
CVP Uploader Documentation
Release 0.9.3

EMEA

Apr 29, 2019

Contents:

1 Configlet uploader to CVP 3
1.1 Known Issue . 3
1.2 Getting Started . 4
1.3 License . 4
1.4 Ask question or report issue . 4
1.5 Contribute . 4

2 Installation 5
2.1 Installation with PIP . 5
2.2 Git Clone . 6
2.3 Known Issue . 6

3 Script options 7
3.1 Options within shell environment . 7
3.2 Options from the CLI . 8

4 How to use configilet uploader 9
4.1 Use script parameters to update . 9
4.2 Use json file for bulk actions . 10

4.2.1 Create a configlet with add task . 10
4.2.2 Update content of a configlet with update task . 11
4.2.3 Delete a configlet with delete task . 12
4.2.4 Remove a device from configlet with remove-device task 12
4.2.5 Attach device to a configlet with add-device task . 13
4.2.6 Change-control building . 13

5 Code documentation 15
5.1 Inventory Class . 16
5.2 Configlet Class . 17
5.3 Change Control Class . 21

6 Configlet uploader to CVP 25
6.1 Known Issue . 25
6.2 Getting Started . 26
6.3 License . 26
6.4 Ask question or report issue . 26
6.5 Contribute . 26

i

7 Indices and tables 27

ii

CVP Uploader Documentation, Release 0.9.3

Contents: 1

https://github.com/titom73/configlet-cvp-uploader/blob/master/LICENSE
https://arista-cvp-configlet-uploader.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/titom73/configlet-cvp-uploader

CVP Uploader Documentation, Release 0.9.3

2 Contents:

CHAPTER 1

Configlet uploader to CVP

Generic script to update configlet on an Arista Cloudvision server. It is based on cvprac library to interact using APIs
calls between your client and CVP interface.

Supported Features

• Update existing remote configlet.

• Execute configlet update.

• Wait for task result.

• Delete configlet from server.

• Creating a new Configlet.

• Add and remove devices to/from existing configlet.

• Creating change-control.

• Scheduling change-control.

• Collect tasks to attach to change-control.

Complete documentation available on read the doc

1.1 Known Issue

Due to a change in CVP API, change-control needs to get snapshot referenced per task. Current version of cvprack
does not support it in version 1.0.1

Fix is available in develop version. To install development version, use pip:

$ pip install git+https://github.com/aristanetworks/cvprac.git@develop

3

https://www.arista.com/en/products/eos/eos-cloudvision
https://github.com/aristanetworks/cvprac
https://arista-cvp-configlet-uploader.readthedocs.io/en/latest/

CVP Uploader Documentation, Release 0.9.3

1.2 Getting Started

$ pip install git+https://github.com/titom73/configlet-cvp-uploader.git

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='13.57.194.119'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
export CVP_TZ='France'
export CVP_COUNTRY='France'
EOT

run script (assuming VLANs configlet is present on CVP)
$ cvp-configlet-uploader -c VLANs

1.3 License

Project is published under BSD License.

1.4 Ask question or report issue

Please open an issue on Github this is the fastest way to get an answer.

1.5 Contribute

Contributing pull requests are gladly welcomed for this repository. If you are planning a big change, please start a
discussion first to make sure we’ll be able to merge it.

4 Chapter 1. Configlet uploader to CVP

https://github.com/titom73/configlet-cvp-uploader/blob/master/LICENSE

CHAPTER 2

Installation

Script can be used with 2 different installation method:

• git clone for testing. In this case it is recommended to use a virtual-environment

• Python PIP module to install binary directly to your syste. A virtual-environment is also recommended for
testing purpose.

2.1 Installation with PIP

$ pip install git+https://github.com/titom73/configlet-cvp-uploader.git

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='13.57.194.119'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
EOT

$ source env.variables.sh

Create Local configlet
$ cat <<EOT > VLANs
vlan 12
!
vlan 34
!
vlan 73
!
EOT

(continues on next page)

5

CVP Uploader Documentation, Release 0.9.3

(continued from previous page)

run script (assuming VLANs configlet is present on CVP)
$ cvp-configlet-uploader -c VLANs

2.2 Git Clone

It is highly recommended to use Python virtual environment for testing

$ git clone https://github.com/titom73/configlet-cvp-uploader.git

$ pip install -r requirements.txt

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='13.57.194.119'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
EOT

$ source env.variables.sh

Create Local configlet
$ cat <<EOT > VLANs
vlan 12
!
vlan 34
!
vlan 73
!
EOT

run script (assuming VLANs configlet is present on CVP)
$ python bin/cvpConfigletUploader.py -c VLANs

2.3 Known Issue

Due to a change in CVP API, change-control needs to get snapshot referenced per task. Current version of cvprack
does not support it in version 1.0.1

Fix is available in develop version. To install development version, use pip:

$ pip install git+https://github.com/aristanetworks/cvprac.git@develop

6 Chapter 2. Installation

CHAPTER 3

Script options

Script provides a set of different options and all can be set by using SHELL environment variables or CLI parameters.

3.1 Options within shell environment

By default, script will lookup for a set of variables in your environment:

• CVP_HOST: Hostname or IP address of CVP server

• CVP_PORT: CVP port to use to communicate with API engine. Default is 443

• CVP_PROTO: Transport protocol to discuss with CVP. Default is HTTPS

• CVP_USER: Username to use for CVP connection

• CVP_PASS: Password to use for CVP connection

• LOG_LEVEL: Script verbosity. Default is info

• CVP_TZ: Timezone used to configure change-control

• TZ_COUNTRY: Country to use in change-control configuration.

• CERT_VALIDATION: Whether or not activate SSL Cert validation. Default is False to manage self signed
certificates.

In your shell, execute following commands:

export CVP_HOST='IP_ADDRESS_OF_CVP_SERVER'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='YOUR_CVP_USERNAME'
export CVP_PASS='YOUR_CVP_PASSWORD'
export CVP_TZ=France
export CVP_COUNTRY='France'

A script example is available in the repository for informational purpose

7

https://github.com/titom73/configlet-cvp-uploader/blob/master/env.variables

CVP Uploader Documentation, Release 0.9.3

It can be configured in your ~/.bashrc or in VARIABLES of a CI/CD pipeline as well.

3.2 Options from the CLI

This approach overrides options defined in your shell environment

$ cvp-configlet-uploader -h

usage: cvp-configlet-uploader.py [-h] [-v] [-c CONFIGLET] [-u USERNAME]
[-p PASSWORD] [-s CVP] [-d DEBUG_LEVEL]
[-j JSON]

Configlet Uploader to CVP

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
-c CONFIGLET, --configlet CONFIGLET

Configlet path to use on CVP
-u USERNAME, --username U SERNAME

Username for CVP
-p PASSWORD, --password PASSWORD

Password for CVP
-s CVP, --cvp CVP Address of CVP server
-d DEBUG_LEVEL, --debug_level DEBUG_LEVEL

Verbose level (debug / info / war ning / error /
critical)

-j JSON, --json JSON File with list of actions to execute)

8 Chapter 3. Script options

CHAPTER 4

How to use configilet uploader

Script can be use in 2 different ways to manage configlet on a CloudVision (CVP) server:

• Use a CLI option to point to configlet to update.

• Use a json file to configure a set of actions to execute against a CVP server.

4.1 Use script parameters to update

For a short demo, it can be useful to just update and deploy content of an existing configlet configured on a CVP
server. To do that, use --configlet option from your CLI and then point you local version of your configlet.

Warning: This approach should be used only to validate script execution. Features are not all available in this
way and you can just update a configlet with with no deployment.

$ python cvp-configlet-uploader.py -c configlet.examples/VLANs

2019-02-28 13:23:37 INFO task Short path update is going to update configlet.
→˓examples/VLANs
2019-02-28 13:23:37 INFO Connected to 13.56.115.112
2019-02-28 13:23:37 INFO *************
2019-02-28 13:23:37 INFO Starting working with configlet.examples/VLANs
2019-02-28 13:23:37 INFO Configlet [VLANs] found on 13.56.115.112
2019-02-28 13:23:37 INFO Get list of applied devices from server
2019-02-28 13:23:38 INFO Version [u'2018', u'2', u'2']
2019-02-28 13:23:38 INFO Setting API version to v2
2019-02-28 13:23:39 INFO Start looking for devices attached to [VLANs]
2019-02-28 13:23:39 INFO > Configlet [VLANs] is applied to spine1 with
→˓sysMacAddr 2c:c2:60:56:df:93

(continues on next page)

9

CVP Uploader Documentation, Release 0.9.3

(continued from previous page)

2019-02-28 13:23:40 INFO > Configlet [VLANs] is applied to leaf4 with
→˓sysMacAddr 2c:c2:60:b5:96:d9
[...]

In this scenario, we assume configlet VLANs is already deployed and applied on a group of devices. In this case, we
can see configlet is attached to spine1 and leaf4.

Version of the configlet we are pushing is very simple: we have added a new vlan to deploy to existing list of vlan:

vlan 12
!
vlan 34
!
vlan 73
!

In any case, you have to define connection information. it can be done using CLI options or by loading variables from
your environment as described in options section

4.2 Use json file for bulk actions

Another way to manage all actions to run on a CVP server is by using a JSON file to list a set of actions. This json file
is provided to the script by using `-json` trigger on CLI.

JSON file is an array of entries where every single entry in JSON file describe a task to run:

[
{

//task 1
},
{

//task 2
}

]

Current version of code support all the actions listed below:

• Create a configlet

• Update content of a configlet

• Delete a configlet from Cloud Vision Portal

• Add a device to an existing configlet

• Remove a device from an existing configlet

Note: For the first 2 options, a local content for any configlet shall be present to push content to Cloud Vision. In
other scenario, only the name of the configlet targetting by your action should be defined.

4.2.1 Create a configlet with add task

To create a new configlet on CVP server, JSON file shall have the following structure:

10 Chapter 4. How to use configilet uploader

script_options.rst

CVP Uploader Documentation, Release 0.9.3

{
"name": "new CVP Configlet",
"type": "configlet",
"action": "add",
"configlet": "configlet.examples/VLANsTEMP",
"apply": false,
"devices": [

"leaf1",
"leaf2",
"leaf3"

]
}

Where keys have description below:

• name: A name for the task. it is only a local name and it is not used on CVP side.

• type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a
configlet.

• action: Action to run on configlet. As we want to create a new one, action shall be add

• configlet: Path to the configlet. Remember that file name will be used as configlet name.

• apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or
manual action should be done later.

• devices: An array of devices hostname configured on CVP where to attache configlet.

4.2.2 Update content of a configlet with update task

To update an existing configlet on CVP server, JSON file shall have the following structure:

{
"name": "new CVP Configlet",
"type": "configlet",
"action": "update",
"configlet": "configlet.examples/VLANs",
"apply": true

}

Where keys have description below:

• name: A name for the task. it is only a local name and it is not used on CVP side.

• type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a
configlet.

• action: Action to run on configlet. As we want to create a new one, action shall be update

• configlet: Path to the configlet. Remember that file name will be used as configlet name.

• apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or
manual action should be done later.

• devices: An array of devices hostname configured on CVP where to attache configlet.

Note: Note: If configlet is not already configured on your CloudVision server, then script try to create it. Creation
requires a list devices configured in this specific task.

4.2. Use json file for bulk actions 11

CVP Uploader Documentation, Release 0.9.3

4.2.3 Delete a configlet with delete task

To delete an existing configlet on CVP server, JSON file shall have the following structure:

{
"name": "new CVP Configlet",
"type": "configlet",
"action": "delete",
"configlet": "configlet.examples/VLANsTEMP",
"apply": true

}

Where keys have description below:

• name: A name for the task. it is only a local name and it is not used on CVP side.

• type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a
configlet.

• action: Action to run on configlet. As we want to create a new one, action shall be delete

• configlet: Path to the configlet. Remember that file name will be used as configlet name.

• apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or
manual action should be done later.

• devices: An array of devices hostname configured on CVP where to attache configlet.

4.2.4 Remove a device from configlet with remove-device task

To remove a device from a configlet on CVP server, JSON file shall have the following structure:

{
"name": "new CVP Configlet",
"type": "configlet",
"action": "remove-devices",
"configlet": "configlet.examples/VLANsTEMP",
"apply": false,
"devices": [

"leaf3"
]

}

Where keys have description below:

• name: A name for the task. it is only a local name and it is not used on CVP side.

• type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a
configlet.

• action: Action to run on configlet. As we want to create a new one, action shall be remove-devices

• configlet: Path to the configlet. Remember that file name will be used as configlet name.

• apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or
manual action should be done later.

• devices: An array of devices hostname to remove from the configlet.

12 Chapter 4. How to use configilet uploader

CVP Uploader Documentation, Release 0.9.3

4.2.5 Attach device to a configlet with add-device task

To attach a device or a list of devices to a configlet on CVP server, JSON file shall have the following structure:

{
"name": "new CVP Configlet",
"type": "configlet",
"action": "add-devices",
"configlet": "configlet.examples/VLANsTEMP",
"apply": false,
"devices": [

"leaf3",
"leaf1"

]
}

Where keys have description below:

• name: A name for the task. it is only a local name and it is not used on CVP side.

• type: shall be configlet. It define what kind of entry to manage on CVP. in this case, we are talking about a
configlet.

• action: Action to run on configlet. As we want to create a new one, action shall be add-devices

• configlet: Path to the configlet. Remember that file name will be used as configlet name.

• apply: define wether or not we should deploy this configlet to devices. if set to false, then a change-control or
manual action should be done later.

• devices: An array of devices hostname to remove from the configlet.

4.2.6 Change-control building

To delete an existing configlet on CVP server, JSON file shall have the following structure:

{
"name": "Change Control to deploy last update",
"type": "change-control",
"schedule": "2019-03-15-12-30",
"snapid": "snapshotTemplate_9_4694793526491",
"apply": true,

},

Where keys have description below:

• name: A name for the task. it is only a local name and it is not used on CVP side.

• type: shall be change-control. It define what kind of entry to manage on CVP. in this case, we are talking
about a change-control.

• schedule: optional entry to schedule execution of change control. if not set, change-control is executed 3
minutes after entry registration

• apply: If set to true, then, script will schedule change-control execution using schedule field or 3 minutes
after change-control creation. If set to false, change control must be executed manually.

Some other options are also available for this action:

• timezone: Timezone of the server to manage scheduling. By default, it is set to Europe/Paris timezone.

4.2. Use json file for bulk actions 13

CVP Uploader Documentation, Release 0.9.3

• country: Country where CVP is for time managemement as well. By default it is set to France.

Warning: Timezone should be defined according time-zone configured on the machine you are running the script.
In the meantime, your Cloud Vision server shall be NTP synced with correct timezone as well.

14 Chapter 4. How to use configilet uploader

CHAPTER 5

Code documentation

cvpConfigletUploader.action_add(configlet_def, parameters)
Manage actions to ADD a configlet.

Create CVP connection and instantiate a CvpConfiglet object Then call appropriate method to start object cre-
ation If apply option is set to true, then, generated tasks are applied by CVP. Otherwise, user has to do it
manually

Parameters option should at least contain following elements: - username - password - cvp (server IP or DNS
hostname)

Parameters

• configlet_def (dict) – Data from JSON to describe configlet

• parameters (dict) – Object with all information to create connection

cvpConfigletUploader.action_update(configlet_def, parameters)
Manage actions to UPDATE and existing configlet.

Create CVP connection and instantiate a CvpConfiglet object Then call appropriate method to start object update
And finally run tasks

Parameters option should at least contain following elements:

• username

• password

• cvp (server IP or DNS hostname)

Parameters

• configlet_def (dict) – Data from JSON to describe configlet

• parameters (dict) – Object with all information to create connection

cvpConfigletUploader.action_delete(configlet_def, parameters)
Manage actions to DELTE a configlet.

15

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

CVP Uploader Documentation, Release 0.9.3

Create CVP connection and instantiate a CvpConfiglet object Then call appropriate method to start object dele-
tion

Parameters option should at least contain following elements:

• username

• password

• cvp (server IP or DNS hostname)

Parameters

• configlet_def (dict) – Data from JSON to describe configlet

• parameters (dict) – Object with all information to create connection

cvpConfigletUploader.action_create_change_control(parameters, data)
Create a Change-Control.

Create a change-control on CVP based on a JSON definition. Current version supports following entries in
JSON: - name: change-control name configured on CVP - type: change-control (Must be set with this vaue to
engage CC) - country: Country required by CVP for CC - timezone: Timezone required by CVP to run changes

Expected inputs data JSON file:

[
{

"name": "Python_CC",
"type": "change-control",
"country": "France",
"timezone": "Europe/Paris"

}
]

Todo: Manage way to retrieve Template ID / As feature is not part of CVPRAC, snapid shall be part of the
job definition. If not, then we configure it to None

Parameters

• configlet_def (dict) – Data from JSON to describe configlet

• parameters (dict) – Object with all information to create connection

5.1 Inventory Class

class cvpConfigletUploader.CvpInventory(cvp_server)
Bases: object

CVP Inventory Class.

Get complete inventory from CVP and expose some functions to get data. It is RO only and nothing is pushed
to CVP with this object.

__init__(cvp_server)
Class Constructor.

Instantiate an Inventory with a REST call to get device list

16 Chapter 5. Code documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

CVP Uploader Documentation, Release 0.9.3

Parameters cvp_server (cvprack.CvpClient()) – Your CVP Rack server

get_device_dict(name)
Get information for a give device.

Parameters name (str) – Hostname to lookup

Returns Complete dictionnary sent by CVP

Return type dict

get_devices()
Give a dict of all devices.

Returns dict

Return type All devices attached to CVP inventory

5.2 Configlet Class

class cvpConfigletUploader.CvpConfiglet(cvp_server, configlet_file=None, con-
figlet_name=None)

Bases: object

Configlet class to provide generic method to manage CVP configlet.

Data Structure

Configlet structure is a name based dictionnary with following keys:

• name: Name of configlet. This name is built from filename

• file: Complete path of the local configlet file

• content: Local Configlet content read from configlet['file']

• key: Key ID defined by CVP to identify configlet. it is found by our instance during update, addition
or deletion

• devices: List of devices structure compliant with CvpApi.get_device_by_name() It can be
found by using CvpInventory object.

List of attributes:

_cvp_server
cvprac.CvpClient() object to manage CVP connection

_devices_configlet
List of devices attached to configlet

_configlet
Dictionary with all configlet information: name, file, content, key, devices

_cvp_found
Boolean to get status of configlet on CVP: True if configlet is on server, False other cases

List of Available methods:

get_devices()
Get list of devices for this specific configlet

update_configlet()
Start update process for that configlet. Do not deploy content to devices

5.2. Configlet Class 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

CVP Uploader Documentation, Release 0.9.3

deploy_configlet()
Start configlet creation process. Do not deploy content to devices

delete_configlet()
Start configlet deletion process. Do not deploy content to devices

deploy()
Deploy (add/update) change to a single device

deploy_bulk()
Deploy (add/update) change to all devices

on_cvp()
Inform about configlet available on CVP

Note: This class use call to cvprac to get and push data to CVP server.

__init__(cvp_server, configlet_file=None, configlet_name=None)
Class Constructor.

Parameters

• cvp_server (CvpClient) – CvpClient object from cvprack. Gives methods to man-
age CVP API

• configlet_file (str) – Path to configlet file.

_configlet_init()
Create an empty dict for configlet.

_configlet_lookup()
Check if a configlet is already present on CVP.

Check if CVP has already a configlet configured with the same name. If yes return True and report key
under self._configlet[‘key’] If no, return False

Returns Return True or False if configlet name is already configured on CVP

Return type bool

_retireve_devices()
Get list of devices attached to the configlet.

If configlet exists, then, retrieve a complete list of devices attached to it.

Returns List of devices from CVP

Return type list

_task_init()
Create an empty dict for task.

_wait_task(task_id, timeout=10)
Wait for Task execution.

As API call is asynchronous, task will run avec after receiving a status. This function implement a wait_for
to get final status of a task As we have to protect against application timeout or task issue, a basic timeout
has been implemented

Parameters

• task_id (str) – ID of the task provided by self._get_task_id()

• timeout (int) – optional - Timeout to wait for before assuming task failed

18 Chapter 5. Code documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CVP Uploader Documentation, Release 0.9.3

• Returns –

• -------- –

• dict – Last status message collected from the server

add_device(device_hostnames)
Remove device(s) from a configlet.

Remove device from configlet and create a task on CVP to remove configuration generated by configlet
from device. For every hostname defined in devices_hostnames, a lookup is done to get a complete data
set for that device and a call to remove device is sent.

Warning: This function never send a call to execute task. it is managed by logic out of that object

Arguments:

devices_hostnames {list} – List of devices hostname to remove from the configlet.

delete_configlet()
Delete a configlet from CVP.

To protect, function first check if configlet exists, if not, we stop and return to next action out of this
function. Remove configlet from all devices where it is configured Then if configlet exist, remove configlet
from CVP DB

Returns True if able to remove configlet / False otherwise

Return type bool

deploy(device, schedule_at=None, task_timeout=10)
Deploy One configlet to One device.

This function manage a deployment this configlet to a given device already attached to the configlet.

Parameters

• device (dict) – dict representing a device

• schedule_at (str) – Optional - scheduler to run deployment at a given time

• task_timeout (int) – Optional - Timeout for task execution default is 10 seconds

Warning: schedule_at option is not yet implemented and shall not be used

Returns message from server

Return type dict

deploy_bulk(device_list=None, schedule_at=None, task_timeout=10)
Run configlet deployment against all devices.

Run configlet deployment over all devices attached to this configlet. Every single deployment are managed
by function self.deploy()

Parameters

• device_list (list) – List of devices if it is set to None, then, fallback is to use
devices discover initially

• at (str) – Optional scheduler to run deployment at a given time

5.2. Configlet Class 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

CVP Uploader Documentation, Release 0.9.3

• task_timeout (int) – Optional - Timeout for task execution. Default is 10 seconds

Warning: schedule_at option is not yet implemented and shall not be used

Returns A list of tasks executed for the deployment

Return type list

deploy_configlet(device_hostnames)
Create configlet on CVP with content from object.

Create a new configlet on CVP server and attached it to all devices you provide in your JSON file. Device
attachement is managed with a CvpInventory call to get all information from CVP. It means you just have
to provide existing hostname in your JSON

Each time a device is attached to configlet on CVP, it is also added in CvpConfiglet object for futur use

Parameters devices_hostname (list) – List of hostname to attached to configlet

get_configlet_info()
To share configlet information.

Returns dictionnary with configlet information

Return type dict

get_devices(refresh=False)
To share list of devices attached to the configlet.

If list is empty or if refresh trigger is active, function will get a new list of device from
self._retireve_devices() Otherwise, just send back list to the caller

Parameters refresh (bool) – Update device list from CVP (Optional)

Returns List of devices from CVP

Return type list

name()
Expose name of the configlet.

Returns Name of configlet built by __init__

Return type str

on_cvp()
Expose flag about configlet configured on CVP.

Return True if configlet is configured on CVP and can be updated. If configlet is not present, then, False

Returns True if configlet already configured on CVP, False otherwise

Return type bool

remove_device(devices_hostnames)
Remove device(s) from a configlet.

Remove device from configlet and create a task on CVP to remove configuration generated by configlet
from device. For every hostname defined in devices_hostnames, a lookup is done to get a complete data
set for that device and a call to remove device is sent.

20 Chapter 5. Code documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CVP Uploader Documentation, Release 0.9.3

Warning: This function never send a call to execute task. it is managed by logic out of that object

Arguments:

devices_hostnames {list} – List of devices hostname to remove from the configlet.

update_configlet()
Update configlet on CVP with content from object.

Check if configlet is configured on CVP server before pushing an update. If configlet is not there, then,
stop method execution.

Returns str

Return type message from server with result

5.3 Change Control Class

class cvpConfigletUploader.CvpChangeControl(cvp_server, name=’Automated_Change_Control’)
Bases: object

Change-control class to provide generic method for CVP CC mechanism.

Change Control structure is based on:

• A name to identify change

• A list of tasks already created on CVP and on pending state

• An optional scheduling. If no schedule is defined, then task will be run 3 minutes after creatio of
CC

List of Available methods:

add_task()
Append a task to self._list_changes

get_tasks()
Return list of of available tasks for this CC

get_list_changes()
Return list of tasks attached to this CC

create()
Create change-control on CVP server

Todo:

• Implement a way to get snapshot IDs based on name

Warning:

• Change Control execution is not running snapshot before and after

__init__(cvp_server, name=’Automated_Change_Control’)
Class Constructor.

5.3. Change Control Class 21

https://docs.python.org/3/library/functions.html#object

CVP Uploader Documentation, Release 0.9.3

Build class content with followinactivities:

• save cvp_server information

• save name for CC

• instanciate list for tasks

• Collect tasks available from CVP

Parameters

• cvp_server (CvpClient) – CVP Server information

• name (str) – Optional - Name of the Change Control. Default is
Automated_Change_Control

_build_change_dictionnary(order_mode=’linear’)
Build ordered list to schedule changes.

CVP Change Control expect a list with an order to run tasks. By default, all tasks are executed at the
same time. But using order_mode set to incremental every task will be scheduled sequentially in this
change-control

Parameters order_mode (str) – Optional - Method to build task list. Shall be linear or
incremental.

Note: Only linear has been tested.

_retrieve_tasks()
Extract tasks from CVP Server.

Connect to CVP server and collect tasks in pending state These tasks are saved in self._available structure
dedicated to pending tasks.

add_task(task)
Add a tasks to available list.

This task attach this new tasks to the pending tasks list.

Parameters task (str) – TaskID from CVP server

create(mode=’linear’, country=’France’, tz=’Europe/Paris’, schedule=False, schedule_at=”,
snap_template=’1708dd89-ff4b-4d1e-b09e-ee490b3e27f0’, change_type=’Custom’,
stop_on_error=’true’)

Create a change-control.

Parameters

• mode (str) – Optional - method to order tasks (default : linear)

• country (str) – Optional - Country requested by CVP API (default:France)

• tz (str) – Optional - Timezone required by CVP (default: Europe/Paris)

• schedule (bool) – Optional - Enable CC scheduling (default: False)

• schedule_at (str) – Optional - Time to execute CC if scheduled

• snap_template (str) – Optional - Snapshot template ID to run before / after tasks

• change_type (str) – Optional - CVP definition for CC Might be Custom or Rollback.
(default: Custom)

22 Chapter 5. Code documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CVP Uploader Documentation, Release 0.9.3

• stop_on_error (str) – Optional - boolean string to stop CVP on errors

Returns CVP creation result (None if error occurs)

Return type dict

get_list_changes(mode=’linear’)
Return list of tasks and their execution order.

Parameters mode (str) – Information about tasks scheduling. Shall be linear or
incremental.

Note: Only linear has been tested.

Returns List of changes and their order

Return type list

get_tasks(refresh=False)
Provide list of all available tasks.

Return list of all tasks getting from CVP and/or attached with add_task method.

Parameters refresh (bool) – Optional - Make a call to CVP to get latest list of tasks

Returns List of available tasks found in this CC

Return type list

5.3. Change Control Class 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://github.com/titom73/configlet-cvp-uploader/blob/master/LICENSE
https://arista-cvp-configlet-uploader.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/titom73/configlet-cvp-uploader

CVP Uploader Documentation, Release 0.9.3

24 Chapter 5. Code documentation

CHAPTER 6

Configlet uploader to CVP

Generic script to update configlet on an Arista Cloudvision server. It is based on cvprac library to interact using APIs
calls between your client and CVP interface.

Supported Features

• Update existing remote configlet.

• Execute configlet update.

• Wait for task result.

• Delete configlet from server.

• Creating a new Configlet.

• Add and remove devices to/from existing configlet.

• Creating change-control.

• Scheduling change-control.

• Collect tasks to attach to change-control.

Complete documentation available on read the doc

6.1 Known Issue

Due to a change in CVP API, change-control needs to get snapshot referenced per task. Current version of cvprack
does not support it in version 1.0.1

Fix is available in develop version. To install development version, use pip:

$ pip install git+https://github.com/aristanetworks/cvprac.git@develop

25

https://www.arista.com/en/products/eos/eos-cloudvision
https://github.com/aristanetworks/cvprac
https://arista-cvp-configlet-uploader.readthedocs.io/en/latest/

CVP Uploader Documentation, Release 0.9.3

6.2 Getting Started

$ pip install git+https://github.com/titom73/configlet-cvp-uploader.git

Update your credential information
$ cat <<EOT > env.variables.sh
export CVP_HOST='13.57.194.119'
export CVP_PORT=443
export CVP_PROTO='https'
export CVP_USER='username'
export CVP_PASS='password'
export CVP_TZ='France'
export CVP_COUNTRY='France'
EOT

run script (assuming VLANs configlet is present on CVP)
$ cvp-configlet-uploader -c VLANs

6.3 License

Project is published under BSD License.

6.4 Ask question or report issue

Please open an issue on Github this is the fastest way to get an answer.

6.5 Contribute

Contributing pull requests are gladly welcomed for this repository. If you are planning a big change, please start a
discussion first to make sure we’ll be able to merge it.

26 Chapter 6. Configlet uploader to CVP

https://github.com/titom73/configlet-cvp-uploader/blob/master/LICENSE

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

27

CVP Uploader Documentation, Release 0.9.3

28 Chapter 7. Indices and tables

Index

Symbols
__init__() (cvpConfigletU-

ploader.CvpChangeControl method), 21
__init__() (cvpConfigletUploader.CvpConfiglet

method), 18
__init__() (cvpConfigletUploader.CvpInventory

method), 16
_build_change_dictionnary() (cvpConfigletU-

ploader.CvpChangeControl method), 22
_configlet (cvpConfigletUploader.CvpConfiglet at-

tribute), 17
_configlet_init() (cvpConfigletU-

ploader.CvpConfiglet method), 18
_configlet_lookup() (cvpConfigletU-

ploader.CvpConfiglet method), 18
_cvp_found (cvpConfigletUploader.CvpConfiglet at-

tribute), 17
_cvp_server (cvpConfigletUploader.CvpConfiglet at-

tribute), 17
_devices_configlet (cvpConfigletU-

ploader.CvpConfiglet attribute), 17
_retireve_devices() (cvpConfigletU-

ploader.CvpConfiglet method), 18
_retrieve_tasks() (cvpConfigletU-

ploader.CvpChangeControl method), 22
_task_init() (cvpConfigletUploader.CvpConfiglet

method), 18
_wait_task() (cvpConfigletUploader.CvpConfiglet

method), 18

A
action_add() (in module cvpConfigletUploader), 15
action_create_change_control() (in module

cvpConfigletUploader), 16
action_delete() (in module cvpConfigletU-

ploader), 15
action_update() (in module cvpConfigletU-

ploader), 15
add_device() (cvpConfigletUploader.CvpConfiglet

method), 19
add_task() (cvpConfigletU-

ploader.CvpChangeControl method), 21,
22

C
create() (cvpConfigletUploader.CvpChangeControl

method), 21, 22
CvpChangeControl (class in cvpConfigletUploader),

21
CvpConfiglet (class in cvpConfigletUploader), 17
cvpConfigletUploader (module), 15
CvpInventory (class in cvpConfigletUploader), 16

D
delete_configlet() (cvpConfigletU-

ploader.CvpConfiglet method), 18, 19
deploy() (cvpConfigletUploader.CvpConfiglet

method), 18, 19
deploy_bulk() (cvpConfigletUploader.CvpConfiglet

method), 18, 19
deploy_configlet() (cvpConfigletU-

ploader.CvpConfiglet method), 17, 20

G
get_configlet_info() (cvpConfigletU-

ploader.CvpConfiglet method), 20
get_device_dict() (cvpConfigletU-

ploader.CvpInventory method), 17
get_devices() (cvpConfigletUploader.CvpConfiglet

method), 17, 20
get_devices() (cvpConfigletUploader.CvpInventory

method), 17
get_list_changes() (cvpConfigletU-

ploader.CvpChangeControl method), 21,
23

get_tasks() (cvpConfigletU-
ploader.CvpChangeControl method), 21,
23

29

CVP Uploader Documentation, Release 0.9.3

N
name() (cvpConfigletUploader.CvpConfiglet method),

20

O
on_cvp() (cvpConfigletUploader.CvpConfiglet

method), 18, 20

R
remove_device() (cvpConfigletU-

ploader.CvpConfiglet method), 20

U
update_configlet() (cvpConfigletU-

ploader.CvpConfiglet method), 17, 21

30 Index

	Configlet uploader to CVP
	Known Issue
	Getting Started
	License
	Ask question or report issue
	Contribute

	Installation
	Installation with PIP
	Git Clone
	Known Issue

	Script options
	Options within shell environment
	Options from the CLI

	How to use configilet uploader
	Use script parameters to update
	Use json file for bulk actions
	Create a configlet with add task
	Update content of a configlet with update task
	Delete a configlet with delete task
	Remove a device from configlet with remove-device task
	Attach device to a configlet with add-device task
	Change-control building

	Code documentation
	Inventory Class
	Configlet Class
	Change Control Class

	Configlet uploader to CVP
	Known Issue
	Getting Started
	License
	Ask question or report issue
	Contribute

	Indices and tables

