

Welcome to CVP Uploader’s documentation!

Overview:

	Arista Cloudvision Portal Python scripts
	Container manager for CoudVision

	CloudVision Configlet manager

	CloudVision tasks Management
	Known Issues

	Getting Started

	License

	Ask question or report issue

	Contribute

Installation:

Installation:

	Installation
	Installation with PIP

	Git Clone

	Known Issue

	Build development environment

	Script options
	Options within shell environment

	Options from the CLI

[image: License Model]
 [https://github.com/titom73/arista-cvp-scripts/blob/master/LICENSE][image: GitHub top language]
 [https://github.com/titom73/arista-cvp-scripts/][image: Documentation Status]
 [https://arista-cvp-scripts.readthedocs.io/en/latest/?badge=latest][image: CI Status]
 [https://travis-ci.org/titom73/arista-cvp-scripts]

Arista Cloudvision Portal Python scripts

This repository provides a set of python scripts to interact with Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. All of them are based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Container manager for CoudVision

Generic script to manage containers on Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. It is based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Script filename: cvp-container-manager

Supported Features

	Check if container exists on CVP.

	Create a container on CVP topology

	Delete a container from CVP topology.

	Move a devices to an existing container.

CloudVision Configlet manager

Generic script to manage configlet on an Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. It is based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Script filename: cvp-configlet-manager

Supported Features

	Update existing remote configlet.

	Execute configlet update.

	Wait for task result.

	Delete configlet from server.

	Creating a new Configlet.

	attach and detach devices to/from existing configlet.

	Creating change-control.

	Scheduling change-control.

	Collect tasks to attach to change-control.

CloudVision tasks Management

Generic script to interact with tasks on an Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. It is based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Script filename: cvp-task-manager

Supported Features

	Execute All pending tasks

Known Issues

Due to a change in CVP API, change-control needs to get snapshot referenced per
task. Current version of cvprack does not support it in version 1.0. (Issue #75)

Fix is available in develop version. To install development version, use pip:

$ pip install git+https://github.com/aristanetworks/cvprac.git@develop

> Only required if you want to play with change-control

Getting Started

$ pip install git+https://github.com/titom73/arista-cvp-scripts.git

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='xxx.xxx.xxx.xxx'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
export CVP_TZ='Europe/Paris'
export CVP_COUNTRY='France'
EOT

run script
$ cvp-configlet-manager -j actions.json

License

Project is published under BSD License.

Ask question or report issue

Please open an issue on Github this is the fastest way to get an answer.

Contribute

Contributing pull requests are gladly welcomed for this repository. If
you are planning a big change, please start a discussion first to make
sure we’ll be able to merge it.

How-To and use-cases:

How-To and use-cases:

	How to use configilet manager
	Create a configlet with add task

	Update content of a configlet with update task

	Delete a configlet with delete task

	Remove a device from configlet with remove-device task

	Attach device to a configlet with add-device task

	Change-control building

	How to use container manager
	Create a container within CVP Topology:

	Delete a container from CVP Topology:

	Move devices to an existing container:

Code documentation

Code documentation:

	cvprac_abstraction
	cvprac_abstraction package
	Submodules

	cvprac_abstraction.cvpChangeControl module

	cvprac_abstraction.cvpConfiglet module

	cvprac_abstraction.cvpContainer module

	cvprac_abstraction.cvpInventory module

Indices and tables

	Index

	Module Index

	Search Page

 [image: License Model]
 [https://github.com/titom73/arista-cvp-scripts/blob/master/LICENSE][image: GitHub top language]
 [https://github.com/titom73/arista-cvp-scripts/][image: Documentation Status]
 [https://arista-cvp-scripts.readthedocs.io/en/latest/?badge=latest][image: CI Status]
 [https://travis-ci.org/titom73/arista-cvp-scripts]
Arista Cloudvision Portal Python scripts

This repository provides a set of python scripts to interact with Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. All of them are based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Container manager for CoudVision

Generic script to manage containers on Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. It is based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Script filename: cvp-container-manager

Supported Features

	Check if container exists on CVP.

	Create a container on CVP topology

	Delete a container from CVP topology.

	Move a devices to an existing container.

CloudVision Configlet manager

Generic script to manage configlet on an Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. It is based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Script filename: cvp-configlet-manager

Supported Features

	Update existing remote configlet.

	Execute configlet update.

	Wait for task result.

	Delete configlet from server.

	Creating a new Configlet.

	attach and detach devices to/from existing configlet.

	Creating change-control.

	Scheduling change-control.

	Collect tasks to attach to change-control.

CloudVision tasks Management

Generic script to interact with tasks on an Arista Cloudvision [https://www.arista.com/en/products/eos/eos-cloudvision] server. It is based on cvprac [https://github.com/aristanetworks/cvprac] library to
interact using APIs calls between your client and CVP interface.

Script filename: cvp-task-manager

Supported Features

	Execute All pending tasks

Known Issues

Due to a change in CVP API, change-control needs to get snapshot referenced per
task. Current version of cvprack does not support it in version 1.0. (Issue #75)

Fix is available in develop version. To install development version, use pip:

$ pip install git+https://github.com/aristanetworks/cvprac.git@develop

> Only required if you want to play with change-control

Getting Started

$ pip install git+https://github.com/titom73/arista-cvp-scripts.git

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='xxx.xxx.xxx.xxx'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
export CVP_TZ='Europe/Paris'
export CVP_COUNTRY='France'
EOT

run script
$ cvp-configlet-manager -j actions.json

License

Project is published under BSD License.

Ask question or report issue

Please open an issue on Github this is the fastest way to get an answer.

Contribute

Contributing pull requests are gladly welcomed for this repository. If
you are planning a big change, please start a discussion first to make
sure we’ll be able to merge it.

Installation

Script can be used with 2 different installation method:

	git clone for testing. In this case it is recommended to use a virtual-environment

	Python PIP module to install binary directly to your syste. A virtual-environment is also recommended for testing purpose.

Installation with PIP

$ pip install git+https://github.com/titom73/arista-cvp-scripts.git

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='xxx.xxx.xxx.xxx'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
EOT

$ source env.variables

run script to create a configlet
$ cvp-configlet-manager -j examples/actions.configlet.create.json

run script to play with containers
$ cvp-container-manager -j examples/actions.containers.json

Git Clone

It is highly recommended to use Python virtual environment for testing

$ git clone https://github.com/titom73/arista-cvp-scripts.git

$ python setup.py

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='13.57.194.119'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
EOT

Known Issue

Due to a change in CVP API, change-control needs to get snapshot referenced per
task. Current version of cvprack does not support it in version 1.0.1

Fix is available in develop version. To install development version, use pip:

$ pip install git+https://github.com/aristanetworks/cvprac.git@develop

Build development environment

It is highly recommended to use Python virtual environment for testing

$ git clone https://github.com/titom73/arista-cvp-scripts.git
$ cd arista-cvp-scripts

Create virtualenv
$ virtualenv -p /usr/bin/python2.7 .venv

Load virtualenvironment
$ source .venv/bin/activate

Install module in develop mode for auto reload changes
$ python setup.py develop

Install Python linter
$ pip install flake8

Install pre-commit hook
$ ln -s -f ../../.ci/pre-commit .git/hooks/pre-commit

Script options

Script provides a set of different options and all can be set by using SHELL environment variables or CLI parameters.

Options within shell environment

By default, script will lookup for a set of variables in your
environment:

	CVP_HOST: Hostname or IP address of CVP server

	CVP_PORT: CVP port to use to communicate with API engine. Default
is 443

	CVP_PROTO: Transport protocol to discuss with CVP. Default is
HTTPS

	CVP_USER: Username to use for CVP connection

	CVP_PASS: Password to use for CVP connection

	LOG_LEVEL: Script verbosity. Default is info

	CVP_TZ: Timezone used to configure change-control

	TZ_COUNTRY: Country to use in change-control configuration.

	CERT_VALIDATION: Whether or not activate SSL Cert validation.
Default is False to manage self signed certificates.

In your shell, execute following commands:

export CVP_HOST='IP_ADDRESS_OF_CVP_SERVER'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='YOUR_CVP_USERNAME'
export CVP_PASS='YOUR_CVP_PASSWORD'
export CVP_TZ=France
export CVP_COUNTRY='France'

A script example [https://github.com/titom73/arista-cvp-scripts/blob/master/env.variables] is available in the repository
for informational purpose

It can be configured in your ~/.bashrc or in VARIABLES of a CI/CD
pipeline as well.

Options from the CLI

This approach overrides options defined in your shell environment

$ cvp-configlet-manager-h

usage: cvp-configlet-uploader.py [-h] [-v] [-c CONFIGLET] [-u USERNAME]
 [-p PASSWORD] [-s CVP] [-d DEBUG_LEVEL]
 [-j JSON]

Configlet Uploader to CVP

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit
 -c CONFIGLET, --configlet CONFIGLET
 Configlet path to use on CVP
 -u USERNAME, --username U SERNAME
 Username for CVP
 -p PASSWORD, --password PASSWORD
 Password for CVP
 -s CVP, --cvp CVP Address of CVP server
 -d DEBUG_LEVEL, --debug_level DEBUG_LEVEL
 Verbose level (debug / info / war ning / error /
 critical)
 -j JSON, --json JSON File with list of actions to execute)

How to use configilet manager

Script can be use to manage configlet on a CloudVision (CVP) server

To manage all actions to run on a CVP server is by using a JSON file to list a set of actions. This json file is provided to the script by using `-json` trigger on CLI.

JSON file is an array of entries where every single entry in JSON file describe a task to run:

[
 {
 //task 1
 },
 {
 //task 2
 }
]

Current version of code support all the actions listed below:

	Create a configlet

	Update content of a configlet

	Delete a configlet from Cloud Vision Portal

	Add a device to an existing configlet

	Remove a device from an existing configlet

Note

For the first 2 options, a local content for any configlet shall be present to push content to Cloud Vision. In other scenario, only the name of the configlet targetting by your action should be defined.

Create a configlet with add task

To create a new configlet on CVP server, JSON file shall have the following structure:

{
 "name": "new CVP Configlet",
 "type": "configlet",
 "action": "add",
 "configlet": "configlet.examples/VLANsTEMP",
 "apply": false,
 "devices": [
 "leaf1",
 "leaf2",
 "leaf3"
]
}

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a configlet.

	action: Action to run on configlet. As we want to create a new one, action shall be add

	configlet: Path to the configlet. Remember that file name will be used as configlet name.

	apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or manual action should be done later.

	devices: An array of devices hostname configured on CVP where to attache configlet.

Update content of a configlet with update task

To update an existing configlet on CVP server, JSON file shall have the following structure:

{
 "name": "new CVP Configlet",
 "type": "configlet",
 "action": "update",
 "configlet": "configlet.examples/VLANs",
 "apply": true
}

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a configlet.

	action: Action to run on configlet. As we want to create a new one, action shall be update

	configlet: Path to the configlet. Remember that file name will be used as configlet name.

	apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or manual action should be done later.

	devices: An array of devices hostname configured on CVP where to attache configlet.

Note

Note: If configlet is not already configured on your CloudVision server, then script try to create it. Creation requires a list devices configured in this specific task.

Delete a configlet with delete task

To delete an existing configlet on CVP server, JSON file shall have the following structure:

{
 "name": "new CVP Configlet",
 "type": "configlet",
 "action": "delete",
 "configlet": "configlet.examples/VLANsTEMP",
 "apply": true
}

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a configlet.

	action: Action to run on configlet. As we want to create a new one, action shall be delete

	configlet: Path to the configlet. Remember that file name will be used as configlet name.

	apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or manual action should be done later.

	devices: An array of devices hostname configured on CVP where to attache configlet.

Remove a device from configlet with remove-device task

To remove a device from a configlet on CVP server, JSON file shall have the following structure:

{
 "name": "new CVP Configlet",
 "type": "configlet",
 "action": "remove-devices",
 "configlet": "configlet.examples/VLANsTEMP",
 "apply": false,
 "devices": [
 "leaf3"
]
}

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a configlet.

	action: Action to run on configlet. As we want to create a new one, action shall be remove-devices

	configlet: Path to the configlet. Remember that file name will be used as configlet name.

	apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or manual action should be done later.

	devices: An array of devices hostname to remove from the configlet.

Attach device to a configlet with add-device task

To attach a device or a list of devices to a configlet on CVP server, JSON file shall have the following structure:

{
 "name": "new CVP Configlet",
 "type": "configlet",
 "action": "add-devices",
 "configlet": "configlet.examples/VLANsTEMP",
 "apply": false,
 "devices": [
 "leaf3",
 "leaf1"
]
}

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a configlet.

	action: Action to run on configlet. As we want to create a new one, action shall be add-devices

	configlet: Path to the configlet. Remember that file name will be used as configlet name.

	apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or manual action should be done later.

	devices: An array of devices hostname to remove from the configlet.

Change-control building

To delete an existing configlet on CVP server, JSON file shall have the following structure:

{
 "name": "Change Control to deploy last update",
 "type": "change-control",
 "schedule": "2019-03-15-12-30",
 "snapid": "snapshotTemplate_9_4694793526491",
 "apply": true,
},

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be change-control. It define what kind of entry to manage on CVP. in this case, we are talking about a change-control.

	schedule: optional entry to schedule execution of change control. if not set, change-control is executed 3 minutes after entry registration

	apply: If set to true, then, script will schedule change-control execution using schedule field or 3 minutes after change-control creation. If set to false, change control must be executed manually.

Some other options are also available for this action:

	timezone: Timezone of the server to manage scheduling. By default, it is set to Europe/Paris timezone.

	country: Country where CVP is for time managemement as well. By default it is set to France.

Warning

Timezone should be defined according time-zone configured on the machine you are running the script. In the meantime, your Cloud Vision server shall be NTP synced with correct timezone as well.

How to use container manager

Script uses a JSON file to describe list of actions to run on CloudVision server. This json file is provided to the script by using `-json` trigger on CLI.

JSON file is an array of entries where every single entry in JSON file describe a task to run:

[
 {
 //task 1
 },
 {
 //task 2
 }
]

Current version of code support all the actions listed below:

	Create a container in CoudVision topology

	Move a list of devices to an existing container.

	Delete a container from CloudVision topology.

Create a container within CVP Topology:

You can create a container in CloudVision topology using a JSON like below.

JSON example:

{
 "name": "Create container",
 "type": "container",
 "action": "create",
 "container": "Test Container",
 "parent": "Tenant"
}

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be container. It define what kind of entry to manage on CVP. in this case, we are talking about a container.

	action: Action to run on configlet. As we want to attach devices to container, action shall be creation

	container: Name of existing container where devices will be attached.

	parent: Name of parent container. It is value you have in your toipology. By default, container will be created under Tenant

Warning

This action execute task directly and there is no way to just provisionned and execute action later or manually.

Example outputs:

2019-04-30 13:51:51 INFO creation of container with name Test Container attached to Tenant
2019-04-30 13:51:52 INFO Connected to 54.219.174.143
2019-04-30 13:51:52 INFO *************
2019-04-30 13:51:52 INFO Start working with Test Container
2019-04-30 13:51:52 INFO initializing a container object for Test Container
2019-04-30 13:51:52 INFO Version [u'2018', u'2', u'2']
2019-04-30 13:51:52 INFO Setting API version to v2
2019-04-30 13:51:54 WARNING container Test Container not found
2019-04-30 13:51:54 INFO create container on CVP server
2019-04-30 13:51:54 INFO start creation of container attached to Tenant

Delete a container from CVP Topology:

You can delete a container in CloudVision topology using a JSON like below.

JSON example:

{
 "name": "Create container",
 "type": "container",
 "action": "destroy",
 "container": "Test Container",
 "parent": "Tenant"
}

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be container. It define what kind of entry to manage on CVP. in this case, we are talking about a container.

	action: Action to run on configlet. As we want to attach devices to container, action shall be destroy

	container: Name of existing container where devices will be attached.

	parent: Name of parent container. It is value you have in your toipology. By default, container will be created under Tenant

Note

To execute this action, your container should not contain any attached device. if some are still attached, process will stop.

Warning

This action execute task directly and there is no way to just provisionned and execute action later or manually.

Example outputs:

2019-04-30 14:17:36 INFO destruction of container with name Test Container
2019-04-30 14:17:37 INFO Connected to 54.219.174.143
2019-04-30 14:17:37 INFO *************
2019-04-30 14:17:37 INFO Start working with Test Container
2019-04-30 14:17:37 INFO initializing a container object for Test Container
2019-04-30 14:17:37 INFO Version [u'2018', u'2', u'2']
2019-04-30 14:17:37 INFO Setting API version to v2
2019-04-30 14:17:41 INFO destroy container from CVP server
2019-04-30 14:17:41 INFO start process to delete container Test Container

Move devices to an existing container:

Script provides a mechanism to move devices to an existing container. JSON syntax to support such operation is provided below:

JSON example:

{
 "name": "Change CVX to EVPN",
 "type": "container",
 "action": "attach-device",
 "container": "CVX",
 "apply": true,
 "devices": [
 "leaf1",
 "leaf2",
 "cvx01"
]
 }

Where keys have description below:

	name: A name for the task. it is only a local name and it is not used on CVP side.

	type: shall be container. It define what kind of entry to manage on CVP. in this case, we are talking about a container.

	action: Action to run on configlet. As we want to attach devices to container, action shall be attach-device

	container: Name of existing container where devices will be attached.

	apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or manual action should be done later by user.

	devices: An array of devices hostname configured on CVP to move to container.

Example outputs:

2019-04-30 10:21:54 INFO device leaf1 is going to be moved to CVX
2019-04-30 10:21:54 INFO device leaf2 is going to be moved to CVX
2019-04-30 10:21:54 INFO device cvx01 is going to be moved to CVX
2019-04-30 10:21:55 INFO Connected to 54.219.174.143
2019-04-30 10:21:55 INFO *************
2019-04-30 10:21:55 INFO Start working with CVX
2019-04-30 10:21:55 INFO initializing a container object for CVX
2019-04-30 10:21:55 INFO Version [u'2018', u'2', u'2']
2019-04-30 10:21:55 INFO Setting API version to v2
2019-04-30 10:21:59 INFO check is devices are already part of container
2019-04-30 10:21:59 INFO device is not part of that container -- moving forward
2019-04-30 10:21:59 INFO device is not part of that container -- moving forward
2019-04-30 10:21:59 CRITICAL device is already part of that container -- skipping
2019-04-30 10:21:59 INFO >---
2019-04-30 10:21:59 INFO starting process to attach a list of device to CVX
2019-04-30 10:21:59 INFO >---
2019-04-30 10:21:59 INFO create change to move leaf1 to CVX
2019-04-30 10:22:03 INFO task created on CVP: 250
2019-04-30 10:22:03 INFO >---
2019-04-30 10:22:03 INFO create change to move leaf2 to CVX
2019-04-30 10:22:06 INFO task created on CVP: 251
2019-04-30 10:22:06 INFO >---
2019-04-30 10:22:06 CRITICAL device already attached to CVX
2019-04-30 10:22:06 INFO >---
2019-04-30 10:22:06 INFO run pending tasks to related to container CVX
2019-04-30 10:22:06 INFO -> execute task ID: 250
2019-04-30 10:22:08 INFO * Wait for task completion (status: ACTIVE) / waiting for 0 sec
2019-04-30 10:22:09 INFO * Wait for task completion (status: ACTIVE) / waiting for 1 sec
2019-04-30 10:22:10 INFO * Wait for task completion (status: ACTIVE) / waiting for 2 sec
2019-04-30 10:22:12 INFO * Wait for task completion (status: COMPLETED) / waiting for 3 sec
2019-04-30 10:22:12 INFO -> task 250 status : COMPLETED
2019-04-30 10:22:12 INFO -> execute task ID: 251
2019-04-30 10:22:13 INFO * Wait for task completion (status: ACTIVE) / waiting for 0 sec
2019-04-30 10:22:14 INFO * Wait for task completion (status: ACTIVE) / waiting for 1 sec
2019-04-30 10:22:15 INFO * Wait for task completion (status: ACTIVE) / waiting for 2 sec
2019-04-30 10:22:17 INFO * Wait for task completion (status: COMPLETED) / waiting for 3 sec
2019-04-30 10:22:17 INFO -> task 251 status : COMPLETED

cvprac_abstraction

	cvprac_abstraction package
	Submodules

	cvprac_abstraction.cvpChangeControl module

	cvprac_abstraction.cvpConfiglet module

	cvprac_abstraction.cvpContainer module

	cvprac_abstraction.cvpInventory module

cvprac_abstraction package

	
cvprac_abstraction.config_read(config_file='actions.json')

	Read JSON configuration.

Load information from JSON file defined in config_file
First, method check if file exists or not and then try to load
content using json.load()
If file is not a JSON or if file does not exist, method return None

Data structure to read:

[
 {
 "name": "Change CVX to EVPN",
 "type": "container",
 "action": "attach-device",
 "container": "CVX",
 "apply": true,
 "devices": [
 "leaf1",
 "leaf2",
 "cvx01"
]
 },
 ...
]

	Parameters

	config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the configuration file

	Returns

	Json structure with all actions to execute

	Return type

	json

	
cvprac_abstraction.connect_to_cvp(parameters, log_level='WARNING')

	Create a CVP connection.

	parameters option should at least contain following elements:

	
	username

	password

	cvp (server IP or DNS hostname)

	Parameters

	
	parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Object with all information to create connection

	log_level (str [https://docs.python.org/3/library/stdtypes.html#str]) – Log level to use for CvpClient logger. Default is WARNING.

	Returns

	cvp client object

	Return type

	cvprac.CvpClient()

	
cvprac_abstraction.load_constant(key_name, default='UNSET', verbose=False)

	Set up constant value from OS Environment.

Help to define CONSTANT from OS Environment.
If it is not defined, then, fallback to default value
provided within parameters

:Example:

>>> USERNAME = load_constant(key_name='USERNAME_1', default='myUser')
>>> print USERNAME
>>> myUsername

	Parameters

	
	key_name (string) – VAR to lookup in os.environment

	default (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Default value to use if key_name is not defined. By default set to UNSET

	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Boolean to activate verbos mode

	Returns

	Value to use to configure variable

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Submodules

cvprac_abstraction.cvpChangeControl module

	
class cvprac_abstraction.cvpChangeControl.CvpChangeControl(cvp_server, name='Automated_Change_Control')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Change-control class to provide generic method for CVP CC mechanism.

	Change Control structure is based on:

	
	A name to identify change

	A list of tasks already created on CVP and on pending state

	
	An optional scheduling. If no schedule is defined,

	then task will be run 3 minutes after creatio of CC

List of public available methods:

	
add_task()

	Append a task to self._list_changes

	
get_tasks()

	Return list of of available tasks for this CC

	
get_list_changes()

	Return list of tasks attached to this CC

	
create()

	Create change-control on CVP server

Example

>>> from cvprac_abstraction import CVP
>>> from cvprac_abstraction import connect_to_cvp
>>> from cvprac_abstraction.cvpConfiglet import CvpChangeControl
>>>
>>> parameters['cvp'] = '127.0.0.1'
>>> parameters['username'] = 'arista'
>>> parameters['password'] = 'arista'
>>>
>>> client = connect_to_cvp(parameters)
>>>
>>> change_control = CvpChangeControl(cvp_server=client, name='MyChanegControl')
>>> result = change_control.create(tz=timezone,
 country='FR',
 schedule=True,
 schedule_at='2019-03-01-12h00',
 snap_template="snapshotTemplate_9_4694793526491",
 change_type='Custom', stop_on_error="true")
>>>

Warning

	Change Control execution is not running snapshot before and after with cvprac 1.0.1

	
__init__(cvp_server, name='Automated_Change_Control')

	Class Constructor.

	Build class content with followinactivities:

	
	save cvp_server information

	save name for CC

	instanciate list for tasks

	Collect tasks available from CVP

	Parameters

	
	cvp_server (CvpClient) – CVP Server information

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - Name of the Change Control.
Default is Automated_Change_Control

	
_build_change_dictionnary(order_mode='linear')

	Build ordered list to schedule changes.

CVP Change Control expect a list with an order to run tasks.
By default, all tasks are executed at the same time.
But using order_mode set to incremental every task will
be scheduled sequentially in this change-control

	Parameters

	order_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - Method to build task list.
Shall be linear or incremental.

Note

Only linear has been tested.

	
_retrieve_tasks()

	Extract tasks from CVP Server.

Connect to CVP server and collect tasks in pending state
These tasks are saved in self._available structure dedicated
to pending tasks.

	
add_task(task)

	Add a tasks to available list.

This task attach this new tasks to the pending tasks list.

	Parameters

	task (str [https://docs.python.org/3/library/stdtypes.html#str]) – TaskID from CVP server

	
create(mode='linear', country='France', tz='Europe/Paris', schedule=False, schedule_at='', snap_template='1708dd89-ff4b-4d1e-b09e-ee490b3e27f0', change_type='Custom', stop_on_error='true')

	Create a change-control.

	Parameters

	
	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - method to order tasks (default : linear)

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - Country requested by CVP API (default:France)

	tz (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - Timezone required by CVP (default: Europe/Paris)

	schedule (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional - Enable CC scheduling (default: False)

	schedule_at (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - Time to execute CC if scheduled

	snap_template (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - Snapshot template ID to run before / after tasks

	change_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - CVP definition for CC Might be Custom or Rollback.
(default: Custom)

	stop_on_error (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - boolean string to stop CVP on errors

	Returns

	CVP creation result (None if error occurs)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_list_changes(mode='linear')

	Return list of tasks and their execution order.

	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Information about tasks scheduling.
Shall be linear or incremental.

Note

Only linear has been tested.

	Returns

	List of changes and their order

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_tasks(refresh=False)

	Provide list of all available tasks.

Return list of all tasks getting from CVP and/or attached
with add_task method.

	Parameters

	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional - Make a call to CVP to get latest list of tasks

	Returns

	List of available tasks found in this CC

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

cvprac_abstraction.cvpConfiglet module

	
class cvprac_abstraction.cvpConfiglet.CvpConfiglet(cvp_server, configlet_file=None, configlet_name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Configlet class to provide generic method to manage CVP configlet.

Data Structure

Configlet structure is a name based dictionnary with following keys:

	name: Name of configlet. This name is built from filename

	file: Complete path of the local configlet file

	content: Local Configlet content read from configlet['file']

	
	key: Key ID defined by CVP to identify configlet.

	it is found by our instance during update, addition or deletion

	
	devices: List of devices structure compliant

	with CvpApi.get_device_by_name() It can be found by
using CvpInventory object.

List of attributes:

	
_cvp_server

	cvprac.CvpClient() object to manage CVP connection

	
_devices_configlet

	List of devices attached to configlet

	
_configlet

	Dictionary with all configlet information: name, file,
content, key, devices

	
_cvp_found

	Boolean to get status of configlet on CVP: True if configlet is on
server, False other cases

List of public available methods:

	
get_devices()

	Get list of devices for this specific configlet

	
update_configlet()

	Start update process for that configlet.
Do not deploy content to devices

	
deploy_configlet()

	Start configlet creation process.
Do not deploy content to devices

	
delete_configlet()

	Start configlet deletion process. Do not deploy content to devices

	
deploy()

	Deploy (add/update) change to a single device

	
deploy_bulk()

	Deploy (add/update) change to all devices

	
on_cvp()

	Inform about configlet available on CVP

Example

>>> from cvprac_abstraction import CVP
>>> from cvprac_abstraction import connect_to_cvp
>>> from cvprac_abstraction.cvpConfiglet import CvpConfiglet
>>>
>>> parameters['cvp'] = '127.0.0.1'
>>> parameters['username'] = 'arista'
>>> parameters['password'] = 'arista'
>>>
>>> client = connect_to_cvp(parameters)
>>>
>>> my_configlet = CvpConfiglet(cvp_server=client,configlet_file='/path/to/configlet')
>>>
>>> my_configlet.update_configlet()
>>>
>>> my_configlet.deploy_bulk()

Note

This class use calls to cvprac to get and push data to CVP server.

	
__init__(cvp_server, configlet_file=None, configlet_name=None)

	Class Constructor.

	Parameters

	
	cvp_server (CvpClient) – CvpClient object from cvprack. Gives methods to manage CVP API

	configlet_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to configlet file.

	
_configlet_init()

	Create an empty dict for configlet.

	
_configlet_lookup()

	Check if a configlet is already present on CVP.

Check if CVP has already a configlet configured with the same name.
If yes return True and report key under self._configlet[‘key’]
If no, return False

	Returns

	Return True or False if configlet name is
already configured on CVP

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
_retireve_devices()

	Get list of devices attached to the configlet.

If configlet exists, then, retrieve a complete list of devices
attached to it.

	Returns

	List of devices from CVP

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
_task_init()

	Create an empty dict for task.

	
_wait_task(task_id, timeout=10)

	Wait for Task execution.

As API call is asynchronous, task will run avec after
receiving a status.
This function implement a wait_for to get final status of a task
As we have to protect against application timeout or task issue,
a basic timeout has been implemented

	Parameters

	
	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the task provided by self._get_task_id()

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – optional - Timeout to wait for before assuming task failed

	Returns –

	-------- –

	dict – Last status message collected from the server

	
add_device(device_hostnames)

	Remove device(s) from a configlet.

Remove device from configlet and create a task on CVP to remove
configuration generated by configlet from device.
For every hostname defined in devices_hostnames, a lookup is done to get
a complete data set for that device and a call to remove device is sent.

Warning

This function never send a call to execute task. it is managed by logic
out of that object

	Arguments:

	
	devices_hostnames {list} – List of devices hostname to remove from

	the configlet.

	
delete_configlet()

	Delete a configlet from CVP.

To protect, function first check if configlet exists, if not, we stop
and return to next action out of this function.
Remove configlet from all devices where it is configured
Then if configlet exist, remove configlet from CVP DB

	Returns

	True if able to remove configlet / False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
deploy(device, schedule_at=None, task_timeout=10)

	Deploy One configlet to One device.

This function manage a deployment this configlet to a
given device already attached to the configlet.

	Parameters

	
	device (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dict representing a device

	schedule_at (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional - scheduler to run deployment at a given time

	task_timeout (int [https://docs.python.org/3/library/functions.html#int]) – Optional - Timeout for task execution default is 10 seconds

Warning

schedule_at option is not yet implemented and shall not be used

	Returns

	message from server

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
deploy_bulk(device_list=None, schedule_at=None, task_timeout=10)

	Run configlet deployment against all devices.

Run configlet deployment over all devices attached to this configlet.
Every single deployment are managed by function self.deploy()

	Parameters

	
	device_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of devices if it is set to None, then,
fallback is to use devices discover initially

	at (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional scheduler to run deployment at a given time

	task_timeout (int [https://docs.python.org/3/library/functions.html#int]) – Optional - Timeout for task execution. Default is 10 seconds

Warning

schedule_at option is not yet implemented and shall not be used

	Returns

	A list of tasks executed for the deployment

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
deploy_configlet(device_hostnames)

	Create configlet on CVP with content from object.

Create a new configlet on CVP server and attached it to all devices
you provide in your JSON file.
Device attachement is managed with a CvpInventory call
to get all information from CVP.
It means you just have to provide existing hostname in your JSON

Each time a device is attached to configlet on CVP, it is also added
in CvpConfiglet object for futur use

	Parameters

	devices_hostname (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of hostname to attached to configlet

	
get_configlet_info()

	To share configlet information.

	Returns

	dictionnary with configlet information

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_devices(refresh=False)

	To share list of devices attached to the configlet.

If list is empty or if refresh trigger is active,
function will get a new list of device from self._retireve_devices()
Otherwise, just send back list to the caller

	Parameters

	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) – Update device list from CVP (Optional)

	Returns

	List of devices from CVP

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
name()

	Expose name of the configlet.

	Returns

	Name of configlet built by __init__

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
on_cvp()

	Expose flag about configlet configured on CVP.

Return True if configlet is configured on CVP and can be updated.
If configlet is not present, then, False

	Returns

	True if configlet already configured on CVP, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
remove_device(devices_hostnames)

	Remove device(s) from a configlet.

Remove device from configlet and create a task on CVP to remove
configuration generated by configlet from device.
For every hostname defined in devices_hostnames, a lookup is done to get
a complete data set for that device and a call to remove device is sent.

Warning

This function never send a call to execute task. it is managed by logic
out of that object

	Arguments:

	
	devices_hostnames {list} – List of devices hostname to remove from

	the configlet.

	
update_configlet()

	Update configlet on CVP with content from object.

Check if configlet is configured on CVP server before pushing an update.
If configlet is not there, then, stop method execution.

	Returns

	str

	Return type

	message from server with result

cvprac_abstraction.cvpContainer module

	
class cvprac_abstraction.cvpContainer.CvpContainer(name, cvp_server)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class to manage Container on CVP.

Centralize a abstraction layer of CVPRAC to manage actions related to container.

List of public available methods:

	
create()

	Create a new container on CloudVision Platform

	
destroy()

	Delete an existing with no attached devices container on CloudVision Platform

	
is_device_attached()

	Poll CVP to know if a device is already part of given container

	
get_info()

	Get container’s information from CVP server

	
attach_device()

	Create a task to attach a given device to container

	
attach_device_bulk()

	Create a list of tasks to attach many devices to container

	
run_pending()

	Execute all pengind tasks created by cvpContainer object.

Example

>>> from cvprac_abstraction import CVP
>>> from cvprac_abstraction import connect_to_cvp
>>> from cvprac_abstraction.cvpConfiglet import CvpContainer
>>>
>>> parameters['cvp'] = '127.0.0.1'
>>> parameters['username'] = 'arista'
>>> parameters['password'] = 'arista'
>>>
>>> client = connect_to_cvp(parameters)
>>>
>>> container = CvpContainer(name='My New Container', cvp_server=client)
>>>
>>> container.create(parent_name='My Root Container')

Note

This class use calls to cvprac to get and push data to CVP server.

	
__init__(name, cvp_server)

	Class Constructor.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – container’s name to look for on CloudVision server

	cvp_server (cvprack.CvpClient()) – Object in charge of sending API calls to CVP server.

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
_container_id(name=None)

	Get Container ID based on its name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Container name to get ID, by default None

	Returns

	container ID configured on CVP

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_container_info(name=None)

	Pull CVP to get container information.

Execute a call against CVP to get a dict of information.

Structure is:

{
 u'dateTimeInLongFormat': 1513002053415,
 u'key': u'container_8_2864853689536',
 u'mode': u'expand',
 u'name': u'CVX',
 u'root': False,
 u'undefined': False,
 u'userId': u'arista'
}

	Parameters

	name ([type [https://docs.python.org/3/library/functions.html#type]], optional) – Name of container to pull. If not set, name of container used for this instance is configured, by default None

	Returns

	Structure sent back by CVP

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_get_devices()

	Get list of devices attached to container.

Extract information from CVP to get complete list of devices attached to this container on CVP.
Result is saved part of this object.

	
_wait_task(task_id, timeout=10)

	Wait for Task execution.

As API call is asynchronous, task will run avec after
receiving a status.
This function implement a wait_for to get final status of a task
As we have to protect against application timeout or task issue,
a basic timeout has been implemented

	Parameters

	
	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the task provided by self._get_task_id()

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – optional - Timeout to wait for before assuming task failed

	Returns

	Last status message collected from the server

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
attach_device(hostname, deploy=False)

	Move device to container

Move device within container represented in this object.
This method create a task to be executed later by user or by the script itself.

	Parameters

	
	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Hostname to move to this container. Complete data set is pulling from

	CVP if device exists and not attached to this container already.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Boolean to manage deployment. Not used in this function, by default False

	Returns

	Task ID created by the change on CVP.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
attach_device_bulk(hostname_list, deploy=False)

	Attach a list of device to existing container.

Get a list of hostname to move to current container. For every hostname,
a call to CVP is sent to get device’s information and build structure to
move it to appropriate container.

	Parameters

	
	hostname_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of device hostname to attach to container.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Trigger to execute tasks generated during the attach phase, by default False

	
create(parent_name='Tenant')

	Create a container on CVP.

Implement workflow to create a container on CVP. Manage following actions:
- Collect Parent container information
- Create container.

	Parameters

	parent_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of parent container to use to attach container, by default ‘Tenant’

	
destroy(parent_name='Tenant')

	Remove a container from CVP topology.

	Parameters

	parent_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the parent container, by default “Tenant”

	Returns

	Return Nothing

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_info()

	Return container’s information.

Return container’s information pulling from CloudVision server.

Structure is:

{
 u'dateTimeInLongFormat': 1513002053415,
 u'key': u'container_8_2864853689536',
 u'mode': u'expand',
 u'name': u'CVX',
 u'root': False,
 u'undefined': False,
 u'userId': u'arista'
}

	Returns

	Container information from CVP

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
is_device_attached(hostname)

	Test wether or not a device is part of container.

Test if device hostname is already attached to this container. it is based on list provided by self._get_devices()

	Parameters

	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Hostname to search in container.

	Returns

	True if device is part of container, False if not found.

	Return type

	boolean

	
run_pending(task_timeout=10)

	Execute pending tasks related to container

Run tasks created when you change container.
It does not manage tasks from other objects.

>>> status = my_container.run_pending()
>>> print status
[{id:200, status: completed}, {id:201, status: completed}]

	Parameters

	task_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – timer to wait for task completion, by default 10

	Returns

	A list of dictionary where every entry is result of a task:

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]()

cvprac_abstraction.cvpInventory module

	
class cvprac_abstraction.cvpInventory.CvpInventory(cvp_server=<cvprac.cvp_client.CvpClient object>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

CVP Inventory Class.

Get complete inventory from CVP and expose some functions to get data.
It is RO only and nothing is pushed to CVP with this object.

	
__init__(cvp_server=<cvprac.cvp_client.CvpClient object>)

	Class Constructor.

Instantiate an Inventory with a REST call to get device list

	Parameters

	cvp_server (cvprack.CvpClient()) – Your CVP Rack server

	
get_device_dict(name)

	Get information for a given device.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Hostname to lookup

	Returns

	Complete dictionnary sent by CVP

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_devices()

	Give a dict of all devices.

	Returns

	dict

	Return type

	All devices attached to CVP inventory

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cvprac_abstraction	

 	
 	
 cvprac_abstraction.cvpChangeControl	

 	
 	
 cvprac_abstraction.cvpConfiglet	

 	
 	
 cvprac_abstraction.cvpContainer	

 	
 	
 cvprac_abstraction.cvpInventory	

Index

 _
 | A
 | C
 | D
 | G
 | I
 | L
 | N
 | O
 | R
 | U

_

 	
 	__init__() (cvprac_abstraction.cvpChangeControl.CvpChangeControl method)

 	(cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	(cvprac_abstraction.cvpContainer.CvpContainer method)

 	(cvprac_abstraction.cvpInventory.CvpInventory method)

 	_build_change_dictionnary() (cvprac_abstraction.cvpChangeControl.CvpChangeControl method)

 	_configlet (cvprac_abstraction.cvpConfiglet.CvpConfiglet attribute)

 	_configlet_init() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	_configlet_lookup() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	_container_id() (cvprac_abstraction.cvpContainer.CvpContainer method)

 	
 	_container_info() (cvprac_abstraction.cvpContainer.CvpContainer method)

 	_cvp_found (cvprac_abstraction.cvpConfiglet.CvpConfiglet attribute)

 	_cvp_server (cvprac_abstraction.cvpConfiglet.CvpConfiglet attribute)

 	_devices_configlet (cvprac_abstraction.cvpConfiglet.CvpConfiglet attribute)

 	_get_devices() (cvprac_abstraction.cvpContainer.CvpContainer method)

 	_retireve_devices() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	_retrieve_tasks() (cvprac_abstraction.cvpChangeControl.CvpChangeControl method)

 	_task_init() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	_wait_task() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	(cvprac_abstraction.cvpContainer.CvpContainer method)

A

 	
 	add_device() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	add_task() (cvprac_abstraction.cvpChangeControl.CvpChangeControl method), [1]

 	
 	attach_device() (cvprac_abstraction.cvpContainer.CvpContainer method), [1]

 	attach_device_bulk() (cvprac_abstraction.cvpContainer.CvpContainer method), [1]

C

 	
 	config_read() (in module cvprac_abstraction)

 	connect_to_cvp() (in module cvprac_abstraction)

 	create() (cvprac_abstraction.cvpChangeControl.CvpChangeControl method), [1]

 	(cvprac_abstraction.cvpContainer.CvpContainer method), [1]

 	CvpChangeControl (class in cvprac_abstraction.cvpChangeControl)

 	CvpConfiglet (class in cvprac_abstraction.cvpConfiglet)

 	
 	CvpContainer (class in cvprac_abstraction.cvpContainer)

 	CvpInventory (class in cvprac_abstraction.cvpInventory)

 	cvprac_abstraction (module)

 	cvprac_abstraction.cvpChangeControl (module)

 	cvprac_abstraction.cvpConfiglet (module)

 	cvprac_abstraction.cvpContainer (module)

 	cvprac_abstraction.cvpInventory (module)

D

 	
 	delete_configlet() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method), [1]

 	deploy() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method), [1]

 	
 	deploy_bulk() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method), [1]

 	deploy_configlet() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method), [1]

 	destroy() (cvprac_abstraction.cvpContainer.CvpContainer method), [1]

G

 	
 	get_configlet_info() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	get_device_dict() (cvprac_abstraction.cvpInventory.CvpInventory method)

 	get_devices() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method), [1]

 	(cvprac_abstraction.cvpInventory.CvpInventory method)

 	
 	get_info() (cvprac_abstraction.cvpContainer.CvpContainer method), [1]

 	get_list_changes() (cvprac_abstraction.cvpChangeControl.CvpChangeControl method), [1]

 	get_tasks() (cvprac_abstraction.cvpChangeControl.CvpChangeControl method), [1]

I

 	
 	is_device_attached() (cvprac_abstraction.cvpContainer.CvpContainer method), [1]

L

 	
 	load_constant() (in module cvprac_abstraction)

N

 	
 	name() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

O

 	
 	on_cvp() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method), [1]

R

 	
 	remove_device() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method)

 	
 	run_pending() (cvprac_abstraction.cvpContainer.CvpContainer method), [1]

U

 	
 	update_configlet() (cvprac_abstraction.cvpConfiglet.CvpConfiglet method), [1]

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to CVP Uploader’s documentation!

 		
 Arista Cloudvision Portal Python scripts

 		
 Container manager for CoudVision

 		
 CloudVision Configlet manager

 		
 CloudVision tasks Management

 		
 Known Issues

 		
 Getting Started

 		
 License

 		
 Ask question or report issue

 		
 Contribute

 		
 Installation

 		
 Installation with PIP

 		
 Git Clone

 		
 Known Issue

 		
 Build development environment

 		
 Script options

 		
 Options within shell environment

 		
 Options from the CLI

 		
 How to use configilet manager

 		
 Create a configlet with add task

 		
 Update content of a configlet with update task

 		
 Delete a configlet with delete task

 		
 Remove a device from configlet with remove-device task

 		
 Attach device to a configlet with add-device task

 		
 Change-control building

 		
 How to use container manager

 		
 Create a container within CVP Topology:

 		
 JSON example:

 		
 Example outputs:

 		
 Delete a container from CVP Topology:

 		
 JSON example:

 		
 Example outputs:

 		
 Move devices to an existing container:

 		
 JSON example:

 		
 Example outputs:

 		
 cvprac_abstraction

 		
 cvprac_abstraction package

 		
 Submodules

 		
 cvprac_abstraction.cvpChangeControl module

 		
 cvprac_abstraction.cvpConfiglet module

 		
 cvprac_abstraction.cvpContainer module

 		
 cvprac_abstraction.cvpInventory module

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

