
ArkOS Documentation
Release 1.0.1

Noah Wood

Jan 12, 2018

Contents

1 Introduction 1

2 Pre-Requisites 3

3 Ark kernel coding style 5
3.1 1) Indentation . 5
3.2 2) Breaking long lines and strings . 6
3.3 3) Placing Braces and Spaces . 6
3.4 4) Naming . 9
3.5 5) Typedefs . 9
3.6 6) Functions . 10
3.7 7) Centralized exiting of functions . 11
3.8 8) Commenting . 12
3.9 9) You’ve made a mess of it . 12
3.10 10) Kconfig configuration files . 13
3.11 11) Data structures . 14
3.12 12) Macros, Enums and RTL . 14
3.13 13) Printing kernel messages . 15
3.14 14) Allocating memory . 16
3.15 15) The inline disease . 16
3.16 16) Function return values and names . 17
3.17 17) Don’t re-invent the kernel macros . 17
3.18 18) Editor modelines and other cruft . 17
3.19 19) Inline assembly . 18
3.20 20) Conditional Compilation . 18
3.21 Appendix I) References . 19

4 Indices and tables 21

i

ii

CHAPTER 1

Introduction

What it is:

• ArkOS is a 32bit Operating System and Kernel useful for learning about kernel programming, OS development,
and programming in general. It is free to use, hack, modify, and alter in anyway you want for whatever purpose
you wish.

• ArkOS is written for x86 processors, specifically i386. It will not work on ARM, MIPS, or any other processor
architecture as these have not yet been implemented.

What it is not:

• ArkOS is NOT a fully-functional operating system.

• ArkOS is NOT Linux, it runs on a custom kernel known as the Ark Kernel, and while it shares many idiosyn-
cracies with Linux and is inspired by Linux, it is not, in fact, a Linux based Operating System.

1

ArkOS Documentation, Release 1.0.1

2 Chapter 1. Introduction

CHAPTER 2

Pre-Requisites

The image files should be able to run on any x86 computer or emulator. If you wish to make changes to the source
code, you’ll need to follow the Developer Handbook

3

ArkOS Documentation, Release 1.0.1

4 Chapter 2. Pre-Requisites

CHAPTER 3

Ark kernel coding style

The Ark Kernel will follow the Linux Kernel coding style which is included, modified for Ark below:

This is a short document describing the preferred coding style for the ark kernel. Coding style is very personal, and I
won’t force my views on anybody, but this is what goes for anything that I have to be able to maintain, and I’d prefer
it for most other things too. Please at least consider the points made here.

First off, I’d suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it’s a great
symbolic gesture.

Anyway, here goes:

3.1 1) Indentation

Tabs are 8 characters, and thus indentations are also 8 characters. There are heretic movements that try to make
indentations 4 (or even 2!) characters deep, and that is akin to trying to define the value of PI to be 3.

Rationale: The whole idea behind indentation is to clearly define where a block of control starts and ends. Especially
when you’ve been looking at your screen for 20 straight hours, you’ll find it a lot easier to see how the indentation
works if you have large indentations.

Now, some people will claim that having 8-character indentations makes the code move too far to the right, and
makes it hard to read on a 80-character terminal screen. The answer to that is that if you need more than 3 levels of
indentation, you’re screwed anyway, and should fix your program.

In short, 8-char indents make things easier to read, and have the added benefit of warning you when you’re nesting
your functions too deep. Heed that warning.

The preferred way to ease multiple indentation levels in a switch statement is to align the switch and its subordinate
case labels in the same column instead of double-indenting the case labels. E.g.:

switch (suffix) {
case 'G':
case 'g':

mem <<= 30;

5

ArkOS Documentation, Release 1.0.1

break;
case 'M':
case 'm':

mem <<= 20;
break;

case 'K':
case 'k':

mem <<= 10;
/* fall through */

default:
break;

}

Don’t put multiple statements on a single line unless you have something to hide:

if (condition) do_this;
do_something_everytime;

Don’t put multiple assignments on a single line either. Kernel coding style is super simple. Avoid tricky expressions.

Outside of comments, documentation and except in Kconfig, spaces are never used for indentation, and the above
example is deliberately broken.

Get a decent editor and don’t leave whitespace at the end of lines.

3.2 2) Breaking long lines and strings

Coding style is all about readability and maintainability using commonly available tools.

The limit on the length of lines is 80 columns and this is a strongly preferred limit.

Statements longer than 80 columns will be broken into sensible chunks, unless exceeding 80 columns significantly
increases readability and does not hide information. Descendants are always substantially shorter than the parent and
are placed substantially to the right. The same applies to function headers with a long argument list. However, never
break user-visible strings such as printk messages, because that breaks the ability to grep for them.

3.3 3) Placing Braces and Spaces

The other issue that always comes up in C styling is the placement of braces. Unlike the indent size, there are few
technical reasons to choose one placement strategy over the other, but the preferred way, as shown to us by the prophets
Kernighan and Ritchie, is to put the opening brace last on the line, and put the closing brace first, thusly:

if (x is true) {
we do y

}

This applies to all non-function statement blocks (if, switch, for, while, do). E.g.:

switch (action) {
case KOBJ_ADD:

return "add";
case KOBJ_REMOVE:

return "remove";
case KOBJ_CHANGE:

6 Chapter 3. Ark kernel coding style

ArkOS Documentation, Release 1.0.1

return "change";
default:

return NULL;
}

However, there is one special case, namely functions: they have the opening brace at the beginning of the next line,
thus:

int function(int x)
{

body of function
}

Heretic people all over the world have claimed that this inconsistency is . . . well . . . inconsistent, but all right-thinking
people know that (a) K&R are right and (b) K&R are right. Besides, functions are special anyway (you can’t nest
them in C).

Note that the closing brace is empty on a line of its own, except in the cases where it is followed by a continuation of
the same statement, ie a while in a do-statement or an else in an if-statement, like this:

do {
body of do-loop

} while (condition);

and

if (x == y) {
..

} else if (x > y) {
...

} else {
....

}

Rationale: K&R.

Also, note that this brace-placement also minimizes the number of empty (or almost empty) lines, without any loss of
readability. Thus, as the supply of new-lines on your screen is not a renewable resource (think 25-line terminal screens
here), you have more empty lines to put comments on.

Do not unnecessarily use braces where a single statement will do.

if (condition)
action();

and

if (condition)
do_this();

else
do_that();

This does not apply if only one branch of a conditional statement is a single statement; in the latter case use braces in
both branches:

if (condition) {
do_this();
do_that();

3.3. 3) Placing Braces and Spaces 7

ArkOS Documentation, Release 1.0.1

} else {
otherwise();

}

3.3.1 3.1) Spaces

Ark kernel style for use of spaces depends (mostly) on function-versus-keyword usage. Use a space after (most)
keywords. The notable exceptions are sizeof, typeof, alignof, and __attribute__, which look somewhat like functions
(and are usually used with parentheses in Ark, although they are not required in the language, as in: sizeof info
after struct fileinfo info; is declared).

So use a space after these keywords:

if, switch, case, for, do, while

but not with sizeof, typeof, alignof, or __attribute__. E.g.,

s = sizeof(struct file);

Do not add spaces around (inside) parenthesized expressions. This example is bad:

s = sizeof(struct file);

When declaring pointer data or a function that returns a pointer type, the preferred use of * is adjacent to the data
name or function name and not adjacent to the type name. Examples:

char *ark_banner;
unsigned long long memparse(char *ptr, char **retptr);
char *match_strdup(substring_t *s);

Use one space around (on each side of) most binary and ternary operators, such as any of these:

= + - < > * / % | & ^ <= >= == != ? :

but no space after unary operators:

& * + - ~ ! sizeof typeof alignof __attribute__ defined

no space before the postfix increment & decrement unary operators:

++ --

no space after the prefix increment & decrement unary operators:

++ --

and no space around the . and -> structure member operators.

Do not leave trailing whitespace at the ends of lines. Some editors with smart indentation will insert whitespace at
the beginning of new lines as appropriate, so you can start typing the next line of code right away. However, some
such editors do not remove the whitespace if you end up not putting a line of code there, such as if you leave a blank
line. As a result, you end up with lines containing trailing whitespace.

Git will warn you about patches that introduce trailing whitespace, and can optionally strip the trailing whitespace for
you; however, if applying a series of patches, this may make later patches in the series fail by changing their context
lines.

8 Chapter 3. Ark kernel coding style

ArkOS Documentation, Release 1.0.1

3.4 4) Naming

C is a Spartan language, and so should your naming be. Unlike Modula-2 and Pascal programmers, C programmers
do not use cute names like ThisVariableIsATemporaryCounter. A C programmer would call that variable tmp, which
is much easier to write, and not the least more difficult to understand.

HOWEVER, while mixed-case names are frowned upon, descriptive names for global variables are a must. To call a
global function foo is a shooting offense.

GLOBAL variables (to be used only if you really need them) need to have descriptive names, as do global functions.
If you have a function that counts the number of active users, you should call that count_active_users() or
similar, you should not call it cntusr().

Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged - the compiler knows
the types anyway and can check those, and it only confuses the programmer. No wonder MicroSoft makes buggy
programs.

LOCAL variable names should be short, and to the point. If you have some random integer loop counter, it should
probably be called i. Calling it loop_counter is non-productive, if there is no chance of it being mis-understood.
Similarly, tmp can be just about any type of variable that is used to hold a temporary value.

If you are afraid to mix up your local variable names, you have another problem, which is called the function-growth-
hormone-imbalance syndrome. See chapter 6 (Functions).

3.5 5) Typedefs

Please don’t use things like vps_t. It’s a mistake to use typedef for structures and pointers. When you see a

vps_t a;

in the source, what does it mean? In contrast, if it says

struct virtual_container *a;

you can actually tell what a is.

Lots of people think that typedefs help readability. Not so. They are useful only for:

1. totally opaque objects (where the typedef is actively used to hide what the object is).

Example: pte_t etc. opaque objects that you can only access using the proper accessor functions.

Note: Opaqueness and accessor functions are not good in themselves. The reason we have them for
things like pte_t etc. is that there really is absolutely zero portably accessible information there.

2. Clear integer types, where the abstraction helps avoid confusion whether it is int or long.

u8/u16/u32 are perfectly fine typedefs, although they fit into category (d) better than here.

Note: Again - there needs to be a reason for this. If something is unsigned long, then there’s no reason to
do

typedef unsigned long myflags_t;

3.4. 4) Naming 9

ArkOS Documentation, Release 1.0.1

but if there is a clear reason for why it under certain circumstances might be an unsigned int and under
other configurations might be unsigned long, then by all means go ahead and use a typedef.

3. when you use sparse to literally create a new type for type-checking.

4. New types which are identical to standard C99 types, in certain exceptional circumstances.

Although it would only take a short amount of time for the eyes and brain to become accustomed to the standard
types like uint32_t, some people object to their use anyway.

Therefore, the Ark-specific u8/u16/u32/u64 types and their signed equivalents which are identical to stan-
dard types are permitted – although they are not mandatory in new code of your own.

When editing existing code which already uses one or the other set of types, you should conform to the existing
choices in that code.

5. Types safe for use in userspace.

In certain structures which are visible to userspace, we cannot require C99 types and cannot use the u32 form
above. Thus, we use __u32 and similar types in all structures which are shared with userspace.

Maybe there are other cases too, but the rule should basically be to NEVER EVER use a typedef unless you can clearly
match one of those rules.

In general, a pointer, or a struct that has elements that can reasonably be directly accessed should never be a typedef.

3.6 6) Functions

Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of text (the
ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.

The maximum length of a function is inversely proportional to the complexity and indentation level of that function.
So, if you have a conceptually simple function that is just one long (but simple) case-statement, where you have to do
lots of small things for a lot of different cases, it’s OK to have a longer function.

However, if you have a complex function, and you suspect that a less-than-gifted first-year high-school student might
not even understand what the function is all about, you should adhere to the maximum limits all the more closely. Use
helper functions with descriptive names (you can ask the compiler to in-line them if you think it’s performance-critical,
and it will probably do a better job of it than you would have done).

Another measure of the function is the number of local variables. They shouldn’t exceed 5-10, or you’re doing
something wrong. Re-think the function, and split it into smaller pieces. A human brain can generally easily keep
track of about 7 different things, anything more and it gets confused. You know you’re brilliant, but maybe you’d like
to understand what you did 2 weeks from now.

In source files, separate functions with one blank line. If the function is exported, the EXPORT macro for it should
follow immediately after the closing function brace line. E.g.:

int system_is_up(void)
{

return system_state == SYSTEM_RUNNING;
}
EXPORT_SYMBOL(system_is_up);

In function prototypes, include parameter names with their data types. Although this is not required by the C language,
it is preferred in Ark because it is a simple way to add valuable information for the reader.

10 Chapter 3. Ark kernel coding style

ArkOS Documentation, Release 1.0.1

3.7 7) Centralized exiting of functions

Albeit deprecated by some people, the equivalent of the goto statement is used frequently by compilers in form of the
unconditional jump instruction.

The goto statement comes in handy when a function exits from multiple locations and some common work such as
cleanup has to be done. If there is no cleanup needed then just return directly.

Choose label names which say what the goto does or why the goto exists. An example of a good name could be
out_free_buffer: if the goto frees buffer. Avoid using GW-BASIC names like err1: and err2:, as you
would have to renumber them if you ever add or remove exit paths, and they make correctness difficult to verify
anyway.

The rationale for using gotos is:

• unconditional statements are easier to understand and follow

• nesting is reduced

• errors by not updating individual exit points when making modifications are prevented

• saves the compiler work to optimize redundant code away ;)

int fun(int a)
{

int result = 0;
char *buffer;

buffer = kmalloc(SIZE, GFP_KERNEL);
if (!buffer)

return -ENOMEM;

if (condition1) {
while (loop1) {

...
}
result = 1;
goto out_free_buffer;

}
...

out_free_buffer:
kfree(buffer);
return result;

}

A common type of bug to be aware of is one err bugs which look like this:

err:
kfree(foo->bar);
kfree(foo);
return ret;

The bug in this code is that on some exit paths foo is NULL. Normally the fix for this is to split it up into two error
labels err_free_bar: and err_free_foo::

err_free_bar:
kfree(foo->bar);

err_free_foo:
kfree(foo);
return ret;

3.7. 7) Centralized exiting of functions 11

ArkOS Documentation, Release 1.0.1

Ideally you should simulate errors to test all exit paths.

3.8 8) Commenting

Comments are good, but there is also a danger of over-commenting. NEVER try to explain HOW your code works in
a comment: it’s much better to write the code so that the working is obvious, and it’s a waste of time to explain badly
written code.

Generally, you want your comments to tell WHAT your code does, not HOW. Also, try to avoid putting comments
inside a function body: if the function is so complex that you need to separately comment parts of it, you should
probably go back to chapter 6 for a while. You can make small comments to note or warn about something particularly
clever (or ugly), but try to avoid excess. Instead, put the comments at the head of the function, telling people what it
does, and possibly WHY it does it.

When commenting the kernel API functions, please use the kernel-doc format. See the files at Documentation/doc-
guide/ and scripts/kernel-doc for details.

The preferred style for long (multi-line) comments is:

/*
* This is the preferred style for multi-line

* comments in the Ark kernel source code.

* Please use it consistently.

*
* Description: A column of asterisks on the left side,

* with beginning and ending almost-blank lines.

*/

For files in net/ and drivers/net/ the preferred style for long (multi-line) comments is a little different.

/* The preferred comment style for files in net/ and drivers/net

* looks like this.

*
* It is nearly the same as the generally preferred comment style,

* but there is no initial almost-blank line.

*/

It’s also important to comment data, whether they are basic types or derived types. To this end, use just one data
declaration per line (no commas for multiple data declarations). This leaves you room for a small comment on each
item, explaining its use.

3.9 9) You’ve made a mess of it

That’s OK, we all do. You’ve probably been told by your long-time Unix user helper that GNU emacs automatically
formats the C sources for you, and you’ve noticed that yes, it does do that, but the defaults it uses are less than desirable
(in fact, they are worse than random typing - an infinite number of monkeys typing into GNU emacs would never make
a good program).

So, you can either get rid of GNU emacs, or change it to use saner values. To do the latter, you can stick the following
in your .emacs file:

12 Chapter 3. Ark kernel coding style

ArkOS Documentation, Release 1.0.1

(defun c-lineup-arglist-tabs-only (ignored)
"Line up argument lists by tabs, not spaces"
(let* ((anchor (c-langelem-pos c-syntactic-element))

(column (c-langelem-2nd-pos c-syntactic-element))
(offset (- (1+ column) anchor))
(steps (floor offset c-basic-offset)))

(* (max steps 1)
c-basic-offset)))

(add-hook 'c-mode-common-hook
(lambda ()
;; Add kernel style
(c-add-style
"ark-tabs-only"
'("ark" (c-offsets-alist

(arglist-cont-nonempty
c-lineup-gcc-asm-reg
c-lineup-arglist-tabs-only))))))

(add-hook 'c-mode-hook
(lambda ()
(let ((filename (buffer-file-name)))
;; Enable kernel mode for the appropriate files
(when (and filename

(string-match (expand-file-name "~/src/ark-trees")
filename))

(setq indent-tabs-mode t)
(setq show-trailing-whitespace t)
(c-set-style "ark-tabs-only")))))

This will make emacs go better with the kernel coding style for C files below ~/src/ark-trees.

But even if you fail in getting emacs to do sane formatting, not everything is lost: use indent.

Now, again, GNU indent has the same brain-dead settings that GNU emacs has, which is why you need to give it a few
command line options. However, that’s not too bad, because even the makers of GNU indent recognize the authority of
K&R (the GNU people aren’t evil, they are just severely misguided in this matter), so you just give indent the options
-kr -i8 (stands for K&R, 8 character indents), or use scripts/Lindent, which indents in the latest
style.

indent has a lot of options, and especially when it comes to comment re-formatting you may want to take a look at
the man page. But remember: indent is not a fix for bad programming.

3.10 10) Kconfig configuration files

For all of the Kconfig* configuration files throughout the source tree, the indentation is somewhat different. Lines
under a config definition are indented with one tab, while help text is indented an additional two spaces. Example:

config AUDIT
bool "Auditing support"
depends on NET
help

Enable auditing infrastructure that can be used with another
kernel subsystem. Does not do system-call
auditing without CONFIG_AUDITSYSCALL.

3.10. 10) Kconfig configuration files 13

ArkOS Documentation, Release 1.0.1

Seriously dangerous features (such as write support for certain filesystems) should advertise this prominently in their
prompt string:

config ADFS_FS_RW
bool "ADFS write support (DANGEROUS)"
depends on ADFS_FS
...

For full documentation on the configuration files, see the file Documentation/kbuild/kconfig-language.txt.

3.11 11) Data structures

Data structures that have visibility outside the single-threaded environment they are created and destroyed in should
always have reference counts. In the kernel, garbage collection doesn’t exist (and outside the kernel garbage collection
is slow and inefficient), which means that you absolutely have to reference count all your uses.

Reference counting means that you can avoid locking, and allows multiple users to have access to the data structure in
parallel - and not having to worry about the structure suddenly going away from under them just because they slept or
did something else for a while.

Note that locking is not a replacement for reference counting. Locking is used to keep data structures coherent, while
reference counting is a memory management technique. Usually both are needed, and they are not to be confused with
each other.

Many data structures can indeed have two levels of reference counting, when there are users of different classes.
The subclass count counts the number of subclass users, and decrements the global count just once when the subclass
count goes to zero.

Examples of this kind of multi-level-reference-counting can be found in memory management (struct
mm_struct: mm_users and mm_count), and in filesystem code (struct super_block: s_count and s_active).

Remember: if another thread can find your data structure, and you don’t have a reference count on it, you almost
certainly have a bug.

3.12 12) Macros, Enums and RTL

Names of macros defining constants and labels in enums are capitalized.

#define CONSTANT 0x12345

Enums are preferred when defining several related constants.

CAPITALIZED macro names are appreciated but macros resembling functions may be named in lower case.

Generally, inline functions are preferable to macros resembling functions.

Macros with multiple statements should be enclosed in a do - while block:

#define macrofun(a, b, c) \
do { \

if (a == 5) \
do_this(b, c); \

} while (0)

Things to avoid when using macros:

1. macros that affect control flow:

14 Chapter 3. Ark kernel coding style

ArkOS Documentation, Release 1.0.1

#define FOO(x) \
do { \

if (blah(x) < 0) \
return -EBUGGERED; \

} while (0)

is a very bad idea. It looks like a function call but exits the calling function; don’t break the internal parsers of
those who will read the code.

2. macros that depend on having a local variable with a magic name:

#define FOO(val) bar(index, val)

might look like a good thing, but it’s confusing as hell when one reads the code and it’s prone to breakage from
seemingly innocent changes.

3) macros with arguments that are used as l-values: FOO(x) = y; will bite you if somebody e.g. turns FOO into an
inline function.

4) forgetting about precedence: macros defining constants using expressions must enclose the expression in parenthe-
ses. Beware of similar issues with macros using parameters.

#define CONSTANT 0x4000
#define CONSTEXP (CONSTANT | 3)

5) namespace collisions when defining local variables in macros resembling functions:

#define FOO(x) \
({ \

typeof(x) ret; \
ret = calc_ret(x); \
(ret); \

})

ret is a common name for a local variable - __foo_ret is less likely to collide with an existing variable.

The cpp manual deals with macros exhaustively. The gcc internals manual also covers RTL which is used frequently
with assembly language in the kernel.

3.13 13) Printing kernel messages

Kernel developers like to be seen as literate. Do mind the spelling of kernel messages to make a good impression.
Do not use crippled words like dont; use do not or don't instead. Make the messages concise, clear, and
unambiguous.

Kernel messages do not have to be terminated with a period.

Printing numbers in parentheses (%d) adds no value and should be avoided.

There are a number of driver model diagnostic macros in <ark/device.h> which you should use to make sure messages
are matched to the right device and driver, and are tagged with the right level: dev_err(), dev_warn(), dev_info(), and
so forth. For messages that aren’t associated with a particular device, <ark/printk.h> defines pr_notice(), pr_info(),
pr_warn(), pr_err(), etc.

Coming up with good debugging messages can be quite a challenge; and once you have them, they can be a huge help
for remote troubleshooting. However debug message printing is handled differently than printing other non-debug
messages. While the other pr_XXX() functions print unconditionally, pr_debug() does not; it is compiled out by

3.13. 13) Printing kernel messages 15

ArkOS Documentation, Release 1.0.1

default, unless either DEBUG is defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also, and
a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to the ones already enabled by DEBUG.

Many subsystems have Kconfig debug options to turn on -DDEBUG in the corresponding Makefile; in other cases
specific files #define DEBUG. And when a debug message should be unconditionally printed, such as if it is already
inside a debug-related #ifdef section, printk(KERN_DEBUG . . .) can be used.

3.14 14) Allocating memory

The kernel provides the following general purpose memory allocators: kmalloc(), kzalloc(), kmalloc_array(), kcal-
loc(), vmalloc(), and vzalloc(). Please refer to the API documentation for further information about them.

The preferred form for passing a size of a struct is the following:

p = kmalloc(sizeof(*p), ...);

The alternative form where struct name is spelled out hurts readability and introduces an opportunity for a bug when
the pointer variable type is changed but the corresponding sizeof that is passed to a memory allocator is not.

Casting the return value which is a void pointer is redundant. The conversion from void pointer to any other pointer
type is guaranteed by the C programming language.

The preferred form for allocating an array is the following:

p = kmalloc_array(n, sizeof(...), ...);

The preferred form for allocating a zeroed array is the following:

p = kcalloc(n, sizeof(...), ...);

Both forms check for overflow on the allocation size n * sizeof(. . .), and return NULL if that occurred.

3.15 15) The inline disease

There appears to be a common misperception that gcc has a magic “make me faster” speedup option called inline.
While the use of inlines can be appropriate (for example as a means of replacing macros, see Chapter 12), it very
often is not. Abundant use of the inline keyword leads to a much bigger kernel, which in turn slows the system as a
whole down, due to a bigger icache footprint for the CPU and simply because there is less memory available for the
pagecache. Just think about it; a pagecache miss causes a disk seek, which easily takes 5 milliseconds. There are a
LOT of cpu cycles that can go into these 5 milliseconds.

A reasonable rule of thumb is to not put inline at functions that have more than 3 lines of code in them. An exception
to this rule are the cases where a parameter is known to be a compiletime constant, and as a result of this constantness
you know the compiler will be able to optimize most of your function away at compile time. For a good example of
this later case, see the kmalloc() inline function.

Often people argue that adding inline to functions that are static and used only once is always a win since there is no
space tradeoff. While this is technically correct, gcc is capable of inlining these automatically without help, and the
maintenance issue of removing the inline when a second user appears outweighs the potential value of the hint that
tells gcc to do something it would have done anyway.

16 Chapter 3. Ark kernel coding style

ArkOS Documentation, Release 1.0.1

3.16 16) Function return values and names

Functions can return values of many different kinds, and one of the most common is a value indicating whether the
function succeeded or failed. Such a value can be represented as an error-code integer (-Exxx = failure, 0 = success)
or a succeeded boolean (0 = failure, non-zero = success).

Mixing up these two sorts of representations is a fertile source of difficult-to-find bugs. If the C language included a
strong distinction between integers and booleans then the compiler would find these mistakes for us. . . but it doesn’t.
To help prevent such bugs, always follow this convention:

If the name of a function is an action or an imperative command,
the function should return an error-code integer. If the name
is a predicate, the function should return a "succeeded" boolean.

For example, add work is a command, and the add_work() function returns 0 for success or -EBUSY for failure. In
the same way, PCI device present is a predicate, and the pci_dev_present() function returns 1 if it succeeds in
finding a matching device or 0 if it doesn’t.

All EXPORTed functions must respect this convention, and so should all public functions. Private (static) functions
need not, but it is recommended that they do.

Functions whose return value is the actual result of a computation, rather than an indication of whether the computation
succeeded, are not subject to this rule. Generally they indicate failure by returning some out-of-range result. Typical
examples would be functions that return pointers; they use NULL or the ERR_PTR mechanism to report failure.

3.17 17) Don’t re-invent the kernel macros

The header file include/ark/kernel.h contains a number of macros that you should use, rather than explicitly coding
some variant of them yourself. For example, if you need to calculate the length of an array, take advantage of the
macro

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

Similarly, if you need to calculate the size of some structure member, use

#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))

There are also min() and max() macros that do strict type checking if you need them. Feel free to peruse that header
file to see what else is already defined that you shouldn’t reproduce in your code.

3.18 18) Editor modelines and other cruft

Some editors can interpret configuration information embedded in source files, indicated with special markers. For
example, emacs interprets lines marked like this:

-*- mode: c -*-

Or like this:

/*
Local Variables:
compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"

3.16. 16) Function return values and names 17

ArkOS Documentation, Release 1.0.1

End:

*/

Vim interprets markers that look like this:

/* vim:set sw=8 noet */

Do not include any of these in source files. People have their own personal editor configurations, and your source files
should not override them. This includes markers for indentation and mode configuration. People may use their own
custom mode, or may have some other magic method for making indentation work correctly.

3.19 19) Inline assembly

In architecture-specific code, you may need to use inline assembly to interface with CPU or platform functionality.
Don’t hesitate to do so when necessary. However, don’t use inline assembly gratuitously when C can do the job. You
can and should poke hardware from C when possible.

Consider writing simple helper functions that wrap common bits of inline assembly, rather than repeatedly writing
them with slight variations. Remember that inline assembly can use C parameters.

Large, non-trivial assembly functions should go in .S files, with corresponding C prototypes defined in C header files.
The C prototypes for assembly functions should use asmlinkage.

You may need to mark your asm statement as volatile, to prevent GCC from removing it if GCC doesn’t notice any
side effects. You don’t always need to do so, though, and doing so unnecessarily can limit optimization.

When writing a single inline assembly statement containing multiple instructions, put each instruction on a separate
line in a separate quoted string, and end each string except the last with \n\t to properly indent the next instruction
in the assembly output:

asm ("magic %reg1, #42\n\t"
"more_magic %reg2, %reg3"
: /* outputs */ : /* inputs */ : /* clobbers */);

3.20 20) Conditional Compilation

Wherever possible, don’t use preprocessor conditionals (#if, #ifdef) in .c files; doing so makes code harder to read
and logic harder to follow. Instead, use such conditionals in a header file defining functions for use in those .c files,
providing no-op stub versions in the #else case, and then call those functions unconditionally from .c files. The
compiler will avoid generating any code for the stub calls, producing identical results, but the logic will remain easy
to follow.

Prefer to compile out entire functions, rather than portions of functions or portions of expressions. Rather than putting
an ifdef in an expression, factor out part or all of the expression into a separate helper function and apply the conditional
to that function.

If you have a function or variable which may potentially go unused in a particular configuration, and the compiler
would warn about its definition going unused, mark the definition as __maybe_unused rather than wrapping it in a
preprocessor conditional. (However, if a function or variable always goes unused, delete it.)

Within code, where possible, use the IS_ENABLED macro to convert a Kconfig symbol into a C boolean expression,
and use it in a normal C conditional:

18 Chapter 3. Ark kernel coding style

ArkOS Documentation, Release 1.0.1

if (IS_ENABLED(CONFIG_SOMETHING)) {
...

}

The compiler will constant-fold the conditional away, and include or exclude the block of code just as with an #ifdef,
so this will not add any runtime overhead. However, this approach still allows the C compiler to see the code inside
the block, and check it for correctness (syntax, types, symbol references, etc). Thus, you still have to use an #ifdef if
the code inside the block references symbols that will not exist if the condition is not met.

At the end of any non-trivial #if or #ifdef block (more than a few lines), place a comment after the #endif on the same
line, noting the conditional expression used. For instance:

#ifdef CONFIG_SOMETHING
...
#endif /* CONFIG_SOMETHING */

3.21 Appendix I) References

The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie. Prentice Hall, Inc.,
1988. ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).

The Practice of Programming by Brian W. Kernighan and Rob Pike. Addison-Wesley, Inc., 1999. ISBN 0-201-61586-
X.

GNU manuals - where in compliance with K&R and this text - for cpp, gcc, gcc internals and indent, all available from
http://www.gnu.org/manual/

WG14 is the international standardization working group for the programming language C, URL: http://www.open-std.
org/JTC1/SC22/WG14/

Kernel process/coding-style.rst, by greg@kroah.com at OLS 2002: http://www.kroah.com/linux/talks/ols_2002_
kernel_codingstyle_talk/html/

3.21. Appendix I) References 19

http://www.gnu.org/manual/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG14/
mailto:greg@kroah.com
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/

ArkOS Documentation, Release 1.0.1

20 Chapter 3. Ark kernel coding style

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

21

	Introduction
	Pre-Requisites
	Ark kernel coding style
	1) Indentation
	2) Breaking long lines and strings
	3) Placing Braces and Spaces
	4) Naming
	5) Typedefs
	6) Functions
	7) Centralized exiting of functions
	8) Commenting
	9) You’ve made a mess of it
	10) Kconfig configuration files
	11) Data structures
	12) Macros, Enums and RTL
	13) Printing kernel messages
	14) Allocating memory
	15) The inline disease
	16) Function return values and names
	17) Don’t re-invent the kernel macros
	18) Editor modelines and other cruft
	19) Inline assembly
	20) Conditional Compilation
	Appendix I) References

	Indices and tables

