes counted towards the limit.

Can be overwritten on a client-by-client basis.

Example:

count_rejected_routes: True

	peering_db:
Used to set client’s max-pref limit if limit_ipv[4|6]
option is not given for the specific client.

	enabled:
If enabled is True and client’s max-pref limit is not
set, ARouteServer fetches the limits from PeeringDB.

Can be overwritten on a client-by-client basis.

Default: True

Example:

enabled: True

	increment:
The following section can be used to accommodate cases of
networks that fill the PeeringDB records using their exact
route announcement count rather than a recommendation on
what others should configure as max-prefix limit.

The value that will be used is given by:
(<PeeringDB value> + <absolute>) * (1 + <relative> / 100)

Can be overwritten on a client-by-client basis.

	absolute:
Absolute increment in terms of number of prefixes.

Default: 100

Example:

absolute: 100

	relative:
Relative increment in terms of percentage.

Default: 15

Example:

relative: 15

	general_limit_ipv4 and general_limit_ipv6:
Used to set client’s max-pref limit if limit_ipv[4|6]
option is not given for the specific client and if the
PeeringDB option is disabled or a PeeringDB record can’t
be found.

Default: 170000 for IPv4 and 12000 for IPv6

Example:

general_limit_ipv4: 170000

RFC9234 roles: roles

Route leak prevention and detection using roles can be
enabled here (https://www.rfc-editor.org/rfc/rfc9234).
When enabled, the local role of BGP sessions will be
set to “Route Server (RS)” and the role expected from
client will be “Route Server Client (RS-Client)”.
Unless strict-mode will be enabled, clients that do
not announce any role will be handled in backward
compatibility mode and sessions will be established
regularly.

	enabled:
Enable the use of roles.

Can be overwritten on a client-by-client basis.

Also, the local role (route-server side) can be set on
a client-by-client basis in the clients.yml file.

OpenBGPD: this feature is available only from release 7.5,
but its usage is discouraged by developers until 7.8.
Details on
https://github.com/openbgpd-portable/openbgpd-portable/issues/51

BIRD: this feature is available only from release 2.0.11.

Example:

enabled: False

	strict_mode:
Configure RFC9234 “strict mode”, in which the receipt
of a BGP Role Capability from the client is required.
When operating in the “strict mode”, if the BGP Role
Capability is sent but one is not received, the
connection is rejected.

Can be overwritten on a client-by-client basis.

Default: False

Example:

strict_mode: False

Reject policy: reject_policy

	policy:
The route server can be configured to immediately discard the
routes that are considered to be rejected or to keep them and
tag them with a BGP community that describes the cause for
which they are considered so. These routes are not propagated
to other clients anyway, but they can be used for analysis,
statistics or reports.
A numeric value is used to identify the reason that led to
consider them as invalid; this identifier is used in the last
part of the reject_cause BGP community, that is finally
attached to the route.
The LOCAL_PREF attribute is also set to a value lower than the
default one, to avoid invalid routes to be preferred over
valid ones even in cases where path-hiding mitigation is not
enabled.

If policy is set to reject, invalid routes are
immediately discarded as they enter the route server.
If it is set to tag, they are tagged as described above
(and not propagated anyway to other clients). In this case,
the reject_cause BGP community must be also set.
If it is set to tag_and_reject, they are tagged as in tag
but also discarded as in reject mode.

OpenBGPD: only reject and tag modes are allowed.

Can be overwritten on a client-by-client basis.

Default: reject

Example:

policy: "reject"

RPKI ROAs: rpki_roas

This section is used to configure how RPKI ROAs are gathered
when filtering.irrdb.use_rpki_roas_as_route_objects or
filtering.rpki_bgp_origin_validation are enabled.

	source:
The source used to gather RPKI ROAs.

Can be one of the following options:

	rtr: ROAs are loaded from an external RTR source.
rtrllib (https://github.com/rtrlib/bird-rtrlib-cli) can be
used for BIRD 1.6.x; in BIRD v2, v3 and OpenBGPD there is
built-in support for the RTR protocol.
The name of the table where send the ROAs to is RPKI for
BIRD 1.6.x and RPKI4 and RPKI6 for BIRD v2 and v3.
When the built-in implementation is used for OpenBGPD
or BIRD v2/v3, an external file rpki_rtr_config.local must be
found within the same directory where the main configuration
file is stored (/etc/bird or /etc/bgpd usually) and must
contain the configuration of the RTR sessions specific for
that daemon.
An example on how to setup that file can be found in the
examples/rpki_rtr directory (please note, in order to use
the RTR protocol BIRD must be compiled with –enable-libssh).

	ripe-rpki-validator-cache: ROAs are loaded from a JSON
file in RIPE NCC RPKI Validator cache format.

Known compatible implementations at time of writing:

	RIPE NCC RPKI Validator: https://www.ripe.net

	Routinator: https://nlnetlabs.nl/projects/rpki/routinator/

	rpki-client: https://www.rpki-client.org/

	OctoRPKI: https://github.com/cloudflare/cfrpki

Please note that the second method is far from guaranteeing
that a cryptographically validated dataset is retrieved
from a trusted cache, unless the URL of a local, trusted
instance of a RPKI validator is provided below in the
ripe_rpki_validator_url option.

Default: ripe-rpki-validator-cache

Example:

source: "ripe-rpki-validator-cache"

	ripe_rpki_validator_url:
URLs of files in RIPE NCC RPKI Validator cache format.
Meaningful only when source is ripe-rpki-validator-cache.
Multiple URLs can be provided here; they will be tried in
the same order in which they are listed below.
They can be http:// or https:// URLs or paths of
local files.

Default: rpki-client instance, NTT instance, RIPE NCC instance

	allowed_trust_anchors:
When using the ripe-rpki-validator-cache source, only the
following Trust Anchors will be taken into account.

Values must be taken among those published in the RIPE RPKI
Validator cache file configured above.

Configured Trust Anchors pages:

	NTT instance: https://rpki.gin.ntt.net/trust-anchors

	RIPE NCC instance: https://rpki-validator.ripe.net/trust-anchors

	rpki-client: https://console.rpki-client.org/

Before enabling any ARIN TA, please consider the
following URLs:

http://lists.arin.net/pipermail/arin-ppml/2017-January/031231.html

https://www.arin.net/resources/rpki/rpa.pdf

Default: APNIC, AfriNIC, LACNIC and RIPE NCC.

	ignore_cache_files_older_than:
When using the ripe-rpki-validator-cache source, ignore
cache files that are older than this period of time (in
seconds).

When a file is ignored, the next source is used (from the
ripe_rpki_validator_url list).

Depending on the format of the cache file, the build time
may be unavailable. At the moment, this information is known
to be included in the rpki-client and OctoRPKI JSON formats,
but not in the original RIPE NCC RPKI Validator format.

Default: 6 hours (21600 seconds).

Example:

ignore_cache_files_older_than: 21600

Blackhole filtering: blackhole_filtering

Destination-based blackholing policy: if a policy is given,
accept prefixes of any length if they are tagged with the
blackholing BGP community and if they are “covered by an
equal or shorter prefix that the neighboring network is
authorized to advertise.”
(https://tools.ietf.org/html/rfc7999#section-3.3).

	policy_ipv4 and policy_ipv6:
How to treat prefixes subject to blackhole filtering.

If no policy is provided here then blackhole filtering is
not implemented in the route server.

Options:

	propagate-unchanged: the route is accepted and propagated
to clients unchanged. If missing, the BLACKHOLE well-known
community 65535:666 is added. Other local blackholing
communities are scrubbed.
It’s up to the receiving client to accept the route and to
discard traffic toward its prefix.

	rewrite-next-hop: same behaviour of propagate-unchanged
option; in addition, the route server rewrites the NEXT_HOP
attribute of the advertised route with the address of the
blackhole next-hop (BN). BN should have a unique MAC
address determined by ARP/NDP used to filter L2 frames
entering clients ports on the basis of their destination
MAC address.

Default: none

	rewrite_next_hop_ipv4 and rewrite_next_hop_ipv6:
IP addresses of BN used for rewrite-next-hop option:

Default: none

Example:

rewrite_next_hop_ipv4: "192.0.2.66"

	announce_to_client:
How tagged routes should be propagated to clients.
This configuration statement works together with the same
client-level blackhole_filtering.announce_to_client option.
If here announce_to_client is True, tagged routes
are announced to clients unless they have their
announce_to_client option explicitly set to False.
If here announce_to_client is False, tagged routes
are announced to clients only if they have the
announce_to_client option explicitly set to True.

Can be overwritten on a client-by-client basis.

Default: True

Example:

announce_to_client: True

	add_noexport:
Automatically add the NO_EXPORT well-known community to
tagged routes before announcing them to clients.

Example:

add_noexport: True

Graceful shutdown: graceful_shutdown

Graceful BGP session shutdown (gshut) can be configured here.
When enabled is True, the route server processes the routes
that are tagged with the GRACEFUL_SHUTDOWN BGP community
(65535:0) accordingly to draft-ietf-grow-bgp-gshut, that is
it lowers their LOCAL_PREF to the value set in local_pref.
(https://tools.ietf.org/html/draft-ietf-grow-bgp-gshut-11)

	enabled:
Enable processing of GRACEFUL_SHUTDOWN BGP community.

If enabled is False in the general.yml configuration then
routes tagged with the GRACEFUL_SHUTDOWN BGP community are
treated transparently; the gshut community is not stripped
off.

If enabled is True in the general.yml configuration but
False on a specific client configuration then routes tagged
with the GRACEFUL_SHUTDOWN BGP community received from that
client will be treated as if the gshut community was missing
and the community stripped off.
Can be overwritten on a client-by-client basis.

Default: False

Example:

enabled: False

	local_pref:
Value used to set the new LOCAL_PREF attribute of routes
processed accordingly to gshut.
Meaningful only when enabled is True.

Default: 0

Example:

local_pref: 0

RFC1997 well-known communities: rfc1997_wellknown_communities

RFC1997 well-known communities (NO_EXPORT and NO_ADVERTISE)
can be locally interpreted or passed through the route server,
depending on the policy that a route server operator decides
to implement.
This section allows to configure this policy.

	policy:
The policy used to process routes tagged with NO_EXPORT or
NO_ADVERTISE that are received from clients.

Options:

	rfc1997: routes are processed accordingly to RFC1997;

	pass: routes are propagated to other clients with the
NO_EXPORT/NO_ADVERTISE communities unaltered.

Default: pass

Example:

policy: "pass"

RTT thresholds: rtt_thresholds

Thresholds used for actions that are performed on the basis
of clients RTT, triggered using RTT-based BGP communities.

Used only if one or more of those BGP communities are set.

The value in the last part of the community identifies the
threshold for which the action is requested; only values from
the rtt_thresholds are taken into account and actually used
to understand if the desired action should be performed.

Lower-than actions are inclusive, higher-than are exclusive.

Some examples (based on the default values below):

	15, lower-than: action is performed for peers with RTT <= 15

	30, higher-than: action is performed for peers with RTT > 30

	1000, not in rtt_thresholds, action not performed

	0, not in rtt_thresholds, action not performed

The values must be provided in ascending order.

Example:

rtt_thresholds: 5, 10, 15, 20, 30, 50, 100, 200, 500

BGP Communities: communities

For each community name below, Standard, Large and Extended
BGP Communities can be provided in the std, lrg and ext
statements respectively.
Communities values must be given using the following formats:

	std: x:x

	lrg: x:x:x

	ext: [rt|ro]:x:x

The rs_as macro is replaced with the route server ASN given
in cfg.rs_as.
The peer_as macro, where allowed, is replaced with the ASN
of the client the route is announced to.
The dyn_val macro, where allowed, is replaced with a
numeric value that is significant to the function the BGP
community is responsible for.

Prefix/origin AS present in client’s AS-SET

	prefix_present_in_as_set, prefix_not_present_in_as_set, origin_present_in_as_set, origin_not_present_in_as_set, prefix_validated_via_rpki_roas, prefix_validated_via_arin_whois_db_dump, prefix_validated_via_registrobr_whois_db_dump and route_validated_via_white_list:
Prefix/origin AS present in client’s AS-SET.

If tag_as_set = True, prefixes that are (not) part of an
AS-SET or whose origin ASN is (not) part of an AS-SET are
tagged with the following BGP communities, provided that they
are set below.

The following communities are scrubbed from inbound routes.

The rs_as macro can be used here.

RPKI BGP Origin Validation communities

	rpki_bgp_origin_validation_not_performed:
RPKI BGP Origin Validation not performed.

When rpki_bgp_origin_validation.enabled is False (thus BGP
origin validation is not performed), if the next community
is configured the routes are tagged with it.
Similarly, this community is also used to tag routes that are
processed according to the blackhole policy when the BLACKHOLE
community (or the custom one defined in blackholing below)
is used, even though RPKI BGP Origin Validation is globally
enabled.

The following communities are scrubbed from inbound routes.

The rs_as macro can be used here.

	rpki_bgp_origin_validation_valid, rpki_bgp_origin_validation_unknown and rpki_bgp_origin_validation_invalid:
RPKI BGP Origin Validation state.

When rpki_bgp_origin_validation.enabled is True and BGP origin
validation is performed, in addition to RFC8097 BGP communities
the following ones are also used to tag routes depending on
their state.
These communities are not advertised to the clients, they are
meant to be used only “internally” to the route server (for
example for troubleshooting purposes or via looking glasses).

The following communities are scrubbed from inbound and outbound
routes.

The rs_as macro can be used here.

Blackhole filtering

	blackholing:
Blackhole filtering.

If a policy is given in blackhole_filtering, it is applied to
routes tagged with one of the following communities:

	the BLACKHOLE well-known community 65535:666, that is always
implemented if a blackhole_filtering policy is given
(https://tools.ietf.org/html/rfc7999#section-5)

	one of the following blackholing Standard, Large or
Extended BGP communities.

The following community is scrubbed from outbound routes.

The rs_as macro can be used here.

Propagation control

	do_not_announce_to_any:
Control communities.

Routes that are tagged with the following community are not
announced to any client, unless they are also tagged with the
announce_to_peer communities: in this case, such routes are
announced only to the clients whose ASN matches the value given
in the announce_to_peer communities.

The following community is scrubbed from outbound routes.

The rs_as macro can be used here.

	do_not_announce_to_peer:
Routes that are tagged with the following community are not
announced to clients whose ASN matches the value given in the
community itself.
If a route is tagged with the two conflicting communities
do_not_announce_to_peer and announce_to_peer, the route
is not advertised to the peer.

The following community is scrubbed from outbound routes.

The rs_as macro can be used here.
The peer_as macro must appear in the last part of values.

	announce_to_peer:
Routes that are tagged with the following community are
announced to clients whose ASN matches the value given in the
community itself even if they are tagged with the
do_not_announce_to_any community.
If a route is tagged with the two conflicting communities
do_not_announce_to_peer and announce_to_peer, the route
is not advertised to the peer.

The following community is scrubbed from outbound routes.

The rs_as macro can be used here.
The peer_as macro must appear in the last part of values.

	do_not_announce_to_peers_with_rtt_lower_than and do_not_announce_to_peers_with_rtt_higher_than:
Routes that are tagged with the following community are not
announced to clients that have a RTT lower/higher than the
value of the threshold identified by the last part of the
community.

The following communities are scrubbed from outbound routes.

The rs_as macro can be used here.
The dyn_val macro must appear in the last part of values.
The dyn_val macro must contain a value from the
rtt_thresholds list that identifies the RTT value for
which the action is requested.

	announce_to_peers_with_rtt_lower_than and announce_to_peers_with_rtt_higher_than:
Routes that are tagged with the following community are
announced to clients that have a RTT lower/higher than the
value of the threshold identified by the last part of the
community, even if they are tagged with the
do_not_announce_to_any community.
If a route is also tagged with the do_not_announce_to_peer
community it is not advertised to the client even if it
matches the RTT criterion.

The following communities are scrubbed from outbound routes.

The rs_as macro can be used here.
The dyn_val macro must appear in the last part of values.
The dyn_val macro must contain a value from the
rtt_thresholds list that identifies the RTT value for
which the action is requested.

Prepending

	prepend_once_to_any, prepend_twice_to_any and prepend_thrice_to_any:
Prepending communities.

The 3 “flavors” of prepending actions (to_peer, rtt
based and to_any) are applied in the following order:

	prepend_x_to_peer

	prepend_x_to_peers_with_rtt_higher_than (RTTs in desc order)

	prepend_x_to_peers_with_rtt_lower_than (RTTs in asc order)

	prepend_x_to_any
(x is always in the ascending order: once, twice, thrice).

For example, if a route is tagged with both a
prepend_x_to_any and a prepend_x_to_peer community, only
the latter will be considered when announcing to the clients
whose ASN match the one given in its value.
Routes that are tagged with the following communities are
propagated to all the clients with an AS_PATH prepended once,
twice or thrice with the announcing client’s ASN.

The following communities are scrubbed from outbound routes.

The rs_as macro can be used here.

	prepend_once_to_peer, prepend_twice_to_peer and prepend_thrice_to_peer:
Routes that are tagged with the following communities are
propagated to the clients whose ASN matches the one given in
the community with an AS_PATH prepended once, twice or thrice
with the announcing client’s ASN.

The following communities are scrubbed from outbound routes.

The rs_as macro can be used here.
The peer_as macro must appear in the last part of values.

	prepend_once_to_peers_with_rtt_lower_than, prepend_twice_to_peers_with_rtt_lower_than, prepend_thrice_to_peers_with_rtt_lower_than, prepend_once_to_peers_with_rtt_higher_than, prepend_twice_to_peers_with_rtt_higher_than and prepend_thrice_to_peers_with_rtt_higher_than:
Routes that are tagged with the following communities are
propagated to clients having a RTT lower/higher than the value
of the threshold identified by the last part of the community
with an AS_PATH prepended once, twice or thrice with the
announcing client’s ASN.

The following communities are scrubbed from outbound routes.
The peer_as macro must appear in the last part of values.

The rs_as macro can be used here.
The dyn_val macro must appear in the last part of values.
The dyn_val macro must contain a value from the
rtt_thresholds list that identifies the RTT value for
which the action is requested.

NO_EXPORT / NO_ADVERTISE

	add_noexport_to_any and add_noadvertise_to_any:
Routes that are tagged with the following communities are
propagated to other clients before the NO_EXPORT (65535:65281)
and/or the NO_ADVERTISE (65535:65282) well-known communities
are added.
When rfc1997_wellknown_communities.enabled is set to pass
this behaviour can be obtained by announcing routes to the
route server after tagging them with RFC1997 NO_EXPORT or
NO_ADVERTISE.

The following communities are scrubbed from outbound routes.

The rs_as macro can be used here.

	add_noexport_to_peer and add_noadvertise_to_peer:

The rs_as macro can be used here.
The peer_as macro must appear in the last part of values.

Reject cause

	reject_cause:
This BGP community is used when the reject_policy option is
set to tag or tag_and_reject. It is used to track the code
of the reason that led the route to be considered as invalid.

The list of reject codes can be found at this URL:
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-reasons

The following community is scrubbed from inbound routes.

The rs_as macro can be used here.
The dyn_val macro must appear in the last part of values.

	reject_cause_map:
This section can be used to map reject codes to specific
BGP communities, without following the general pattern
imposed in reject_cause. It can be used only when the
reject_policy option is set to tag or tag_and_reject.

The reject_cause_map does not replace the use of
reject_cause: the BGP communities configured in this
map are added to those built according to reject_cause.
When a route is rejected, in order to determine the
BGP community to be attached to it to describe the reject
reason, a lookup is performed in this table for the reject
code: if an entry is found, the community mapped to that
reject code is attached to the route, in addition to the
BGP community formatted according to reject_cause.

To configure this section, values from the official list
of reject codes must be used as the key of the dictionary.

The rs_as macro can be used here.

Example:

reject_cause_map:
“14”:
lrg: rs_as:1101:13

In the example, 14 is the reject code for RPKI INVALID routes

The list of reject codes can be found at this URL:
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-reasons

The communities configured here are scrubbed from inbound routes.

	rejected_route_announced_by:
This BGP community is used when the reject_policy option is
set to tag or tag_and_reject. If configured, it is used
to track the ASN of the peer that announced the invalid route
to the route server.

The following community is scrubbed from inbound routes.

The rs_as macro can be used here.
The dyn_val macro must appear in the last part of values.

Custom BGP communities: custom_communities

	custom_community1_name:
Custom BGP communities can be added to routes that enter the
route server from clients.
Each client can be configured with a set of custom communities
that are added to the routes it announces to the route
server; these communities will be then propagated to other
clients as the routes leave the server.

The name of a custom BGP community can’t be the same of any
built-in community.

The rs_as macro can be used here.

Using ARouteServer as a library

External programs can take advantage of ARouteServer’s features to automatically build route server configurations by using the following builder classes:

	BIRDConfigBuilder

	OpenBGPDConfigBuilder

How to use it

The __init__ method takes care of initializing the builder object; this method also gathers any external information needed by the input route server configuration.

	
ConfigBuilder.__init__(template_dir=None, template_name=None, cache_dir=None, cache_expiry={'arin_whois_db_dump': 43200, 'general': 43200, 'irr_as_sets': 43200, 'pdb_info': 86400, 'registrobr_whois_db_dump': 43200, 'ripe_rpki_roas': 3600}, bgpq3_path='bgpq4', bgpq3_host=['rr.ntt.net', 'rr1.ntt.net'], bgpq3_sources='RIPE,APNIC,AFRINIC,ARIN,NTTCOM,ALTDB,BBOI,BELL,JPIRR,LEVEL3,RADB,TC', bgpq3_timeout=120, rtt_getter_path=None, threads=4, ip_ver=None, perform_graceful_shutdown=False, ignore_errors=[], live_tests=False, local_files=[], local_files_dir=None, target_version=None, cfg_general=None, cfg_bogons=None, cfg_clients=None, **kwargs)

	Initialize the configuration builder.

Here, external data sources are also queried to enrich the
configuration with additional data (PeeringDB records, ASNs and
prefixes from IRRDBs, …).

	Raises:

	ARouteServerError or derived exceptions – (from pierky.arouteserver.errors).

 Exceptions raised here can have no arguments and their string
 representation can be empty: in these cases, it means that
 one or more errors have been logged using the logging module.

	Parameters:

	
	template_dir (str) – the directory that contains the templates
that must be used to render the output configuration.

Example: /home/user/arouteserver/templates/bird

Same of:

	–templates-dir CLI argument.

	templates_dir program’s configuration file option.

	template_name (str) – the name of the file that must be used to
render the output configuration.

Example: main.j2

Same of:

	–template-file-name CLI argument.

	template_name program’s configuration file option.

	cfg_general (str) –

	cfg_clients (str) –

	cfg_bogons (str) – paths to the YAML
files containing the general route server policy, the clients
list and the list of bogon prefixes.

Example: cfg_general="/home/user/arouteserver/general.yml"

Same of:

	–general, –clients, –bogons CLI arguments.

	cfg_general, cfg_clients, cfg_bogons program’s
configuration file options.

	cache_dir (str) – the directory that will be used to store results
from external data sources queries (PeeringDB info, IRRDBs).

Same of:

	–cache-dir CLI argument.

	cache_dir program’s configuration file option.

	cache_expiry (int or dict) – how long cached data must be considered
valid, in seconds. Each “cacheable object” (PeeringDB info,
IRR datasets, …) can have its own expiry time. If an int is
given here, all the expiry times will have the same duration,
otherwise cacheable objects will pick their specific value
or use the ‘general’ one if no more specific value is given.

Same of:

	cache_expiry program’s configuration file option.

	ip_ver (int) – if None, the output configuration will be targeted
for both IPv4 and IPv6; otherwise, set this to 4 or to
6 to obtain AFI-specific output configuration.

Same of:

	–ip-ver CLI argument.

	perform_graceful_shutdown (bool) – when True, the output config
includes an outbound policy which is applied to BGP
sessions toward the clients and which adds the
GRACEFUL_SHUTDOWN BGP community (65535:0) to all the
routes that the route server announces to them.

Same of:

	–perform-graceful-shutdown CLI argument.

	target_version (str) – the BGP daemon target version for which the
output configuration must be generated.

This is used to detect and/or solve any compatibility issue
with some features that are available only using a specific
version of the target BGP daemon.

The list of available versions is taken from the derived BGP
daemon specific classes’ AVAILABLE_VERSION attribute.

The default value is taken from the derived BGP daemon
specific classes’ DEFAULT_VERSION attribute.

Example: on OpenBGPD, to avoid errors when building configs
that use large BGP communities (available only on
OpenBGPD/OpenBSD > 6.1) use target_version="6.1"

Same of:

	–target-version CLI argument.

	ignore_errors (list) – a list of issue IDs (strings) that must be
ignored when building the configuration.

Depending on the target BGP daemon and its version, some
features may be unavailable; ARouteServer produces errors
when one or more of these features are enabled in the route
server configuration YAML file. These errors are marked with
an ‘issue ID’ that can be reported in this list to instruct
ARouteServer to ignore it and to continue the building process.

Use ignore_errors=["*"] to ignore any issue.

Example: ignore_errors=["add_path"] to ignore the issue due
to the lack of support for ADD_PATH in OpenBGPD.

Same of:

	–ignore-issues CLI argument.

	local_files (list) – the list of local files IDs for which the
relative inclusion point must be enabled on the output
configuration. Details: https://arouteserver.readthedocs.io/en/latest/CONFIG.html#site-specific-custom-configuration-files

The list of available IDs is taken from the derived BGP daemon
specific classes’ LOCAL_FILES_IDS attribute.

Example: local_files=["header4", "footer4"]

Same of:

	–use-local-files CLI argument.

	local_files_dir (str) – the base directory of the local files that
will be included in the output configuration.

The default value is taken from the derived BGP daemon
specific classes’ LOCAL_FILES_BASE_DIR attribute.

Example: /etc/bird

Same of:

	–local-files-dir CLI argument.

	bgpq3_path (str) – path to the ‘bgpq3’ or ‘bgpq4’ external program; this will
be used to expand AS macros and to obtain the list of
authorized origin ASNs and prefixes from IRRDBs.

Same of:

	bgpq3_path program’s configuration file option.

	bgpq3_host (str) – the host(s) that will be queried by bgpq3/bgpq4; this
will be used to set the -h argument of the program. Multiple hosts
can be passed using a comma-delimited string, in which case they
will be used sequentially in case of failures of the IRR queries or
timeouts.

Same of:

	bgpq3_host program’s configuration file option.

	bgpq3_sources (str) – a comma separated list of sources that will
be used by the bgpq3/bgpq4 program; this will be used to set the
-S argument of the program.

Same of:

	bgpq3_sources program’s configuration file option.

	bgpq3_timeout (int) – timeout for the bgpq4/bgpq3 queries (in seconds).

Same of:

	bgpq3_timeout program’s configuration file option.

	rtt_getter_path (str) – path to the program that is executed to
determine the RTT of a peer.
Syntax and details can be found at the following URL:
https://arouteserver.readthedocs.io/en/latest/RTT_GETTER.html

Same of:

	rtt_getter_path program’s configuration file option.

	threads (int) – number of concurrent threads used to gather
additional data from external sources (bgpq3/bgpq4, PeeringDB, …)

Same of:

	threads program’s configuration file option.

	kwargs – additional arguments used by BGP daemon specific builder
classes.

	live_tests (bool) – only used on live tests.

The render_template method generates the output configuration.

	
ConfigBuilder.render_template(output_file=None)

	Render the output configuration.

	Raises:

	ARouteServerError or derived exceptions – (from pierky.arouteserver.errors).

 Exceptions raised here can have no arguments and their string
 representation can be empty: in these cases, it means that
 one or more errors have been logged using the logging module.

	Parameters:

	output_file (file) – the output file where the configuration must
be written.

Example:

import sys
from pierky.arouteserver.builder import BIRDConfigBuilder
builder = BIRDConfigBuilder(
 template_dir="~/arouteserver/templates/bird",
 template_name="main.j2",
 cfg_general="~/arouteserver/config.d/general.yml",
 cfg_clients="~/arouteserver/config.d/clients.yml",
 cfg_bogons="~/arouteserver/config.d/bogons.yml",
 cache_dir="~/arouteserver/var",
 ip_ver=4
)
builder.render_template(sys.stdout)

BGP daemon specific builder classes

	
class pierky.arouteserver.builder.BIRDConfigBuilder(template_dir=None, template_name=None, cache_dir=None, cache_expiry={'arin_whois_db_dump': 43200, 'general': 43200, 'irr_as_sets': 43200, 'pdb_info': 86400, 'registrobr_whois_db_dump': 43200, 'ripe_rpki_roas': 3600}, bgpq3_path='bgpq4', bgpq3_host=['rr.ntt.net', 'rr1.ntt.net'], bgpq3_sources='RIPE,APNIC,AFRINIC,ARIN,NTTCOM,ALTDB,BBOI,BELL,JPIRR,LEVEL3,RADB,TC', bgpq3_timeout=120, rtt_getter_path=None, threads=4, ip_ver=None, perform_graceful_shutdown=False, ignore_errors=[], live_tests=False, local_files=[], local_files_dir=None, target_version=None, cfg_general=None, cfg_bogons=None, cfg_clients=None, **kwargs)

	BIRD configuration builder.

The kwargs parameter of the __init__ method can be used
to pass the following additional arguments.

	Parameters:

	hooks (list) – list of hook IDs for which to enable hooks in
the output configuration. Details: https://arouteserver.readthedocs.io/en/latest/CONFIG.html#bird-hooks

	
AVAILABLE_VERSION = ['1.6.3', '1.6.4', '1.6.6', '1.6.7', '1.6.8', '2.0.7', '2.0.7+b962967e', '2.0.8', '2.0.9', '2.0.10', '2.0.11', '2.13', '2.14', '2.15', '3.0']

	

	
DEFAULT_VERSION = '2.15'

	

	
HOOKS = ['pre_receive_from_client', 'post_receive_from_client', 'pre_announce_to_client', 'post_announce_to_client', 'route_can_be_announced_to', 'announce_rpki_invalid_to_client', 'scrub_communities_in', 'scrub_communities_out', 'apply_blackhole_filtering_policy']

	

	
LOCAL_FILES_BASE_DIR = '/etc/bird'

	

	
LOCAL_FILES_IDS = ['logging', 'header', 'header4', 'header6', 'footer', 'footer4', 'footer6', 'client', 'client4', 'client6']

	

	
class pierky.arouteserver.builder.OpenBGPDConfigBuilder(template_dir=None, template_name=None, cache_dir=None, cache_expiry={'arin_whois_db_dump': 43200, 'general': 43200, 'irr_as_sets': 43200, 'pdb_info': 86400, 'registrobr_whois_db_dump': 43200, 'ripe_rpki_roas': 3600}, bgpq3_path='bgpq4', bgpq3_host=['rr.ntt.net', 'rr1.ntt.net'], bgpq3_sources='RIPE,APNIC,AFRINIC,ARIN,NTTCOM,ALTDB,BBOI,BELL,JPIRR,LEVEL3,RADB,TC', bgpq3_timeout=120, rtt_getter_path=None, threads=4, ip_ver=None, perform_graceful_shutdown=False, ignore_errors=[], live_tests=False, local_files=[], local_files_dir=None, target_version=None, cfg_general=None, cfg_bogons=None, cfg_clients=None, **kwargs)

	OpenBGPD configuration builder.

	
AVAILABLE_VERSION = ['7.0', '7.1', '7.2', '7.3', '7.4', '7.5', '7.6', '7.7', '7.8', '8.0', '8.3', '8.4']

	

	
DEFAULT_VERSION = '8.4'

	

	
LOCAL_FILES_BASE_DIR = '/etc/bgpd'

	

	
LOCAL_FILES_IDS = ['logging', 'header', 'pre-irrdb', 'post-irrdb', 'pre-clients', 'post-clients', 'client', 'pre-filters', 'post-filters', 'footer']

	

Live tests code documentation

	
class pierky.arouteserver.tests.live_tests.base.LiveScenario(methodName='runTest')

	An helper class to run tests for a given scenario.

This class must be derived by scenario-specific classes that
must:

	set the MODULE_PATH attribute to __file__, in order
to correctly locate files needed by the scenario.

	fill the INSTANCES list with a list of
BGPSpeakerInstance
(or derived) instances representing all the BGP speakers involved in the
scenario.

	set the SHORT_DESCR with a short description of the
scenario; it will be used to print tests description in the
format “<SHORT_DESCR>: <test function docstring>”.

	fill the DATA dictionary with IP prefixes IDs that
represent all the IP addresses used by the scenario; this
is useful to decouple real IP addresses from what they
represent or are used to and to have a single definition
of the tests functions and scenario configuration that can
be used for both IPv4 and IPv6 tests.

Example:

DATA = {
 "rs_IPAddress": "192.0.2.2",
 "AS1_IPAddress": "192.0.2.11",
 "AS1_allowed_prefixes": "1.0.0.0/8",
 "AS1_good_prefix": "1.0.1.0/24",
 "AS101_prefixes": "101.0.0.0/8"
}

	optionally, if it’s needed by the scenario, the derived classes
must also fill the AS_SET and R_SET dictionaries with
the expected content of any expanded AS-SETs used in IRRDB
validation:

	AS_SET’s items must be in the format
<AS_SET_name>: <list_of_authorized_origin_ASNs>.

	R_SET’s items must be in the format
<AS_SET_name>: <list_of_authorized_prefix_IDs> (where prefix
IDs are those reported in the DATA dictionary).

Example:

AS_SET = {
 "AS-AS1": [1],
 "AS-AS1_CUSTOMERS": [101],
 "AS-AS2": [2],
 "AS-AS2_CUSTOMERS": [101]
}
R_SET = {
 "AS-AS1": [
 "AS1_allowed_prefixes"
],
 "AS-AS1_CUSTOMERS": [
 "AS101_prefixes"
]
}

	optionally, if it’s needed by the scenario, the derived classes
can also set the RTT dictionary with the values of the RTTs
of the clients. Keys can be IP addresses of clients or the
prefix IDs used in the DATA dictionary to represent them.

Example:

RTT = {
 "192.0.2.11": 14,
 "2001:db8::11": 165,
 "AS1_IPAddress": 44
}

	optionally, if it’s needed by the scenario, the derived classes
can also set the REJECT_CAUSE_COMMUNITY attribute with the
pattern followed by BGP communities used to tag routes that are
considered to be rejected (see the filtering.reject_policy
general configuration section and the reject_cause
community).
The value of this attribute must be a regular expression that
matches the standard, extended or large BGP communities used to
tag invalid routes. For example, if the standard BGP community
65520:dyn_val is used, the value must be ^65520:(\d+)$.
If this attribute is not None, routes that have LOCAL_PREF == 1
and the reject_cause BGP community with dyn_val == 0
are considered as filtered.
The REJECTED_ROUTE_ANNOUNCED_BY_COMMUNITY attribute can also
be set to match the community used to track the announcing ASN of
invalid routes.

	implement the set_instance_variables method, used to set
local instance attributes for the instances used within the
tests functions.

Example:

def set_instance_variables(self):
 self.AS1 = self._get_instance_by_name("AS1")
 self.AS2 = self._get_instance_by_name("AS2")
 self.AS131073 = self._get_instance_by_name("AS131073")
 self.rs = self._get_instance_by_name("rs")

Set the __test__ attribute of derived classes to False to avoid them
to be used directly by pytest to run tests; only the specific IPv4/IPv6
class (the one where the DATA dictionary is set) must have
__test__ == True.

	
classmethod build_other_cfg(tpl_name)

	Builds configuration files for BGP speakers which are not the route server.

	Parameters:

	tpl_name (str) – the name of the Jinja2 template file
relative to the scenario directory.

	Returns:

	the path of the local rendered file.

To render the template, one attribute is used and consumed by Jinja2:

	data, the scenario’s DATA dictionary.

The resulting file is saved into the local var directory
and its absolute path is returned.

	
classmethod build_rs_cfg(tpl_dir_name, tpl_name, out_file_name, ip_ver, cfg_general=None, cfg_bogons='bogons.yml', cfg_clients='clients.yml', **kwargs)

	Builds configuration file for the route server.

	Parameters:

	
	tpl_dir_name (str) – the directory where Jinja2
templates are located, relative to the current scenario.

	tpl_name (str) – the name of the template to be
rendered.

	out_file_name (str) – the name of the destination
file.

	ip_ver (int) – the IP version for which this route server
will operate. Use None if the configuration is valid
for both IPv4 and IPv6.

	cfg_general (str), cfg_bogons (str), cfg_clients (str) – the
name of the 3 main files containing route server’s
options and policies, clients definition and bogons
IP addresses. File names are relative to the scenario
directory.

	Returns:

	the path of the local rendered file.

The resulting file is saved into the local var directory
and its absolute path is returned.

	
log_contains(inst, msg, instances={}, opposite=False)

	Test if the BGP speaker’s log contains the expected message.

This only works for BGP speaker instances that support message
logging: currently only BIRD.

If no log entries are found, the TestCase.fail() method is
called and the test fails. If opposite is True, the
failure is reported if a log entry is found.

	Parameters:

	
	inst – the BGPSpeakerInstance instance where the
expected message is searched on.

	msg (str) – the text that is expected to be found within
BGP speaker’s log.

	instances (dict) – a dictionary of pairs
“<macro>: <BGPSpeakerInstance>” used to expand macros on
the msg argument. Macros are expanded using the BGP
speaker’s specific client ID or protocol name.

	opposite (bool) – when set to True, the call fails if a match
is found.

Example

Given self.rs the instance of the route server, and self.AS1 the
instance of one of its clients, the following code expands the “{AS1}”
macro using the BGP speaker specific name for the instance self.AS1
and then looks for it within the route server’s log:

self.log_contains(self.rs, "{AS1} bad ASN", {"AS1": self.AS1})

On BIRD, “{AS1}” will be expanded using the “protocol name” that BIRD
uses to identify the BGP session with AS1.

	
receive_route(inst, prefix, other_inst=None, as_path=None, next_hop=None, std_comms=None, lrg_comms=None, ext_comms=None, local_pref=None, as_set=None, otc=None, filtered=None, only_best=None, reject_reason=None)

	Test if the BGP speaker receives the expected route(s).

If no routes matching the given criteria are found, the
TestCase.fail() method is called and the test fails.

	Parameters:

	
	inst – the BGPSpeakerInstance instance where the routes
are searched on.

	prefix (str) – the IPv4/IPv6 prefix of the routes to search for.

	other_inst – if given, only routes received from this
BGPSpeakerInstance instance are considered.

	as_path (str) – if given, only routes with this AS_PATH are
considered.

	next_hop – can be a string or a BGPSpeakerInstance
instance; if given, only routes that have a NEXT_HOP
address matching this one are considered.

	std_comms (list) – if given, only routes
that carry these BGP communities are considered. Use an
empty list ([]) to consider only routes with no BGP comms.

	lrg_comms (list) – if given, only routes
that carry these BGP communities are considered. Use an
empty list ([]) to consider only routes with no BGP comms.

	ext_comms (list) – if given, only routes
that carry these BGP communities are considered. Use an
empty list ([]) to consider only routes with no BGP comms.

	local_pref (int) – if given, only routes with local-pref equal
to this value are considered.

	as_set (str) – if given, only routes with this AS_SET are
considered.

	otc (int) – if provided, only routes with the OTC attribute set
to this value are considered. Use ‘0’ to match only routes
NOT having the OTC value set.

	filtered (bool) – if given, only routes that have been (not)
filtered are considered.

	only_best (bool) – if given, only best routes are considered.

	reject_reason (int) – valid only if filtered is True: if given
the route must be reject with this reason code.
It can be also a set of codes: in this case, the route must
be rejected with one of those codes.

The list of valid codes is reported in docs/CONFIG.rst or at
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy

	
session_exists(inst_a, inst_b_or_ip)

	Test if a BGP session between the two instances exists.

	Parameters:

	
	inst_a – the BGPSpeakerInstance instance where the
BGP session is looked for.

	inst_b_or_ip – the BGPSpeakerInstance instance or an
IP address that inst_a is expected to peer with.

	
session_is_up(inst_a, inst_b)

	Test if a BGP session between the two instances is up.

If a BGP session between the two instances is not up, the
TestCase.fail() method is called and the test fails.

	Parameters:

	
	inst_a – the BGPSpeakerInstance instance where the
BGP session is looked for.

	inst_b – the BGPSpeakerInstance instance that inst_a is
expected to peer with.

	
test_999_log_contains_errors()

	{}: log contains errors

	
classmethod use_static_file(local_filename)

	Prepare the local file in order to use it later.

	Parameters:

	filename (str) – the name of the local file,
relative to the scenario directory.

	Returns:

	the path of the file to be used

	
class pierky.arouteserver.tests.live_tests.base.LiveScenario_TagAndRejectRejectPolicy

	Same as LiveScenario_TagRejectPolicy, but with ‘tag_and_reject’ reject policy.

	
class pierky.arouteserver.tests.live_tests.base.LiveScenario_TagRejectPolicy

	Helper class to run a scenario as if reject_policy is set to ‘tag’.

When a scenario inherits this class, its route server is configured as
if the reject_policy.policy is tag, the 65520:dyn_val
value is used for the reject_cause BGP community and the
65524:dyn_val and rt:65524:dyn_val values for the
rejected_route_announced_by one.
Additionally, using the reject_cause_map, some reject codes are
mapped to specific BGP communities in the rs_as:1101:* range.

The general.yml file, or the file given in the orig_file argument
of _get_cfg_general method, is cloned and reconfigured with the
aforementioned settings.

This class is mostly used for OpenBGPD tests since the underlaying
mechanism allows to track the reason that brought to consider the route as
rejected and to test filters out during test cases execution.

This class should be used in multiple inheritance:

Example

class SkeletonScenario_OpenBGPDIPv4(LiveScenario_TagRejectPolicy, SkeletonScenario):

	
class pierky.arouteserver.tests.live_tests.instances.BGPSpeakerInstance(name, ip, mount=[], **kwargs)

	This class abstracts a BGP speaker instance.

Currently, the start, stop, is_running and
run_cmd methods inherited from BaseInstance are implemented by the
DockerInstance and KVMInstance derived classes,
while the restart, reload_config, get_bgp_session,
get_routes and log_contains methods by the
[Docker|KVM]Instance-derived BIRDInstance and
OpenBGPDInstance classes.

	
bgp_session_is_up(other_inst, force_update=False)

	Check if a BGP session with other_inst is up.

	Parameters:

	
	other_inst – the
BGPSpeakerInstance
instance that the current instance is expected to have a
running BGP session with.

	force_update (bool) – if True, the instance must bypass
any caching mechanism used to keep the BGP sessions status.

	Returns:

	True if the current instance has a running BGP
session with other_inst; False otherwise.

	
clear_cached_routes()

	Clear any internal cache where routes may be stored.

	
get_bgp_session(other_inst, force_update=False)

	Get information about the BGP session with other_inst.

	Parameters:

	
	other_inst – the
BGPSpeakerInstance
instance that the current instance is expected to have a
running BGP session with.

	force_update (bool) – if True, the instance must bypass
any caching mechanism used to keep the BGP sessions status.

	Returns:

	None if the BGP session is not found, otherwise a dictionary
containing information about the BGP session:

	”ip”: “neighbor IP address”,

	”is_up”: [True|False]

	
get_routes(prefix, include_filtered=False, only_best=False)

	Get a list of all the known routes for prefix.

	Parameters:

	
	prefix (str) – the IP prefix that returned routes
must match. If None, all the routes are returned.

	include_filtered (bool) – include filtered routes / rejected
prefixes in the result.

	only_best (bool) – include only the best route toward
prefix.

	Returns:

	list of Route objects.

	
log_contains(s)

	Verifies if the BGP speaker’s logs contain the expected message.

	Parameters:

	s (str) – the message that is expected to be found in
the BGP speaker’s logs.

	Returns:

	True or False if the message is found or not.

	
log_contains_errors(allowed_errors=[], list_errors=False)

	Returns True if the BGP speaker’s log contains warning/errors.

	Parameters:

	
	allowed_errors (list) – list of strings representing errors
that are allowed to be found within the BGP speaker’s log.

	list_errors (bool) – when set to True, the functions returns
a touple (errors_found, list_of_errors).

	Returns:

	True of False if error messages
or warnings are found within the BGP speaker’s logs.
When list_errors is True, a touple (bool, str).

	Return type:

	When list_errors is False

	
exception pierky.arouteserver.tests.live_tests.instances.InstanceError

	

	
exception pierky.arouteserver.tests.live_tests.instances.InstanceNotRunning(name, *args, **kwargs)

	

	
class pierky.arouteserver.tests.live_tests.instances.Route(prefix, **kwargs)

	Details about a route.

	
prefix

	the IPv4/IPv6 prefix.

	Type:

	str

	
via

	the IP address of the peer from which the
route has been received.

	Type:

	str

	
as_path

	the AS_PATH attribute of the route, in
the “<asn> <asn> <asn>…” format (example: “1 2 345”).

	Type:

	str

	
next_hop

	the NEXT_HOP attribute of the route.

	Type:

	str

	
filtered

	True if the route has been rejected/filtered.

	Type:

	bool

	
std_comms

	list of standard BGP communities (strings in
the “x:y” format).

	Type:

	list

	
lrg_comms

	list of large BGP communities (strings in the
“x:y:z” format).

	Type:

	list

	
ext_comms

	list of extended BGP communities (strings in
the “[rt|ro]:x:y” format).

	Type:

	list

	
localpref

	local-pref.

	Type:

	int

	
otc

	the OTC (Only To Customer) attribute, if present.

	Type:

	int

	
reject_reasons

	list of integers that identify the reasons
for which the route is considered to be rejected.

	Type:

	list

	
class pierky.arouteserver.tests.live_tests.bird.BIRD2Instance(*args, **kwargs)

	

	
class pierky.arouteserver.tests.live_tests.bird.BIRD3Instance(*args, **kwargs)

	

	
class pierky.arouteserver.tests.live_tests.bird.BIRDInstance(*args, **kwargs)

	This class implements BIRD-specific methods.

This class is derived from DockerInstance, that implements
some Docker-specific methods to start/stop the instance and to run
commands on it.

	
clear_cached_routes()

	Clear any internal cache where routes may be stored.

	
get_bgp_session(other_inst_or_ip, force_update=False)

	Get information about the BGP session with other_inst.

	Parameters:

	
	other_inst – the
BGPSpeakerInstance
instance that the current instance is expected to have a
running BGP session with.

	force_update (bool) – if True, the instance must bypass
any caching mechanism used to keep the BGP sessions status.

	Returns:

	None if the BGP session is not found, otherwise a dictionary
containing information about the BGP session:

	”ip”: “neighbor IP address”,

	”is_up”: [True|False]

	
get_routes(prefix, include_filtered=False, only_best=False)

	Get a list of all the known routes for prefix.

	Parameters:

	
	prefix (str) – the IP prefix that returned routes
must match. If None, all the routes are returned.

	include_filtered (bool) – include filtered routes / rejected
prefixes in the result.

	only_best (bool) – include only the best route toward
prefix.

	Returns:

	list of Route objects.

	
log_contains(s)

	Verifies if the BGP speaker’s logs contain the expected message.

	Parameters:

	s (str) – the message that is expected to be found in
the BGP speaker’s logs.

	Returns:

	True or False if the message is found or not.

	
log_contains_errors(allowed_errors=[], list_errors=False)

	Returns True if the BGP speaker’s log contains warning/errors.

	Parameters:

	
	allowed_errors (list) – list of strings representing errors
that are allowed to be found within the BGP speaker’s log.

	list_errors (bool) – when set to True, the functions returns
a touple (errors_found, list_of_errors).

	Returns:

	True of False if error messages
or warnings are found within the BGP speaker’s logs.
When list_errors is True, a touple (bool, str).

	Return type:

	When list_errors is False

	
reload_config()

	Reload BIRD configuration.

It runs the “[birdcl/birdcl6] configure” command to reload BIRD’s
configuration.

	
restart()

	Restart BIRD.

It runs the “[birdcl/birdcl6] configure” and “restart all” commands.

	
class pierky.arouteserver.tests.live_tests.bird.BIRDInstanceIPv4(*args, **kwargs)

	

	
class pierky.arouteserver.tests.live_tests.bird.BIRDInstanceIPv6(*args, **kwargs)

	

	BGP communities

	Default configuration

	Global scenario

	Route server graceful shutdown scenario

	Max-prefix limits

	Path hiding mitigation technique

	RFC8950 scenario

	Rich configuration example

	RFC9234 Route leak prevention using roles

	RPKI INVALID routes tagging

	RPKI BGP Origin Validation custom communities

	RTR protocol

	Tag prefixes/origin ASNs present/not-present in IRRDb

	Reject policy: tag

Built-in scenarios

Some notes about the built-in scenarios that are provided with the program follow.

	BGP communities

	Default configuration

	Global scenario

	Route server graceful shutdown scenario

	Max-prefix limits

	Path hiding mitigation technique

	RFC8950 scenario

	Rich configuration example

	RFC9234 Route leak prevention using roles

	RPKI INVALID routes tagging

	RPKI BGP Origin Validation custom communities

	RTR protocol

	Tag prefixes/origin ASNs present/not-present in IRRDb

	Reject policy: tag

RTT getter program for RTT-based actions

The program referenced by the rtt_getter_path option in the ARouteServer’s configuration file is used when RTT-based actions are configured (do not announce to peers with RTT higher than x, prepend to peers with RTT higher than y, …).

The path referenced by this option must point to a file that is executed during the configuration building process in order to obtain the RTT measured toward route server’s clients.

Since the configuration building process might be executed on a machine that is not on the peering LAN, or that is not expected to be able to perform RTT measurements toward the peers, the path to a custom script can be configured here in order to gather the RTT from external data sources.

The program is executed with the following arguments:

	client IP address

	client ASN

	internal client ID.

ARouteServer reads the result from the stdout; if the result contains multiple line, only the first one is parsed. The format must be the following:

	none means that, for the given client, no information are available;

	any number that matches the ^\d+[.]?\d*$ regex pattern is used to set the client’s RTT.

A proof of concept script is provided within the config.d/rtt_getter.sh file (here on GitHub [https://github.com/pierky/arouteserver/blob/master/config.d/rtt_getter.sh]).

Within the route server’s configuration, RTTs lower than 1 ms will be treated as 1 ms and values higher than 60000 ms will be adjusted to that limit.

 _static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 ARouteServer

 		
 Installation

 		
 Dependencies

 		
 Install using pip (suggested)

 		
 Install from GitHub

 		
 Setup and initialization

 		
 External programs

 		
 Upgrading

 		
 Development and pre-release versions

 		
 Ansible role

 		
 Usage

 		
 Environment variables

 		
 Route server graceful shutdown

 		
 Resources and MemoryError error messages

 		
 Library

 		
 Textual representation

 		
 Automatic clients.yml creation

 		
 Create clients.yml file from PeeringDB records

 		
 Create clients.yml file from Euro-IX member list JSON file

 		
 IX-F Member Export JSON file from clients.yml

 		
 Generation of route server AS-SET RPSL object

 		
 Live tests, development and customization

 		
 Template context data

 		
 Initialize a custom live test scenario

 		
 Supported BGP speakers and features

 		
 Supported features

 		
 Integration testing coverage

 		
 Total test cases per BGP speaker

 		
 Scenarios

 		
 Configuration

 		
 Program configuration

 		
 Route server’s configuration

 		
 YAML files inclusion and environment variables expansion

 		
 Building configurations for multiple route servers

 		
 Client-level options inheritance

 		
 IRRDBs-based filtering

 		
 RPKI

 		
 BGP Communities

 		
 Customization

 		
 Reject policy and invalid routes tracking

 		
 Caveats and limitations

 		
 Logging

 		
 Logging levels

 		
 Examples of configurations

 		
 Default

 		
 Feature-rich example

 		
 BIRD hooks example

 		
 Clients from Euro-IX member list JSON file

 		
 configure command output

 		
 IX-F Member Export files

 		
 BIRD v2/v3 and OpenBGPD RPKI RTR configuration

 		
 Tools

 		
 Playground

 		
 Invalid routes reporter

 		
 Live tests

 		
 Setting up the environment to run live tests

 		
 OpenBGPD live-tests environment

 		
 How to run built-in live tests

 		
 How it works

 		
 Built-in scenarios

 		
 BGP communities

 		
 Default configuration

 		
 Global scenario

 		
 Route server graceful shutdown scenario

 		
 Max-prefix limits

 		
 Path hiding mitigation technique

 		
 RFC8950 scenario

 		
 Rich configuration example

 		
 RFC9234 Route leak prevention using roles

 		
 RPKI INVALID routes tagging

 		
 RPKI BGP Origin Validation custom communities

 		
 RTR protocol

 		
 Tag prefixes/origin ASNs present/not-present in IRRDb

 		
 Reject policy: tag

 		
 How to build custom scenarios

 		
 Debugging live tests scenarios

 		
 Testing realistic scenarios

 		
 Future work

 		
 Short term

 		
 Mid term

 		
 Long term

 		
 Contributing

 		
 Change log

 		
 1.22.1

 		
 1.22.0

 		
 1.21.7

 		
 1.21.6

 		
 1.21.5

 		
 1.21.4

 		
 1.21.3

 		
 1.21.2

 		
 1.21.1

 		
 1.21.0

 		
 1.20.1

 		
 1.20.0

 		
 1.19.0

 		
 1.18.0

 		
 1.17.1

 		
 1.17.0

 		
 1.16.1

 		
 1.16.0

 		
 1.15.1

 		
 1.15.0

 		
 1.14.1

 		
 1.14.0

 		
 1.13.1

 		
 1.13.0

 		
 1.12.0

 		
 1.11.1

 		
 1.11.0

 		
 1.10.1

 		
 1.10.0

 		
 1.9.0

 		
 1.8.0

 		
 1.7.0

 		
 1.6.0

 		
 v1.5.1

 		
 v1.5.0

 		
 v1.4.0

 		
 v1.3.0

 		
 v1.2.0

 		
 v1.1.0

 		
 v1.0.1

 		
 v1.0.0

 		
 v0.26.0

 		
 v0.25.1

 		
 v0.25.0

 		
 v0.24.1

 		
 v0.24.0

 		
 v0.23.0

 		
 v0.22.2

 		
 v0.22.1

 		
 v0.22.0

 		
 v0.21.1

 		
 v0.21.0

 		
 v0.20.0

 		
 v0.19.1

 		
 v0.19.0

 		
 v0.18.0

 		
 v0.17.3

 		
 v0.17.2

 		
 v0.17.1

 		
 v0.17.0

 		
 v0.16.2

 		
 v0.16.1

 		
 v0.16.0

 		
 v0.15.0

 		
 v0.14.1

 		
 v0.14.0

 		
 v0.13.0

 		
 v0.12.3

 		
 v0.12.2

 		
 v0.12.1

 		
 v0.12.0

 		
 v0.11.0

 		
 v0.10.0

 		
 v0.9.3

 		
 v0.9.2

 		
 v0.9.1

 		
 v0.9.0

 		
 v0.8.1

 		
 v0.8.0

 		
 v0.7.0

 		
 v0.6.0

 		
 v0.5.0

 		
 v0.4.0

 		
 v0.3.0

 		
 v0.2.0

 		
 v0.1.2

 		
 v0.1.1

 		
 v0.1.0

 		
 v0.1.0a11

 		
 v0.1.0a10

 		
 v0.1.0a9

 		
 v0.1.0a8

 		
 v0.1.0a7

 		
 v0.1.0a6

 		
 v0.1.0a5

 		
 v0.1.0a4

 		
 v0.1.0a3

 		
 v0.1.0a2

 		
 v0.1.0a1

_static/file.png

