
Aristotle Metadata Registry
Documentation

Release 0.0.1

Samuel Spencer

Jan 23, 2020

Contents

1 Table of Contents 3
1.1 Aristotle Metadata Registry Mission Statement . 3
1.2 Installing Aristotle Metadata Registry . 3
1.3 Features of Aristotle-MDR . 13
1.4 The Aristotle Metadata Registry API . 14
1.5 Extending Aristotle-MDR . 15
1.6 Developing and contributing to the Aristotle Metadata Registry . 38
1.7 Customing the Aristotle Metadata Registry . 39
1.8 Creating and deploying user help . 39

2 Indices and tables 43

Python Module Index 45

Index 47

i

ii

Aristotle Metadata Registry Documentation, Release 0.0.1

Aristotle Metadata Registry is an open-source metadata registry framework as laid out by the requirements of the
ISO/IEC 11179:2013 specification.

Aristotle Metadata Registry represents a new way to manage and federate content built on and extending the principles
of leading metadata registry. The code of Aristotle-MDR is completely open-source, building on the Django web
framework and the mature model of the ISO 11179 standard, agencies can easily run their own metadata registries
while also having the ability to extend the information model and tap into the permissions and roles defined in ISO
11179.

By allowing organisations to run their own independent registries they are able to expose authoritative metadata and
the governance processes behind its creation, and building upon known and open systems agencies, can build upon a
stable platform or the sharing of 11179 metadata items.

Contents 1

http://metadata-standards.org/11179/

Aristotle Metadata Registry Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Table of Contents

1.1 Aristotle Metadata Registry Mission Statement

The core principle behind the design of the Aristotle Metadata Registry is to build a framework for building ISO/IEC
11179 compliant Metadata Registries, using 100% Free Open Source Software, and released to the public as Free
Open Source Software.

By designing Aristotle-MDR in an extensible way, the core data model of Aristotle aims to be as close to the model of
ISO/IEC 11179-3, without burdening the framework with unnecessary code.

Aristotle-MDR is designed to provide the framework for a metadata registry, and is explicitly not designed to be a
standard web content management system, and a core assumption in the design of Aristotle is that the management of
‘non-metadata’ content is a matter for each party installing Aristotle-MDR to handle independent of the registry.

There are some simple url hooks available in Aristotle for including extra pages using the django template system,
alternatively Django Packages has a list of a number of excellent CMS packages for Django. Many of these should be
able slot in besides the Aristotle-MDR app in a custom site, without having to alter the code or compromise the core
principles of Aristotle.

1.2 Installing Aristotle Metadata Registry

1.2.1 Easy installer documentation

This is a quick guide to setting up a new metadata registry based on the Aristotle Metadata Registry framework using
the easy installer.

Such a server should be considered for demonstration purposes, and deployment should be done in accordance with
the best practices and specific requirements of the installing agency.

For more information on configuring a more complete installation review the help article Integrating Aristotle-MDR
with a Django project.

3

https://www.djangopackages.com/
https://www.djangopackages.com/grids/g/cms/

Aristotle Metadata Registry Documentation, Release 0.0.1

1. Make sure you have a server setup for hosting the project with an appropriate WSGI web server configured. If
the server is only used for development, the inbuilt django server can be accessed by running the ./manage.
py runserver command.

PythonAnywhere also provides a free python server suitable for development and low traffic sites.

2. (Optional but recommended) Configure a virtualenv for your server, so that the dependancies for Aristotle-
MDR do conflict any other software you may be running. If you are running Aristotle on an isolated server with
root privileges you may skip this step.

For PythonAnywhere, information is available on installing virtualenv and configuring a new virtualenv.

3. Next install the Aristotle Metadata Registry package. This can be done using pip with the following command
pip install aristotle-metadata-registry. If you already have a version installed your can
update with pip install -U aristotle-metadata-registry

4. To run the easy installer simply run aristotle-installer from the command line. There are a number of
command line arguments that are explained in the help documentation which can be accessed from the command
line:

``aristotle-installer --help``

To install your registry in a different directory use the –dir option python install.py --dir ./
myregistry

This installer will setup an example registry, and will prompt you for a new name, ask for a few additional
settings, install requirements, setup a database and collect the static files.

5. If required, browse to the directory of your project that was named in the above directory, and edit the
settings.py files to meet your requirements. Although the installer generates a pseudo-random hash for
the SECRET_KEY, It is strongly recommmended you generate a fresh SECRET_KEY. Also consider which
customisations to implement using the options in the ARISTOTLE_SETTINGS dictionary - details of which
can be found under Configuring the behavior of Aristotle-MDR.

The example registry includes commented out lines for some useful Aristotle-MDR extensions. If you wish to
use these, remove the comments as directed by the documentation in settings.py.

6. If you are using a WSGI server (such as PythonAnywhere) you’ll need to either point your server to the projects
wsgi.py file or update your WSGI configuration.

For more information on configuring the PythonAnywhere WSGI server review their documentation.

7. Start (or restart) the development server and visit its address. In the case of a local development server this will
likely be 127.0.0.1.

Using a different database

The easy installer using a simple SQLite database for storing content, however for large scale production servers with
multiple concurrent users this may not be appropriate. Django supports a wide range of database server which can be
used instead of SQLite. However to the very specific nature of the options required to connect to a database, to use an
alternate database with the easy installer a few additional steps are required.

1. Let the installer run to completion, without the --dry option, and selecting yes when asked Ready to
install requirements? (y/n):.

2. Edit your settings.py file and add a variable DATABASES set to connect to your database as described in
the Django documentation.

3. Remove the pos.db3 file that will have been created during the installation. This file is the name of the default
SQLite database and can be safely deleted without any issues.

4 Chapter 1. Table of Contents

http://www.PythonAnywhere.com
https://www.pythonanywhere.com/wiki/InstallingVirtualenvWrapper
https://www.pythonanywhere.com/wiki/VirtualEnvForNewerDjango
https://www.pythonanywhere.com/wiki/DjangoTutorial
https://docs.djangoproject.com/en/stable/ref/databases/
https://docs.djangoproject.com/en/stable/ref/databases/
https://docs.djangoproject.com/en/stable/ref/databases/

Aristotle Metadata Registry Documentation, Release 0.0.1

4. Call the Django migrate command again using the updated settings:

./manage.py migrate

5. Start (or restart) the development server and visit its address. In the case of a local development server this will
likely be 127.0.0.1.

Disabling the DEBUG options

Because of the The easy installer using a simple SQLite database for storing content, however for large scale produc-
tion servers with multiple concurrent users this may not be appropriate. Django supports a wide range of database
servers which can be used instead of SQLite. However to the very specific nature of the options required to connect to
a a database, to use an alternate database with the easy installer a few additional steps are required.

1. Let the installer run to completion, without the --dry option, and selecting yes when asked Ready to
install requirements? (y/n):.

2. Edit your settings.py file and set the DEBUG to False:: DEBUG=False

3. Remove the pos.db3 file that will have been created during the installation. This file is the name of the default
SQLite database and will have a number of example objects and users created within it as the migrate step when
DEBUG is set to True.

4. Call the Django migrate command again using the updated settings:

./manage.py migrate

5. Start (or restart) the development server and visit its address. In the case of a local development server this will
likely be 127.0.0.1. To access the administators sections of the site you will need to create a super user.

Creating a superuser for the registry

Creating a superuser is covered in more depth in the Django documentation, however a quick guide is given here.
These steps assume a valid database exists and has been appropriately set up with the Django migrate command.

To create a super user, browse to the project folder and run the command:

$ django-admin createsuperuser

This will prompt you for a username, email and password.

A username and email can be applied with the --username and --email switches respectively. For example:

$ django-admin createsuperuser --username=my_registry_admin --email=admin@registry.
→˓example.gov

1.2.2 Integrating Aristotle-MDR with a Django project

Note: this guide relies on some experience with Python and Django. For new users looking at getting a site up and
running look at the Easy installer documentation.

The first step is starting a project as described in the Django tutorial. Once this is done, follow the steps below to setup
Aristotle-MDR.

1. Add “aristotle_mdr” to your INSTALLED_APPS setting like this:

1.2. Installing Aristotle Metadata Registry 5

https://docs.djangoproject.com/en/stable/ref/databases/
https://docs.djangoproject.com/en/stable/ref/databases/
https://docs.djangoproject.com/en/1.8/ref/django-admin/#django-admin-createsuperuser
https://docs.djangoproject.com/en/1.7/intro/tutorial01/

Aristotle Metadata Registry Documentation, Release 0.0.1

INSTALLED_APPS = (
...
'haystack',
'aristotle_mdr',
...

)

To ensure that search indexing works properly haystack must be installed before aristotle_mdr. If you want to
take advantage of Aristotle’s WCAG-2.0 access-key shortcut improvements for the admin interface, make sure
it is installed before the django admin app.

2. Include the Aristotle-MDR URLconf in your project urls.py. Because Aristotle will form the majority of the
interactions with the site, as well as including a number of URLconfs for supporting apps its recommended to
included it at the server root, like this:

url(r'^/', include('aristotle_mdr.urls')),

3. Create the database for the metadata registry using the Django migrate command:

python manage.py migrate

4. Start the development server with python manage.py runserver and visit http://127.0.0.1:8000/ to see
the home page.

For a complete example of how to successfully include Aristotle, see the example_mdr directory.

1.2.3 Aristotle Static Files

Webpack

Aristotle uses webpack to bundle most static files served on the site. We also use webpack to compile .less stylesheets
and to compile es6 javascript into backwards compatible versions using babel. More information about weback can
be found here: https://webpack.js.org/

Arisotle Webpack Structure

The webpack project lives under /assets in the mono-repo. All pages with different js or css should have their own
webpack entrypoint. All files in /src/pages are treated as entrypoints. /src/lib is for custom js that is used across
entrypoints. /src/styles is where all the .css and .less stylesheets are found and src/components are where single file
vue components are found

During Development

When making changes to aristotle we recommend using docker-compose to run your development version. This will
automatically run the webpack build for you whenever a file is updated. The contianer will need to be restarted when
adding a new page or changing the webpack config. This can be done with the docker-compose restart webpack
command

Note that slightly different webpack configuration is used in development. The common, dev and prod configs can be
found in /assets

If you wish to see what is in each of the generated bundles you can view the report generated with each build. This
can be found at /assets/dist/report.html and gives a graphical represantaion of the bundles

6 Chapter 1. Table of Contents

http://127.0.0.1:8000/
https://webpack.js.org/

Aristotle Metadata Registry Documentation, Release 0.0.1

Installing Dependancies

We use npm for dependancy management. You can run npm install from the assets directory to install all dependancies.
This is not neccessary when using docker-compose

Running Builds

If you want to run a production build you can run npm run build. For a continuously updating development build you
can run npm run watch

Bundle Loading

Bundles are loaded into the django template using django-webpack-loader. This provides some simple template tags
to load the bundles. The css and js bundles should be loaded in the webpack_bundle and webpack_css_bundle blocks
defined in base.html. See sandbox.html for an example

Testing

Front end tests are written using the mocha framework and chai assertion library and can be found in /assets/test. The
tests are also processed with webpack before being executed by the karma test runner.

You can run the tests with npm run test. They are also executed by travis on each pull request

Linting (Style Checking)

Our package.json file contains some eslint configuration for style checking. Eslint can be run with npm run lint

1.2.4 Configuring the behavior of Aristotle-MDR

Environment variables

The default django settings file for Aristotle-MDR looks for a number of enviromnet variables for storing files or
configuring your webapp. These are all prefixed with aristotlemdr:.

BASE_DIR Defaults to the path of where Aristotle is installed. Its highly adviced this is changed.

SECRET_KEY Defaults to a very insecure value - you MUST change this before going into production. From Django
settings documentation:

A secret key for a particular Django installation. This is used to provide cryptographic signing, and
should be set to a unique, unpredictable value.

STATIC_ROOT Defaults to the value of BASE_DIR + "/static" From Django settings documentation:

A secret key for a particular Django installation. This is used to provide cryptographic signing, and
should be set to a unique, unpredictable value.

MEDIA_ROOT Defaults to the value of BASE_DIR + "/media" From Django settings documentation:

Absolute filesystem path to the directory that will hold user-uploaded files.

ARISTOTLE_DISABLE_ASYNC_SIGNALS Default: False Disables asynchronous signal processing

1.2. Installing Aristotle Metadata Registry 7

https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-MEDIA_ROOT

Aristotle Metadata Registry Documentation, Release 0.0.1

ARISTOTLE_SETTINGS

The following are required within a dictionary in the settings for the configured Django project.

CONTENT_EXTENSIONS A list of the namespaces used to add additional content types, these are used when dis-
covering the available extensions for about pages - required format a list of strings.

BULK_ACTIONS A list of fully-qualified python paths to the bulk action form classes that provide the action. More
information on configuring bulk actions is available here.

PDF_PAGE_SIZE The default page size to deliver PDF downloads if a page size is not specified in the URL

SEPARATORS A key:value set that describes the separators to be used for name suggestions in the admin inter-
face. These are set by specifying the key as the django model name for a given model, and the value as
the separator. When a value for a model isn’t stated in this field it defaults to a hyphen -. The default set-
tings in required_settings.py set additional defaults and specify the separator for “DataElements” as
a comma with a single space , `` and the separator for "DataElementConcepts" as an
em-dash ``-.

SITE_NAME The main title for the site - required format string or unicode.

SITE_BRAND A URL to the logo to use for the site, this can be relative or absolute.

SITE_INTRO The introductory text use on the home page as a prompt for users - required format string or
unicode.

WORKGROUP_CHANGES An array that specified which classes of user can move items between workgroups. Possible
options include 'admin', 'manager' or 'submitter'.

DOWNLOADERS A list of download options - explained below:

ARISTOTLE_SETTINGS.DOWNLOADERS

This is a list of tuples that define the different download options that will be made available to users. This tuple defines
in order:

• filetype used in the URL to catch this download type - must match the regex [a-zA-Z0-9\-\.]+.

• the name presented on the download menu

• The Font-Awesome icon used in the download menu

• the python module that includes the downloader.py file for handling this filetype

For example:

('pdf',"PDF","fa-file-pdf-o","aristotle_mdr")

Menu options are only given if a template for that download file type exists for a given object. The first (filetype)
setting is used when catching URLs for downloads, so that when resolving URLs the filetype is used in the URL in
the following way:

/download/<download-file-type>/<item-id>

This file type is also passed to the download manager for this filetype, so that multiple file types can be handled by the
same extension.

For example, if an object class had a PDF template, based on the above configuration the menu below would be
accessible:

8 Chapter 1. Table of Contents

http://fortawesome.github.io/Font-Awesome/icons/#file-type

Aristotle Metadata Registry Documentation, Release 0.0.1

And clicking this would access the following relative URL:

/download/pdf/<object_class_id>

For more information on creating additional download extensions consult the guide on Adding new download formats.

Sample settings

Below is the ARISTOTLE_SETTINGS used on the hosted Aristotle example:

ARISTOTLE_SETTINGS = {
'The main title for the site.'
'SITE_NAME': 'Aristotle Metadata Registry',

URL for the Site-wide logo
'SITE_BRAND': '/static/aristotle_mdr/images/aristotle_small.png',

'Intro text use on the home page as a prompt for users.'
'SITE_INTRO': 'Use Aristotle Metadata to search for metadata...',

Extensions that add additional object types for search/display.
'CONTENT_EXTENSIONS' : ['comet'],

Separators for auto-generating the names of constructed items.
'SEPARATORS': { 'DataElement':',',

'DataElementConcept':'-'},
'DOWNLOADERS': [

('pdf','PDF','fa-file-pdf-o','aristotle_pdf'),
]

}

1.2.5 Adding new static pages into Aristotle

While Aristotle provides a strong framework for setting up a metadata registry, there some static pages which are
important for a site, but unlikely to be changed, such as the home page, CSS and about pages.

These exist in aristotle as template pages, and like all Django tempaltes are easy to override with more custom, site-
specific content. The first step is to ensure the settings for the site include a Django TEMPLATE_DIR directive, like
that below:

TEMPLATE_DIRS = [os.path.join(BASE_DIR, 'templates')]

Setting a separate template directory when using Aristotle ensure that templates can be easily overriden, without
requiring a separate django app or editing of the main Aristole codebase.

When attempting to resolve templates, one of the first locations checked will be the directory stated in
TEMPLATE_DIRS. Examining the code in the Aristotle-MDR code should give an understanding of how the tem-
plates are laid out if changes are necessary.

1.2. Installing Aristotle Metadata Registry 9

https://github.com/aristotle-mdr/aristotle-metadata-registry/

Aristotle Metadata Registry Documentation, Release 0.0.1

1.2.6 Changing the look and feel of the site

Changing site CSS using Django staticfiles

Changing the CSS of the site can be done by overriding the static files that serve the Bootstrap and Aristotle CSS files,
these are available at:

aristotle_mdr/static/aristotle_mdr/css/aristotle.css
aristotle_mdr/static/aristotle_mdr/bootstrap/bootstrap.min.css

Overriding these will require setting the STATICFILES_DIR setting in settings.py , like so:

STATICFILES_DIR = [os.path.join(BASE_DIR, "site_static")]

Its important, to make sure if setting a STATICFILES_DIR that 'django.contrib.staticfiles.
finders.FileSystemFinder' is added to the STATICFILES_FINDERS setting. If importing all of the
settings from Aristotles required_settings.py file this is already included, so this doesn’t need to be redefined. But
if settings.py doesn’t import required_settings.py, STATICFILES_FINDERS can be declared like
this:

STATICFILES_FINDERS = (
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',

)

Once this is set, to override the Aristotle bootstrap css, a file at the following location in the project site will be used
instead:

custom_site_static/aristotle_mdr/bootstrap/bootstrap.min.css

More information about these is available in the Django documentation on static files.

Changing the Bootstrap file by overriding the settings

Aristotle uses Django-bootstrap3 to import bootstrap. By default Aristotle stores the boostrap file at:

/static/aristotle_mdr/bootstrap/

but, an alternative solution is to override this value be redefining the BOOTSTRAP3 setting in your projects
settings.py, like so:

BOOTSTRAP3 = {
The Bootstrap base URL
'base_url': '/static/your_path_to/bootstrap/',

}

Completely overhauling the site

It is also possbile to override the home page and base templates to completely overhaul the look and feel of the site,
and these are available under the templates directory at:

• aristotle_mdr/templates/aristotle_mdr/base.html

• aristotle_mdr/templates/aristotle_mdr/static/home.html

10 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/stable/ref/contrib/staticfiles/#staticfiles-finders
https://github.com/dyve/django-bootstrap3

Aristotle Metadata Registry Documentation, Release 0.0.1

However, doing so may break the rendering of pages and prevent the registry from working. It is strongly recom-
mended that overrides of these files are done by someone with a strong working knowledge of HTML, CSS and
Django templates.

1.2.7 Configuring third-party apps

Aristotle takes care of most of the work of getting a registry setup with the settings import:

from aristotle_mdr.required_settings import *

but there are few areas for customisation or tweaking.

Django

Every django setting can be overridden, but the ones that will be most important when configuring Aristotle-MDR are:

• DATABASE - By default Aristotle will configure a SQLite file-based database. While this is fine for very small
low-traffic registries, configuring Django to use a fully-fledged relational database management system like
PostgreSQL or MySQL will be better for larger, high-traffic sites.

• ROOT_URLCONF - This is the python library that will be used to define the settings for django to resolve URLs.
If you aren’t using any extensions, you can just leave this as the default which points to the Aristotle URLs file -
aristotle_mdr.urls. If you are using extensions, you’ll need to point this at the URLs file that you have
created to handle all of the different URL configuration files for each extension.

• WSGI_APPLICATION - This points to the file and WSGI application that you have created to if you are
intending to deploy via a WSGI server.

Haystack

For search to work, Haystack is required to be installed. There are no options to disable this, as without search a
registry is quite useless. However you can change some settings.

• HAYSTACK_SEARCH_RESULTS_PER_PAGE - Self explanatory, this defaults to 10 items per page.

• HAYSTACK_CONNECTIONS - This define which search indexers are being used and how they are connected.
By default this uses the Whoosh Engine, which is quite fast and because its a Pure-Python implementation
reduces the complexity in getting it setup. For more advanced usage, read the Haystack documentation.

• HAYSTACK_SIGNAL_PROCESSOR - Included for completion, this defaults to aristotle_mdr.
contrib.help.signals.AristotleHelpSignalProcessor. This is a custom signal processor
that performs real-time, status-aware changes to the index and monitors for changes to Help Pages. The al-
ternative recommended option is aristotle_mdr.signals.AristotleSignalProcessor, which
only monitors changes to metadata items. Read the warnings below for why you probably only want to use
these options.

Warnings about Haystack

• Always make sure haystack is included once and only once in INSTALLED_APPS, otherwise your instal-
lation will throw errors.

• Make sure haystack is included in INSTALLED_APPS before aristotle_mdr.

1.2. Installing Aristotle Metadata Registry 11

https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
https://pypi.python.org/pypi/Whoosh/
http://django-haystack.readthedocs.org/en/latest/tutorial.html#configuration

Aristotle Metadata Registry Documentation, Release 0.0.1

• Be aware that Haystack will only update search indexes when told, Aristotle includes a SignalProcessor
that performs registation status-aware real-time updates to the index. Switching this for another processor
may expose private information through search results, but will not allow unauthorised users to access the
complete item.

LESS Compilation

Aristotle-MDR includes a number of uncompiled LESS files that need to be compiled by django-static-precompiler.
By default Aristotle-MDR uses the Python-based lesscpy compiler for this which is approximately compatible, but
slower than, to the Node lessc compiler. If you have complex requirements in your custom LESS files, want a faster
compile time or wish to use another CSS precompile type, override the following setting in your settings.py:

STATIC_PRECOMPILER_COMPILERS = (
('static_precompiler.compilers.LESS', {"executable": "lesscpy"}),

)

In production, its advisable to compile the LESS files once and cache these withother static files. This makes the
choice of precompiler less of an issue for production environments.

1.2.8 Technical requirements

The Aristotle Metadata Registry is built on the Django framework which supports a wide range of operating systems
and databases. While Aristotle-MDR should support most of these only a small set of configurations have been
thoroughly tested on the Travis-CI continuous integration systems as “supported infrastucture”.

Operating system support

• Ubuntu Linux (Precise Pangolin) 12.04 LTS (verification courtesy of Travis-CI)

Travis-CI does not yet have containerised support for the Ubuntu 14.04 or 16.04 long-term support releases.

Python

Only the latest releases of Python are supported. New users are recommended to use Python 3.5 or above.

• Python 3.5+

Django

• Django version 1.11 LTS

Database support

• SQLite

• Postgres

• MariaDB

Notes:

Aristotle has been tested against Microsoft SQL Server 2016 on Windows, but we no longer provide official testing
against this database.

12 Chapter 1. Table of Contents

https://travis-ci.org/aristotle-mdr/aristotle-metadata-registry/

Aristotle Metadata Registry Documentation, Release 0.0.1

MySQL has issues incompatible with Aristotle that prevent it from being used. Consider using an alternative like
MariaDB if you need MySQL-like support.

Search index support

• Elasticsearch 5.0+ (Only tested on Linux)

• Whoosh (Linux and Windows)

1.3 Features of Aristotle-MDR

1.3.1 100% Free open-source software

The entire suite of software that Aristotle-MDR is built upon is free open-source software. The majority of these
requirements are managed through the Python Package Index, the rest are online resources, such as jQuery, Twitter
Bootstrap CSS Framework and Font Awesome are hosted through online content delivery networks for improved
speed.

Because of the open nature, low-requirements and no-cost of this framework a new registry can be setup on a Python
shared hosting service like Python Anywhere in a matter of minutes - and includes everything you need to get a
professional scalable metadata registry up and running.

The only restriction with running Aristotle-MDR is that if you are running a public facing site, you keep a link to the
Aristotle GitHub page in the footer, but even this can can be waived with permission.

1.3.2 Easily extensible

One of the core features of the ISO/IEC 11179-3 information model is the ability to extend the models by subclassing
from the included items. Aristotle-MDR captures the core of the ISO/IEC 11179 as faithfully as possible, but provides
a rich API to quickly and easily add new items for management using the Object-Oriented approach of Python and
Django.

You can read more about the content type API and template overrides in the extensions documentation.

1.3.3 Mobile-friendly interface

Every page of Aristotle-MDR has been built upon the Twitter Bootstrap CSS Framework. This means that every page
has a responsive, mobile first design and flawlessly scales from the largest desktop to the smallest phone. Along with
this, the use of the Font Awesome icon toolkit means menus and pages have a consistent look and feel.

1.3.4 Real-time enterprise search

Integration of the Django-Haystack search API provides a rich search engine capability, so content can always be
found. Content can be search on not just by text fields, but also by Registration Status, the owner workgroup and
content type, with more advanced search options to come!

Although the default settings for Aristotle use the Whoosh search engine, Haystack provides backend hooks for a
number enterprise ready search engines.

The default settings for Aristotle-MDR include a real-time search index manager that tracks changes as they are made,
and updates visibilty and indexes immediately.

1.3. Features of Aristotle-MDR 13

https://pypi.python.org/pypi
http://jquery.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://fortawesome.github.io/Font-Awesome/
www.pythonanywhere.com
https://www.python.org/
https://www.djangoproject.com/
http://getbootstrap.com/
http://fortawesome.github.io/Font-Awesome/
http://haystacksearch.org/
https://pypi.python.org/pypi/Whoosh/
http://django-haystack.readthedocs.org/en/latest/backend_support.html
http://django-haystack.readthedocs.org/en/latest/backend_support.html

Aristotle Metadata Registry Documentation, Release 0.0.1

With appropriate tweaking the Haystack engine can scale from the smallest research facility to the largest government
agency.

1.3.5 Secure, thoroughly tested permissions

Using a set of thoroughly tested custom permissions, content created within the Aristotle registry can be show or
hidden from the public and registered users based on the well documented status workflow in part 6 of the ISO/IEC
11179 standard.

Strict version control of the code on GitHub, continuous testing of the code using Travis-CI and code coverage anal-
ysis using Coveralls.io ensures that access permissions are clearly defined, and as changes are made if issues with
permissions they can be idenitified and rectified immediately.

1.3.6 Easy content creation

Aristotle-MDR includes an easy to use editing system, that uses the robust CKEditor WYSIWYG (What-You-See-Is-
What-You-Get) editor, that gives users instant feedback on changes to content. The in-built editor gives access to a
rich-text editor, easy insertion of links to content and an image upload and linking facility.

1.4 The Aristotle Metadata Registry API

1.4.1 The Aristotle REST API

Description

The Aristotle REST API’s are (available at /api/) provide access to content within the system in a machine readable
form

The api is versioned and deprecated slowly so that existing applications have time to transition. Currently v3 and v4
are available.

Swagger documentation is automatically generated for each api. This describes the endpoints along with expected
data and is available at /api/v3 and /api/v4

Authentication

To access private content through the api you need to either be logged in to the site or provide an access token.

Access tokens can be created from the token management page and must be assigned explicit permissions which
determined the endpoints each token is able to access.

To use the token it must be provided in the Authenticate http header in the form Token mytoken. For example if
your token is Ykc7ClFLUiQKKG8 the Authenticate header should be Token Ykc7ClFLUiQKKG8

1.4.2 The Aristotle GraphQL API

Description

The Aristotle GraphQL API provides read access to system data through the use of GraphQL queries. See graphql.org
for more information

You can test it out in GraphiQL by visiting /api/graphql

14 Chapter 1. Table of Contents

https://github.com/aristotle-mdr/aristotle-metadata-registry/
https://travis-ci.org/aristotle-mdr/aristotle-metadata-registry
https://coveralls.io/r/aristotle-mdr/aristotle-metadata-registry
http://ckeditor.com//

Aristotle Metadata Registry Documentation, Release 0.0.1

Usage from external applications

To query GraphQL from external applications you should use the /api/graphql/json endpoint. You can use a
GET request with the query and optional JSON encoded variables parmaters for example:

/api/graphql/json?query={metadata{edges{node{uuid}}}}&variables=” optional JSON encoded variables “

Or you can make a POST request with either JSON or direct GraphQL. JSON must be submitted with the
application/json content type and be in the following form with variables being optional.

{
"query": ...
"variables": { ... }

}

To submit a query directly you can use the application/graphql content type, although you will not be able to
provide variables, making JSON the preferred method.

The response (from either a GET or POST request) will be JSON in the form {"data": { ... }} if the query
was successful or {"errors": [...]} if there was an error.

Authentication

By default the GraphQL endpoint will provide only public content. To access private content a token must be provided
in the Authorization header in the form Token mytoken. These tokens can be created from the token management
page accessible from /api/

1.5 Extending Aristotle-MDR

One of the core features of the ISO/IEC 11179-3 information model is the ability to extend the models by subclassing
from the included items. The core item that most 11179 objects are based on is the “Concept”.

Due to this encouragement of inheritance and enhancement, Aristotle-MDR follows similar principles and uses the
Object-Oriented approach of Python and Django, to expose a rich API that makes adding new content, and altering
templates quick and easy.

Before starting it is strongly encouraged that you have a clear understanding of the Python programming language as
well as how to build Django apps and sites.

1.5.1 Making new metadata types

Most of the overhead for creating new item types in Aristotle-MDR is taken care of by inheritance within the Python
language and the Django web framework.

Making new item types

Most of the overhead for creating new item types in Aristotle-MDR is taken care of by inheritance within the Python
language and the Django web framework.

For example, creating a new item within the registry requires as little code as:

1.5. Extending Aristotle-MDR 15

https://www.python.org/
https://www.djangoproject.com/
https://www.python.org/about/gettingstarted/
https://docs.djangoproject.com/en/dev/intro/tutorial01/

Aristotle Metadata Registry Documentation, Release 0.0.1

import aristotle_mdr
class Question(aristotle_mdr.models.concept):

questionText = models.TextField()
responseLength = models.PositiveIntegerField()

This code creates a new “Question” object in the registry that can be progressed like any standard item in Aristotle-
MDR. Once the the appropriate admin pages are set up, from a usability and publication standpoint this would be
indistinguishable from an Aristotle-MDR item, and would instantly get a number of features that are available to all
Aristotle ‘concepts’ without having to write any additional code

Once synced with the database, this immediately creates a new item type that not only has a name and
description, but also can immediately be associated with a workgroup, can be registered and progressed within
the registry and has all of the correct permissions associated with all of these actions.

Likewise, creating relationships to pre-existing items only requires the correct application of Django relationships such
as a ForeignKey or ManyToManyField, like so:

Listing 1.1: mymodule.models.Question

import aristotle_mdr
from django.db import models

class Question(aristotle_mdr.models.concept):
template = "extension_test/concepts/question.html"
questionText = models.TextField(blank=True, null=True)
responseLength = models.PositiveIntegerField(blank=True, null=True)
collectedDataElement = models.ForeignKey(

aristotle_mdr.models.DataElement,
related_name="questions",
null=True,
blank=True,
on_delete=models.deletion.CASCADE,

)

This code, extends our Question model from the previous example and adds an optional link to the ISO 11179
Data Element model managed by Aristotle-MDR and even adds a new property on to Data Elements, so that
myDataElement.questions would return of all Questions that are used to collect information for that Data
Element.

Customising the edit page for a new type

To maintain consistancy edit pages have a similar look and feel across all concept types, but some customisation is
possible. If one or more fields should be hidden on an edit page, they can be specified in the edit_page_excludes
property of the new concept class.

An example of this is when an item specifies a ManyToManyField that has special attributes. This can be hidden on
the default edit page like so:

class Questionnaire(aristotle_mdr.models.concept):
edit_page_excludes = ['questions']
questions = models.ManyToManyField(

Question,

16 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/stable/topics/db/examples/

Aristotle Metadata Registry Documentation, Release 0.0.1

related_name="questionnaires",
null=True,blank=True)

Including additional items when downloading a custom concept type

concept.get_download_items() → typing.List[typing.Union[django.db.models.base.Model,
django.db.models.query.QuerySet]]

When downloading a concept, extra items can be included for download by overriding the
get_download_items method on your item. By default this returns an empty list, but can be modified
to include any number of items that inherit from _concept.

When overriding, each entry in the list can be either an item or a queryset

For example:

Listing 1.2: mymodule.models.Questionnaire.get_download_items

def get_download_items(self):
return [

self.questions.all().order_by('name'),
aristotle_mdr.models.DataElement.objects.filter(questions__

→˓questionnaires=self).order_by('name')
]

Caveats: concept versus _concept

There is a need for some objects to link to any arbitrary concept, for example the favourites field of aristo-
tle.models.AristotleProfile. Because of this there is a distinction between the Aristotle-MDR model objects concept
and _concept.

Abstract base classes in Django allow for the easy creation of items that share similar properties, without introducing
additional fields into the database. They also allow for self-referential ForeignKeys that are restricted to the inherited
type, rather than to the base type.

class aristotle_mdr.models._concept(*args, **kwargs)
9.1.2.1 - Concept class Concept is a class each instance of which models a concept (3.2.18), a unit of knowledge
created by a unique combination of characteristics (3.2.14). A concept is independent of representation.

This is the base concrete class that Status items attach to, and to which collection objects refer to. It is not
marked abstract in the Django Meta class, and must not be inherited from. It has relatively few fields and is a
convenience class to link with in relationships.

Parameters

• id (AutoField) – Id

• created (AutoCreatedField) – Created

• modified (AutoLastModifiedField) – Modified

• uuid (UUIDField) – Universally-unique Identifier. Uses UUID1 as this improves
uniqueness and tracking between registries

• name (ShortTextField) – The primary name used for human identification purposes.

• definition (RichTextUploadingField) – Representation of a concept by a de-
scriptive statement which serves to differentiate it from related concepts. (3.2.39)

1.5. Extending Aristotle-MDR 17

Aristotle Metadata Registry Documentation, Release 0.0.1

• stewardship_organisation_id (ForeignKey) – Stewardship organisation

• workgroup_id (ForeignKey) – Workgroup

• submitter_id (ForeignKey) – This is the person who first created an item. Users can
always see items they made.

• _is_public (BooleanField) – is public

• _is_locked (BooleanField) – is locked

• _type_id (ForeignKey) – type

• version (CharField) – Version

• references (RichTextUploadingField) – References

• origin_URI (URLField) – If imported, the original location of the item

• origin (RichTextUploadingField) – The source (e.g. document, project, disci-
pline or model) for the item (8.1.2.2.3.5)

• comments (RichTextUploadingField) – Descriptive comments about the metadata
item (8.1.2.2.3.4)

class aristotle_mdr.models.concept(*args, **kwargs)
This is an abstract class that all items that should behave like a 11179 Concept must inherit from. This model
includes the definitions for many long and optional text fields and the self-referential superseded_by field.
It is not possible to include this model in a ForeignKey or ManyToManyField.

Parameters

• id (AutoField) – Id

• created (AutoCreatedField) – Created

• modified (AutoLastModifiedField) – Modified

• uuid (UUIDField) – Universally-unique Identifier. Uses UUID1 as this improves
uniqueness and tracking between registries

• name (ShortTextField) – The primary name used for human identification purposes.

• definition (RichTextUploadingField) – Representation of a concept by a de-
scriptive statement which serves to differentiate it from related concepts. (3.2.39)

• stewardship_organisation_id (ForeignKey) – Stewardship organisation

• workgroup_id (ForeignKey) – Workgroup

• submitter_id (ForeignKey) – This is the person who first created an item. Users can
always see items they made.

• _is_public (BooleanField) – is public

• _is_locked (BooleanField) – is locked

• _type_id (ForeignKey) – type

• version (CharField) – Version

• references (RichTextUploadingField) – References

• origin_URI (URLField) – If imported, the original location of the item

• origin (RichTextUploadingField) – The source (e.g. document, project, disci-
pline or model) for the item (8.1.2.2.3.5)

18 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

• comments (RichTextUploadingField) – Descriptive comments about the metadata
item (8.1.2.2.3.4)

• _concept_ptr_id (OneToOneField) – concept ptr

The correct way to use both of these models would be as shown below:

import aristotle_mdr.models import concept, _concept
class ReallyComplexExampleItem(concept):

relatedTo = models.ManyToManyField(_concept)

In this example, the model ReallyComplexExampleItem inherits from concept, but also includes a many-
to-many relationship that links it to any number of registerable concepts, such as Data Element or Objects Classes,
additionally because of the inheritance, this would allow links to extended models such as Questions or even self-
referential links to other instances of the ReallyComplexExampleItem model type.

Retrieving the “true item” when you are returned a _concept.

Because _concept is not a true abstract class, queries on this table or a Django QuerySet that reference a
_concept won’t return the “actual” object but will return an object of type _concept instead. There is a
item property on both the _concept and concept classes that will return the properly subclassed item using
the get_subclass method from django-model-utils.

_concept.item
Performs a lookup to find the subclassed item. If the type is cached in _type this lookup is fast otherwise
InheritanceManager is used which is quite slow

concept.item
Return self, because we already have the correct item.

On the inherited concept class this just returns a reference to the original item - self. So once the true item is
retrieved, this property can be called infinitely without a performance hit.

For example, in code or in a template it is always safe to call an item like so:

question.item
question.item.item
question.item.item.item

When in doubt about what object you are dealing with, calling item will ensure the expected item, and not the
_concept parent, is used. In the very worst case a single additional query is made and the right item is used, in the
best case a very cheap Python property is called and the item is returned straight back.

Setting up search, admin pages and autocompletes for new items types

The easiest way to configure an item for searching and editing within the django-admin app is using the
aristotle_mdr.register.register_concept method, described in Using register_concept to connect
new concept types.

Creating admin pages

However, if customisation of Admin pages for an extension is required this can be done through the creation and
registration of classes in the admin.py file of a Django app.

1.5. Extending Aristotle-MDR 19

Aristotle Metadata Registry Documentation, Release 0.0.1

Because of the intricate permissions around content with the Aristotle Registry, it’s recommended that admin pages
for new items extend from the aristotle.admin.ConceptAdmin class. This helps to ensure that there is a
consistent ordering of fields, and information is exposed only to the correct users.

The most important property of the ConceptAdmin class is the fieldsets property that defines the inclusion
and ordering of fields within the admin site. The easiest way to extend this is to add extra options to the end of the
fieldsets like so:

from aristotle_mdr import admin as aristotle_admin

class QuestionAdmin(aristotle_admin.ConceptAdmin):
fieldsets = aristotle_admin.ConceptAdmin.fieldsets + [

('Question Details',
{'fields': ['questionText','responseLength']}),

('Relations',
{'fields': ['collectedDataElement']}),

]

It is important to always import aristotle.admin with an alias as shown above, otherwise there are circular
dependancies across various apps when importing which will prevent the app, and thus the whole site, from being
used.

Lastly, Aristotle-MDR provides an easy way to give users a suggestion button when entering a name to ensure consis-
tancy within the registry. This can be added to an Admin page by specifying the fields that are used to construct the
name - however these must be fields on the current model.

For example, if the rules of the registry dictated that a Question name should have the form of its question text along
with the name of the collected Data Element, separated by a pipe (|), the QuestionAdmin class could include the
name_suggest_fields value of:

name_suggest_fields = ['questionText','collectedDataElement']

Then to ensure the correct separator is used in ARISTOTLE_SETTINGS (which is described in Configuring the
behavior of Aristotle-MDR) add "Question" as a key and "|" as its value, like so:

ARISTOTLE_SETTINGS = {
'SEPARATORS': { 'Question':'|',

Other separators not shown
},

Other settings not shown
}

For reference, the complete code for the QuestionAdmin class providing extra fieldsets, autcompeletes and suggested
names is:

from aristotle_mdr import admin as aristotle_admin

class QuestionAdmin(aristotle_admin.ConceptAdmin):
fieldsets = aristotle_admin.ConceptAdmin.fieldsets + [

('Question Details',
{'fields': ['questionText','responseLength']}),

('Relations',
{'fields': ['collectedDataElement']}),

]
name_suggest_fields = ['questionText','collectedDataElement']

For more information on configuring an admin site for Django models, consult the Django documentation.

20 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/stable/ref/contrib/admin/

Aristotle Metadata Registry Documentation, Release 0.0.1

Making new item types searchable

The creation and registration of haystack search indexes is done in the search_indexes.py file of a Django app.

On an Aristotle-MDR powered site, it is possible to restrict search results across a number of criteria including the
registration status of an item, its workgroup or Registration Authority or the item type.

In aristotle.search_indexes there is the convenience class conceptIndex that make indexing a new item
within the search engine quite easy, and allows new item types to be searched using these criteria with a minimum of
code. Inheriting from this class takes care of nearly all simple cases when searching for new items, like so:

from haystack import indexes
from aristotle_mdr.search_indexes import conceptIndex

class QuestionIndex(conceptIndex, indexes.Indexable):
def get_model(self):

return models.Question

It is important to import the required models from aristotle.search_indexes directly, otherwise there
are circular dependancies in Haystack when importing. This will prevent the app and the whole site from being used.

The only additional work required is to create a search index template in the templates directory of your app with
a path similar to this:

template/search/indexes/your_app_name/question_text.txt

This ensures that when Haystack is indexing the site, some content is available so that items can be queried and
weighted accordingly. These templates are passed an object variable that is the particualr object being indexed.

Sample content for an index for our question would look like this:

{% include "search/indexes/aristotle_mdr/managedobject_text.txt" %}
{{ object.questionText }}

Here we include the managedobject_text.txt which adds generic content for all concepts into the indexed
text, as well as including the questionText in the index.

If we wanted to include the content from the related Data Element to add more information for the seach engine to
work with we could include this as well, using one of the provided index template in Aristotle, like so:

{% include "search/indexes/aristotle_mdr/managedobject_text.txt" %}
{{ object.questionText }}
{% include "search/indexes/aristotle_mdr/dataelement_text.txt" with object=object.
→˓collectedDataElement only %}

For more information on creating search templates and configuring search options consult the Haystack documenta-
tion. For more information on how the search templates are generated read about the Django template engine.

Caveats around extending existing item types

This tutorial has covered how to create new items when inheriting from the base concept type. However, Python
and Django allow for extension from any object. So if you wished to extend and improve on 11179 item it would be
perfectly possible to do so by inheriting from the appropriate class, rather than the abstract concept. For example,
if you wished to extend a Data Element to create a internationalised DataElement that was only applicable in specific
countries, this could be done like so:

1.5. Extending Aristotle-MDR 21

http://django-haystack.readthedocs.org/
http://django-haystack.readthedocs.org/
https://docs.djangoproject.com/en/1.6/topics/templates/

Aristotle Metadata Registry Documentation, Release 0.0.1

class Country(model.Models):
name = models.TextField
... # Other attributes could also be applied.

class CountrySpecificDataElement(aristotle.models.DataElement):
countries = models.ManyToManyField(Country)

Aristotle does not prevent you from doing so, however there are a few issues that can arise when extending from
non-abstract classes:

• Due to the way that Django handles subclassing, all objects subclassed from a concrete model will also exist in
the database as the subclass and an item that belongs to the parent superclass.

So a CountrySpecificDataElement would also be a DataElement, so a query like this:

aristotle.models.DataElement.objects.all()

Would return both DataElement s and its subclasses, such as CountrySpecificDataElement s, how-
ever depending on the domain and objects, this may be desired behaviour.

• Following from the above, restricted searches for only objects of the parent item type will return results
from the subclassed item. For example, all searches restricted to a DataElement would also return results
for CountrySpecificDataElement, and they will be displayed in the list as DataElement not as
CountrySpecificDataElement.

• Items that inherit from non-abstract classes do not inherit the Django object Managers, this is one of the reasons
for the decision to make concept an abstract class. As such, it is strongly adviced that any new item types
that inherit from concrete classes specify the Aristotle-MDR concept manager, like so:

class CountrySpecificDataElement(aristotle.models.DataElement):
countries = models.ManyToManyField(Country)
objects = aristotle_mdr.models.ConceptManager()

Failure to include this may lead to broken code or pages that expose private
→˓items.

Creating unmanagedContent types

Not all content needs to undergo a standardisation process, and in fact some content should only be accessible to
administrators. In Aristotle this is termed an “unmanagedObject”. Content types that are unmanaged do not belong to
workgroups, and can only be edited by users with the Django “super user” privileges.

It is perfectly safe to extend from the unmanagedObject types, however because these are closer to pure Django
objects there are much fewer convenience method set up to handle them. By default, unmanagedContent is always
visible.

Because of their visibility and strict privileges, they are generally suited to relatively static items that may vary between
individual sites and add context to other items. Inheriting from this class can be done like so:

class Country(aristotle.models.unmanagedObject):
Inherits name and description.
isoCode = models.CharField(maxLength=3)

For example, in Aristotle-MDR “Measure” is an unmanagedObject type, that is used to give extra context to
UnitOfMeasure objects.

22 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

Including documentation in new content types

To make deploying new content easier, and encourage better documentation, Aristotle reuses help content built into
the Django Web framework. When producing dynamic documentation, Aristotle uses the Python docstring of a
concept-inheriting class and the field level help_text to produce documentation.

This can be seen on in the concept editor, administrator pages, item comparator and can be accessed in html pages
using the doc template tag in the aristotle_tags module.

A complete example of an Aristotle Extension

The first content extension for Aristotle that helps clarify a lot of the issues around inheritance is the Comet Indicator
Registry. This adds 6 new content types along with admin pages, search indexes and templates and extra content for
display on the included Aristotle DataElement template - which was all achieved with less than 600 lines of code.

Reusing generic actions to manage relations

class aristotle_mdr.contrib.generic.views.BootTableListView(**kwargs)
Lists objects in a bootstrap table (with optional pagination)

class aristotle_mdr.contrib.generic.views.GenericAlterForeignKey(**kwargs)
A view that provides a framework for altering ManyToOne relationships (Include through models from Many-
ToMany relationships) from one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the model_base to use as the main
link for the many to many relation.

• model_base - mandatory - The model with the instance to be altered

• model_to_add - mandatory - The model that has instances we will link to the base.

• template_name

– optional - The template used to display the form.

– default - “aristotle_mdr/generic/actions/alter_foreign_key.html”

• model_base_field - mandatory - the name of the field that goes from the model_base to the model_to_add.

• model_to_add_field - mandatory - the name of the field on the model_to_add model that links to the
model_base model.

• form_title - Title for the form

For example: If we have a many to many relationship from DataElement‘s to ‘Dataset‘s, to alter the ‘DataEle-
ment‘s attached to a ‘Dataset, Dataset is the base_model and model_to_add is DataElement.

post(request, *args, **kwargs)
Handles POST requests, instantiating a form instance with the passed POST variables and then checked
for validity.

save_form(form)
Saves the formset returned by the view Can be overwritten to add/change extra data

class aristotle_mdr.contrib.generic.views.GenericAlterManyToManyView(**kwargs)
A view that provides a framework for altering ManyToMany relationships from one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the model_base to use as the main
link for the many to many relation.

1.5. Extending Aristotle-MDR 23

https://github.com/aristotle-mdr/comet-indicator-registry
https://github.com/aristotle-mdr/comet-indicator-registry

Aristotle Metadata Registry Documentation, Release 0.0.1

• model_base - mandatory - The model with the instance to be altered

• model_to_add - mandatory - The model that has instances we will link to the base.

• template_name

– optional - The template used to display the form.

– default - “aristotle_mdr/generic/actions/alter_many_to_many.html”

• model_base_field - mandatory - the field name that goes from the model_base to the model_to_add.

• form_title - Title for the form

For example: If we have a many to many relationship from DataElement‘s to ‘Dataset‘s, to alter the ‘DataEle-
ment‘s attached to a ‘Dataset, Dataset is the base_model and model_to_add is DataElement.

post(request, *args, **kwargs)
Handles POST requests, instantiating a form instance with the passed POST variables and then checked
for validity.

class aristotle_mdr.contrib.generic.views.GenericAlterOneToManyView(**kwargs)
A view that provides a framework for altering ManyToOne relationships (Include through models from Many-
ToMany relationships) from one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the model_base to use as the main
link for the many to many relation.

• model_base - mandatory - The model with the instance to be altered

• model_to_add - mandatory - The model that has instances we will link to the base.

• template_name

– optional - The template used to display the form.

– default - “aristotle_mdr/generic/actions/alter_many_to_many.html”

• model_base_field - mandatory - the name of the field that goes from the model_base to the model_to_add.

• model_to_add_field - mandatory - the name of the field on the model_to_add model that links to the
model_base model.

• ordering_field - optional - name of the ordering field, if entered this field is hidden and updated using a
drag-and-drop library

• form_add_another_text - optional - string used for the button to add a new row to the form - defaults to
“Add another”

• form_title - Title for the form

For example: If we have a many to many relationship from DataElement‘s to ‘Dataset‘s, to alter the ‘DataEle-
ment‘s attached to a ‘Dataset, Dataset is the base_model and model_to_add is DataElement.

class aristotle_mdr.contrib.generic.views.UnorderedGenericAlterOneToManyView(**kwargs)
A view that provides a framework for altering ManyToOne relationships (Include through models from Many-
ToMany relationships) from one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the model_base to use as the main
link for the many to many relation.

• model_base - mandatory - The model with the instance to be altered

• model_to_add - mandatory - The model that has instances we will link to the base.

• template_name

24 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

– optional - The template used to display the form.

– default - “aristotle_mdr/generic/actions/alter_many_to_many.html”

• model_base_field - mandatory - the name of the field that goes from the model_base to the model_to_add.

• model_to_add_field - mandatory - the name of the field on the model_to_add model that links to the
model_base model.

• ordering_field - optional - name of the ordering field, if entered this field is hidden and updated using a
drag-and-drop library

• form_add_another_text - optional - string used for the button to add a new row to the form - defaults to
“Add another”

• form_title - Title for the form

For example: If we have a many to many relationship from DataElement‘s to ‘Dataset‘s, to alter the ‘DataEle-
ment‘s attached to a ‘Dataset, Dataset is the base_model and model_to_add is DataElement.

class aristotle_mdr.contrib.generic.views.VueFormView(**kwargs)
A view for returning a serialized json representation of a django form for use with vue components. Does not
permit the POST method as that should be handled by the api

Concept model relations

These are direct reimplementations of Django model relations, at the moment they only exist to make permissions-
based filtering easier for the GraphQL codebase. However, in future these may add additional functionality such as
automatically applying certain permissions to ensure users only retrieve the right objects.

When building models that link to any subclass of _concept, use these in place of the Django builtins.

Note: The model these are place on does not need to be a subclass of concept. They are for linking to a concept
subclass.

class aristotle_mdr.fields.ConceptForeignKey(to, on_delete, related_name=None,
related_query_name=None,
limit_choices_to=None, par-
ent_link=False, to_field=None,
db_constraint=True, **kwargs)

Reimplementation of ForeignKey for linking a model to a Concept

class aristotle_mdr.fields.ConceptGenericRelation(to, object_id_field=’object_id’,
content_type_field=’content_type’,
for_concrete_model=True, re-
lated_query_name=None,
limit_choices_to=None, **kwargs)

Force relations on concept and subclasses to ONLY use the concept content type.

get_content_type()
Return the content type associated with this field’s model.

1.5. Extending Aristotle-MDR 25

Aristotle Metadata Registry Documentation, Release 0.0.1

class aristotle_mdr.fields.ConceptManyToManyField(to, related_name=None, re-
lated_query_name=None,
limit_choices_to=None, sym-
metrical=None, through=None,
through_fields=None,
db_constraint=True,
db_table=None, swappable=True,
**kwargs)

Reimplementation of ManyToManyField for linking a model to a Concept

class aristotle_mdr.fields.ConceptOneToOneField(to, on_delete, to_field=None,
**kwargs)

Reimplementation of OneToOneField for linking a model to a Concept

class aristotle_mdr.fields.LowerEmailField(*args, **kwargs)
Reimplementation of email field, where email is always stored lowercase

Using register_concept to connect new concept types

Aristotle-MDR concept register

This module allows developers to easily register new concept models with the core functionality of Aristotle-MDR.
The register_concept is a wrapper around three methods that registers a new concept with the Django-Admin
site, with the Django-Autocomplete and with a class for a Haystack search index. This is all done in a way that
conforms to the permissions required for control item visibility.

Other methods in this module can be called, to highly customise how concepts are used within the admin site and
search, but should be considered internal methods and future releases of Aristotle-MDR may break code that uses
these methods.

aristotle_mdr.register.register_concept(concept_class, *args, **kwargs)
A handler for third-party apps to make registering extension models based on aristotle_mdr.models.
concept easier.

Sets up the version controls, search indexes, django administrator page and autocomplete handlers. All args
and kwargs are passed to the called methods. For examples of what can be passed into this method review the
other methods in aristotle_mdr.register.

Example usage (based on the models in the extensions test suite):

register_concept(Question, extra_fieldsets=[(‘Question’,’question_text’),]

aristotle_mdr.register.register_concept_admin(concept_class, *args, **kwargs)
Registers the given concept with the Django admin backend based on the default aristotle_mdr.
admin.ConceptAdmin.

Additional parameters are only required if a model has additional fields or references to other models.

Parameters

• auto_fieldsets (boolean) – If no extra_fieldsets, when set to true this generates a
list of fields for the admin page as “Extra fields for [class]”

• concept_class (concept) – The model that is to be registered

• extra_fieldsets (list) – Model-specific fieldsets to be displayed. Fields in the
tuples given should be those not defined by the base aristotle_mdr.models.
_concept class.

• extra_inlines (list) – Model-specific inline admin forms to be displayed.

26 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets
https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.inlines

Aristotle Metadata Registry Documentation, Release 0.0.1

aristotle_mdr.register.register_concept_search_index(concept_class, *args,
**kwargs)

Registers the given concept with a Haystack search index that conforms to Aristotle permissions. If the
concept to be registered does not have a template for serving a search document, a basic document with just the
basic fields from aristotle_mdr.models._concept will be used when indexing items.

Parameters concept_class (concept) – The model that is to be registered for searching.

Out-of-the-box features available for new concept types

The modular and object-oriented nature of ISO/IEC 11179 and Python encourage reuse and inheritance when dealing
with items. This allows items to have standardised content and behaviours.

Below is a list of features that are available when making new item types based on ISO/IEC 11179 concepts.

Content creation wizards that encourage reuse

Every item type is provided with a basic 2-step content creation wizard that shows a user when they may be replicating
content that already exists in the registry in an unobtusive way.

This gives freedom to content creators, but gives registry administrators the peace of mind knowing that the system
will encourage reuse where possible.

User-friendly modular editor

Descriptive SEO friendly URLs

Basic HTML and downloadable PDF templates

The decoupling of the model management and database back-end and Djangos powerful templating front-end means
new item types can be quickly described and prototyped in code, without having to worry about front-end concerns.

Concepts have a generic fallback template that gives a unified look to new items, meaning development can be an
iterative process.

Advanced features that require configuration

Admin pages

Search indexing

Using the ConceptManager in Django queries

class aristotle_mdr.managers.ConceptManager
The ConceptManager is the default object manager for concept and _concept items, and extends from
the django-model-utils InheritanceManager.

It provides access to the ConceptQuerySet to allow for easy permissions-based filtering of ISO 11179
Concept-based items.

class aristotle_mdr.managers.ConceptQuerySet(*args, **kwargs)

1.5. Extending Aristotle-MDR 27

Aristotle Metadata Registry Documentation, Release 0.0.1

editable(user)
Returns a queryset that returns all items that the given user has permission to edit.

It is chainable with other querysets. For example, both of these will work and return the same list:

ObjectClass.objects.filter(name__contains="Person").editable()
ObjectClass.objects.editable().filter(name__contains="Person")

public()
Returns a list of public items from the queryset.

This is a chainable query set, that filters on items which have the internal _is_public flag set to true.

Both of these examples will work and return the same list:

ObjectClass.objects.filter(name__contains="Person").public()
ObjectClass.objects.public().filter(name__contains="Person")

visible(user)
Returns a queryset that returns all items that the given user has permission to view.

It is chainable with other querysets. For example, both of these will work and return the same list:

ObjectClass.objects.filter(name__contains="Person").visible()
ObjectClass.objects.visible().filter(name__contains="Person")

1.5.2 Adding new download formats

While the Aristotle-MDR framework has a PDF download extension, it may be desired to download metadata stored
within a registry in a variety of download formats. Rather than include these within the Aristotle-MDR core codebase,
additional download formats can be developed included via the download API.

Downloads architecture

There are two parts to the downloads module

• Django views will serve and it will start a job with Celery that will yield a download file asynchronously.

• Celery will have the tasks registered from the downloads class. Celery worker will add the file to a redis cache.

Creating a download module

A download module is a specialised class, that sub-classes aristotle_mdr.downloader.Downloader and
provides an appropriate get_download_config and download or get_bulk_download_config and
bulk_download methods.

A download module is just a Django app that includes a specific set of files for generating downloads. The only files
required in your app are:

• __init__.py - to declare the app as a python module

• downloader.py - where your download classes will be stored

Other modules can be written, for example a download module may define models for recording a number of times an
item is downloaded.

28 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

Writing a metadata_register

Your downloader class must contain a register of download types and the metadata concept types which this module
provides downloads for. This takes one of the following forms which define which concepts can be downloaded as in
the output format:

class CSVExample(Downloader):
download_type = "csv"
metadata_register = {'aristotle_mdr': ['valuedomain']}

class XLSExample(Downloader):
download_type = "xls"
metadata_register = {'aristotle_mdr': ['__all__']}

class PDFExample(Downloader):
download_type = "pdf"
metadata_register = '__template__'

class TXTExample(Downloader):
download_type = "txt"
metadata_register = '__all__'

Describing these options, these classes specifies the following downloads:

• csv provides downloads for Value Domains in the Aristotle-MDR module

• xls provides downloads for all metadata types in the Aristotle-MDR module

• pdf provides downloads for items in all modules, only if they have a download template

• txt provides downloads for all metadata types in all modules

Each download class must also define a class method with the following signature:

def get_download_config(cls, request, iid):
return properties, iid

This is a download config which creates the json serializable properties for the request. This will ensure that the task
can be passed on to Celery, which requires the objects to be json serializable.

The arguments are

• request - the request object that was used to call the download view. The current user trying to download the
item can be gotten by calling request.user.

• iid - This is the id of the item that needs to be downloaded

The return arguments are:

• properties - This will save essential information like user email(can be used by celery to get user object)
and title of the document(to be displayed to the user while the download is generated).

• iid - This would be same as the input argument in most cases. It is present to manipulate the iid if required.

Each download class must also define a static method with the following signature:

@shared_task
def download(properties, iid):

A shared task is a celery worker hook which will register this function as a celery task This is called from Aristotle-
MDR when it catches a download type that has been registered for this module. The arguments are:

• properties - This will contain all the variables required by celery task to prepare the download.

1.5. Extending Aristotle-MDR 29

https://docs.djangoproject.com/en/stable/ref/request-response/

Aristotle Metadata Registry Documentation, Release 0.0.1

• iid - the id of the item to be downloaded, to be retrieved from the database.

Note: If a download method is called the user has been verified to have permissions to view the requested item only.
Permissions for other items will have to be checked within the download method.

The get_bulk_download_config and bulk_download method works in same fashion as
get_download_config and download respectively.

For more information see the Downloader class below:

class aristotle_mdr.downloader.Downloader(item_ids: typing.List[int], user_id: typ-
ing.Union[int, NoneType], options: typ-
ing.Dict[str, typing.Any] = {}, override_bulk:
bool = False)

Base class used by all downloaders Subclasses must override the create_file method

Required class properties:

• description: a description of the downloader type

• download_type: the extension or name of the download to support

• icon_class: the font-awesome class

• metadata_register: can be one of:

– a dictionary with keys corresponding to django app labels and values as lists of models within that
app the downloader supports

– the string “__all__” indicating the downloader supports all metadata types

– the string “__template__” indicating the downloader supports any metadata type with a matching
download template

create_file()→ django.core.files.base.File
Create the file object, should be overwritten by subclasses See below for examples

download()→ str
Get the url for this downloads file, creating it if necessary

classmethod get_class_info()→ typing.Dict[str, typing.Any]
Used as context instead of passing classes to templates

get_storage(media=False)
Gets a storage class object (use media to get default media class instead of dl class)

retrieve_file(filename: str)→ typing.Union[str, NoneType]
Use default storage class to retrieve file if it exists

store_file(filename: str, content: django.core.files.base.File)→ str
Use default storage class to store file

How the download view works

1.5.3 Adding new bulk actions

Often for user convenience it is useful to perfom the same action across a number of similar metadata items. Aristotle-
MDR provides a bulk action API that allows developers to create new discoverable action types that are shown to users
in certain item lists, such as search results or workgroup item listings.

30 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

Registering a bulk action

The BULK_ACTIONS setting in the in the ARISTOTLE_SETTINGS dictionary stores the register of bulk actions
used for generating lists of actions. Adding the qualified path to the form is sufficient to register a new bulk action.
For example this set in ARISTOTLE_SETTINGS would register an action int Python module module.forms.
MyBulkAction:

'BULK_ACTIONS': [
'module.forms.MyBulkActionForm',

]

Writing a functional bulk action

A bulk action form is just a specialised Django form for acting on multiple Aristotle-MDR concepts, with a few small
additions that come from inheriting from aristotle_mdr.forms.bulk_actions.BulkActionForm.

After inheriting to make a form function some properties should exist.

• action_text - This is the name for an action shown in lists to users. Default is based on the class name.

• classes - A string of HTML classes that will be applied to each item. Default empty. Currently these are
used for inserting ‘Font Awesome’ icons for each action.

• confirm_page - An optional template name used to render between a user clicking the action and completing
it. By adding extra fields to a form, with this template a bulk action can get additional inforamtion from a user
before continuing. No default, if this is empty no confirmation is requested.

• items_label - An optional override of the label for the list of items the action form acts on. Defaults to
“Select some items”

There are two additional methods that complete the class:

• can_use - A classmethod that provides a boolean response indicating if a certain user has permission to
use this action in any context - note this permission does not have knowledge of the items selected. Default is
true, so if this is not overriden all users will see the action in their list.

• make_changes - Performs that actual action of the form, this is called once the user invokes a bulk action
(after confirmation is required). No default, not including a make_changes method will cause your action to
fail. Any text returned from this method will be shown to a user via the django messages framework.

An example bulk action form

Below is an example bulk action that is only visible for staff users, and deletes the items requested by a user.:

Listing 1.3: mymodule.forms.StaffDeleteActionForm

from django import forms
from django.core.exceptions import PermissionDenied
from aristotle_mdr.forms.bulk_actions import BulkActionForm
from django.utils.translation import ugettext_lazy as _

class StaffDeleteActionForm(BulkActionForm):
action_text = _('Delete')
classes = "fa-trash"
confirm_page = "confirm_delete.html"
items_label = "Items to delete",

1.5. Extending Aristotle-MDR 31

Aristotle Metadata Registry Documentation, Release 0.0.1

safe_to_delete = forms.BooleanField(required=True, label="Tick to confirm deletion
→˓")

@classmethod
def can_use(cls, user):

return user.is_staff

def make_changes(self):
if not self.user.is_staff:

raise PermissionDenied
else:

self.cleaned_data['items'].delete()
return "Items deleted"

Listing 1.4: confirm_delete.html

{% extends "aristotle_mdr/base.html" %}

{% block title %}Delete items{% endblock %}
{% block content %}

{# {{ form.media }} #}
<form method="post" action="{% url 'aristotle:bulk_action' %}?next={{next}}">{%

→˓csrf_token %}
<p>

Use this page to confirm you wish to delete the following items.
</p>
<input type="hidden" name="bulkaction" value="{{action}}"/>
<table>

{{ form.as_table }}
</table>
<div>

Cancel
<button type="submit" name="confirmed" class="btn btn-primary" value=

→˓"Delete">Delete</button>
</div>

</form>
{% include 'autocomplete_light/static.html' %}

{% endblock %}

This will produce a button wherever other bulk actions are available, similar to the ‘Delete’ button available on the
right in the image below.

32 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

1.5.4 Tags and filters available in aristotle templates

A number of convenience tags are available for performing common actions in custom templates.

Include the aristotle template tags in every template that uses them, like so:

{% load aristotle_tags %}

Available tags and filters

aristotle_mdr.templatetags.aristotle_tags.adminEdit(item)
A tag for easily generating the link to an admin page for editing an item. For example:

Advanced editor for {{item.name}}

aristotle_mdr.templatetags.aristotle_tags.append_asterisk_if_required(field)
Add an asterisk symbol to the required fields of a form.

Usage:

{{ field | append_asterisk_if_required }}

Thanks to Moses Koledoye: https://stackoverflow.com/questions/37389855/django-label-tag-required-asterisk

aristotle_mdr.templatetags.aristotle_tags.can_add_status(item, user)
A filter that acts as a wrapper around aristotle_mdr.perms.user_can_add_status. Re-
turns true if the user has permission to change status the item, otherwise it returns False. If calling
user_can_add_status throws an exception it safely returns False.

For example:

{% if myItem|can_add_status:request.user %}
{{ item }}

{% endif %}

aristotle_mdr.templatetags.aristotle_tags.can_edit(item, user)
A filter that acts as a wrapper around aristotle_mdr.perms.user_can_edit. Returns true if the user
has permission to edit the item, otherwise it returns False. If calling user_can_edit throws an exception it
safely returns False.

For example:

{% if myItem|can_edit:request.user %}
{{ item }}

{% endif %}

aristotle_mdr.templatetags.aristotle_tags.can_supersede(item, user)
A filter that acts as a wrapper around aristotle_mdr.perms.user_can_supersede. Returns true if
the user has permission to supersede the item, otherwise it returns False. If calling user_can_supersede
throws an exception it safely returns False.

For example:

{% if myItem|can_supersede:request.user %}
{{ item }}

{% endif %}

1.5. Extending Aristotle-MDR 33

https://stackoverflow.com/questions/37389855/django-label-tag-required-asterisk

Aristotle Metadata Registry Documentation, Release 0.0.1

aristotle_mdr.templatetags.aristotle_tags.can_view(item, user)
A filter that acts as a wrapper around aristotle_mdr.perms.user_can_view. Returns true if the user
has permission to view the item, otherwise it returns False. If calling user_can_view throws an exception it
safely returns False.

For example:

{% if myItem|can_view:request.user %}
{{ item }}

{% endif %}

aristotle_mdr.templatetags.aristotle_tags.can_view_iter(qs, user)
A filter that is a simple wrapper that applies the aristotle_mdr.models.ConceptManager.
visible(user) for use in templates. Filtering on a Django Queryset and passing in the current user
as the argument returns a list (not a Queryset at this stage) of only the items from the Queryset the user
can view.

If calling can_view_iter throws an exception it safely returns an empty list.

For example:

{% for item in myItems|can_view_iter:request.user %}
{{ item }}

{% endfor %}

aristotle_mdr.templatetags.aristotle_tags.doc(item, field=None)
Gets the appropriate help text or docstring for a model or field. Accepts 1 or 2 string arguments: If 1, returns
the docstring for the given model in the specified app. If 2, returns the help_text for the field on the given model
in the specified app.

aristotle_mdr.templatetags.aristotle_tags.downloadMenu(item)
Returns the complete download menu for a partcular item. It accepts the id of the item to make a download
menu for, and the id must be of an item that can be downloaded, otherwise the links will show, but not work.

For example:

{% downloadMenu item %}

aristotle_mdr.templatetags.aristotle_tags.get_status_from_dict(dictionary, cur-
rent_status, key,
with_icon=True)

Get the Status of a particular item from a dictionary mapping. :param dictionary: dictionary mapping that must
contain key-value pairs where the key must correspond to the concept_id, and the value must correspond to the
state id. :param current_status: string that represents the numerical form of the status object that belongs to the
Data Element. :param key: string that represents the concept id to be looked up. :param with_icon: boolean
value to add a Fontawesome icon. :return: HTML with the name of the corresponding status state.

aristotle_mdr.templatetags.aristotle_tags.in_workgroup(user, workgroup)
A filter that acts as a wrapper around aristotle_mdr.perms.user_in_workgroup. Returns true if the
user has permission to administer the workgroup, otherwise it returns False. If calling user_in_workgroup
throws an exception it safely returns False.

For example:

{% if request.user|in_workgroup:workgroup %}
{{ something }}

{% endif %}

34 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

aristotle_mdr.templatetags.aristotle_tags.public_standards(regAuth, item-
Type=’aristotle_mdr._concept’)

This is a filter that accepts a registration Authority and an item type and returns a list of tuples that contain all
public items with a status of “Standard” or “Preferred Standard” in that Registration Authority only, as well as a
the status object for that Authority.

The item type should consist of the name of the app the item is from and the name of the item itself separated
by a period (.).

This requires the django django.contrib.contenttypes app is installed.

If calling public_standards throws an exception or the item type requested is not found it safely returns
an empty list.

For example:

{% for item, status in registrationAuthority|public_standards:'aristotle_mdr.
→˓DataElement' %}
{{ item }} - made standard on {{ status.registrationDate }}.

{% endfor %}

aristotle_mdr.templatetags.aristotle_tags.state_to_text(state)
This tag takes the integer value of a state for a registration status and converts it to its text equivilent.

aristotle_mdr.templatetags.aristotle_tags.ternary(condition, a, b)
A simple ternary tag - it beats verbose if/else tags in templates for simple strings If the condition is ‘truthy’
return a otherwise return b. For example:

{{item.name}}

aristotle_mdr.templatetags.aristotle_tags.user_can_view_statuses_revisions(user,
ra)

A filter that is a simple wrapper that applies the aristotle_mdr.perms.
user_can_view_statuses_revisions Returns true if the user has permission to view the statuses
reversion history, otherwise it returns False. If calling user_can_view throws an exception it safely returns
False.

If calling user_can_view_statuses_revisions throws an exception it safely returns False.

For example:

{% if request.user|user_can_view_statuses_revisions:ra %}
{{ item }}

{% endif %}

aristotle_mdr.templatetags.aristotle_tags.visible_superseded_by_items(item,
user)

Fetch newer items for an older item

aristotle_mdr.templatetags.aristotle_tags.visible_supersedes_items(item,
user)

Fetch older items for a newer item

aristotle_mdr.templatetags.aristotle_tags.zws(string)
zws or “zero width space” is used to insert a soft break near em-dashed. Since em-dashs are commonly used in
Data Element Concept names, this helps them wrap in the right places.

For example:

<h1>{% zws item.name %}</h1>

1.5. Extending Aristotle-MDR 35

Aristotle Metadata Registry Documentation, Release 0.0.1

1.5.5 Using Aristotle permissions in custom code

One of the key features in Aristotle is specific access control to items based on a rich matrix of user groups. To make
creating extension easier these are exposed through the code in a number of easy to use ways.

Permissions in perms.py

aristotle_mdr.perms.user_can_add_status(user, item)
Can the user add a status to this item in some RA

aristotle_mdr.perms.user_can_edit(user, item)
Can the user edit the item?

aristotle_mdr.perms.user_can_view(user, item)
Can the user view the item?

Permissions-based ConceptManager

All correctly derived concept items should have their default manager set to the aristotle.models.
ConceptManager. For more information on how this works see the full documentation on the ConceptManager
and ConceptQuerySet.

class aristotle_mdr.models.ConceptManager
The ConceptManager is the default object manager for concept and _concept items, and extends from
the django-model-utils InheritanceManager.

It provides access to the ConceptQuerySet to allow for easy permissions-based filtering of ISO 11179
Concept-based items.

Permissions template tags

Tags and filters available in aristotle templates

A number of convenience tags are available for performing common actions in custom templates.

Include the aristotle template tags in every template that uses them, like so:

{% load aristotle_tags %}

Available tags and filters

aristotle_mdr.templatetags.aristotle_tags.can_edit(item, user)
A filter that acts as a wrapper around aristotle_mdr.perms.user_can_edit. Returns true if the user
has permission to edit the item, otherwise it returns False. If calling user_can_edit throws an exception it
safely returns False.

For example:

{% if myItem|can_edit:request.user %}
{{ item }}

{% endif %}

36 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

aristotle_mdr.templatetags.aristotle_tags.can_view(item, user)
A filter that acts as a wrapper around aristotle_mdr.perms.user_can_view. Returns true if the user
has permission to view the item, otherwise it returns False. If calling user_can_view throws an exception it
safely returns False.

For example:

{% if myItem|can_view:request.user %}
{{ item }}

{% endif %}

aristotle_mdr.templatetags.aristotle_tags.can_view_iter(qs, user)
A filter that is a simple wrapper that applies the aristotle_mdr.models.ConceptManager.
visible(user) for use in templates. Filtering on a Django Queryset and passing in the current user
as the argument returns a list (not a Queryset at this stage) of only the items from the Queryset the user
can view.

If calling can_view_iter throws an exception it safely returns an empty list.

For example:

{% for item in myItems|can_view_iter:request.user %}
{{ item }}

{% endfor %}

There are more template tags available in Aristotle

1.5.6 Testing

Aristotle uses tox and django’s unit test framework for testing

Running tests locally

Docker

For running tests on a local docker environemnt refer to https://github.com/aristotle-mdr/aristotle-metadata-registry/
docker

Tox

Tests can be run locally running tox with an optional environment argument e.g. tox -e dj1.
11-test-linux-db-sqlite-search-whoosh.

Virtualenv

• To run tests in a virtualenv, first set the DJANGO_SETTINGS_MODULE enviroment variable to the settings
module you want to use

• Install dev requirements with pipenv install --dev

• Run tests with pipenv run django-admin test aristotle_mdr. Replacing aristotle_mdr with a
full test path if needed

1.5. Extending Aristotle-MDR 37

https://github.com/aristotle-mdr/aristotle-metadata-registry/docker
https://github.com/aristotle-mdr/aristotle-metadata-registry/docker

Aristotle Metadata Registry Documentation, Release 0.0.1

Adding extension modules to our automated testing

When adding an extension package to the system it is important to integrate this with the automated testing process to
ensure it is tested alongside the rest of the system

Once the extension has been added to the /python directory follow these steps to enable automated testing

1. Add a setup.py for your package with dependancies defined in install_requires

2. Add the package to the Pipfile at the base directory of the repo

3. Run pipenv lock to update the lock file

4. Add a new model extension to the envlist in tox.ini at the base directory of the repo

5. Define your settings module, module name and module path in the setenv section of tox.ini

6. Add a new stage in .travis.yml with your new module extension

Done, your module will now be tested by travis automatically using the command django-admin test
modulename

1.6 Developing and contributing to the Aristotle Metadata Registry

Aristotle-MDR is a complex tool, so this is a guide on how you can easily contribute to the development of Aristotle.

1.6.1 Setting up a development environment

See README.md under aristotle-metadata-registry/docker/

Note: In this page, we assume your registry is at aristotle.example.com. Update your URLs accordingly
when running commands.

1.6.2 Creating a superuser

docker-compose exec web django-admin createsuperuser

1.6.3 Quickly switching user roles

Its often easy to interact with the registry as a super user, however often you will want to test how users with different
roles will interact with the site.

To make this easier, in development by default django-impersonate is installed. Using this you can quickly
switch users by going to the aristotle.example.com/alias/list page.

To stop acting as a different user go to aristotle.example.com/alias/stop.

38 Chapter 1. Table of Contents

Aristotle Metadata Registry Documentation, Release 0.0.1

1.7 Customing the Aristotle Metadata Registry

1.7.1 Customising templates

Aristotle-MDR builds pages using Django templates.

Which means almost every part of the website can be customised using the django template overriding order.

But default, when building pages Aristotle will try to load templates from the site directory first before using
templates from Aristolte and extensions or other Django apps.

1.7.2 Customising the browse pages

Making metadata-specific browse lists

To make a metadata specific browse page, add a directory and template into your custom templates directory for that
specific app of the form:

'aristotle_mdr_browse/<app_label>/<model_name>_list.html

1.8 Creating and deploying user help

1.8.1 Aristotle Help models

class aristotle_mdr.contrib.help.models.ConceptHelp(*args, **kwargs)
A Concept help page documents a given model that inherits from an 11179 concept.

Parameters

• id (AutoField) – Id

• created (AutoCreatedField) – Created

• modified (AutoLastModifiedField) – Modified

• slug (AutoSlugField) – Slug

• app_label (CharField) – Add an app for app specific help, required for concept help

• title (TextField) – A short title for the help page

• body (RichTextUploadingField) – A long help definition for an object or topic

• language (CharField) – Language

• is_public (BooleanField) – Indicates if a help topic is available to non-registered
users.

• helpbase_ptr_id (OneToOneField) – Helpbase ptr

• concept_type (CharField) – Concept type

• brief (TextField) – A short description of the concept

• official_definition (TextField) – An official description of the concept, e.g.
the ISO/IEC definition for an Object Class

1.7. Customing the Aristotle Metadata Registry 39

https://docs.djangoproject.com/en/1.8/ref/templates/api/#loading-templates

Aristotle Metadata Registry Documentation, Release 0.0.1

• official_reference (TextField) – The reference document that describes this
concept type

• official_link (TextField) – An link to an official source for a description of the
concept

• creation_tip (RichTextUploadingField) – Instructions for creating good con-
tent of this type

class aristotle_mdr.contrib.help.models.HelpBase(*args, **kwargs)
The base help class for Aristotle help pages.

Parameters

• id (AutoField) – Id

• created (AutoCreatedField) – Created

• modified (AutoLastModifiedField) – Modified

• slug (AutoSlugField) – Slug

• app_label (CharField) – Add an app for app specific help, required for concept help

• title (TextField) – A short title for the help page

• body (RichTextUploadingField) – A long help definition for an object or topic

• language (CharField) – Language

• is_public (BooleanField) – Indicates if a help topic is available to non-registered
users.

class aristotle_mdr.contrib.help.models.HelpPage(*args, **kwargs)
A help page is a generic way of providing help to a user on a topic.

Parameters

• id (AutoField) – Id

• created (AutoCreatedField) – Created

• modified (AutoLastModifiedField) – Modified

• slug (AutoSlugField) – Slug

• app_label (CharField) – Add an app for app specific help, required for concept help

• title (TextField) – A short title for the help page

• body (RichTextUploadingField) – A long help definition for an object or topic

• language (CharField) – Language

• is_public (BooleanField) – Indicates if a help topic is available to non-registered
users.

• helpbase_ptr_id (OneToOneField) – Helpbase ptr

1.8.2 Special syntax in user help files

As help files are just django fixture files all of the caveats there apply, with a few small conventions applied on top.

• For consistancy and readability, its encouraged to keep one help fixture per file.

• The body of the help file can be HTML, and this will be displayed to the user unchanged. It is up to documenters
to ensure that help files are valid HTML that won’t break layout.

40 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/1.8/howto/initial-data/

Aristotle Metadata Registry Documentation, Release 0.0.1

A few additional

Below is an example help file:

- model: aristotle_mdr_help.helppage
fields:
title: Advanced Search
language: en
body: >

<h2>Restricting search with the advanced search options</h2>
<p>

The search page provides a form that gives
users control to filter and sort search results.</p>

<p>

When searching, the "indexed text" refers to everything crawled by the
→˓search engine.

1.8.3 Writing help files

To improve users abilities to self-help and self-manage within an instance the Aristotle Metadata Registry includes
a help API that allows system administrators, and extension and download developers to write help files that are
searchable by users.

At their core, these help files are similar to django fixture files with a few relatively minor differences.

• The subclassing of help files needed for indexing can be ignored

• One fixture per file is recommended to make writing easier, although multiple help pages can be parsed from
one file

1.8.4 Importing help files

The Aristotle-MDR provides a django command line action similar to the loadata called
load_aristotle_help. This adds an additional switch --update or -U that when attempting to insert,
will instead override help files.

For example:

./manage.py load_aristotle_help

Will load all help files in the ./aristotle_help_files/ subdirectory of all apps in ‘‘INSTALLED_APPS‘‘.

1.8.5 Accessing help in extension and download templates

Aristotle provides a template tag to extract a number of different help types for 11179-derived concepts in templates.

This can be called using help_doc and passing the model class for the concept required along with the help field
requested.

{% load aristotle_help %} {% help_doc model_class ‘brief’ %}

1.8. Creating and deploying user help 41

Aristotle Metadata Registry Documentation, Release 0.0.1

42 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

43

Aristotle Metadata Registry Documentation, Release 0.0.1

44 Chapter 2. Indices and tables

Python Module Index

a
aristotle_mdr.contrib.generic.views, 23
aristotle_mdr.contrib.help.models, 39
aristotle_mdr.fields, 25
aristotle_mdr.perms, 36
aristotle_mdr.register, 26
aristotle_mdr.templatetags.aristotle_tags,

32
aristotle_mdr.views.downloads, 30

45

Aristotle Metadata Registry Documentation, Release 0.0.1

46 Python Module Index

Index

Symbols
_concept (class in aristotle_mdr.models), 17

A
adminEdit() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 33
append_asterisk_if_required() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 33
aristotle_mdr.contrib.generic.views (module), 23
aristotle_mdr.contrib.help.models (module), 39
aristotle_mdr.fields (module), 25
aristotle_mdr.perms (module), 36
aristotle_mdr.register (module), 26
aristotle_mdr.templatetags.aristotle_tags (module), 32
aristotle_mdr.views.downloads (module), 30

B
BootTableListView (class in aristo-

tle_mdr.contrib.generic.views), 23

C
can_add_status() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 33
can_edit() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 33
can_supersede() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 33
can_view() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 33
can_view_iter() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 34
concept (class in aristotle_mdr.models), 18
ConceptForeignKey (class in aristotle_mdr.fields), 25
ConceptGenericRelation (class in aristotle_mdr.fields),

25
ConceptHelp (class in aristotle_mdr.contrib.help.models),

39
ConceptManager (class in aristotle_mdr.managers), 27

ConceptManyToManyField (class in aristotle_mdr.fields),
25

ConceptOneToOneField (class in aristotle_mdr.fields), 26
ConceptQuerySet (class in aristotle_mdr.managers), 27
create_file() (aristotle_mdr.downloader.Downloader

method), 30

D
doc() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 34
download() (aristotle_mdr.downloader.Downloader

method), 30
Downloader (class in aristotle_mdr.downloader), 30
downloadMenu() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 34

E
editable() (aristotle_mdr.managers.ConceptQuerySet

method), 27

G
GenericAlterForeignKey (class in aristo-

tle_mdr.contrib.generic.views), 23
GenericAlterManyToManyView (class in aristo-

tle_mdr.contrib.generic.views), 23
GenericAlterOneToManyView (class in aristo-

tle_mdr.contrib.generic.views), 24
get_class_info() (aristotle_mdr.downloader.Downloader

class method), 30
get_content_type() (aristo-

tle_mdr.fields.ConceptGenericRelation
method), 25

get_download_items() (aristotle_mdr.models.concept
method), 17

get_status_from_dict() (in module aristo-
tle_mdr.templatetags.aristotle_tags), 34

get_storage() (aristotle_mdr.downloader.Downloader
method), 30

47

Aristotle Metadata Registry Documentation, Release 0.0.1

H
HelpBase (class in aristotle_mdr.contrib.help.models), 40
HelpPage (class in aristotle_mdr.contrib.help.models), 40

I
in_workgroup() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 34
item (aristotle_mdr.models._concept attribute), 19
item (aristotle_mdr.models.concept attribute), 19

L
LowerEmailField (class in aristotle_mdr.fields), 26

P
post() (aristotle_mdr.contrib.generic.views.GenericAlterForeignKey

method), 23
post() (aristotle_mdr.contrib.generic.views.GenericAlterManyToManyView

method), 24
public() (aristotle_mdr.managers.ConceptQuerySet

method), 28
public_standards() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 34

R
register_concept() (in module aristotle_mdr.register), 26
register_concept_admin() (in module aristo-

tle_mdr.register), 26
register_concept_search_index() (in module aristo-

tle_mdr.register), 26
retrieve_file() (aristotle_mdr.downloader.Downloader

method), 30

S
save_form() (aristotle_mdr.contrib.generic.views.GenericAlterForeignKey

method), 23
state_to_text() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 35
store_file() (aristotle_mdr.downloader.Downloader

method), 30

T
ternary() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 35

U
UnorderedGenericAlterOneToManyView (class in aristo-

tle_mdr.contrib.generic.views), 24
user_can_add_status() (in module aristotle_mdr.perms),

36
user_can_edit() (in module aristotle_mdr.perms), 36
user_can_view() (in module aristotle_mdr.perms), 36
user_can_view_statuses_revisions() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 35

V
visible() (aristotle_mdr.managers.ConceptQuerySet

method), 28
visible_superseded_by_items() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 35
visible_supersedes_items() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 35
VueFormView (class in aristo-

tle_mdr.contrib.generic.views), 25

Z
zws() (in module aristo-

tle_mdr.templatetags.aristotle_tags), 35

48 Index

	Table of Contents
	Aristotle Metadata Registry Mission Statement
	Installing Aristotle Metadata Registry
	Features of Aristotle-MDR
	The Aristotle Metadata Registry API
	Extending Aristotle-MDR
	Developing and contributing to the Aristotle Metadata Registry
	Customing the Aristotle Metadata Registry
	Creating and deploying user help

	Indices and tables
	Python Module Index
	Index

