
Argus Documentation
Release 1.7.0

Andrea Ceccanti, Valery Tschopp, Michel Jouvin, Marco Caberletti

Oct 03, 2022

Contents

1 Argus Release notes 3
1.1 Argus 1.7.3 (24-09-2022) . 3
1.2 Argus 1.7.2 (01-08-2017) . 4
1.3 Argus 1.7.1 (05-05-2017) . 5
1.4 Argus 1.7.0 (09-02-2016) . 6

2 Argus Authorization Service 9
2.1 Summary . 9
2.2 Argus Service Installation . 9
2.3 Service Components . 10
2.4 Enabled Applications . 11
2.5 Support and Monitoring . 11
2.6 Development Information . 12
2.7 Additional Support . 13
2.8 About the name Argus . 13

3 Argus Concepts 15
3.1 Argus Introduction . 15
3.2 Attribute Based Descriptions . 15
3.3 Identifiers within Argus . 18
3.4 Resource ID . 18
3.5 Conclusion . 19

4 Argus: Policy Administration Point (PAP) 21
4.1 Summary . 21

5 Argus: Policy Decision Point (PDP) 43
5.1 Summary . 43

6 Argus: Policy Enforcement Point Daemon (PEP) 53
6.1 Summary . 53

7 Argus Monitoring 95
7.1 Nagios Probes for Argus (UMD) . 95

8 Argus Operations 107
8.1 Entropy related problems . 107

i

8.2 Bind services to localhost . 108
8.3 Firewall setup . 110
8.4 Mapping details . 111

9 Argus Quick Start Guide 113
9.1 Argus Quick Start: Site Policy Setup . 113

10 Example of Authorization Requests and Policies 117
10.1 User Based Authorization . 117
10.2 Per-VO Pilot Job Authorization Policy . 118

11 Argus Service Reference Card 121
11.1 Definitions . 121
11.2 Service Reference Card . 121

12 Argus Service Deployment for 1.7 version 125
12.1 Requirements . 125
12.2 Installation with YUM . 125
12.3 Update with YUM . 126
12.4 Configuration . 126

13 Nagios Probes for Argus 127

14 EMIR Publisher for Argus 1.6 (EMI-3) 129

15 Known Issues 131

16 Manual configuration 133
16.1 Requirements . 133
16.2 PAP . 133
16.3 PDP . 134
16.4 PEP . 134
16.5 Grid Mapping . 134
16.6 VOMS configuration . 135
16.7 Restart services . 135
16.8 BDII configuration . 135

17 Configuration with YAIM 137
17.1 Argus YAIM Configuration Variables . 137
17.2 Mandatory YAIM Variables . 137
17.3 Argus site-info.def Configuration . 138
17.4 Generate Argus Configuration . 138

18 Authorization Service: Grid Map File Syntax 139
18.1 Description . 139
18.2 File Syntax . 139
18.3 Subject Keys . 139
18.4 Map Targets . 140

19 Argus YAIM Configuration for EMI 141
19.1 YAIM Configuration for ARGUS_server . 141

20 Known Issues for older version 143
20.1 Timeouts for certificates from CAs that use OCSP . 143
20.2 Performance issue with Argus PEP Server (EMI-2, EMI-3, all versions) 143
20.3 Problem the EMI-3 update and Argus PEP Server v.1.6.1 . 144

ii

20.4 Problem with Argus 1.6 (EMI-3) and fetch-crl . 144
20.5 Problem with Nagios plugins for Argus and TMP directory permission 145
20.6 Problem with Argus 1.5 (EMI-2) and CREAM . 145
20.7 Problem with upgrade from Argus 1.4 (EMI-1) to Argus 1.5 (EMI-2) 146

21 Legacy Pages from Twiki site 147
21.1 Argus EMIR Publisher Configuration (EMI-3) . 147
21.2 Argus Services Fine Tuning . 148
21.3 Argus Development Tools . 150
21.4 GGUS User Support for Argus . 151
21.5 Authorization Service: Load and Lifetime Testing . 152
21.6 Authorization Services Testing Summary . 155
21.7 Authorization Services Testing Summary . 159
21.8 Authorization Services Testing Summary . 163
21.9 Argus: Quick Start: Manual Installation . 166
21.10 Argus: Quick Start: Manual Configuration . 167
21.11 Quick Start: glite 3.2 Argus Installation . 167

22 Indices and tables 171

iii

iv

Argus Documentation, Release 1.7.0

Contents:

Contents 1

Argus Documentation, Release 1.7.0

2 Contents

CHAPTER 1

Argus Release notes

Latest release:

1.1 Argus 1.7.3 (24-09-2022)

The Argus 1.7.3 release allows TLS protocol version to be configured on pdp and pep server components and includes
a fix for the PEP policy parser in order to not fail in case of quoted commas or empty values for subjectdn.

1.1.1 Updated components

This release provides the following updated components:

• Argus PAP service version 1.7.3

• Argus PEP service version 1.7.4

• Argus PDP service version 1.7.1

• Argus PEP-API-C version 2.3.1

• Argus PEP-PDP-common version 1.5.2

1.1.2 Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

Note that EL6/CENTOS6 packages are no longer provided.

3

http://argus-authz.github.io/repo

Argus Documentation, Release 1.7.0

Upgrade procedure

To install Argus 1.7.3:

1. Update the packages:

yum update argus-pap argus-pdp argus-pdp-pep-common argus-pep-api-c
argus-pep-server

1. Restart the involved Argus services:

systemctl restart argus-pepd argus-pap argus-pdp

1.1.3 Main fixes

argus-pap-1.7.3

• Update the default TLS protocol to TLSv1.2 [pap-20]

argus-pep-server-1.7.4

• Fix policy parser by allowing quoted commas and empty value [pep-34]

• Configurable TLS protocol version [pep-25]

argus-pdp-1.7.1

• TLS protocol version should be configurable [pdp-6]

Older releases:

1.2 Argus 1.7.2 (01-08-2017)

The Argus 1.7.2 release provides a fix for an X.509 DN parsing problem in the PAP service.

1.2.1 Updated components

This release provides the following updated components:

• Argus PAP service version 1.7.2

1.2.2 Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

Note that EL5/CENTOS5 packages are no longer provided (CENTOS5 is now out of support).

4 Chapter 1. Argus Release notes

https://github.com/argus-authz/argus-pap/issues/20
https://github.com/argus-authz/argus-pep-server/issues/34
https://github.com/argus-authz/argus-pep-server/issues/25
https://github.com/argus-authz/argus-pdp/issues/6
http://argus-authz.github.io/repo

Argus Documentation, Release 1.7.0

Upgrade procedure

To install Argus 1.7.2:

1. Update the packages.

2. Restart the Argus PAP service.

1.2.3 Main fixes

argus-pap-1.7.2

• PAP permissions don’t allow colon character in an X.509 subject principal [pap-16].

1.3 Argus 1.7.1 (05-05-2017)

The Argus 1.7.1 release introduces support for different X.509 CA Authentication profiles via the new Authentication
Profile Policy Information Point (PIP).

With this support, it is possible to define which authentication profiles are enabled at the VO level, and for any trusted
X.509 certificate. This first level of authorization is implemented at the PEP server, that uses a special policy file,
called VO-CA-AP file, to determine which authentication profiles are enabled.

Further, finer grained authorization can then be implemented as usual with policies defined in the PAP using the newly
introduced x509-authn-profile attribute, in order to have differentiated access within resources of the same VO.

In summary, the highlights of this release are:

• The new Authentication Profile PIP, which provides support for different CA authentication profiles in Argus;

• The new x509-authn-profile XACML attribute, that allows to write level-of-assurance aware policies, in case
you need more flexibility than what is allowed by the VO-CA-AP file first level of authorization implememented
in the PEP server;

• The new x509-subject-issuer XACML attribute, which was introduced to simplify the development of the Au-
thentication Profile PIP.

1.3.1 Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

Note that EL5/CENTOS5 packages are no longer provided (CENTOS5 is now out of support).

1.3.2 Service configuration

Instructions on how to configure the Authentication Profile PIP are provided in the following section:

• Authentication Profile PIP configuration

1.3. Argus 1.7.1 (05-05-2017) 5

https://github.com/argus-authz/argus-pap/issues/16
http://argus-authz.github.io/repo

Argus Documentation, Release 1.7.0

Upgrade procedure

To install Argus 1.7.1 and obtain a system with the same behavior of the former releases:

1. Update the packages.

2. Reconfigure the services, manually or with a configuration management system (such as Puppet, Ansible or
Quattor).

3. Restart the services.

Argus 1.7.1 comes with a default configuration that grants the access to resources only to certificates issued by CAs in
the classic, slcs and mics IGTF profiles.

To enable IOTA CA support for selected VOs, you’ll need to:

1. Install the IOTA CA RPM, that provides the IOTA CA certificates and the policy info files;

2. Customize a VO-CA-AP policy file which states which authentication profiles are enabled for VOs and trusted
certificates. This file can be provided by an RPM, such as lcmaps-plugins-vo-ca-ap package, or written
manually by the system administrator, with the syntax described here.

3. Edit the Argus PEP server configuration file (/etc/argus/pepd/pepd.ini) to point the VO-CA-AP pol-
icy file, setting the authenticationProfilePolicyFile property with the vo-ca-ap-file absolute
path.

For example:

authenticationProfilePolicyFile = /etc/grid-security/vo-ca-ap-file

4. Restart the services.

1.3.3 Main fixes

PEP Server

Milestone argus-pep-server-1.7.1:

• Introduce support for Authentication Profiles in Argus [pep-21].

• Introduce new x509-subject-issuer and x509-authn-profile attributes [pep-22].

PAP

Milestone argus-pap-1.7.1:

• Introduce new x509-subject-issuer and x509-authn-profile attributes [pap-14], [pap-15].

1.4 Argus 1.7.0 (09-02-2016)

The Argus 1.7.0 release provides fixes for some outstanding bugs and introduces support for Centos 7. The highlights
of this release are:

• Centos7 support

• Argus services now require Java 8

• Upgraded core dependencies to latest versions:

6 Chapter 1. Argus Release notes

https://wiki.nikhef.nl/grid/Lcmaps-plugins-vo-ca-ap#vo-ca-ap-file
https://github.com/argus-authz/argus-pep-server/milestone/2
https://github.com/argus-authz/argus-pep-server/issues/21
https://github.com/argus-authz/argus-pep-server/issues/22
https://github.com/argus-authz/argus-pap/milestone/1
https://github.com/argus-authz/argus-pap/issues/14
https://github.com/argus-authz/argus-pap/issues/15

Argus Documentation, Release 1.7.0

– Jetty upgraded to version 9.2.13.v20150730

– VOMS upgraded to version 3.1

– CANL upgraded to version 2.2.0

– OpenSAML upgraded to version 2.6.4

• Introduced a load testing test suite based on Grinder

• Introduced an integration test suite based on Robot Framework

• Documentation has been migrated to ReadTheDocs

1.4.1 Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

1.4.2 Service configuration

Instructions on how to configure and run the services are provided in the following documentation sections:

• Manual configuration

• YAIM configuration

Configuration for the services has not changed, so existing SL6 installation can upgrade and reconfigure services as
usual (YAIM on SL6 is still supported).

YAIM configuration support is not provided on CENTOS 7; sites are free to use their favourite configuration manage-
ment tool (Ansible, Puppet, Quattor) to manage the Argus services.

Changes in the mapping logic behaviour (pep-7 , pep-11), and in particular in the handling of secondary group names,
could produce different mappings for user jobs, so it’s safer to drain the site before upgrading the Argus services to
version 1.7.0 if you want to avoid potential job failures due to the upgrade. More details can be found here.

Note (added 2017-07-19):

If needed, to keep compatibility with the LCMAPS “-do_not_use_secondary_gids” option used by the CREAM YAIM
module, in Argus 1.7 you would need to add:

useSecondaryGroupNamesForMapping = false

in the [ACCOUNTMAP_OH] section of the /etc/argus/pepd/pepd.ini and restart the service.

1.4.3 Main fixes

PDP-PEP-COMMON

• Update to CANL 2.2.0 to get more scalable certificate validation [pdp-pep-common-11].

PEP Server

• Improper synchronization may lead to corrupted mappings in the Gridmapdir [pep-3].

• Incorrect mapping for secondary group names [pep-7] , [pep-11] .

1.4. Argus 1.7.0 (09-02-2016) 7

https://github.com/argus-authz/load-testsuite
https://github.com/argus-authz/argus-robot-testsuite
http://argus-documentation.readthedocs.io
http://argus-authz.github.io/repo
https://github.com/argus-authz/argus-pep-server/issues/7
https://github.com/argus-authz/argus-pep-server/issues/11
https://github.com/argus-authz/argus-pdp-pep-common/issues/2
https://github.com/argus-authz/argus-pep-server/issues/3
https://github.com/argus-authz/argus-pep-server/issues/7
https://github.com/argus-authz/argus-pep-server/issues/11

Argus Documentation, Release 1.7.0

• Incorrect handling of CNs with internal slash characters [pep-9].

PAP

• Init script fails if shutdown command is changed in configuration [pap-7].

• BDII for Argus cannot check service status [pap-8].

• Prevent to creation of policy rules with empty subject [pap-6].

8 Chapter 1. Argus Release notes

https://github.com/argus-authz/argus-pep-server/issues/9
https://issues.infn.it/jira/browse/ARGUS-7
https://issues.infn.it/jira/browse/ARGUS-8
https://github.com/argus-authz/argus-pap/issues/6

CHAPTER 2

Argus Authorization Service

2.1 Summary

The Argus Authorization Service renders consistent authorization decisions for distributed services (e.g., user in-
terfaces, portals, computing elements, storage elements). The service is based on the XACML standard, and uses
authorization policies to determine if a user is allowed or denied to perform a certain action on a particular service.

The Argus Authorization Service is composed of three main components:

• The Policy Administration Point (PAP) provides the tools to author authorization policies, organize them in the
local repository and configure policy distribution among remote PAPs.

• The Policy Decision Point (PDP) implements the authorization engine, and is responsible for the evaluation of
the authorization requests against the XACML policies retrieved from the PAP.

• The Policy Enforcement Point Server (PEP Server) ensures the integrity and consistency of the authorization
requests received from the PEP clients. Lightweight PEP client libraries are also provided to ease the integration
and interoperability with other EMI services or components.

The following graphic shows the interaction between the components of the service:

Note: In Argus, the PEP is separated in a client/server architecture. The PEP Server handles the lightweight PEP
client requests, and runs on the Argus node.

2.2 Argus Service Installation

The following section provides instructions for setting up an Argus environment quickly. It does not provide an
exhaustive description of every possible deployment model or configuration option, that can be found in the following
Service Components and Enabled Applications sections.

Before you continue it is recommend that you read this introduction to the Argus system. This will provide you with
a better understanding of how the components work together, what information passes between the components and
how policies are formed.

9

Argus Documentation, Release 1.7.0

Fig. 1: Argus service components

2.2.1 Argus Deployment

The Argus Service is installed with YUM. For the version 1.7, there isn’t an automatic configuration tool. Older
version are configured with YAIM.

Please follow the Argus Deployment for version 1.7 documentation.

2.2.2 gLExec Worker Node with Argus Deployment

To install and configure an Argus compatible gLExec worker node, follow these GLExec Argus Quick Installation
Guide

2.3 Service Components

If you are beginning to install the authorization service from scratch, you should install the components in the order
listed here; PAP, then PDP, then PEPd. You don’t have to, but it makes the most sense for most use cases.

2.3.1 PAP: Policy Administration Point

The Policy Administration Point (PAP) provides three major functions:

• Provide the tools for authoring policies

• Store and manage authored policies

• Provide managed policies to other authorization service components

Installation Configuration Operation

10 Chapter 2. Argus Authorization Service

https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide

Argus Documentation, Release 1.7.0

2.3.2 PDP: Policy Decision Point

The Policy Decision Point (PDP) is a policy evaluation engine. The PDP receives authorization requests from Policy
Enforcement Points and evaluates these requests against authorization policies retrieved from the PAP.

Installation Configuration Operation Troubleshooting

2.3.3 PEP: Policy Enforcement Point

The Policy Enforcement Point (PEP) is the client to the authorization service. It gathers information relevant to an
authorization request (e.g. who the user, what action they are attempting to perform, which service they are attempting
to perform the action on, etc.) and sends the request to the PDP for evaluation. The PEP then acts upon returned result
by allowing the request to proceed (in the case a positive authorization decision) or by denying the action (in the event
of a negative decision).

In Argus, the PEP itself has a client/server architecture

• The PEP Server handles the lightweight PEP client requests, and runs on the Argus node.

• Lightweight PEP client libraries are available to authorize requests from the application side, and to enforce
decision locally. There are two variants available:

– PEP Client C API: Programming Interface (API)

– PEP Client Java API: Programming Interface (API)

Installation Configuration Operation Troubleshooting

PEP command-line clients are also available

2.4 Enabled Applications

The following applications contain an Argus PEP client and can make authorization requests to the Argus service.

Table 1: Argus-enabled Applications
GSI PEP Callout Introduction Installation Configuration Troubleshooting
gLExec with PEP Plugin Introduction Installation Configuration Troubleshooting

2.5 Support and Monitoring

2.5.1 GGUS Support

General support (installation, site administrator) for Argus is available through GGUS

2.5.2 Argus Support Mailing List

Argus specific (developer, site administrator) questions can be sent directly to the argus-support@googlegroups.com
mailing list. You don’t need a Google email address or a Google account to send or receive emails from this mailing
list.

2.4. Enabled Applications 11

https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Introduction
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Package_installation
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Manual_configuration
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Debugging_hints
https://ggus.eu
mailto:argus-support@googlegroups.com
https://groups.google.com/d/forum/argus-support

Argus Documentation, Release 1.7.0

• Subscription: To subscribe to the support mailing list, simply send an email to: argus-
support+subscribe@googlegroups.com

• Unsubscribe: You can unsubscribe from the list at anytime by sending an email to: argus-
support+unsubscribe@googlegroups.com

NOTE: The mailing list was previously argus-support@cern.ch, but it have been migrated to argus-
support@googlegroups.com at the end of the EMI project (April 2013).

2.5.3 Nagios Monitoring

Nagios plugins are available to monitor an Argus server.

• UMD: Argus Nagios Probes Documentation

2.6 Development Information

Argus is an open-source product hosted on GitHub. In addition to this user-oriented documentation, you can find a
description of Argus architecture and main components at Argus main site.

2.6.1 Specifications

• XACML 2.0 Specifications eXtensible Access Control Markup Language (XACML) Version 2.0

• SAML 2.0 Profile of XACML, Version 2 (Working Draft 5)

• XACML Profile for the gLite WN XACML Grid Worker Node Authorization Profile (v. 1.0)

• XACML Profile for the gLite CE XACML Grid Computing Element Authorization Profile (v. 1.0)

• XACML Authorization Profile for EMI Common XACML Authorization Profile (v. 1.1)

2.6.2 Requirements

• Requirements Document (EDMS document 944192)

• Testing Plan (EDMS document 986067)

2.6.3 Presentations

• Argus - EMI Authorization Integration (EMI AH 2011, 31 May 2011, Lund)

• Argus - EMI Authorization Service (EGI UF 2011, 12 April 2011, Vilnus)

• Argus Security (EGI TF 2010 Security Session, 17 Sept. 2010, Amsterdam)

• General introduction to the authorization service

• Introduction to Argus for ROD (EGI ROD Workshop, 2 June 2010, Amsterdam)

2.6.4 Souce Code Information

The Argus source code is on GitHub.

• Argus Authorization Service: https://github.com/argus-authz

12 Chapter 2. Argus Authorization Service

mailto:argus-support+subscribe@googlegroups.com
mailto:argus-support+subscribe@googlegroups.com
mailto:argus-support+unsubscribe@googlegroups.com
mailto:argus-support+unsubscribe@googlegroups.com
mailto:argus-support@cern.ch
mailto:argus-support@googlegroups.com
mailto:argus-support@googlegroups.com
https://github.com/argus-authz
http://argus-authz.github.io
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.oasis-open.org/committees/download.php/24681/xacml-profile-saml2.0-v2-spec-wd-5-en.pdf
https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881/
https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1
https://edms.cern.ch/document/944192
https://edms.cern.ch/document/986067
http://github.com
https://github.com/argus-authz

Argus Documentation, Release 1.7.0

2.6.5 Development Tools

The Argus PT uses the following development tools.

For performance and load testing we use the following testing suite.

2.6.6 Argus Production Settings and Optimization

Production sites can optimize the Argus Service settings to their specific needs. Please have a look at the Argus Service
Fine Tuning documentation.

2.6.7 Perfomance and Load Testing

Argus provides a load testsuite, based on Grinder framework.

More information can be found on Argus load testsuite.

2.7 Additional Support

• HERAS-AF project has supported the project by providing a good XACML policy engine and excellent, ongo-
ing, support of their code.

• YourKit is kindly supporting this open source projects with its full-featured Java Profiler. YourKit, LLC is the
creator of innovative and intelligent tools for profiling Java and .NET applications. Take a look at YourKit’s
leading software products: YourKit Java Profiler and YourKit .NET Profiler.

• This product includes software developed by the Caucho Technology.

2.8 About the name Argus

In Greek mythology Argus was a 100-eyed giant that was meant to watch and protect various things and people
including the Goddess Io. He was slain by Hermes but the gods chose to preserve his hundred eyes and affix them to
the tail-feathers of a brilliantly colored bird, the peacock, in homage. The peacock logo is provided by the royalty free
clip art site clker.com.

2.7. Additional Support 13

https://github.com/argus-authz/load-testsuite
http://www.herasaf.org/index.php
http://www.yourkit.com/java/profiler/index.jsp
http://www.yourkit.com/.net/profiler/index.jsp
http://www.caucho.com/
http://www.clker.com

Argus Documentation, Release 1.7.0

14 Chapter 2. Argus Authorization Service

CHAPTER 3

Argus Concepts

3.1 Argus Introduction

The Argus authorization service is designed to answer questions in the form of Can user X perform action Y on
resource Z at this time? Not surprisingly, two pieces of information are required to answer this question; the request
that describes X, Y, and Z and the policy against which the request is evaluated. The purpose of this introduction is
to provide an understanding of the logical contents of the request and the policy. Such an understanding will help in
creating appropriate access control policies for a service. This introduction does not cover the command line tools,
simple policy language, or underlying XACML policies used by the authorization service. That information can be
found in the Policy Administration Point documentation.

3.2 Attribute Based Descriptions

Before discussing the request and response it is important to understand how users, actions, and resources are identi-
fied. Most grid deployers will be familiar with X.509 subject distinguished names (DNs) based access control. Access
control systems which render authorization decisions based only on an identifier, like a subject DN, are known as
identity-based access control systems. However, an application usually knows more about a user than simply their
identifier. It may know for which organization the user works, or groups and professional organizations to which
the user belongs. An access control system which can render a decision based on a set of attributes describing the
users/resources/actions is known as an attribute-based access control system. Note, an attribute-based access control
system where policies are only based on an identifier attribute is functionally equivalent to an identity-based access
control system.

Argus is an attribute-based system. It uses attributes to identify the user attempting to perform an action, the resource
on which the action is to be performed, the action itself, and other environmental information. Within the system an
attribute is made of 4 pieces of information: a unique identifier/name, one or more values for the attribute, the data
type of the attribute values (e.g. a string, an integer, an email address), and an optional identifier for the issuer of the
attribute. The following are examples of attribute based descriptions.

In an identity based system a user (more properly known as a subject) might have the identity ‘jsmith’. In an attribute
based system the subject might be identified by the following attributes:

15

Argus Documentation, Release 1.7.0

id datatype value
subject-id string jsmith
org string CERN
affiliation string emplyee
vo string lhcb, cms, atlas

In another example an action in an identity based access control system might be identified by the string ‘submit-job’.
In an attribute based system the action might be identified with the following attributes:

id datatype value
action-id string submit-job
pilot-job boolean false
executable string /usr/bin/myexec
expected-execution-duration integer 10

The exact attributes available within a request are determined by the application seeking an authorization decision.
Obviously each unique application will have different actions it wishes to protect, a different means of describing
itself, and possibly different information about the subject. Also, as can be seen by these examples, the amount of
information upon which a decision could be based is larger within an attribute based access control system than an
identity based system. As demonstrated, the single piece of identity data used in an identity based system can also be
used within an attribute based one.

3.2.1 The Request

An authorization decision request is simply a set of four different attributes collections. The four collections are:

• subject - contains attribute describing user who is trying to perform an action

• action - contains attributes describing the action the subject is attempting to perform

• resource - contains attributes describing the program within which the subject is attempting to perform the action

• environment - contains attributes relevant to the decision but not part of the previous three collection (e.g.
time/date of the request, machine used by the subject, etc.).

A request must contain at least one attribute in each of the subject, action, and resource sets but it is common for there
to be no environment attributes.

3.2.2 The Policy

A policy is a collection of rules that are evaluated to determine the result of an authorization request. The result of a
policy evaluation may be:

• permit - indicates the subject is permitted to perform the action on the resource

• deny - indicates the subject is not permitted to perform the action on the resource

• not applicable - indicates no policy applied to the request and so no decision could be reached

• indeterminate - indicates there was an error evaluating the policy

In order to determine whether a rule is met each rule contains a target. The target defines one or more combination of
attribute which trigger the rule. When more than one combination is listed any one may trigger the rule. For example,
the target of a rule may stipulate the following combination:

16 Chapter 3. Argus Concepts

Argus Documentation, Release 1.7.0

• subject attribute vo has a value of atlas and the id of the action is job-submit and the id of the resource is
cern-ce

• subject attribute id has a value of john and the id of the action is job-submit and the id of the resource is
cern-ce

• subject attribute id has a value of jane and the id of the action is job-submit and the id of the resource is
cern-ce

As you can see, each combination of attributes within the target needs to be complete (that is they need to describe
the whole situation that would trigger a rule), there is no mechanism for expressing logical operations like AND, OR,
NOT. As you can imagine this could lead to a lot of repeated information. To help alleviate this, policies, the container
of rules, can also contain targets. Therefore the previous rule target could be written as follows:

• A policy with target: the id of the action is job-submit and the id of the resource is cern-ce

• A permit rule with the target combination:

– subject attribute vo has a value of atlas

– subject attribute id has a value of john

– subject attribute id has a value of jane

You can also have multiple rules within a single policy, for example:

• A policy with target: the id of the action is job-submit and the id of the resource is cern-ce

• A permit rule with the target combinations:

– subject attribute vo has a value of atlas

– subject attribute id has a value of john

– subject attribute id has a value of jane

• A deny rule with the target combinations:

– subject attribute id has a value of christoph

In fact, policies can even contain other policies which helps in the case where you may want a policy about a resource
which in turn contains a policy about actions (at that resource) and finally rules for that action. For example:

• A policy with target: id of the resource is cern-ce contains:

– A policy with target: the id of the action is job-submit

– A permit rule with the target combination:

* subject attribute vo has a value of atlas

– A deny rule with the target combination:

* subject attribute id has a value of christoph

– A policy with target: the id of the action is job-manage

– A permit rule with the target combination:

* subject attribute id has a value of john

* subject attribute id has a value of jane

3.2. Attribute Based Descriptions 17

Argus Documentation, Release 1.7.0

3.2.3 Not Applicable and Indeterminate Results

In some cases, either because no policy applied to the request or because there was an internal error evaluating a
policy, a decision other than permit or deny is returned. In the event that a result of not applicable or
indeterminate is returned Argus will treat this as a deny. Thus Argus is said to be a deny biased system.

3.2.4 Example Requests and Policies

Look at the dedicated page for request and policy examples.

3.3 Identifiers within Argus

Argus makes use of various identifiers for attribute identifiers and values. The identifiers must by URIs (URNs or
URLs). The responsibility for defining such identifiers falls to different individuals, depending on the expected scope
of use of the identifiers.

3.3.1 Entity ID

For those familiar with other grid services one of the first differences that you will encounter when setting up Argus
is the requirement to provide entity IDs for the service components. These IDs provide a way of uniquely identify
a logical service component. We use the term “logical service component” because each service component may be
clustered. So the logical instance is the set containing all the physical instances participating in the cluster.

It is the deployer of service component that determines this identifier. The identifier may be any URI for which the
deployer is authoritative. That is, it must come from a domain (in the case of a URL) or namespace (in the case
of a URN) that the deployer controls. The following formula is a reasonable means for generating these identifiers:
http://{authz_domain}/{service_component_identifier}. The domain should be a domain name
that is not linked to any particular servers hostname but is instead related to the service (e.g. authz.example.org). The
component identifier should be pap, pdp, or pepd depending on which component is being installed.

If an organization runs more than one component an additional qualifier may be added to appended to the path of the
URL identifier. For example an organization that runs a different PEPd for each computer cluster they operate might
choose the entity IDs http://authz.example.org/pepd/cluster1 and http://authz.example.
org/pepd/cluster2

3.4 Resource ID

The resource identifier used to identify the resource being protected by the authorization service (e.g. a compute
cluster, a portal). This identifier is specific to a given instance of the resource. If an organization runs two different
portals each portal receives a different ID. These identifiers may then be used within a policy in order to indicate
policies that apply to the specific resource (i.e. policy A applies to portal 1 and policy B applies to portal 2).

The resource identifier is selected by the deployer of the resource. Two reasonable ways for generating this identifier
are:

• if the resource has a natural URI identifier associated with it (e.g. the main page of the portal) that may be used

• if the resource does not have a natural URI identifier a synthetic one may be created with the following formula:
http://{authz_domain}/resource/{resource_identifier} The authz_domain should be
a domain name that is not linked to any particular server’s hostname but is instead related to the authorization

18 Chapter 3. Argus Concepts

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc2141

Argus Documentation, Release 1.7.0

service (e.g. authz.example.org). The resource identifier is simply a unique string for the protected resource. A
human intelligible string is best (e.g. sequencingPortal).

3.4.1 Action ID

The action identifier is used to identify the action for which the resource is requesting authorization. This action
identifier is specific to a given piece of software but all instances of that application use the same identifier for a given
action, it is not deployment specific.

The action identifier is selected by the developer of the application. The identifier may be generated in one of two
ways:

• If the application is widely used a request could be made to a standards body, such as IANA, for an unique
identifier for each action of the application. This way all implementations of the specification will likely use the
same identifier and thus make it a bit easier for policy writers.

• The application developer may generate an identifier. A reasonable formula for such an identifier is: http:/
/{application_domain_name}/{application_name}/action/{action_id} where the do-
main name is the domain component of the application’s website and the action ID is a human readable string
for the action (e.g. readFile, addUser)

3.4.2 Attribute ID

The attributes produced by an application identify bits of information that the application was able to gather and make
available for an authorization request. The identifiers are specific to a given piece of software but all instances of that
application use the same identifier for a given attribute, it is not deployment specific.

The attribute identifier is selected by the developer of the application. The identifier may be generated in a couple of
ways:

• If the attribute is already defined by an existing standard (the LDAP schema standards are a great place to
start looking) the identifier from that standard may be used. In the case of the LDAP schema the URN
urn:oid:{ldap_attribute_oid} can be used.

• If the attribute is likely to be widely used a request could be made to a standards body, such as IANA, for an
unique identifier for this attribute. This way all implementations of the specification will likely use the same
identifier and thus make it a bit easier for policy writers.

• The application developer may generate an identifier. A reasonable formula for such an identifier is: http://
{application_domain_name}/{application_name}/attribute/{attribute_id} where
the domain name is the domain component of the application’s website and the attribute ID is a human readable
string for the attribute (e.g. username, entitlements)

In general, application developers should prefer already defined attributes over creating their own.

3.5 Conclusion

At this point you should understand what an attribute is, that a request is a made of subject, action, resource, and
environment attributes, what a rule is and that policies are a collection of rules. You should also understand that a
policy or rule is triggered if any one of the combination of attribute/values listed within its target is present within the
request.

3.5. Conclusion 19

http://www.iana.org/protocols
http://www.iana.org/protocols

Argus Documentation, Release 1.7.0

20 Chapter 3. Argus Concepts

CHAPTER 4

Argus: Policy Administration Point (PAP)

The Policy Administration Point (PAP) provides three major functions:

• Provide the tools for authoring policies

• Store and manage authored policies

• Provide managed policies to other authorization service components

4.1 Summary

4.1.1 Argus Policy Administration Point (PAP) Installation

To deploy the Argus PAP service, please follow the documentation Argus Deployment.

4.1.2 Argus Policy Administration Point (PAP): Configuration

Configuration Files

The PAP is configured through the use of two files: pap_configuration.ini and pap_authorization.
ini, located in the /etc/argus/pap directory. Most of the information contained in these files can also be set
through the command line interface (which is the recommended way to do configuration on the PAP).

There is also an environment file, located in /etc/sysconfig/argus-pap, that contains environment variables
used by the init script that manage the service.

Service configuration file

The service is primarily configured through the pap_configuration.ini configuration file. This file is a stan-
dard INI file with five defined sections.

21

Argus Documentation, Release 1.7.0

Section: [paps]

This section contains configuration about PAPs. The information in this section should be set via the PAP CLI.

A PAPs can be defined by providing the following information (the R value in the Required? column indicates
information that is required only for remote PAPs):

Property Description Re-
quired?

Default Value

alias.type Defines a PAP as local or remote . Y None
alias.public Visibility of the PAP: true or false. If false its policies are not

sent to other PAPs.
N false

alias.enabled true or false. If false its policies are not sent to PDPs. N false
alias.dn DN of the PAP to get policies from. R None
alias.hostnameHostname of the PAP to get policies from. R None
alias.port Port of the PAP to get policies from. N 8150
alias.path Path of the services exposed by the PAP to get policies from. N /pap/

services
alias.protocol Protocol to use to contact the remote PAP. N https

Section: [paps:properties]

This section contains information about policy distribution and PAP ordering.

Prop-
erty

Description Re-
quired?

Default Value

poll_intervalThe polling interval (in seconds) for retrieving remote policies. Y None. Recom-
mended value is
14400 (4 hours).

or-
der-
ing

Comma separated list of PAP aliases. Example: alias-1, alias-2, . . . , alias-n.
Defines the order of evaluation of the policies of the PAPs, that means that the
policies of PAP “alias-1” are evaluated for first, then the policies of PAP “alias-
2” and so on.

N If not specified
the default pap
is always the first
one.

Section: [repository]

This section contains information about the PAP policy repository.

Property Description Re-
quired?

Default Value

location Path to the repository directory. N $PAP_HOME/
repository

consis-
tency_check

Forces a consistency check of the repository at startup. N false

consis-
tency_check.repair

if set to true automatically fixes problems detected by the consistency
check (usually means deleting the corrupted policies).

N false

22 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

Section: [standalone-service]

This section contains information about the PAP standalone service.

Prop-
erty

Description Re-
quired?

Default Value

host-
name

The hostname or IP address the service will bind to N 127.0.0.1

port The service port number N 8150
shut-
down_port

The service shutdown port number N 8151

shut-
down_command

The command string that must be received on the shutdown port in order to
shutdown the service. The command is needed in order to prevent unautho-
rized shutdown commands coming from localhost. This is effective only
if the pap_configuration.ini file is not world-readable. If the option is not
present in configuration, no check on the command will be made.

N shutdown

en-
tity_id

This is a unique identifier for the PAP. It must be a URI (URL or URN). If
a URL is used it need not resolve to any specific webpage.

N The service endpoint,
e.g. https://pap.
cern.ch:8150/
pap/services/
ProvisioningService

Section: [security]

This sections contains information about PAP security configuration.

Prop-
erty

Description Re-
quired?

Default Value

cer-
tifi-
cate

The X.509 pem-econded service certificate Y /etc/
grid-security/
hostcert.
pem

pri-
vate_key

The unencrypted private key bound to the certificate Y /etc/
grid-security/
hostkey.
pem

trust_store_dirThe directory where CA files and CRL are looked for N /etc/
grid-security/
certificates

crl_update_intervalHow frequently the PAP should update CRLs, CAs and namespaces from the
filesystem. The interval is defined as a string with the following format: N{s,
m,h,d} where N in the number of either (s=seconds, m=minutes, h=hours,
d=days).

N 30m

Service Access Control

Access control rules are configured through the pap_authorization.ini configuration file. Authorization is
based on off of the Subject DN or VOMS attribute within the client certificate used to authenticate to the PAP.

4.1. Summary 23

Argus Documentation, Release 1.7.0

PAP permissions

The authorization layer is based on an Access Control List (ACL), composed of several Access Control Entries (ACEs).
Each ACE defines the actions that an administrator is allowed to execute on the PAP. Administrators’ privileges are
defined in terms of PAP permission flags, whose meaning is described in the table below:

Permission Flag Meaning
POLICY_READ_LOCAL Allows read access to locally defined policies
POLICY_READ_REMOTE Allows read access to policies imported from remote PAPs
POLICY_WRITE Allows write access to locally defined policies
CONFIGURATION_READ Allows read access to PAP configuration
CONFIGURATION_WRITE Allows write access to PAP configuration
ALL All of the above permissions

A set of permission flags can be assigned to an administrator by defining an ACE in the pap_authorization.
ini configuration file or by using the authorization management commands provided by the pap-admin command
line interface.

ACEs are expressed as

<principal> : <permission>

couples.

The principal part of the ACE is either:

• ANYONE, to assign privileges to any authenticated user (i.e., any user that presents a trusted certificate).

• a VOMS FQAN, e.g., /atlas/Role=VO-Admin

• a quoted X509 certificate subject, e.g., "/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/
CN=Andrea Ceccanti"

The permission part of the ACE is either:

• a single PAP permission flag, e.g CONFIGURATION_READ

• a | separated list of PAP permission flags, e.g. POLICY_READ_LOCAL|CONFIGURATION_READ, to grant
a set of permissions.

So, for example, to grant POLICY_READ_LOCAL and POLICY_READ_REMOTE permissions to a user identified by
an x509 certificate with /C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti
subject, one should write:

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" : POLICY_READ_
→˓LOCAL|POLICY_READ_REMOTE

Note that the subject has been put into quotes! For VOMS FQANs this is not needed (FQAN syntax does not allow
whitespaces inside the FQAN), so one could write:

/atlas/Role=PAP-Admin : ALL

Authorization entries are loaded at PAP service startup time so any pap_authorization.ini modifications done
“by hand” while the PAP service is running do not take effect until the PAP service is restarted.

To modify the PAP authorization configuration at runtime, use the authorization management commands provided
by the pap-admin CLI. Changes made to the PAP ACL by these commands are immediately reflected on the
pap_authorization.ini file.

24 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

Configuration File Syntax

In the pap_authorization.ini file, ACEs are grouped in two stanzas according to the type of the principal.
Currently, two stanzas are supported:

• [dn], that lists ACEs defined for principals identified by an X509 certificate subject.

• [fqan], that lists ACEs defined for principals identified by VOMS fqans.

An example of configuration file is given below:

[dn]

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" : ALL

ANYONE : CONFIGURATION_READ|CONFIGURATION_WRITE

[fqan]

/voms-ws/Role=PAP-Admin : ALL

Environment file

In the /etc/sysconfig/argus-pap file are defined Argus PAP environment variables, described in the table
below.

Variable Default value Meaning
PAP_HOME /usr/share/

argus/pap
Absolute path of PAP installation directory

PAP_RUN_FILE/var/run/
argus-pap.pid

Absolute path of PAP service PID

PAP_JAVA_OPTSempty Optional parameters to pass to the JVM when PAP ser-
vice is started/stopped

4.1.3 Argus: Policy Administration Point (PAP): Operation

Service Operation Commands

Start the PAP service

Platform Command
EL6 service argus-pap start
EL7 systemctl start argus-pap

Stop the PAP service

Platform Command
EL6 service argus-pap start
EL7 systemctl start argus-pap

4.1. Summary 25

Argus Documentation, Release 1.7.0

Service Ports

• Default service port: 8150

• Default shutdown service and status port: 8151

Service Endpoints

/pap/services/ProvisioningService : this endpoint provides the policy provisioning interface

/shutdown : this endpoint instructs the PAP standalone service to shutdown and is reachable only from localhost
on the configured shutdown and status port

/status : this endpoint provides current status information on the PAP is reachable only from localhost on the
configured shutdown and status port

All the web services implemented by the PAP can be reached at the /pap/services/ context.

Service Logs

The PAP standalone log file (pap-standalone.log) can be found in the $PAP_HOME/logs directory. If the
PAP is deployed on top of tomcat, the log file (pap.log) can be found in the $CATALINA_HOME/logs directory.

4.1.4 Argus Policy Administration Point (PAP): Administration

The CLI (Command Line Interface) allows to perform all of the policy management operations as well as to set most
of the configuration information of the PAP including authorization settings. All these operations are accessible by
means of (sub)commands of the PAP CLI and they are divided in three sections: policy management, pap management
and authorization management.

The command to invoke the CLI is pap-admin.

Running the pap-admin client

Type:

pap-admin --help

to get a list of the commands supported by the current version of the PAP command line client.

The general usage is the following:

usage: pap-admin [global-options] <command> [options] [args]

• global-options : are options shared by all commands (all these options are reported by --help).

• command : the command to perform.

• options : command specific options.

Type:

pap-admin <command> --help

to see the available command specific options.

Global options:

26 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

• -h,--help: help message;

• -v,--verbose: set verbose commands output;

• --host <arg>: specifies the target PAP hostname (default is localhost). This option defines the PAP
endpoint to be contacted as follows: https://arg:port/pap/services/ <https://arg:port/
pap/services/>;

• --port <arg>: specifies the port on which the target PAP is listening (default is 8150);

• --url <arg>: specifies the full target PAP endpoint (default: https://localhost:8150/pap/
services/);

• --cert <arg>: specifies non-standard user certificate;

• --key <arg>: specifies non-standard user private key;

• --password <arg>: specifies the password used to decrypt the user’s private key;

• --proxy <arg>: specifies a user proxy to be used for authentication;

By default, the pap-admin is configured to contact a PAP daemon on localhost port 8150 (i.e., the standalone PAP
daemon). If you want to contact a PAP on another host use the --host option, a PAP listening on a different port use
the --port option. Alternatively the full endpoint can be specified with the --url option.

NOTE: The Argus PDP caches the policy pulled from the PAP. If you make policy changes to the PAP you will need
to restart the PDP in order to force it to refresh its policy. Also, the PEPd caches results from the PDP for a short time
(up to 10 minutes, by default) so you may need to restart the PEPd as well.

Exit status

Each command returns 0 for success or non-zero in case of error.

X509 authentication

A valid X509 certificate or proxy certificate is needed in order to run the pap-admin client. The certificate to be
used by the command is found as follows:

1. if the user is root then the client looks for host certificate at the usual location, i.e. /etc/grid-security/
hostcert.pem and /etc/grid-security/hostkey.pem. These locations can be overridden by set-
ting the X509_USER_CERT and X509_USER_KEY environment variables.

2. if the user is not root, then the client looks for a proxy certificate at the usual location, i.e., /tmp/
x509up_u<uid>. The default proxy location can be overridden using the X509_USER_PROXY environment
variable. If no proxy is found, then the client looks for a certificate (and the relative private key) at the usual lo-
cation, i.e., $HOME/.globus/usercert.pem and $HOME/.globus/userkey.pem. These locations
can be overridden by setting the X509_USER_CERT and X509_USER_KEY environment variables.

This behaviour can be overridden by specifying the --cert, --key and --proxy command line options.

Client configuration (since version 1.3.0)

The pap-admin.properties file, found in /etc/argus/pap (EMI) or /opt/argus/pap/conf (gLite),
allows to set the following properties:

4.1. Summary 27

Argus Documentation, Release 1.7.0

Prop-
erty

Description Default
Value

host The PAP host that will be contacted by the pap-admin CLI if no host is explicitly specified
with the --host option

localhost

port The remote PAP service port number 8150

This property file is especially useful when administering a PAP installed on a remote machine.

Policy Management Commands

This set of commands allows to perform policy management operations. All the commands in this section modifies
the default PAP. In order to target another local PAP use the option --pap <alias>.

Command: list-policies

List policies. By default the policies of the default PAP are listed unless option --pap is specified.

usage: pap-admin [global-options] list-policies [options]

Command specific options:

• --pap <alias>: list policies of PAP “alias” (default PAP is assumed if this option is missing);

• --all: list policies of all the defined PAPs;

• -srai,--show-ra-ids: show resource and action ids;

• -sai,--show-all-ids: show all ids (resource, action and rule ids);

• --show-xacml: print policies using XACML.

Command: ban

Allows to ban an attribute (i.e. SUBJECT, FQAN, CA, etc.).

A deny rule is added for the given attribute into the specified resource/action value. If the resource or the action values
are not specified then “.*” is assumed.

usage: pap-admin [global-options] ban [options] <id> <value>

• id: id of the attribute. The list of supported id depends on the Argus version:

– Argus v. 1.0: dn, ca, vo, fqan, pfqan.

– Argus v. 1.1: subject, subject-issuer, vo, fqan, pfqan.

• value: value of the attribute - note: If you are using Argus v. 1.0, the DN must be in RFC2253 format,
which can be obtained from openssl using the command openssl x509 -in <cert.pem> -noout
-subject -nameopt rfc2253

Command specific options:

• -a,--action <value>: specify an action value (default is “.*”)

• -r,--resource <value>: specify a resource value (default is “.*”)

• --pap <alias>: add the policy to the PAP “alias” (default PAP is assumed if this option is missing)

28 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

• --private: set the policy as private

• --public: set the policy as public

Semantic of the command: the resource and the action where the deny rule is inserted are chosen as follows:

• if the first resource found in the repository matches the given one, then that resource is used, otherwise a new
one is created.

• if a matching resource was found, then if its first action matches the given one then this action is used, otherwise
a new action is created (i.e. inside the new resource or inside the matched resource).

• otherwise a new resource/action are created and inserted on the top.

Example:

pap-admin ban subject "CN=host.test.foo.it, L=FOO, OU=Host, O=ORGANIZATION, C=IT"

Command: un-ban

Allows to un-ban an attribute (i.e. SUBJECT, FQAN, CA, etc.), that means removing a deny rule (if it exists in the
given resource/action) for the given attribute.

usage: pap-admin [global-options] un-ban [options] <id> <value>

• id: id of the attribute. The list of supported id depends on the Argus version:

– Argus v. 1.0: dn, ca, vo, fqan, pfqan.

– Argus v. 1.1: subject, subject-issuer, vo, fqan, pfqan.

• value: value of the attribute - note: If you are using Argus v. 1.0, the DN must be in RFC2253 format,
which can be obtained from openssl using the command openssl x509 -in <cert.pem> -noout
-subject -nameopt rfc2253

Command specific options:

• -a,--action <value>: specify an action value (default is “.*”)

• -r,--resource <value>: specify a resource value (default is “.*”)

• --pap <alias>: remove the ban policy from the PAP alias (default PAP is assumed if this option is missing)

Semantic of the command: the target resource and action to search the deny rule for are chosen as follows:

• the target resource is the first matching resource in the repository;

• inside the target resource the target action is the first matching action ;

• if no target resource or action were found than the result is an error message saying “ban policy not found”.

Example:

pap-admin un-ban subject "CN=host.test.foo.it, L=FOO, OU=Host, O=ORGANIZATION, C=IT"

Command: add-policy

Add a permit/deny policy.

usage: pap-admin [global-options] add-policy [options] <permit|deny> <id=value>...

4.1. Summary 29

Argus Documentation, Release 1.7.0

• permit|deny: effect of the policy.

• id=value: a string in the form “<id>=<value>”, where id is any of the attribute ids that can be specified in
the simplified policy language and value the value to be assigned (e.g. fqan=/vo/group).

Required command options: 1 --action-id <action-id> optionally with --rule-id <rule-id>: allows
to specify an action-id to insert the policy into. 1 --resource <value> and --action <value>: allows to
specify a resource/action value to insert the policy into.

The two groups (1 and 2) of required options are mutually exclusive.

This command allows to add a (permit/deny) rule into an action by specifying an action-id (in this case the action
must already exist) or a resource/action value. In the latter case a new resource and/or action are created if they don’t
already exist. The command returns an error if there are more than one existing resource and/or action with the same
value. By default the rule is inserted at the top of an action unless the --bottom option is given. If the --rule-id
is set the rule is inserted before the given rule-id or after if the --after option is present.

Command specific options:

• --pap <alias>: add the policy to the PAP “alias” (default PAP is assumed if this option is missing);

• --action-id <action-id>: specify an action id;

• --rule-id <rule-id>: specify a rule id (requires option --action-id);

• --resource <value>: specify a resource value;

• --action <value>: specify an action value;

• --after: insert the rule after the given rule id;

• --bottom: insert the rule at the bottom of the list of rules of the action.

• --obligation <obligationId>: specify an obligation. (since version 1.2.0)

• --obligation-scope <scope>: Defines in which scope the obligation will be defined. Possible values:
action, resource. If not specified, resource is used as default. (since version 1.2.0)

Command: add-policies-from-file

Add policies (resources or actions) defined in the given file.

usage: pap-admin [global-options] add-policies-from-file [options] <file> [resourceId]

• file: text file containing the policies to add (policies defined with the simplified policy language)

• resourceId: the resource to insert the policies into.

If resourceId is not specified then file must contain resource elements that will be added, by default, at the bottom
(unless option --pivot is specified). Otherwise if resourceId is not specified then file must contain action elements
that will be added, by default, at the bottom inside resourceId (unless option --pivot is specified).

Command specific options:

• --pap <alias>: add the policies to the PAP “alias” (default PAP is assumed if this option is missing);

• --pivot <id>: insert before <id>;

• --after: modifies the behavior of the --pivot option in insert after <id>.

30 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

Command: update-policy-from-file

Update a resource/action with a new resource/action defined in a given file.

usage: pap-admin [global-options] update-policy-from-file [options] <id> <file>

• id: id, as listed by the command pap-admin lp --show-all-ids command, of the resource or action
to be updated;

• file: text file containing the new policy definition (using the simplified policy language syntax).

In order to modify an action the file must contain only the new action, for example:

action ".*" {
rule deny { subject="/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=user/CN=111111/

→˓CN=user name" }
}

Command specific options:

• --pap <alias>: update the policies for PAP “alias” (default PAP is assumed if this option is missing);

Command: remove-policy

Remove policy by id.

usage: pap-admin [global-options] remove-policy [options] id...

• id: id, as listed by the command pap-admin lp --show-all-ids command, of the policy (resource,
action or rule) to remove;

Command specific options:

• --pap <alias>: remove policies of PAP “alias” (default PAP is assumed if this option is missing);

Command: remove-all-policies

Remove all policies of a PAP. Use option --pap to specify a PAP different than the default one.

usage: pap-admin [global-options] remove-all-policies [options]

Command specific options:

• --pap <alias>: remove the policies of PAP “alias” (default PAP is assumed if this option is missing);

Command: move

Move a resource, action or rule before or after another, respectively, resource, action or rule.

usage: pap-admin [global-options] move [options] <id> <pivotId>

• id: id, as listed by the command pap-admin lp --show-all-ids command, of the policy (resource,
action or rule) to move;

• pivotId: id of the pivot policy (id is moved before pivotId)

4.1. Summary 31

Argus Documentation, Release 1.7.0

If id refers to a resource, action or rule then pivotId must be, respectively, a resource, action or rule id.

Command specific options:

• --pap <alias>: move the policy of PAP “alias” (default PAP is assumed if this option is missing);

• --after: move id after pivotId.

Command: add-obligation (since version 1.2.0)

Adds on obligation to an existing resource or action policy.

usage: pap-admin [global-options] add-obligation <policyId> <obligationId>

• policyId: the id of the policy where the obligation is to be added. In order the get the policyId of existing
policies, run the list-policies command with the --show-all-ids option.

• obligationId: the id of the obligation that will be added.

Command specific options:

• --pap <alias>: add on policies defined in the PAP “alias” (default PAP is assumed if this option is miss-
ing);

Command: remove-obligation (since version 1.2.0)

Removes an obligation from an existing resource or action policy.

usage: pap-admin [global-options] remove-obligation <policyId> <obligationId>

• policyId: the id of the policy where the obligation is to be removed. In order the get the policyId of existing
policies, run the list-policies command with the --show-all-ids option.

• obligationId: the id of the obligation that will be removed.

Command specific options:

• --pap <alias>: add on policies defined in the PAP “alias” (default PAP is assumed if this option is miss-
ing);

PAP Management Commands

This set of commands allows to perform management operations of the PAPs.

Command: ping

Ping a PAP and return version information.

usage: pap-admin [global-options] ping

32 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

Command: add-pap

Add a remote or local PAP.

usage: pap-admin [global-options] add-pap [options] <alias> [<endpoint> <dn>]

• alias: a friendly (unique) name used to identify the PAP

• endpoint: endpoint of the remote PAP in the form: [<protocol>://]<host>:[<port>/[path]]

• dn: DN of the remote PAP

A just added PAP is disabled by default (its policies are not sent to the PDP), use the command enable-pap to enable
it.

By default a PAP is considered to be private (use the --public option to set the PAP as public). Policies defined in
a public PAP can be fetched from other remote PAPs, while this is not allowed when the PAP is set to private.

If endpoint and dn are present the PAP is considered to be remote (unless option --local is specified), otherwise
it is local. For the endpoint the only required parameter is the hostname, these are the default values:

• protocol: https

• port: 8150

• service path: pap/services

When a new PAP is added, the PAP service tries immediately to fetch its policies. If the remote PAP is not reachable,
the pap-admin command prints an error message clarifying that the PAP was successfully added, but the fetching
of the policies failed.

If the option --no-policies is given, the policies are not fetched at PAP creation time but automatically by the
server every polling interval seconds or manually when the a refresh-cache command is sent to the
server.

Examples of endpoint are:

• test.site.com (hostname);

• test.site.com:9999 (hostname and port);

• test.site.com:9999/service_path (hostname, port, and service path);

• https://test.site.com:9999/service_path (full URL).

Command specific options:

• -l,--local: set the PAP as local;

• --remote: set the PAP as remote;

• --private: set the PAP as private;

• --public: set the PAP as public;

• --no-policies: do not fetch the policies now.

Example:

pap-admin add-pap cnaf_pap test.cnaf.infn.it "/C=IT/O=INFN/OU=Host/L=CNAF/CN=test.
→˓cnaf.infn.it"

4.1. Summary 33

Argus Documentation, Release 1.7.0

Command: update-pap

Update PAP information.

usage: pap-admin [global-options] update-pap [options] <alias> [<endpoint> <dn>]

The input is the same as for the “add-pap” command, the effect is to update old information with the new one. The
alias of a PAP cannot be modified. In the case of a remote PAP the policies are fetched immediately unless option
--no-policies is given.

Command: remove-pap

Remove a PAP and delete its policies.

usage: pap-admin [global-options] remove-pap <alias>

• alias: alias of the PAP to remove

Command: list-paps

List all defined PAPs.

usage: pap-admin [global-options] list-paps [options]

Command specific options:

• -l: use a long list format (displays all the information of a PAP).

Command: enable-pap

Set a PAP as enabled (i.e. PDPs will get its policies).

usage: pap-admin [global-options] enable-pap <alias>

Command: disable-pap

Set a PAP as disabled (i.e. PDPs won’t get its policies).

usage: pap-admin [global-options] disable-pap <alias>

Command: get-paps-order

Get PAPs ordering.

usage: pap-admin [global-options] get-paps-order

If no ordering is defined the output message is: No ordering has been defined. If the default PAP is not
listed in the ordering (like in the no ordering defined case) by default it is placed for first.

34 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

Command: set-paps-order

Define PAPs ordering.

usage: pap-admin [global-options] set-paps-order [alias]...

• alias: a valid PAP alias.

All the aliases must be valid (existing). If no arguments are given then the current ordering (if there’s any defined) is
deleted.

Example:
The remote PAP osct contains banning policies and we want that policies to be evaluated for first. This is
command to issue:

pap-admin set-paps-order osct default

If the PAP service contains other PAPs beyond the osct, then their policies are evaluated after the osct and default PAP
policies. Since the ordering contains only the osct and the default PAPs it is not guaranteed a special order for the
evaluation of the policies of all the other PAPs (except that they are evaluated after these two PAPs).

Command: refresh-cache

Invalidates the local policy cache and retrieves policies from remote PAPs.

usage: pap-admin [global-options] refresh-cache [alias]...

• alias: a valid PAP alias.

The arguments identify the PAPs that will be contacted. If no arguments are given, all the defined remote PAPs are
contacted.

Command: get-polling-interval

Get the polling interval in seconds.

usage: pap-admin [global-options] get-polling-interval

Command: set-polling-interval

Invalidates the local policy cache and retrieves policies from remote PAPs.

usage: pap-admin [global-options] set-polling-interval <seconds>

• seconds: polling interval in seconds.

Authorization Management Commands

This set of commands implement Access Control List (ACL) management for PAP administrators.

4.1. Summary 35

Argus Documentation, Release 1.7.0

Command: list-acl

The list-acl command provides an easy way of knowing the authorization configuration of a running PAP.

Typing:

pap-admin list-acl

prints out the Access Control Entries (ACEs) comprising the ACL currently defined for the running PAP.

Example:

~# pap-admin list-acl

/voms-ws/Role=PAP-Admin :
POLICY_READ_LOCAL|POLICY_READ_REMOTE|POLICY_WRITE|CONFIGURATION_READ|CONFIGURATION_

→˓WRITE

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" :
POLICY_READ_LOCAL|POLICY_READ_REMOTE|POLICY_WRITE|CONFIGURATION_READ|CONFIGURATION_

→˓WRITE

ANYONE :
CONFIGURATION_READ|CONFIGURATION_WRITE

Required permissions : CONFIGURATION_READ.

Command: add-ace

The add-ace command allows to add (or change) an ACE to the PAP ACL. Note that if an ACE entry already
exists on the server for the principal specified in the command, the permissions in such ACE are replaced by the ones
specified in the command.

Usage:

pap-admin add-ace <principal> <permissions>

where:

• principal can be either an X509 DN or a VOMS FQAN. ANYONE can be used to assign permissions to any
authenticated user.

• permissions is a | separated list of PAP permissions that will be assigned to principal. The ALL
shortcut can be used to assign all permission.

Example:

pap-admin add-ace '/atlas/Role=VO-Admin' 'ALL'

Required permissions: CONFIGURATION_READ|CONFIGURATION_WRITE

Command: remove-ace

The remove-ace command removes an ACE from the PAP ACL.

Usage:

36 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

pap-admin remove-ace <principal>

where:

• principal can be either an X509 DN or a VOMS FQAN. ANYONE can be used to remove permissions
assigned to any authenticated user.

Example:

pap-admin remove-ace '/atlas/Role=VO-Admin'

Required permissions: CONFIGURATION_READ|CONFIGURATION_WRITE

4.1.5 The Simplified Policy Language

As already explained here, Argus policies contain collections of rules that state which actions can be performed on
which resources by which users. XACML, the language used internally by Argus to define policies, provides great
expressiveness and flexibility but it’s very hard to read and author for human beings. For this reason, Argus provides
a Simplified Policy Language (SPL) to hide the complexity of XACML while providing much of its flexibility.

As an example, the following policy denies access to all the resources (under Argus control) to the members of the
ATLAS VO:

resource ".*" {
action ".*" {

rule deny { vo = "atlas" }
}

}

The SPL syntax

resource <value> {

action <value> {

rule <permit|deny> {

<attributeId>=<attributeValue>
...

}
...

}
...

}
...

The SPL defines three stanza types: resource, action and rule. It’s possible to define multiple resource stanzas
that can contain multiple action stanzas that can contain multiple rules stanzas.

The resource stanza is used to target a resource (or set of resources, if wildcards are used) under the control of
Argus authorization.

The action stanza (always defined in the context of an enclosing resource) is used to target an action (or set
of actions, if wildcards are used) that has to be authorized by Argus on the resource identified by the enclosing
resource stanza.

4.1. Summary 37

Argus Documentation, Release 1.7.0

The rule stanza defines who is authorized (in case of a permit rule) or not authorized (in case of a deny rule) to
perform the action on the resource identified by the enclosing action and resource stanzas.

Identifying actions and resources

Actions and resources are identified by unique identifiers that are assigned to them. This identifiers are usually URIs,
but any string that is unique in your deployment may work.

You can also use wildcards in your SPL policies to target group of resources or actions, like in the following example:

resource "http://cnaf.infn.it/cream-ce-01" {

action ".*" {

rule permit { vo = "cms" }

}
}

This policy authorizes users from the CMS vo to perform any action on the resource http://cnaf.infn.it/
cream-ce-01.

Identifying subjects

In Argus policies, the users (or software agents) that need to be authorized to execute an action on a specific resource
are identified using a set of attributes, like:

• the subject of the user’s X509 certificate;

• the CA that issued the user’s x509 certificate;

• the VO the user belongs to;

• whether the use has a specific FQAN in its bag of VOMS attributes;

• whether the user has a specific FQAN as his primary FQAN.

The table below specifies the supported attributes for Argus 1.1:

Attribute
name

Description Example

subject The user’s X509 certificate subject in
rfc2253 or openssl format

subject ="CN=Andrea Ceccanti,
L=CNAF,OU=Personal Certificate,
O=INFN,C=IT"

subject-issuerThe subject (in rfc2254 or openssl format) of
the CA that issued the user’s x509 certificate

subject-issuer = "CN=INFN CA,
O=INFN,C=IT"

vo The name of the VO the user belongs to vo = "atlas"
fqan The fqan present in the user’s bag of VOMS

attributes
fqan="/dteam/Role=VO-Admin"

pfqan The user primary fqan pfqan="/atlas/Role=pilot"

The contents of the rule stanza

As already pointed out, the rule stanza defines who is authorized to perform a specific action on a specific resource.
A subject can be identified using the attributes defined in the previous section.

38 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

resource "http://cnaf.infn.it/cream-ce-01" {

action "submit-pilot-job" {

rule permit { pfqan="/atlas/Role=pilot" }

}
}

In the above policy, only subjects that have the /atlas/Role=pilot fqan as their primary fqan are authorized
(since the rule is permit rule) to perform the action submit-pilot-job on the resource http://cnaf.
infn.it/cream-ce-01. To prevent users from LHCB VO the execution of the same action, one would write the
following policy:

resource "http://cnaf.infn.it/cream-ce-01" {

action "submit-pilot-job" {

rule deny { vo = "lhcb" }

}
}

Multiple attributes inside the rule stanza

It is possible to define multiple attributes inside a rule stanza. All the attributes defined in the rule stanza need to
match with the subject attributes present in the authorization request for the rule to be applied. This can be explained
more clearly using an example:

resource "http://cnaf.infn.it/cream-ce-01" {

action "submit-job" {

rule permit {
vo = "cms"
subject-issuer = "CN=INFN CA,O=INFN,C=IT"

}
}

}

The meaning of the above policy is that only members from the VO CMS that have a certificate signed by the
CN=INFN CA,O=INFN,C=IT CA will be authorized to perform the action submit-job on resource http:/
/cnaf.infn.it/cream-ce-01. CMS members with certificates signed by the CERN CA, for instance, will not
be authorized.

Since all the attributes defined in a rule must be “matched” in the request for the rule to be applied, one can think about
multiple attributes inside a rule stanza as conditions that are ANDed to select who will be authorized to perform the
action the rule is about.

How policies are evaluated

The first applicable policy (and only that one) that matches the authorization request is the one that is applied by Argus.
This means that order matters. An example will help in understanding this concept.

4.1. Summary 39

Argus Documentation, Release 1.7.0

Suppose we want to grant access to our CE to all members of VO CMS but not those that have /cms/Role=pilot
as their primary FQAN. We would write a policy like this:

resource "http://cnaf.infn.it/cream-ce-01" {

action ".*" {

rule deny{ pfqan = "/cms/Role=pilot"}
rule permit { vo = "cms" }

}
}

Since the deny rule precedes the permit rule in the above policy, we are able to deny access only to CMS users with the
pilot role, but grant access to other members of CMS. This is due to the fact that the first deny rule will not match to
CMS users that do not have the pilot role, so the following permit rule will be applied. On the contrary, if we reversed
the order of the two rules like in the following policy:

resource "http://cnaf.infn.it/cream-ce-01" {

action ".*" {

rule permit { vo = "cms" }
rule deny{ pfqan = "/cms/Role=pilot" }

}
}

the deny rule would be useless, since the permit rule that precedes it would always match any CMS member.

The obligation stanza

Starting with Argus version 1.1, the SPL supports obligation stanzas. The syntax of the obligation stanza is as
follows:

obligation "obligationId" {
[attributeId = attributeValue]*

}

Obligation stanzas can be placed either in the resource or action context and are used to define a set operations that
must be performed by the Argus PEP in conjunction with an authorization decision. An obligation stanza can define
0..N attribute definitions, that are passed as parameters to the PEP for the fulfillment of the obligation.

An example of policy with an obligation is the following:

resource "http://cnaf.infn.it/wn"{

obligation "http://glite.org/xacml/obligation/local-environment-map" {}

action "http://glite.org/xacml/action/execute"{
rule permit { vo = "dteam" }

}
}

The Argus PEP currently supports only the map-to-local-environment obligation.

40 Chapter 4. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.7.0

The map-to-local-environment obligation

The map-to-local-environment obligation, identified by the following id:

http://glite.org/xacml/obligation/local-environment-map

is used within a policy to signify that a mapping to a local Posix account will be produced by the Argus server as a
result of a permit policy.

The use of this obligation is mandatory for the policies that authorize the execution and mapping of pilot jobs on the
worker node.

Examples

Ban policies

Ban policies are used to deny a subject on all possible resources. For this reason ban policies need to be placed at the
top and defined for any action on all the resources.

resource ".*" {
action ".*" {

rule deny { subject = "CN=Alberto Forti,L=CNAF,OU=Personal Certificate,O=INFN,
→˓C=IT" }

rule deny { fqan = /dteam/test }
}

}

Glexec on the WN policies

Policy that authorize execution and mapping of pilot jobs on the WN need to specify the
map-to-local-environment obligation to produce a mapping that gLexec can use to do the user switch. An
example of such policy is the following:

resource "http://cnaf.infn.it/wn"{

obligation "http://glite.org/xacml/obligation/local-environment-map" {}

action "http://glite.org/xacml/action/execute"{
rule permit { vo = "dteam" }
rule permit { pfqan = "/atlas/Role=pilot" }
rule permit { pfqan = "/ops/Role=pilot" }

}
}

The above policy authorizes the execution of jobs on the WN by:

• people from the dteam VO,

• people that have /atlas/Role=pilot as the primary fqan

• people that have /ops/Role=pilot as the primary fqan

4.1.6 Argus: Policy Administration Point (PAP): Known Issues

There is no known issues.

4.1. Summary 41

Argus Documentation, Release 1.7.0

42 Chapter 4. Argus: Policy Administration Point (PAP)

CHAPTER 5

Argus: Policy Decision Point (PDP)

The Policy Decision Point (PDP) is a policy evaluation engine.

The PDP receives authorization requests from Policy Enforcement Points and evaluates these requests against autho-
rization policies retrieved from the PAP.

5.1 Summary

5.1.1 Argus Policy Decision Point (PDP) Installation

To deploy the Argus PDP service, please follow the documentation Argus Deployment.

5.1.2 Argus Policy Decision Point (PDP): Configuration

Configuration Files

The PDP is configured through the use of the pdp.ini file, located in /etc/argus/pdp directory.

There is also an environment file, located in /etc/sysconfig/argus-pdp, that contains environment variables
used by the init script that manage the service.

Configuration File Syntax

The pdp.ini file is a standard INI file with three defined sections. The SERVICE section contains properties related
the PDP service as a whole and how it listens for incoming requests. The POLICY section contains properties for the
retrieval of policies from the Policy Administration Point (PAP). The final section, SECURITY, contains properties
that related to various security aspects of the service, the services private key and certificate, for example.

43

Argus Documentation, Release 1.7.0

Basic Configuration Options

SERVICE section

Prop-
erty

Description Re-
quired?

Default Value

en-
ti-
tyID

This is a unique identifier for the PDP. It must be a URI (URL
or URN) and the same entity ID should be used for all PDP
instances that make up a single logical PDP. If a URL is used it
need not resolve to any specific webpage.

Y None. Recommended value is a
URL corresponding to the logi-
cal PDP service (e.g. http://
pdp.example.org).

host-
name

This is the hostname or IP address to which the service will bind. Y None.

port This is the port to which the service will bind. N 8152
ad-
min-
Host

The hostname upon which the service will listen for admin com-
mands.

N 127.0.0.1

ad-
min-
Port

This is the port upon which the service will listen for admin
command.

N 8153

ad-
min-
Pass-
word

This is the password required to accompany admin commands.
If unspecified than no password is required to run admin com-
mands.

N None

POLICY section

Prop-
erty

Description Re-
quired?

De-
fault
Value

paps A space separated list of PAP endpoint URLs. Endpoints will be tried in turn until one
returns a successful response. This provides limited failover support. If more intelligent
failover is necessary or load balancing is required, a dedicated load-balancer/failover appli-
ance should be used.

Y None

re-
ten-
tion-
In-
ter-
val

The number of minutes the PDP will retain (cache) a policy retrieved from the PAP. After
this time is passed the PDP will again call out to the PAP and retrieve the policy.

N 240
(4
hours)

44 Chapter 5. Argus: Policy Decision Point (PDP)

Argus Documentation, Release 1.7.0

SECURITY section

Property Description Re-
quired

De-
fault
Value

servicePri-
vateKey

An absolute path to the file containing the unencrypted, PEM-encoded, private
key used by this service. All PDPs instances within a single logical PDP should
use the same key

Yes None

serviceCertifi-
cate

An absolute path to the file containing the unencrypted, PEM-encoded, certifi-
cate used by this service. All PDPs instances within a single logical PDP should
use the same key

Yes None

trustInfoDir An absolute path to the directory that contains standard X.509 trust information,
such as the IGTF Trust Anchor Distribution

Yes None

enableSSL Indicates whether the service port should use SSL/TLS or not No false
tlsProtocol Which TLS protocol should be used whent HTTPS is enabled. Available values:

TLS (default), TLSv1.2, TLSv1.1.
No TLS

enabledProto-
cols

Specifies the TLS protocol versions to be enabled for use on the connection.
The standard names that can be passed are, for example: TLSv1.2, TLSv1.1
and TLSv1.

No None

require-
ClientCertAu-
thentication

Indicates whether the client must use a valid client certificate to authenticate to
the PDP

No false

Example pdp.ini files

The following example file contain the bare minimum required for a valid PDP configuration file.

[SERVER]
entityID = http://argus.example.org/pdp
hostname = argus.example.org

[POLICY]
paps = https://argus.example.org:8150/pap/services/ProvisioningService

[SECURITY]
servicePrivateKey = /etc/grid-security/hostkey.pem
serviceCertificate = /etc/grid-security/hostcert.pem
trustInfoDir = /etc/grid-security/certificates
HTTPS enabled
enableSSL = true
tlsProtocol = TLS

Advanced Configuration Options

The following advanced options are available but are unlikely to ever be used by deployers. They are mostly for
performing very fine-grained tuning of request/response handling parameters. Incorrectly configuring these can have
a very negative impact on performance so deployers should not change these unless they are very sure they understand
what the impact will be.

5.1. Summary 45

Argus Documentation, Release 1.7.0

SERVICE section

Prop-
erty

Description Re-
quired?

De-
fault
Value

maxi-
mum-
Re-
quests

The maximum number of requests that will be processed simultaneously. Additional
requests will be queued.

N 200

re-
questQueue-
Size

The maximum number of requests that will be queued up when all the processing
threads are busy. Incoming requests received when all processing threads are busy
and the queue is full will receive an HTTP 503 error.

N 500

con-
nec-
tion-
Time-
out

This is the length of time, in seconds, the service will wait for the client to send infor-
mation before it considers the request timed out.

N 30
sec-
onds

re-
ceive-
Buffer-
Size

This is the size, in bytes, that will be allocated to the HTTP request buffer. N 16384
(16kb)

send-
Buffer-
Size

This is the size, in bytes, that will be allocated to the HTTP response buffer. N 16384
(16kb)

POLICY section

Property Description Re-
quired

Default
Value

policy-
SetId

The ID of the policy to fetch from the PAP No -1

connec-
tionTime-
out

This is the length of time, in seconds, the PAP client will wait for the PAP to
send information before it considers the request timed out

None 30

receive-
BufferSize

This is the size, in bytes, that will be allocated to the PAP client send buffer No 16384
(16KB)

send-
BufferSize

This is the size, in bytes, that will be allocated to the PAP client request buffer No 16384
(16KB)

46 Chapter 5. Argus: Policy Decision Point (PDP)

Argus Documentation, Release 1.7.0

SECURITY section

Property Description Re-
quired?

De-
fault
Value

trustIn-
foRefresh

The frequency, in minutes, that the trust material specified by trustInfoDir
will be checked for updates.

N 60 (1
hour)

mes-
sageVa-
lidityPer-
iod

The number of seconds, from the time a message is issued, until it is considered
expired.

N 300s (5
min-
utes)

clockSkew The allowance, in seconds, used when computing validity periods. N 30s
enab-
leSSL

Enable HTTPS on the service port (SSL/TLS). The serviceCertificate,
servicePrivateKey, and trustInfoDir properties must also be defined
in order to use this setting.

N false

tlsProto-
col

Which TLS protocol should be used whent HTTPS is enabled. Available values:
TLS (default), TLSv1.2, TLSv1.1.

N TLS

enabled-
Protocols

Specifies the TLS protocol versions to be enabled for use on the connection. The
standard names that can be passed are, for example: TLSv1.2, TLSv1.1 and TLSv1

N None

Environment file

In the /etc/sysconfig/argus-pdp file are defined Argus PDP environment variables, described in the table
below.

Variable Default value Meaning
JAVACMD /usr/bin/java Absolute path of the JVM executable.
PDP_JOPTS -Xmx256M -Djdk.tls.

trustNameService=true
Optional parameters to pass to the JVM when PDP is
started/stopped

PDP_START_JOPTSempty Optional parameters to pass to the JVM only when
PDP is started; useful to enable JMX or remote debug

PDP_HOME /usr/share/argus/pdp Absolute path of PDP installation directory
PDP_CONF /etc/argus/pdp/pdp.

ini
Absolute path of PDP configuration file.

PDP_CONFDIR/etc/argus/pdp Absolute path of PDP configuration directory.
PDP_LOGDIR/var/log/argus/pdp Absolute path of PDP logs directory.
PDP_LIBDIR/var/lib/argus/pdp/

lib
Absolute path of PDP libraries.

PDP_ENDORSEDDIR/var/lib/argus/pdp/
lib/endorsed

Absolute path of PDP endorsed libraries.

PDP_PROVIDEDDIR/var/lib/argus/pdp/
lib/provided

Absolute path of PDP provided libraries.

PDP_PID /var/run/argus-pdp.
pid

Absolute path of PDP PID file.

Attention:

The option -Djdk.tls.trustNameService=true is mandatory in Argus version 1.7 with TLS turned on.

5.1. Summary 47

Argus Documentation, Release 1.7.0

This system property enforce the host name check to avoid JDK bug
https://bugs.openjdk.java.net/browse/JDK-8133196.

Attention:

The Argus version 1.7 provides an environment file with the default values described above.
In case of update from the previous version, a new file named /etc/sysconfig/argus-pdp.rpmnew will
be created.
Manually overwrite the file and restart the service.

5.1.3 Argus Policy Decision Point (PDP): Operation

Service Operation Commands

Start the PDP service

Platform Command
EL6 service argus-pdp start
EL7 systemctl start argus-pdp

Stop the PDP service

Platform Command
EL6 service argus-pdp stop
EL7 systemctl stop argus-pdp

Restart the PDP service

Platform Command
EL6 service argus-pdp restart
EL7 systemctl restart argus-pdp

PDP service status information

Platform Command
EL6 service argus-pdp status
EL7 systemctl status argus-pdp

Reload PDP policies Causes the currently cached copy of the policies received from the PAP can be flushed from
memory, and retrieved a new from the PAP.

Platform Command
EL6 pdpctl reloadPolicy
EL7 pdpctl reloadPolicy

48 Chapter 5. Argus: Policy Decision Point (PDP)

https://bugs.openjdk.java.net/browse/JDK-8133196

Argus Documentation, Release 1.7.0

Service Information

Service Ports

• Default Service Port: 8152

• Default Admin Port: 8153

The PDP service only requires the standard service port to be open to those PEPd services which will communicate
with the PDP. The PDP must also be able to make outbound connections to those PAPs from which remote policies
will be retrieved.

Service Endpoint URLs

This service contains the following endpoint URLs:

https://HOSTNAME:8152/authz This endpoint is the recipient of authorization requests.

http://127.0.0.1:8153/status This endpoint provides current status information on the PDP. This end-
point is password protected.

http://127.0.0.1:8153/reloadPolicy This endpoint instructs the PDP to flush, and retrieve anew, its
policy from the PAP. This endpoint is password protected.

http://127.0.0.1:8153/shutdown This endpoint instructs the PDP to shutdown. This endpoint is password
protected.

Note: Admin services may be password protected and thus not invokable without this password.

Logging and Logs

This service uses the logback logging library. Java developers are probably familiar with Apache Log4J, logback is
written by the developer who initially wrote Log4J and contains a cleaner API and is much more performant. The
configuration file for the logging system can be found in $PDP_HOME/conf/logging.xml and changes to this
file are picked up every 5 minutes.

Enable Debug Logging

To enable debug logging follow:

1. Locate the line that contains logger name="org.glite.authz" (line 10 in the default logging config)

2. On the following line, change INFO to DEBUG

In some cases it may be helpful to see the policy being evaluated for each request. To do this:

1. Locate the line that contains org.glite.authz.message.policy (line 22 in the default logging config)

2. On the following line, change INFO to DEBUG

In some cases it may be helpful to see the incoming and outgoing messages. To do this:

1. Locate the line that contains org.glite.authz.message.protocol (line 27 in the default logging
config)

2. On the following line, change INFO to DEBUG

5.1. Summary 49

http://logback.qos.ch/

Argus Documentation, Release 1.7.0

Note: always change your logging levels back to their original values once you are done debugging a problem.
Keeping the system on the debug logging level could fill up your disk partition in a short time.

Service Logs

The service writes three different logs, located in /var/log/argus/pdp (EMI) or $PDP_HOME/logs (gLite):

• process.log - This log file contains the normal, human-oriented logging messages that the system generates
while in operation. This can be thought of as the debug log (though that’s really only true if configured to log
debug messages).

• access.log - This file is an Apache-style access log showing information about incoming requests. This log is
meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– remote host - the hostname or IP address of the host that contacted the PDP

– server host - the hostname or IP address on which the server received the request

– server port - the port on which the server received the request

– request path - the URL path that was requested

• audit.log - This file contains information useful for auditing the system (e.g. results of authorization requests).
This log is meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– requester ID - the entity ID of the PEP that made the request

– request ID - the ID of the incoming authorization request

– policy ID - the ID of the policy set that was evaluated in order to reach the authorization decision

– policy version - the version of the policy that was evaluated in order to reach the authorization decision

– policy decision - the authorization decision that was reached

– response ID - the ID of the authorization response sent back to the PEP

5.1.4 Argus: Policy Decision Point (PDP): Troubleshooting

PDP Uses “Old” Policies

The PDP caches policies received from the PAP in order to avoid the cost of fetching and parsing them for every
request. In cases where you know, or suspect, the policy used by the PDP is no longer in synch with the policy stored
at the PAP you may use the command

pdpctl reloadPolicy

to force the PDP to flush its policy cache and retrieve the latest policy from the PAP.

50 Chapter 5. Argus: Policy Decision Point (PDP)

Argus Documentation, Release 1.7.0

Private Key File Access

Many systems protect their private keys so that only super-user accounts can read them. Starting, and running the PDP,
as such an account is strongly discouraged. The recommend approach is to create a special group (e.g. ‘hostkey’) that
has read permissions to the key and ensure the user running the PDP service is also in this group. This group should
not have write permission to the key.

Some people might view this as a loss of security, because, if the service user account were compromised the attacker
would be able to read the private key. However, the service holds a copy of key in memory once it starts and this copy
can easily be accessed via tools that come with the JRE.

5.1. Summary 51

Argus Documentation, Release 1.7.0

52 Chapter 5. Argus: Policy Decision Point (PDP)

CHAPTER 6

Argus: Policy Enforcement Point Daemon (PEP)

In the Argus authorization framework the Policy Enforcement Point is implemented as a client-server architecture.
The PEP Daemon is the server component and there are different lightweight PEP clients available: C client, Java
client, and GSI PEP Callout client.

6.1 Summary

6.1.1 Argus PEP Server Installation

Installation

To deploy the Argus PEP Server, please follow the documentation Argus Deployment

6.1.2 Argus PEP Server: Configuration

Configuration Files

The PEPd is configured through the use of the pepd.ini file, located in /etc/argus/pepd directory.

There is also an environment file, located in /etc/sysconfig/argus-pepd, that contains environment variables
used by the init script that manage the service.

Configuration File Syntax

The pepd.ini file is a standard INI file with different defined sections. The SERVICE section contains properties
related the PEP Server service as a whole and how it listens for incoming requests. The PDP section that control
how callouts to the PDP are made. The final section, SECURITY, contains properties that related to various security
aspects of the service, the services private key and certificate, for example.

53

Argus Documentation, Release 1.7.0

PIP Configuration

Each Policy Information Point (PIP) is configured in its own INI section, referenced in the SERVICE section under
the pips property.

The configuration properties needed by each PIP is specific to that given PIP. Some will not require any properties
beyond the standard set while other will need addition information.

• See the Policy Information Point documentation for more information:

– Request Validator PIP

– OpenSSL Subject Converter PIP

– gLite Grid Authorization Profile PIP

– Common XACML Authorization Profile PIP

Obligation Handler Configuration

Each Obligation Handler (OH) is configured in its own INI section, referenced in the SERVICE section under the
obligationHandlers property.

The configuration properties needed by each Obligation Handler is specific to that given OH. Some will not require
any properties beyond the standard set while other will need addition information.

See the Obligation Handler documentation for more information, in particular the Gridmap Account Mapping Obli-
gation Handler.

Basic Configuration Options

54 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

SERVICE section

Prop-
erty

Description Re-
quired?

Default Value

entityIDThis is a unique identifier for the PEP. It must be a URI (URL or
URN) and the same entity ID should be used for all PEP instances
that make up a single logical PEP. If a URL is used it need not
resolve to any specific webpage.

Y None. Recommended value
is a URL corresponding
to the logical PEP ser-
vice (e.g. http://pep.
example.org).

hostnameThis is the hostname or IP address to which the service will bind. Y None
port This is the port to which the service will bind. N 8154
adminHostThe hostname upon which the service will listen for admin com-

mands.
N 127.0.0.1

adminPortThis is the port upon which the service will listen for admin com-
mands. This port is only available on the localhost (127.0.0.1).

N 8155

adminPasswordThis is the password required to accompany admin commands. If
unspecified than no password is required to run admin commands.

N None

pips This is a space separated list of the INI section names that configure
policy information points (PIP) that the PEP will invoke upon the
arrival of every request. PIPs are executed in the order listed by this
property. See the policy information point documentation for more
information.

N None

obligationHandlersThis is a space separated list of the INI section names that config-
ure obligations handlers that the PEP will use to fulfill obligation
requirements sent back by the PDP. See the obligation handler doc-
umentation for more information.

N None

PDP section

Property Description Re-
quired?

De-
fault
Value

pdps A space separated list of PDP endpoint URLs. Endpoints will be tried in turn until one
returns a successful response. This provides limited failover support. If more intelligent
failover is necessary or load balancing is required, a dedicated load-balancer/failover
appliance should be used.

Y None

maximumCachedResponsesThe maximum number of responses from any PDP that will be cached. Setting this
value to 0 (zero) will disable caching. The maximum amount of time a single response
is cached is controlled by the cachedResponseTTL property described below.

N 500

6.1. Summary 55

Argus Documentation, Release 1.7.0

SECURITY section

Property Description Required? De-
fault
Value

servicePrivateKeyAn absolute path to the file containing the unencrypted, PEM-
encoded, private key used by this service.

Yes, if requests from
the PEP client should
be done over HTTPS.

None.

serviceCertificateAn absolute path to the file containing the unencrypted, PEM-
encoded, certificate used by this service.

Yes, if requests from
the PEP client should
be done over HTTPS.

None.

trustInfoDir An absolute path to the directory that contains standard X.509
trust information, such as the IGTF Trust Anchor Distribution.

Required when con-
necting to PDPs over
HTTPS.

None

enableSSL Enable HTTPS on the service port (SSL/TLS). The
serviceCertificate, servicePrivateKey, and
trustInfoDir properties must also be defined in order to
use this setting.

N false

tlsProtocol Which TLS protocol should be used whent HTTPS is enabled.
Available values: TLS (default), TLSv1.2, TLSv1.1.

N TLS

enabledProtocolsSpecifies the TLS protocol versions to be enabled for use on
the connection. The standard names that can be passed are, for
example: TLSv1.2, TLSv1.1 and TLSv1

N None

requireClientCertAuthenticationThe client must have a valid X.509 client certificate to authen-
ticate to the PEP Server

N true

Example pepd.ini files

The following example file contain the bare minimum required for a valid PEP configuration file.

[SERVICE]
entityId = https://argus.example.org/pep
hostname = argus.example.org

[PDP]
pdps = https://argus.example.org:8152/authz

[SECURITY]

The following example file contains the bare minimum required for a valid PEP configuration plus the configuration
of a couple PIPs. Note how each element in the list pips list of the SERVER section matches the name section
configuring the PIP. Also note that the REQVALIDATOR_PIP takes a few additional configuration parameters.

[SERVICE]
entityID = http://argus.example.org/pep
hostname = argus.example.org
pips = REQVALIDATOR_PIP

[PDP]
pdps = https://argus.example.org:8152/authz https://pdp2.example.org:8152/authz

[SECURITY]

(continues on next page)

56 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

(continued from previous page)

servicePrivateKey = /etc/grid-security/hostkey.pem
serviceCertificate = /etc/grid-security/hostcert.pem
trustInfoDir = /etc/grid-security/certificates
enableSSL = true
tlsProtocol = TLS
requireClientCertAuthentication = true

[REQVALIDATOR_PIP]
parserClass = org.glite.authz.pep.pip.provider.
→˓RequestValidatorPIPIniConfigurationParser
validateRequestSubjects = true
validateRequestResources = true
validateRequestAction = true
validateRequestEnvironment = false

Advanced Configuration Options

The following advanced options are available but are unlikely to ever be used by deployers. They are mostly for
performing very fine-grained tuning of request/response handling parameters. Incorrectly configuring these can have
a very negative impact on performance so deployers should not change these unless they are very sure they understand
what the impact will be.

SERVICE section

Property Description Re-
quired?

De-
fault
Value

maximumRequestsThe maximum number of requests that will be processed simultaneously. Additional
requests will be queued.

N 200

requestQueueSizeThe maximum number of requests that will be queued up when all the processing
threads are busy. Incoming requests received when all processing threads are busy
and the queue is full will receive an HTTP 503 error.

N 500

connectionTimeoutThis is the length of time, in seconds, the service will wait for the client to send
information before it considers the request timed out.

N 30
sec-
onds

receiveBufferSizeThis is the size, in bytes, that will be allocated to the HTTP request buffer. N 16384
(16kb)

sendBufferSizeThis is the size, in bytes, that will be allocated to the HTTP response buffer. N 16384
(16kb)

6.1. Summary 57

Argus Documentation, Release 1.7.0

PDP section

Property Description Re-
quired

Default
Value

maximumRequestsThe maximum number of simultaneous requests that will be made to the PDP.
Additional requests will wait until a free request slot becomes available

No 200

cachedResponseTTLThe length of time, in seconds, for which a response will be cached No 600 (10
minutes)

connectionTimeoutThis is the length of time, in seconds, the PDP client will wait for the PDP to
send information before it considers the request timed out

No 30

receiveBufferSizeThis is the size, in bytes, that will be allocated to the PDP client send buffer None 16384
(16 KB)

sendBufferSizeThis is the size, in bytes, that will be allocated to the PDP client request buffer None 16384
(16
KB)}

SECURITY section

Property Description Re-
quired?

Default
Value

trustInfoRefreshThe frequency, in minutes, that the trust material specified by
trustInfoDir will be checked for updates.

N 60 (1
hour)

Environment file

In the /etc/sysconfig/argus-pepd file are defined Argus PEPd environment variables, described in the table
below.

Variable Default value Description
JAVACMD /usr/bin/java Absolute path of the JVM executable.
PEPD_JOPTS -Xmx256M -Djdk.tls.

trustNameService=true
Optional parameters to pass to the JVM when PEPd is
started/stopped

PEPD_START_JOPTSempty Optional parameters to pass to the JVM only when PEPd is
started; useful to enable JMX or remote debug

PEPD_HOME /usr/share/argus/pepd Absolute path of PEPd installation directory
PEPD_CONF /etc/argus/pepd/pepd.

ini
Absolute path of PEPd configuration file.

PEPD_CONFDIR/etc/argus/pepd Absolute path of PEPd configuration directory.
PEPD_LOGDIR/var/log/argus/pepd Absolute path of PEPd logs directory.
PEPD_LIBDIR/var/lib/argus/pepd/

lib
Absolute path of PEPd libraries.

PEPD_ENDORSEDDIR/var/lib/argus/pepd/
lib/endorsed

Absolute path of PEPd endorsed libraries.

PEPD_PROVIDEDDIR/var/lib/argus/pepd/
lib/provided

Absolute path of PEPd provided libraries.

PEPD_PID /var/run/argus-pepd.
pid

Absolute path of PEPd PID file.

58 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

Attention:

The option -Djdk.tls.trustNameService=true is mandatory in Argus version 1.7 with TLS turned on.
This system property enforce the host name check to avoid JDK bug
https://bugs.openjdk.java.net/browse/JDK-8133196

Attention:

The Argus version 1.7 provides an environment file with the default values described above.
In case of update from the previous version, a new file named /etc/sysconfig/argus-pepd.rpmnew
will be created.
Manually overwrite the file and restart the service.

6.1.3 Argus PEP Server: Operation

For more Argus details, see the Argus Service Reference Card.

Service Operation Commands

Start the PEP service

Platform Command
EL6 service argus-pepd start
EL7 systemctl start argus-pepd

Stop the PEP service

Platform Command
EL6 service argus-pepd stop
EL7 systemctl stop argus-pepd

Restart the PEP service

Platform Command
EL6 service argus-pepd restart
EL7 systemctl restart argus-pepd

PEP service status information

Platform Command
EL6 service argus-pepd status
EL7 systemctl status argus-pepd

Clear PEP service response cache Causes the currently cached responses from the PDP can be flushed from memory

Platform Command
EL6 pepdctl clearResponseCache
EL7 pepdctl clearResponseCache

6.1. Summary 59

https://bugs.openjdk.java.net/browse/JDK-8133196

Argus Documentation, Release 1.7.0

Service Information

Service Ports

• Default Service Port: 8154

• Default Admin Port: 8155

The PEP service only requires the standard service port to be open to those PEP clients which will communicate with
the PEP. The PEP must also be able to make outbound connections to those PDPs to which is will make policy decision
requests.

Service Endpoints

This service contains the following endpoint URLs:

https://argus.example.org:8154/authz This endpoint is the recipient of authorization requests and is
reachable on the standard service host and port.

http://127.0.0.1:8155/status This endpoint provides current status information on the PEP daemon and
is reachable on the standard admin host and port.

http://127.0.0.1:8155/clearResponseCache This endpoint instructs the PEP daemon to flush its PDP
response cache. It is reachable on the standard admin host and port.

http://127.0.0.1:8155/shutdown This endpoint instructs the PEP daemon to shutdown and is reachable
on the standard admin host and port.

Note: Admin services may be password protected and thus not invokable without this password.

Logging and Logs

This service uses the logback logging library. Java developers are probably familiar with Apache Log4J, logback is
written by the developer who initially wrote Log4J and contains a cleaner API and is much more performant. The
configuration file for the logging system can be found in $PEP_HOME/conf/logging.xml and changes to this
file are picked up every 5 minutes.

Enable Debug Logging

To enable debug logging follow:

1. Locate the line that contains logger name="org.glite.authz" (line 10 in the default logging config)

2. On the following line, change INFO to DEBUG

In some cases it may be helpful to see the incoming and outgoing messages. To do this:

1. Locate the line that contains org.glite.authz.message.protocol (line 15 in the default logging
config)

2. On the following line, change INFO to DEBUG

Note: Always change your logging levels back to their original values once you are done debugging a problem.
Keeping the system on the debug logging level could fill up your disk partition in a short time.

60 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

http://logback.qos.ch/

Argus Documentation, Release 1.7.0

Service Logs

The service writes three different logs, located in $PEPD_HOME/logs:

• process.log - This log file contains the normal, human-oriented logging messages that the system generates
while in operation. This can be thought of as the debug log (though that’s really only true if configured to log
debug messages).

• access.log - This file is an Apache-style access log showing information about incoming requests. This log is
meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– remote host - the hostname or IP address of the host that contacted the PDP

– server host - the hostname or IP address on which the server received the request

– server port - the port on which the server received the request

– request path - the URL path that was requested

• audit.log - This file contains information useful for auditing the system (e.g. results of authorization requests).
This log is meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– request ID - the ID of the authorization request

– responder ID - the URL of the PDP that responded to the authorization request

– response ID - the ID of the response message sent back from the PDP

– policy decision - the authorization decision that was reached

6.1.4 Argus PEP Server: Troubleshooting

PEP Daemon Returns “Stale” Results

The PEPd keeps a short (10 minutes by default) response cache. So identical requests made within a short time period
will always provide the same answer. If you’re testing this can be a pain. You can clear the cache using the pepdctl
clearResponseCache command. You can also turn of the cache through the maximumCachedResponses
documented in the PEPd configuration. Just be sure to enable it again before you put the system under heavy load.

Note that the PDP also caches the policies it reads, so during testing you may also want to configure the PDP to more
quickly pick up policies from the PAP via the retentionInterval option.

Testing a policy without submitting a job

When authoring new policies or troubleshooting an existing policies it can be helpful to mock up requests, instead
of getting users to perform the request over and over as you diagnose the problem. The PEPd offers a C and Java
command line tool. The C tool is useful for specifically testing cases where policies are based on the resource ID,
action ID, subject ID, and FQAN attributes. The Java tool allows you to mock up any request.

Here is an example of using the C command line tool to test a job submission. It specifies the PEPd service, resource
ID, action ID, user’s DN, and primary FQAN.

6.1. Summary 61

Argus Documentation, Release 1.7.0

/opt/glite/bin/pepcli -v -x \
-p http://vesta.switch.ch:8154/authz \
-r http://authz-interop.org/xacml/resource/resource-type/wn \
-a http://authz-interop.org/xacml/action/action-type/execute-now \
-s "CN=Alessandro Usai,O=SWITCH,C=CH,DC=users,DC=switch,DC=grid,DC=quovadisglobal,

→˓DC=com" \
-f /dech \

6.1.5 Argus PEP Server Policy Information Points (PIP)

Policy Information Points (PIPs) are plugins to the authorization service that help populate and/or complete an autho-
rization request. PIPs may rely on information already within the request or they may simply be able to self generate
the data that they will add.

The following PIPs are currently available:

Request Validator PIP

Warning: This PIP is new in Argus 1.3 (EMI).

The Request Validator PIP validates the incoming authorization request. It checks that the incoming authorization
request contains at least one subject, one resource and one action, and that the attributes within them have at least one
value, which is not null or an empty string.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. REQVALIDATOR_PIP)

2. Into the PIP INI section add the parserClass property with the value org.glite.authz.pep.pip.
provider.RequestValidatorPIPIniConfigurationParser

3. Configure how the authorization request must be validated

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

validateRequestSubjects Require at least one subject with non-empty attribute
values

N true

validateRequestRe-
sources

Require at least one resource with non-empty attribute
values

N true

validateRequestAction Require one action with non-empty attribute values N true
validateRequestEnviron-
ment

Require one environment with non-empty attribute val-
ues

N false

62 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

Example Configuration

The following example shows a PEP server configuration with the request validator PIP enabled. The PIP validates
the incoming authorization request and checks that it contains at least one subject, at least one resource and one action,
all with non-empty or null attributes values.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = REQVALIDATOR_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[REQVALIDATOR_PIP]
parserClass = org.glite.authz.pep.pip.provider.
→˓RequestValidatorPIPIniConfigurationParser
validateRequestSubjects = true
validateRequestResources = true
validateRequestAction = true
validateRequestEnvironment = false

OpenSSL Subject Converter PIP

Warning: This PIP is new in Argus 1.3 (EMI).

The OpenSSL Subject Converter PIP transforms on-the-fly an incoming request subject attribute subject-
id and/or attribute subject-issuer value from the old, unsupported and wrong OpenSSL oneline format
(e.g. “/C=CH/O=example.org/CN=John Doe”) into a correct RFC2253 format value (e.g. “CN=John
Doe,O=example.org,C=CH”) with the correct datatype.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g.
OPENSSLSUBJECT_PIP)

2. Into the PIP INI section add the parserClass property with the value org.glite.authz.pep.pip.
provider.OpenSSLSubjectPIPIniConfigurationParser

3. Configure which subject attribute ID and datatype values must be transformed from the OpenSSL format into
the RFC2253 format.

6.1. Summary 63

Argus Documentation, Release 1.7.0

PIP Configuration Properties

Property Description Re-
quired?

Default Value

opensslSub-
jectAt-
tributeIDs

The space separated list of sub-
ject attribute IDs containing an
OpenSSL value to convert

No urn:oasis:names:tc:xacml:1.
0:subject:subject-id http://glite.
org/xacml/attribute/subject-issuer

opensslSub-
jectAt-
tribute-
Datatypes

The space separated list of sub-
ject attribute datatypes containing
an OpenSSL value to convert

No http://www.w3.org/2001/
XMLSchema#string

Example Configuration

The following example shows a PEP server configuration with the OpenSSL Subject Converter PIP enabled, and
transforming both the subject attribute IDs urn:oasis:names:tc:xacml:1.0:subject:subject-id and
http://glite.org/xacml/attribute/subject-issuer, with the datatype http://www.w3.org/
2001/XMLSchema#string values from the OpenSSL oneline format into the RFC2253 format.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = OPENSSLSUBJECT_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[OPENSSLSUBJECT_PIP]
parserClass = org.glite.authz.pep.pip.provider.OpenSSLSubjectPIPIniConfigurationParser
opensslSubjectAttributeIDs = http://glite.org/xacml/attribute/subject-issuer
→˓urn:oasis:names:tc:xacml:1.0:subject:subject-id
opensslSubjectAttributeDatatypes = http://www.w3.org/2001/XMLSchema#string

Grid Authorization Profile PIP

Warning: This is the default profile supported starting from Argus 1.2.

This PIP allows the PEP client to send only the end-user certificate or proxy as lone Subject Key-Info attribute. It
will then parse the certificate, extract all the information from the certificate required by the gLite Grid XACML
Authorization Profiles, and populate the request with attributes found in the certificate/proxy.

This PIP implements the XACML Grid Worker Node Authorization Profile (v.1.0) and the XACML Grid Computing
Element Authorization Profile (v.1.0) specifications.

64 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881
https://edms.cern.ch/document/1078881

Argus Documentation, Release 1.7.0

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g.
GLITEXACMLPROFILE_PIP)

2. Into the PIP INI section add the parserClass property with the value org.glite.authz.pep.pip.
provider.GLiteAuthorizationProfilePIPIniConfigurationParser

3. To enable VOMS attribute certificate support add the vomsInfoDir property with a value corresponding to
the absolute path of the VOMS vomsdir, traditionally /etc/grid-security/vomsdir.

4. If, in the SECURITY section, the trustInfoDir property is not already set, add it with a value of the absolute
filesystem path of your IGTF trust bundle.

5. Configure which profile IDs are to be accepted.

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

acceptedPro-
fileIDs

The space separated list of accepted authorization profile IDs No None.

vomsInfoDir The absolute path to the VOMS vomsdir directory. Y None.
vomsInfoRe-
fresh

The refresh interval time in minutes of the vomsInfoDir directory. No 60

requireCertifi-
cate

The request Subject attribute key-info MUST be present in the incom-
ing request.

No true

requireProxy The request Subject attribute key-info MUST to be a proxy (PEM
encoded proxy chain).

No false

Note: If the acceptedProfileIDs is not defined, then all profile IDs present in the request environment profile-id
attribute are accepted.

Required Request Attributes

This PIP requires that the request environment contains a profile-id attribute with the profile identifier, and that the
request subject contains the certificate, and its chain, that were used to authenticate to the service, in the key-info
attribute:

• The Profile Identifier

– type: Environment

– id: http://glite.org/xacml/attribute/profile-id

– data type: http://www.w3.org/2001/XMLSchema#anyURI

– multiple values allowed: no

– description: The profile ID implemented by the incoming request.

• The Certificate or Proxy Certificate (with chain)

– type: Subject

6.1. Summary 65

http://glite.org/xacml/attribute/profile-id
http://www.w3.org/2001/XMLSchema#anyURI

Argus Documentation, Release 1.7.0

– id: urn:oasis:names:tc:xacml:1.0:subject:key-info

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: no

– description: The PEM encoded certificate chain. No certificate order is assumed however all certificates
must be version 3 certificates. Zero or one VOMS attribute certificate may also be included.

Populated Effective Request Attributes

The PIP will process the request subject key-info attribute and populate the following attributes:

• The Subject Identifier

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: This is the Subject DN as given in the end-entity certificate. It is in RFC2253 format.

• The End-entity Certificate Issuer

– type: Subject

– id: http://glite.org/xacml/attribute/subject-issuer

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: yes

– description: This is the Subject DN of the root CA and all subordinate CAs that signed within the end-
entity certificate chain, included the Subject Identifier DN. It is in RFC2253 format.

If VOMS support is enabled and a VOMS certificate is included within a user’s proxy certificate, the following at-
tributes will be populated within the request:

• The VO Name

– type: Subject

– id: http://glite.org/xacml/attribute/virtual-organization

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: yes

– description: The names of the VOs to which the user is a member. Currently there is only ever one value.

• The VOMS Primary FQAN

– type: Subject

– id: http://glite.org/xacml/attribute/fqan/primary

– data type: http://glite.org/xacml/datatype/fqan

– issuer: DN of the attribute certificate issuer

– multiple values allowed: no

– description: The primary Fully Qualified Attribute Name (FQAN) for the subject

• The VOMS FQANs

66 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

urn:oasis:names:tc:xacml:1.0:subject:key-info
http://www.w3.org/2001/XMLSchema#string
urn:oasis:names:tc:xacml:1.0:subject:subject-id
urn:oasis:names:tc:xacml:1.0:data-type:x500Name
http://glite.org/xacml/attribute/subject-issuer
urn:oasis:names:tc:xacml:1.0:data-type:x500Name
http://glite.org/xacml/attribute/virtual-organization
http://www.w3.org/2001/XMLSchema#string
http://glite.org/xacml/attribute/fqan/primary
http://glite.org/xacml/datatype/fqan

Argus Documentation, Release 1.7.0

– type: Subject

– id: http://glite.org/xacml/attribute/fqan

– data type: http://glite.org/xacml/datatype/fqan

– multiple values allowed: yes

– description: All the Fully Qualified Attribute Name (FQAN)s for the subject

Example Configuration

The following example shows a PEP Server configuration with the Grid authorization profile PIP enabled, and
accepting both the http://glite.org/xacml/profile/grid-ce/1.0 and the http://glite.org/
xacml/profile/grid-wn/1.0 XACML Grid authorization profiles.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = GLITEXACMLPROFILE_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[GLITEXACMLPROFILE_PIP]
parserClass = org.glite.authz.pep.pip.provider.
→˓GLiteAuthorizationProfilePIPIniConfigurationParser
vomsInfoDir = /etc/grid-security/vomsdir
acceptedProfileIDs = http://glite.org/xacml/profile/grid-ce/1.0 http://glite.org/
→˓xacml/profile/grid-wn/1.0

Common XACML Authorization Profile PIP

Warning: This profile is supported since Argus 1.6 (EMI-3).

This PIP allows the PEP client to send only the end-user certificate or proxy as lone Subject Key-Info attribute. It will
then parse the certificate, extract all the information from the certificate required by the Common XACML Authoriza-
tion Profile, and populate the request with attributes found in the certificate/proxy.

This PIP implements the Common XACML Authorization Profile (1.1.1) specifications.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g.
COMMONXACMLPROFILE_PIP)

2. Into the PIP INI section add the parserClass property with the value org.glite.authz.pep.pip.
provider.CommonXACMLAuthorizationProfilePIPIniConfigurationParser

3. To enable VOMS attribute certificate support add the vomsInfoDir property with a value corresponding to
the absolute path of the VOMS vomsdir, traditionally /etc/grid-security/vomsdir.

6.1. Summary 67

http://glite.org/xacml/attribute/fqan
http://glite.org/xacml/datatype/fqan
https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1

Argus Documentation, Release 1.7.0

4. If, in the SECURITY section, the trustInfoDir property is not already set, add it with a value of the absolute
filesystem path of your IGTF trust bundle.

5. Configure which profile IDs are to be accepted, normally http://dci-sec.org/xacml/profile/
common-authz/1.1

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

acceptedPro-
fileIDs

The space separated list of accepted authorization profile IDs No None.

vomsInfoDir The absolute path to the VOMS vomsdir directory. YES None.
vomsInfoRe-
fresh

The refresh interval time in minutes of the vomsInfoDir directory. No 60

requireCertifi-
cate

The request Subject attribute key-info MUST be present in the incom-
ing request.

No false

requireProxy The request Subject attribute key-info MUST to be a proxy (PEM
encoded proxy chain).

No false

Note: If the acceptedProfileIDs is not defined, then all profile IDs present in the request environment profile-id
attribute are accepted.

Required Request Attributes

This PIP requires that the request environment contains a profile-id attribute with the profile identifier, and that the
request subject contains the certificate, and its chain, that were used to authenticate to the service, in the key-info
attribute:

• The Profile Identifier Attribute

– type: Environment

– id: http://dci-sec.org/xacml/attribute/profile-id

– data type: http://www.w3.org/2001/XMLSchema#anyURI

– multiple values allowed: no

– description: The profile ID implemented by the incoming request, typically http://dci-sec.org/
xacml/profile/common-authz/1.1

• The Subject Key-Info (certificate or proxy, with chain) Attribute

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:key-info

– data type: http://www.w3.org/2001/XMLSchema#base64Binary

– multiple values allowed: yes

– description: The multiple values are the base64 encoded DER blocks of the certicate/proxy chain.

68 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1#Profile_Identifier_Attribute
http://dci-sec.org/xacml/attribute/profile-id
http://www.w3.org/2001/XMLSchema#anyURI
https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1#Subject_Key_Info_Attribute
urn:oasis:names:tc:xacml:1.0:subject:key-info
http://www.w3.org/2001/XMLSchema#base64Binary

Argus Documentation, Release 1.7.0

Populated Effective Request Attributes

The PIP will process the request subject key-info attribute and populate the following attributes:

• The Subject Identifier Attribute

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: X.509 distinguished name of the end-entity certificate. The value is in RFC2253 format, e.g.
“CN=John Doe,DC=example,DC=org”

• The Subject Issuer Attribute

– type: Subject

– id: http://dci-sec.org/xacml/attribute/subject-issuer

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: yes

– description: X.509 distinguished name of the authority(ies) which issued the end-entity certificate, in-
cluded the Subject Identifier DN. The values are in RFC2253 format.

• The CA Issuer Subject Attribute

– type: Subject

– id: http://glite.org/xacml/attribute/x509-subject-issuer

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: X.509 distinguished name of the authority which issued the end-entity certificate. The values
are in RFC2253 format.

If VOMS support is enabled and a VOMS certificate is included within a user’s proxy certificate, the following at-
tributes will be populated within the request:

• The Virtual Organization (VO) Attribute

– type: Subject

– id: http://dci-sec.org/xacml/attribute/virtual-organization

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: yes

– description: The names of the VOs to which the user is a member. Currently there is only ever one value.

• The Primary Group and Group Attributes

– type: Subject

– id: http://dci-sec.org/xacml/attribute/group/primary and http://dci-sec.org/xacml/attribute/group

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: no (primary group), yes (groups)

– description: The primary group name, and the list of all group names

6.1. Summary 69

urn:oasis:names:tc:xacml:1.0:subject:subject-id
urn:oasis:names:tc:xacml:1.0:data-type:x500Name
http://dci-sec.org/xacml/attribute/subject-issuer
urn:oasis:names:tc:xacml:1.0:data-type:x500Name
http://glite.org/xacml/attribute/x509-subject-issuer
urn:oasis:names:tc:xacml:1.0:data-type:x500Name
http://dci-sec.org/xacml/attribute/virtual-organization
http://www.w3.org/2001/XMLSchema#string
http://dci-sec.org/xacml/attribute/group/primary
http://dci-sec.org/xacml/attribute/group
http://www.w3.org/2001/XMLSchema#string

Argus Documentation, Release 1.7.0

• The Primary Role and Role Attributes

– type: Subject

– id: http://dci-sec.org/xacml/attribute/role/primary and http://dci-sec.org/xacml/attribute/role

– data type: http://www.w3.org/2001/XMLSchema#string

– issuer: The group name to which this role belong.

– multiple values allowed: no (primary role), yes (roles)

– description: The primary role, and roles list assigned to the subject.

Example Configuration

The following example shows a PEP Server configuration with the Common XACML authorization profile PIP
enabled, and accepting the http://dci-sec.org/xacml/profile/common-authz/1.1 EMI Common
XACML Authorization profile.

[SERVICE]
entityId = https://argus.example.org/pep
hostname = argus.example.org

pips = COMMONXACMLPROFILE_PIP

[PDP]
pdps = https://argus.example.org:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[COMMONXACMLPROFILE_PIP]
parserClass = org.glite.authz.pep.pip.provider.
→˓CommonXACMLAuthorizationProfilePIPIniConfigurationParser
vomsInfoDir = /etc/grid-security/vomsdir
acceptedProfileIDs = http://dci-sec.org/xacml/profile/common-authz/1.1

Authentication Profile PIP

Warning: This PIP has been introduced in Argus 1.7.1

This PIP uses the informations extracted from the certificate by Common XACML Authorization Profile PIP and Grid
Authorization Profile PIP, so it must be configured as the last PIP into the PEP server.

This PIP looks in the request subject attributes for the attribute containing subject of the CA that issued the certificate
contained in the request, and the attribute containing the VO name linked to the request.

If no attribute is found holding the CA subject, the PIP returns without modifying the request. Otherwise, this PIP
checks whether the included certificate subject and VOMS attributes are allowed by local authentication profile poli-
cies.

If the policies are NOT met, subject and VOMS attributes are removed from the request. If the policies are met, the
x509-authn-profile attribute is set, containing the authentication profile resolved for the request.

70 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

http://dci-sec.org/xacml/attribute/role/primary
http://dci-sec.org/xacml/attribute/role
http://www.w3.org/2001/XMLSchema#string

Argus Documentation, Release 1.7.0

Configuration

1. Create a new INI section for the PIP, with any valid INI section name (e.g. AUTHN_PROFILE_PIP).

2. In this section add the parserClass property with the value org.glite.authz.pep.pip.
provider.authnprofilespip.AuthenticationProfilePIPConfigurationParser.

3. Add the authenticationProfilePolicyFile property with a value corresponding to the absolute path
of the authentication profile policies file, traditionally /etc/grid-security/vo-ca-ap-file.

4. Add the trustAnchors.directory property with a value of the absolute path of the trust anchors direc-
tory, where the PIP search the policy info files, typically /etc/grid-security/certificates.

5. Add the trustAnchors.policyFilePattern property with a value corresponding to a bash globbing
expression that matches the policy info files, e.g. policy-*.info.

6. Optionally, add the trustAnchors.refreshIntervalInSecs property with a value in seconds, that is
the refresh time interval used by the PIP to reload the policy files, e.g. 14400.

Note: The Argus 1.7.1 packages provide a default authentication profile policy file located in /etc/argus/pepd/
vo-ca-ap-file. This file grants the access only to certificates issued by CAs in the IGTF classic, mics and slcs
profiles.

PIP Configuration Properties

Property Description Re-
quired?

Default Value

authenticationProfilePolicyFileAbsolute path of authentication pro-
file policy file

Yes /etc/argus/pepd/
vo-ca-ap-file

trustAnchors.
directory

Absolute path where policy info files
are located

No /etc/grid-security/
certificates

trustAnchors.
policyFilePattern

Regular expression that matches the
policy files to read

No policy-*.info

trustAnchors.
refreshIntervalInSecs

Time, in seconds, with which the PIP
reload the policy files

No 14400

Populated Effective Request Attributes

This PIP will process the request subject x509-subject-issuer attribute and populate the following attribute:

• The X.509 Authentication Profile Attribute

– type: Subject

– id: http://glite.org/xacml/attribute/x509-authn-profile

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: yes

– description: The alias of the policy file that contains the DN of the CA issuer.

6.1. Summary 71

http://glite.org/xacml/attribute/x509-authn-profile
http://www.w3.org/2001/XMLSchema#string

Argus Documentation, Release 1.7.0

Required Request Attributes

This PIP requires that the request environment contains the attributes extracted from the X.509 certificate/proxy by the
other PIPs.

• The X.509 Subject Issuer Attribute

– type: Subject

– id: http://glite.org/xacml/attribute/x509-subject-issuer

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: Distinguished Name of the CA issuer.

Example Configuration

The following example shows a PEP Server configuration with the Authentication Profile PIP enabled.

[SERVICE]
entityId = https://argus.example.org/pep
hostname = argus.example.org

pips = COMMONXACMLPROFILE_PIP AUTHN_PROFILE_PIP

[PDP]
pdps = https://argus.example.org:8152/authz

[AUTHN_PROFILE_PIP]
parserClass = org.glite.authz.pep.pip.provider.authnprofilespip.
→˓AuthenticationProfilePIPConfigurationParser
authenticationProfilePolicyFile = /etc/argus/pepd/vo-ca-ap-file
trustAnchors.directory = /etc/grid-security/certificates
trustAnchors.policyFilePattern = policy-*.info
trustAnchors.refreshIntervalInSecs = 14400

Other Policy Information Points

Here are other PIPs that you can configure for testing or debugging purpose:

Attribute White List PIP

This PIP can be used to filter out attributes that should not be accepted within a request.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. WHITELIST_PIP)

2. Into the PIP INI section add the parserClass property with the value org.glite.authz.pep.pip.
provider.AttributeWhitelistPIPIniConfigurationParser

3. Configure which request attributes are to be accepted

72 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

http://glite.org/xacml/attribute/x509-subject-issuer
urn:oasis:names:tc:xacml:1.0:data-type:x500Name

Argus Documentation, Release 1.7.0

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

acceptedActionAt-
tributes

spaced delimited list attribute IDs that may appear in the re-
quest action

N None.

acceptedEnvrionmen-
tAttributes

spaced delimited list attribute IDs that may appear in the re-
quest environment

N None.

acceptedResourceAt-
tributes

spaced delimited list attribute IDs that may appear in the re-
quest resource

N None.

acceptedSubjectAt-
tributes

spaced delimited list attribute IDs that may appear in the re-
quest subject

N None.

Note: If a property is not given then all attributes within the section (i.e. action, environment, resource, or subject)
are accepted.

Example Configuration

The following example shows a PEP Server configuration with the whitelist PIP enabled, accepting only the key-info
attribute from the request subject, and filtering out all other subject attributes. All the other request attributes (action,
resource and environment) are accepted as is.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = WHITELIST_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[WHITELIST_PIP]
parserClass = org.glite.authz.pep.pip.provider.
→˓AttributeWhitelistPIPIniConfigurationParser
acceptedSubjectAttributes = urn:oasis:names:tc:xacml:1.0:subject:key-info

Environment Time PIP

This PIP populates a few time-related attributes within the environment portion of the request.

Tip: Using this PIP effective disables the response caching in a PEP Server as will make every request different.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. TIME_PIP)

6.1. Summary 73

Argus Documentation, Release 1.7.0

2. To PIP INI section add the parserClass property with the value org.glite.authz.pep.pip.
provider.EnvironmentTimePIPIniConfigurationParser

3. Add the name of the created PIP INI section to the list of PIPs in the SERVICE section

Prerequisite Request Attributes

None.

Populate Effective Request Attributes

This PIP will populate the following attributes within the environment portion of the request.

• The Current Time

– type: environment

– id: urn:oasis:names:tc:xacml:1.0:environment:current-time

– data type: http://www.w3.org/2001/XMLSchema#time

– issuer: any

– multiple values allowed: no

– description: The time, in the UTC timezone, the request was issued

• The Current Date

– type: environment

– id: urn:oasis:names:tc:xacml:1.0:environment:current-date

– data type: http://www.w3.org/2001/XMLSchema#date

– issuer: any

– multiple values allowed: no

– description: The date, in the UTC timezone, the request was issued

• The Current Date and Time

– type: environment

– id: urn:oasis:names:tc:xacml:1.0:environment:current-dateTime

– data type: http://www.w3.org/2001/XMLSchema#dateTime

– issuer: any

– multiple values allowed: no

– description: The date and time, in the UTC timezone, the request was issued

Example Configuration

The following example shows a PEP Server configuration with the Environment Time PIP enabled:

74 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

urn:oasis:names:tc:xacml:1.0:environment:current-time
http://www.w3.org/2001/XMLSchema#time
urn:oasis:names:tc:xacml:1.0:environment:current-date
http://www.w3.org/2001/XMLSchema#date
urn:oasis:names:tc:xacml:1.0:environment:current-dateTime
http://www.w3.org/2001/XMLSchema#dateTime

Argus Documentation, Release 1.7.0

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = TIME_PIP

[PDP]
pdps = http://localhost:8152/authz

[TIME_PIP]
parserClass = org.glite.authz.pep.pip.provider.
→˓EnvironmentTimePIPIniConfigurationParser

Static Attributes PIP

This PIP can populate the action, environment, resource, and subject of the request with a static set of attributes.

This PIP is very useful for testing as it allows for the creation of any arbitrary request.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name)

2. To PIP INI section add the parserClass property with the value org.glite.authz.pep.pip.
provider.StaticPIPIniConfigurationParser

3. Define the property staticAttributesFilewith a fully qualified path to a file that will hold the definitions
for the static attributes

4. If populating action attributes, define the property actionAttributes with a space delimited list of the INI
sections, defined in the staticAttributesFile file, that represent the attributes that should be treated as
action attributes.

5. If populating environment attributes, define the property environmentAttributes with a space delimited
list of the INI sections, defined in the staticAttributesFile file, that represent the attributes that should
be treated as environment attributes.

6. If populating resource attributes, define the property resourceAttributes with a space delimited list of
the INI sections, defined in the staticAttributesFile file, that represent the attributes that should be
treated as resource attributes.

7. If populating subject attributes, define the property subjectAttributes with a space delimited list of the
INI sections, defined in the staticAttributesFile file, that represent the attributes that should be treated
as subject attributes.

8. If the defined subject attributes should be added to each subject in the request, define the property
includeSubjectAttribtuesInAllSubjects with a value of “true”

9. Optionally define the property defaultAttributeIssuer to a value that will be used as the attribute issuer
if the attribute definition does not define an issuer.

10. Add the name of the created PIP INI section to the list of PIPs in the SERVICE section

To define your static attribute files, repeat the following steps for each static attribute you wish to define:

1. Create a new INI section for you PIP (you may choose any valid INI section name)

2. Define the property id with the value of the ID of the attribute

6.1. Summary 75

Argus Documentation, Release 1.7.0

3. Optionally define the property datatype with the datatype of the attribute. If no datatype is define the default
data type will be http://www.w3.org/2001/XMLSchema#string

4. Optionally define the property issuer with the ID of the issuer for the attribute.

5. Define the property values with a delimited string representing the values of the attribute. See next step for
the delimiter.

6. Optionally define the property valueDelimiter with a delimiter string used to separate values in the previ-
ous property. If no delimiter is defined the default delimiter is ‘,’ (comma).

Prerequisite

None.

Populate Attributes

This PIP will populate those attributes defined in the staticAttributesFile file and referenced by either the
actionAttributes , environmentAttributes , resourceAttributes , or subjectAttributes
properties.

Example Configuration

The following example shows a PEP Server configuration with the Static Attributes PIP enabled:

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = STATIC

[PDP]
pdps = http://localhost:8152/authz

[STATIC]
parserClass = org.glite.authz.pep.pip.provider.StaticPIPIniConfigurationParser
staticAttributesFile = /path/to/some/file.ini
actionAttributes = actionId
resourceAttributes = resourceId
subjectAttributes = subjectId

And here is a static attribute definition file, note that this file can include attributes which are not currently used as
action, environment, resource, or subject attributes:

[actionId]
id = urn:oasis:names:tc:xacml:1.0:action:action-id
values = submit

[resourceId]
id = urn:oasis:names:tc:xacml:1.0:resource:resource-id
values = http://example.org/wn

[subjectId]
id = urn:oasis:names:tc:xacml:1.0:subject:subject-id
datatype = urn:oasis:names:tc:xacml:1.0:data-type:x500Name
values = CN=foo

76 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

6.1.6 Argus PEP Clients

pepcli

pepcli is the main ARGUS PEP client, based on the C API of the PEP client.

The pepcli command allows you to submit a XACML request to the PEP daemon and display the XACML response.

The command is very useful to check if a XACML policy applies (decision is Permit, Deny, Not Applicable
or Indeterminate) for the given XACML request. Or to check if the XACML response correspond to the values
you are expecting (uidgid, secondary-gids, . . .) for the user mapping.

Installation

The pepcli command is by default installed with the argus-authz metapackage, see Argus Deployment. But
you can also install it separately on your host for testing purpose. To install it with YUM:

yum install argus-pepcli

Usage

Usage:
pepcli --pepd <URL> --keyinfo <FILE> [options...]
pepcli --pepd <URL> --subjectid <DN> [options...]

Submit a XACML Request to the PEPd and show the XACML Response.

Options:
-p|--pepd <URL> Argus PEP server endpoint URL.
-k|--keyinfo <FILE> XACML Subject key-info: proxy or X509 file.
-s|--subjectid <DN> XACML Subject identifier: user DN (format RFC2253).
-f|--fqan <FQAN> XACML Subject primary FQAN and FQANs

Add multiple --fqan options for secondary FQANs.
-r|--resourceid <URI> XACML Resource identifier.
-a|--actionid <URI> XACML Action identifier.
-t|--timeout <SEC> Connection timeout in second (default 30s).
-x|--requestcontext Show effective XACML Request context.
-v|--verbose Verbose.
-q|--quiet Turn off output.
-d|--debug Show debug information.
-h|--help This help.
-V|--version Display version and exit.

TLS options:
--capath <DIR> Directory containing the server PEM encoded CA certificates.
--cacert <FILE> Server PEM encoded CA certificate filename.
--cert <FILE> Client PEM encoded certificate filename.
--key <FILE> Client PEM encoded private key filename.
--keypasswd <PASSWD> Password of the client private key

If the --keypasswd is omitted and the private key is
→˓encrypted,

then you will be prompted for the password.

The MAN page is also available: man pepcli

6.1. Summary 77

Argus Documentation, Release 1.7.0

Return Code

The pepcli command return 0 when a valid XACML Response have been received, but neither content of the
XACML response, nor the decision value are checked.

On error the pepcli command returns the following value:

• 1 on memory allocation error

• 2 invalid option

• 3 certchain file or content (missing certificate block) error

• 4 XACML request error

• 5 PEP-C client library error (see output for more detail)

Examples

Submit a XACML Request to the PEP daemon endpoint URL https://argus.example.org:8154/
authz (using SSL/TLS client authentication) for the resource identified by my_resource_id for the action
my_action_id, using the Grid proxy as credentials /tmp/x509up_u637:

$ pepcli --pepd https://argus.example.org:8154/authz --capath /etc/grid-security/
→˓certificate --cert ~/.globus/usercert.pem --key ~/.globus/userkey.pem --keyinfo /
→˓tmp/x509up_u637--resourceid my_resource_id --actionid my_action_id
Decision: Permit

PEP Java Client Command Line

The PEP-J library contains a basic command line utility that is useful for sending test requests to the PEP daemon.

The command line client, bin/testreq.sh, takes a single parameter, the path (absolute or relative) path to a client
configuration file. This client will create an empty request and then run any configured PIPs in order to populate it.
The Static Attribute PIP is very useful for creating custom requests with which to test.

6.1.7 Argus PEP Client Library: C API

Documentation

The Doxygen documentation for the Argus PEP client library describes the C API and have an example.

API: http://argus-authz.github.com/argus-pep-api-c/doc/modules.html

PEP XACML Object Model

Basic Example

Basically, to use the Argus PEP client API, you will have to the following steps.

First, import the header with

#include "argus/pep.h"

Create and initialize the PEP client handle with

78 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

http://argus-authz.github.com/argus-pep-api-c/doc/modules.html

Argus Documentation, Release 1.7.0

PEP * pep = pep_initialize()

Set the PEP Server URL with

pep_setoption(pep,PEP_OPTION_ENDPOINT_URL,"https://pepd.example.org:8154/authz")

If the PEP Server URL is protected by HTTPS with client authentication (the default), you must also configure the
client certificate or proxy with

pep_setoption(pep,PEP_OPTION_ENDPOINT_CLIENT_CERT,"/tmp/x509up_u500")

The client private key or proxy key with

pep_setoption(pep,PEP_OPTION_ENDPOINT_CLIENT_KEY,"/tmp/x509up_u500")

And the server CA trust anchors path with

pep_setoption(pep,PEP_OPTION_ENDPOINT_SERVER_CAPATH,"/etc/grid-security/certificates")

Optionally, you can register some Policy Information Points (PIP) and Obligation Handlers (OH) of your own with

pep_addpip(...)

and

pep_addobligationhandler(...)

Create a XACML Request and add the required Subject, Resource, Action and Environment to it with

xacml_request_create()
xacml_request_addsubject(request,subject)

and so on. See the PEP XACML Object Model for the complete API.

Submit the request and get the response:

pep_authorize(pep,&request,&response)

Process the response (if not already done by your obligation handlers). Release the PEP client handle with

pep_destroy(pep)

6.1. Summary 79

http://argus-authz.github.com/argus-pep-api-c/doc/group___p_i_p.html
http://argus-authz.github.com/argus-pep-api-c/doc/group___obligation_handler.html
http://argus-authz.github.com/argus-pep-api-c/doc/org.glite.authz.pep-api-c/group___x_a_c_m_l.html

Argus Documentation, Release 1.7.0

Complex Example

A more detailed PEP client example is available http://argus-authz.github.com/argus-pep-api-c/doc/pep_client_
example_8c-example.html

Multi-threaded Programming

The Argus PEP client library is thread-friendly, but you are not allowed to share a PEP handle among multiple threads.

Each thread have to create its own PEP handle:

/* Each thread creates its own PEP handle */
PEP * pep= pep_initialize();

Within a thread you can reuse the PEP handle (multiple pep_authorize(..) calls).

If your threads are object (OO programming, . . .), it is recommended you to create (pep_initialize) the PEP
handle in the constructor, and release it (pep_destroy) in the destructor.

Processing Authorization Decision

The PEP client MUST abide by the authorization decision as described in here:

• If the decision is Permit, then the PEP client SHALL permit access. If obligations accompany the decision,
then the PEP client SHALL permit access only if it understands and it can and will enforce those obligations.

• If the decision is Deny, then the PEP client SHALL deny access.

• If the decision is NotApplicable, meaning that no policy apply, then the PEP client SHALL deny access.

• If the decision is Inderterminate, then the PEP client SHALL deny access. The decision status message
and status code should be used to produce an error message. Example:

...
xacml_result_t * result= xacml_response_getresult(response,i);
fprintf(stdout,"response.result[%d].decision= %s\n", i, decision_tostring(xacml_
→˓result_getdecision(result)));
fprintf(stdout,"response.result[%d].resourceid= %s\n", i, xacml_result_
→˓getresourceid(result));
if (xacml_result_getdecision(result) == XACML_DECISION_INDETERMINATE) {

xacml_status_t * status= xacml_result_getstatus(result);
fprintf(stdout,"response.result[%d].status.message= %s\n", i, xacml_status_

→˓getmessage(status));
statuscode= xacml_status_getcode(status);
fprintf(stdout,"response.result[%d].status.code.value= %s\n", i, xacml_statuscode_

→˓getvalue(statuscode));
}
...

6.1.8 Argus PEP Client: Java Programming Interface

The Argus PEP Java client library is used to communicate with the Argus PEP daemon. It authorizes request and
receives response back from Argus.

80 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

http://argus-authz.github.com/argus-pep-api-c/doc/pep_client_example_8c-example.html
http://argus-authz.github.com/argus-pep-api-c/doc/pep_client_example_8c-example.html

Argus Documentation, Release 1.7.0

Javadoc

Javadoc for the PEP Java client API: http://argus-authz.github.com/argus-pep-api-java/javadoc/2.X/index.html

PEP XACML Object Model

The PEP client XACML object model implemented in the package org.glite.authz.common.model follow
this schema:

Basic Example

This is a very simplified example, omitting all the error handling, on how to create a PEP client, a request, and then
authorize the request and process the response.

1. Create a PEP client configuration and initialize it:

PEPClientConfiguration config = new PEPClientConfiguration();
config.addPEPDaemonEndpoint("https://argus.example.org:8154/authz");

// trust and key material for the HTTPS connection with client authentication
config.setTrustMaterial("/etc/grid-security/certificates");
config.setKeyMaterial("/etc/grid-security/hostcert.pem", "/etc/grid-security/hostkey.
→˓pem", "keystore_password");

2. Create the PEP client based on the config:

PEPClient pep = new PEPClient(config);

At this point you have a multi-threaded PEP client that can be reuse to submit many authorization requests to the PEP
server.

3. Create an authorization request for a user proxy certificate, based on a profile:

// read the user proxy
PEMFileReader reader = new PEMFileReader();
X509Certificate[] userproxy = reader.readCertificates("/tmp/x509up_u959");

// create the request for a given profile
AuthorizationProfile profile = GridWNAuthorizationProfile.getInstance();
Request request = profile.createRequest(userproxy,

"http://example.org/wn/cluster1",
GridWNAuthorizationProfile.ACTION_EXECUTE);

4. Authorize the request with the Argus PEP daemon:

6.1. Summary 81

http://argus-authz.github.com/argus-pep-api-java/javadoc/2.X/index.html

Argus Documentation, Release 1.7.0

Response response = pep.authorize(request);

5. Extract the user mapping information from the response:

// will throw an exception if the authorization response is not *Permit*, or if the
→˓obligation is not present
Obligation posixMappingObligation = profile.getObligationPosixMapping(response);
String userId = profile.getAttributeAssignmentUserId(posixMappingObligation);
String groupId = profile.getAttributeAssignmentPrimaryGroupId(posixMappingObligation);
List<String> groupIds = profile.
→˓getAttributeAssignmentGroupIds(posixMappingObligation);

Processing Authorization Decision

The PEP client MUST abide by the authorization decision as described in here:

• If the decision is Permit, then the PEP client SHALL permit access. If obligations accompany the decision,
then the PEP client SHALL permit access only if it understands and it can and will enforce those obligations.

• If the decision is Deny, then the PEP client SHALL deny access.

• If the decision is NotApplicable, meaning that no policy apply, then the PEP client SHALL deny access.

• If the decision is Inderterminate, then the PEP client SHALL deny access. The decision status message
and status code should be used to produce an error message.

GUI

There is also a Java-based GUI available for sending requests to a PEPd. Just download the application to your desktop
and start it. Once you’ve downloaded it you can restart it by double-clicking the Argus-PEP-Client.jnlp file.

Java-based GUI

6.1.9 Argus GSI PEP Callout

82 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

Module Description

The Globus Toolkit version 3.2 and later have the ability to customize the authorization and gridmap lookup (currently
available in the GridFTP and Gatekeeper servers). The Globus Authorization Callouts framework allows to plug in
authorization and mapping modules.

The GSI PEP Callout module implements the functionality to authorize and map the user by calling out to the Argus
PEP Server.

Authorization and Mapping

Based on the Grid credientials, typically a proxy certificate, the GSI PEP Callout module will send an authorization
request to the Argus PEP Server, and then parse the authorization response decision to authorize the user and the
obligations to map him to a local account.

XACML Profile

The GSI PEP Callout module implements the XACML Grid Worker Node Authorization Profile 1.0, and by default
uses the identifiers described in the profile.

XACML Request

The GSI PEP Callout module sends a request to the PEP Daemon with the following elements:

• XACML subject with the attribute element:

– AttributeId: urn:oasis:names:tc:xacml:1.0:subject:key-info

– Value: The PEM encoded Grid credentials provided by the calling service

• XACML resource with the attribute element:

– AttributeId: urn:oasis:names:tc:xacml:1.0:resource:resource-id

– Value: The value of the GSI PEP Callout configuration directive xacml_resourceid.

• XACML action with the attribute element:

– AttributeId: urn:oasis:names:tc:xacml:1.0:action:action-id

– Value: The service being requested by the client (e.g. file for GridFTP) or the name of the service
passed to the gatekeeper.

• XACML environment with the attribute element:

– AttributeId: http://glite.org/xacml/attribute/profile-id

– Value: http://glite.org/xacml/profile/grid-wn/1.0 (Default)

XACML Response

The PEP Daemon sends back a response to the GSI PEP Callout module. The following response elements are parsed
to authorize and map the user:

• XACML decision element: Contains the authorization decision Permit, Deny, Indeterminate or
NotApplicable

6.1. Summary 83

http://www.globus.org/toolkit/security/callouts/
https://edms.cern.ch/document/1058175

Argus Documentation, Release 1.7.0

• XACML obligation, ObligationId: http://glite.org/xacml/obligation/
local-environment-map/posix, with the attribute assignment element:

– AttributeId: http://glite.org/xacml/attribute/user-id

– Value: Contains the local identity mapping of the user.

The local identity mapping will only succeed if the authorization decision is Permit.

6.1.10 Argus GSI PEP Callout: Installation

6.1.11 Manual Installation

The GSI PEP Callout module requires the following RPM:

yum install argus-gsi-pep-callout

The package includes the shared library implementing the GSI authorization and mapping module.

Configuration

Manual Configuration

To configure the GSI PEP Callout module, you first have to configure the Globus Authorization Callouts framework
to use the GSI PEP Callout library to do the authorization and mapping. Then the GSI PEP Callout module must be
configured.

Globus Authorization Callouts Configuration

Configuration file and configuration directives for the Globus Authorization Callouts to enable the GSI PEP Callout
module.

Configuration File

The Globus Authorization Callouts framework uses the following locations (in order) for the callout configurations
file:

• $GSI_AUTHZ_CONF (Environment variable)

• /etc/grid-security/gsi-authz.conf

• $GLOBUS_LOCATION/etc/gsi-authz.conf

• $HOME/.gsi-authz.conf

EMI-1 Configuration Directives

Content of the Globus Authorization Callouts configuration file to enable the GSI Argus PEP Callout function
argus_pep_callout for EMI:

Globus authorization and mapping callout to the ARGUS GSI PEP Callout module
format: globus_mapping <library_path> <function_name>
globus_mapping /usr/lib64/libgsi_pep_callout.so argus_pep_callout

84 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

http://www.globus.org/toolkit/security/callouts/

Argus Documentation, Release 1.7.0

For EMI the Argus PEP GSI callout library is installed in the /usr/lib64 directory.

GSI PEP Callout Configuration

Configuration file and configuration directives for the GSI PEP Callout module.

Configuration File

The GSI PEP Callout module uses the following locations (in order) for the configurations file:

• $GSI_PEP_CALLOUT_CONF (Environment variable)

• /etc/grid-security/gsi-pep-callout.conf

Configuration Directives

The configuration directives for the GSI PEP Callout are single name value lines. Lines with comments # are
allowed.

6.1. Summary 85

Argus Documentation, Release 1.7.0

Direc-
tive

Description Manda-
tory?

Default Value Example Since

pep_url The endpoint URL of the PEP
daemon.

Yes pep_url https:/
/pepd.example.
org:8154/authz

1.0

xacml_resourceidXACML request resource-id
value

Yes xacml_resourceid
x-urn:example.
org:resource:ce:gridftp

1.0

xacml_actionidXACML request action-id value.
Define this parameter to over-
write the service name passed to
the module by the application

No xacml_actionid
http://glite.
org/xacml/
action/access

1.0

xacml_profileidXACML request profile-id value.
Define this parameter to over-
write the default profile id

No http:/
/glite.
org/xacml/
profile/
grid-wn/1.0

xacml_profileid
http://glite.
org/xacml/
profile/
grid-ce/1.0

1.2

pep_timeoutConnection timeout in seconds No 30 pep_timeout 60 1.0
pep_ssl_validationEnable SSL validation of the PEP

daemon endpoint URL (HTTPS)
No true pep_ssl_validation

false
1.0

pep_ssl_server_capathCA directory path for the HTTPS
validation of the PEP daemon
endpoint URL

No /etc/
grid-security/
certificates

pep_ssl_server_capath
/etc/
grid-security/
certificates

1.0

pep_ssl_server_certCertificate file for the HTTPS
validation of the PEP daemon
endpoint URL

No pep_ssl_server_cert
/etc/
grid-security/
pepdcert.pem

1.0

pep_ssl_client_certClient certificate file for the TLS
client authentication on the PEP
daemon endpoint URL

No /etc/
grid-security/
hostcert.
pem

pep_ssl_client_cert
/etc/ssl/
mycert.pem

1.0

pep_ssl_client_keyClient private key file for the TLS
client authentication on the PEP
daemon endpoint URL

No /etc/
grid-security/
hostkey.pem

pep_ssl_server_key
/etc/ssl/mykey.
pem

1.0

pep_ssl_client_keypasswdClient private key password Only if
pep_ssl_client_key
is encrypted

pep_ssl_server_keypasswd
mykeypassword

1.0

Configuration Example

Example of a valid configuration file for the GSI PEP Callout module:

#
GSI PEP Callout configuration example
#
pep_url https://chaos.switch.ch:8154/authz
xacml_resourceid http://ce.example.org/cream/gridftp

86 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

YAIM Configuration

The yaim-core (>= 4.0.12) the function config_lcas_lcmaps_gt4 is now able to configure the Argus GSI PEP
callout module.

In your site-info.def set the following variables:

USE_ARGUS=yes
ARGUS_PEPD_ENDPOINTS="<Argus_URL> ..."
CREAM_PEPC_RESOURCEID=<CreamCE_XACML_resouce_id>

where Argus_URL is the Argus PEP daemon endpoint URL. e.g. ARGUS_PEPD_ENDPOINTS=https://
argus.example.org:8154/authz

where CreamCE_XACML_resouce_id is the XACML resource identifier for this cream CE. e.g.
CREAM_PEPC_RESOURCEID=http://glite.org/xacml/resource/cream-ce

Troubleshooting

Syslog

By default the GSI PEP Callout module logs info and error via syslog.

The syslog facility used is local5 and the identifier is gsi_pep_callout. These log messages are typically in
/var/log/messages

Enabling Debug Information

You can enable the debugging mode of the GSI PEP Callout module to troubleshoot your problem.

Environment Variables

You can set the following environment variables to enable debug mode:

• GSI_PEP_CALLOUT_DEBUG_LEVEL Set the debug level from 0 (none) to 9 (lot of info). Default is 0.

• GSI_PEP_CALLOUT_DEBUG_FILE Set the file to log the debugging information. Default is stderr.

Example

This example shows how to start the GridFTP server in debug mode. The configuration files gsi-authz.conf and
gsi-pep-callout.conf must be correctly configured as previously described.

export GLOBUS_CALLOUT_DEBUG_LEVEL=5
set the gsi-authz config to use (default /etc/grid-security/gsi-authz.conf)
export GSI_AUTHZ_CONF=/etc/grid-security/gsi-authz.conf
set the gsi-pep-callout config to use (default /etc/grid-security/gsi-pep-callout.
→˓conf)
export GSI_PEP_CALLOUT_CONF=/etc/grid-security/gsi-pep-callout.conf
export GSI_PEP_CALLOUT_DEBUG_LEVEL=5

globus-gridftp-server -d 255 -p 9999 -debug

6.1. Summary 87

Argus Documentation, Release 1.7.0

The GridFTP server is now running and listening on port 9999. Use the uberftp client or globus-url-copy
to connect to the server with your Grid credentials and obtain debugging information from the server:

uberftp -P 9999 HOSTNAME
globus-url-copy file:///etc/passwd gsiftp://HOSTNAME:9999/tmp/e33

6.1.12 Argus PEP Server Obligation Handlers

Obligation handlers are plugins used by the authorization service in order to adjust the environment, under which an
action will run, to a state that meets a particular set of obligations. Obligation are things like “write output to directory
X” or “perform all work as user 1”.

Grid Map POSIX Account Mapping Obligation Handler

Note: The Grid Map Account Mapping Obligation Handler only works with the Grid Authorization Profile PIP, or
with clients implementing the XACML Grid Worker Node Authorization Profile (v.1.0) or the XACML Grid Comput-
ing Element Authorization Profile (v.1.0) specifications.

This obligation handler maps a subject ID, given as a DN, and set of FQANs, for example those provided by the Grid
Authorization Profile PIP, in to a POSIX account (login name, primary group name and secondary group names).

This mapping is controlled by two grid map files, one that provides the mapping of the subject to an account indicator
(login name or pool account indicator) and one that maps the subject to a set of group names (one primary and any
number of secondary).

Configuration

1. Create the account and group mapping files appropriate for your environment

2. Create a new INI section for your handler (you may choose any valid INI section name)

3. To handler INI section add the parserClass property with the value org.glite.authz.pep.
obligation.dfpmap.DFPMObligationHandlerConfigurationParser

4. Define at least the required (accountMapFile, groupMapFile, gridMapDir) and any optional config-
uration properties for this handler

88 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881
https://edms.cern.ch/document/1078881

Argus Documentation, Release 1.7.0

OH Configuration Properties

Property Description Re-
quired?

Default Value Since

accountMapFileThe absolute path to the map file used to map a
subject to a POSIX login name.

Y None. Ar-
gus
1.0

groupMapFile The absolute path to the map file used to map a
subject to a set of POSIX groups.

Y None. Ar-
gus
1.0

gridMapDir The absolute path to the grid map directory. Y None. Ar-
gus
1.0

handledObligationIdThe identifier of the obligation handled by the
handler. The obligation handler is triggered
only if the obligation ID match this value.

N http://glite.org/
xacml/obligation/
local-environment-map

Ar-
gus
1.5

preferDNForLoginNameIndicates whether to prefer a DN based map-
ping for the login name mapping over a primary
FQAN login name mapping.

N true Ar-
gus
1.1

preferDNForPrimaryGroupNameIndicates whether to prefer a DN based map-
ping for the primary group name mapping over
a primary FQAN group name mapping

N true Ar-
gus
1.2

noPrimaryGroupNameIsErrorIndicates that the failure to find a primary group
mapping in the group map file cause the obliga-
tion handler to fail..

N false Ar-
gus
1.2

refreshPeriod The period, in minutes, between when the
map files are checked, and if they have been
changed, reread.

N 15 Ar-
gus
1.0

requireSubjectKeyInfoThe obligation handler will only be applied if
the request subject contains a key-info attribute
(PEM encoded certificate)

N true Ar-
gus
1.3.0

useSecondaryGroupNamesForMappingThe obligation handler will create lease file
names containing the secondary groups of the
user

N true Ar-
gus
1.3.1

Note: the default preferDNForLoginName property value was false for Argus 1.0 and Argus 1.1. From Argus
1.2 the default is true.

Required Response Obligation Trigger

This obligation handler is triggered if the PDP response contains the obligation http://glite.org/xacml/
obligation/local-environment-map, or the value defined by the handledObligationId parameter.

Required Request Attributes

This obligation handler requires the following request attributes in order to correctly map the user. The attributes
can be provided by the Grid Authorization Profile PIP, or directly by the clients implementing the XACML Grid

6.1. Summary 89

https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1058175

Argus Documentation, Release 1.7.0

Worker Node Authorization Profile (v.1.0) or the XACML Grid Computing Element Authorization Profile (v.1.0)
specifications.

• The Subject Identifier

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: This is the Subject DN as given in the end-entity certificate. It is in RFC2253 format.

• The VOMS Primary FQAN

– type: Subject

– id: http://glite.org/xacml/attribute/fqan/primary

– data type: http://glite.org/xacml/datatype/fqan

– issuer: DN of the attribute certificate issuer

– multiple values allowed: no

– description: The primary Fully Qualified Attribute Name (FQAN) for the subject

• The VOMS FQANs

– type: Subject

– id: http://glite.org/xacml/attribute/fqan

– data type: http://glite.org/xacml/datatype/fqan

– multiple values allowed: yes

– description: All the Fully Qualified Attribute Name (FQAN)s for the subject

Response Obligation Results

This result of this obligation handler is the replacement of the generic http://glite.org/xacml/
obligation/local-environment-map with the more specific obligation http://glite.org/xacml/
obligation/local-environment-map/posix.

This later obligation carries the account and group names in the following attribute assignments:

• one http://glite.org/attribute/xacml/user-id account login name

• zero or one http://glite.org/attribute/xacml/group-id/primary primary group name

• zero or more http://glite.org/xacml/attribute/group-id secondary group names

Example Configuration

This is an example PEPd configuration file with one gridmap POSIX account mapping obligation handler defined:

[SERVICE]
entityId = http://argus.example.org/pep
hostname = argus.example.org
obligationHandlers = ACCOUNT_MAPPING_OH

(continues on next page)

90 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881
urn:oasis:names:tc:xacml:1.0:subject:subject-id
urn:oasis:names:tc:xacml:1.0:data-type:x500Name
http://glite.org/xacml/attribute/fqan/primary
http://glite.org/xacml/datatype/fqan
http://glite.org/xacml/attribute/fqan
http://glite.org/xacml/datatype/fqan

Argus Documentation, Release 1.7.0

(continued from previous page)

[PDP]
pdps = https://argus.example.org:8152/authz

[ACCOUNT_MAPPING_OH]
parserClass = org.glite.authz.pep.obligation.dfpmap.
→˓DFPMObligationHandlerConfigurationParser
accountMapFile = /etc/grid-security/grid-mapfile
groupMapFile = /etc/grid-security/group-mapfile
gridMapDir = /etc/grid-security/gridmapdir

Account and Group Mapping

This Obligation Handler uses the following logic to determine the mapping of the subject to a POSIX account.

Preconditions

• The input to this process is the subject DN of the end-entity certificate of the user and optionally a primary
FQAN and a list of secondary FQANs.

• When dealing with the account map file (the gridmap file) and the group map file, entries are evaluated in the
order listed in the file. Once a match is found processing stops.

• The grid map directory is populated with information for all configured pool accounts on the system. A pool
account is considered “configured” if there is a zero-byte file, whose name is the pool account name, in the grid
map directory. The grid map directory must also be read/writable by the user running the authorization service.

Mapping Steps

1. If a primary FQAN is given it is checked against the mappings listed in the account map file. If the primary
FQAN matches a key in the map file then the associated value provides the account indicator.

2. If no account indicator was determined by means of the primary FQAN the subject DN is checked against the
mappings listed in the account map file. If the DN matches a key in the map file then the associated value
provides the account indicator. If no match is found processing stops and no map is available.

3. If the account indicator starts with a period (‘.’), its value, without the period, is considered to be a pool account
name prefix. If the account indicator does not start with a period it is a POSIX account name. If no account
indicator was determined the mapping process fails.

4. If a primary FQAN is given then it is evaluated against entries in a group map file. The first entry that matches
determines the primary group name. If no match is found, the mapping process fails.

5. If one or more secondary FQANs are given then each one is matched against the group map file and each match
determines a secondary group name. If no matches occur then there are no secondary group names associated
with the account.

6. If the account indicator is a POSIX account name, and zero or one primary group and zero or more secondary
group names were determined then the mapping is completed. The user is mapped to that account.

7. If the account indicator is a pool account name prefix a lookup in the grid map
directory occurs. The file looked for is generated according to the template
encoded_dn{:primary_group_name{:secondary_group_name}*}? with the secondary
group names listed in ascending alphabetical order.

6.1. Summary 91

Argus Documentation, Release 1.7.0

8. If the file exists and has a link count of 2 then the hard link is followed to a file whose name is used as the POSIX
account name. The last modified time of the two files is updated to the current time. If the link count is not 2 or
the POSIX account name does not start with the account name prefix, the mapping process fails.

9. If the file does not exist, a list of files, within the grid map directory, matching the pool account name prefix
followed exclusively by one or more numeric digits, is retrieved. An example regular expression representation
of this would be prod[0-9]+

10. This list of files is searched for a file whose link count is 1, this is a candidate pool account file. A hard link to
the pool account file, whose name corresponds to the filled in template described above is then created. If no
such pool account file is found the mapping process fails.

11. The pool account file link count is rechecked, if it is more than 2 (indicating another request mapped to that
same file at the same time) the created link is removed and the mapping process reverts to the previous step.

12. If the link count is 2 the mapping is complete. The user is mapped to the pool account corresponding to the
given file.

Note: In the case where no FQANs are available, this obligation handler only returns a login name. No group
information is returned.

DN Encoding Rules

1. Leading zeros are removed from attribute types that are encoded as dotted decimal OIDs

2. DirectoryString attribute values of type PrintableString and UTF8String are not output in hexadecimal format

3. DirectoryString attribute values of types other than PrintableString and UTF8String are output in hexadecimal
format

4. Leading and trailing white space characters are removed from non-hexadecimal attribute values (unless the value
consists entirely of white space characters)

5. Internal substrings of one or more white space characters are converted to a single space in non-hexadecimal
attribute values

6. Relative Distinguished Names containing more than one Attribute Value Assertion (AVA) are output in the fol-
lowing order: an alphabetical ordering of AVAs containing standard keywords, followed by a numeric ordering
of AVAs containing OID keywords.

7. The only characters in attribute values that are escaped are those which section 2.4 of RFC 2253 states must be
escaped (they are escaped using a preceding backslash character)

8. The entire name is converted to upper case using US localization

9. The entire name is converted to lower case using US localization

10. The name is finally normalized using normalization form KD, as described in the Unicode Standard and UAX
#15

11. The DN is converted to the non-standard, OpenSSL one line format

12. The string is then URL-encoded

Note:

• A reorder of entries in the group map file that results in a change in the primary group will cause an incoming
user to be mapped to a new account as this information is part of the link created in the grid map directory.

92 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.7.0

• A reordering of entries in the group map file that does not result in a change to the primary group but provides
the same secondary groups in a different order does not result in a new mapping for a returning user since the
link created in the grid map directory orders the secondary group names in ascending alphabetical order.

6.1. Summary 93

Argus Documentation, Release 1.7.0

94 Chapter 6. Argus: Policy Enforcement Point Daemon (PEP)

CHAPTER 7

Argus Monitoring

7.1 Nagios Probes for Argus (UMD)

7.1.1 Installation

Prerequisites

• Python 2.4 or newer (not Python 3000)

• UMD-3 or later (or EMI-3) repository installed

• Host certificate & IGTF-bundle

• Nagios server

Where to install

• This set of probes needs to be installed on the Nagios server only. On the client side (where the Argus services
actually run), no action is required.

Install instructions

There is available a rpm called “nagios-plugins-argus”, (nagios-plugins-argus - v. 1.1.0 (EMI-3). It can be installed as
follows:

yum install nagios-plugins-argus

This installs the plugins into the /usr/libexec/grid-monitoring/probes/ directory. It is up to the user to
bind them into the local Nagios environment.

NOTE: If you use iptables you need to open the ports on client side (where the Argus services are installed):

for IPv4 do:

95

http://eticssoft.web.cern.ch/eticssoft/repository/emi/emi.argus.nagios-plugins/1.1.0/noarch/

Argus Documentation, Release 1.7.0

iptables -I INPUT 1 -p tcp --dport 8154 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 8152 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 8150 -j ACCEPT
/etc/init.d/iptables save
/etc/init.d/iptables restart

for IPv6 do:

ip6tables -I INPUT 1 -p tcp --dport 8154 -j ACCEPT
ip6tables -I INPUT 1 -p tcp --dport 8152 -j ACCEPT
ip6tables -I INPUT 1 -p tcp --dport 8150 -j ACCEPT
/etc/init.d/ip6tables save
/etc/init.d/ip6tables restart

7.1.2 Overview of probes

There are 9 different probes available, three for each service:

Service Probe-Name
PAP nagios-plugins-argus.PAP.memory
^ nagios-plugins-argus.PAP.policies
^ nagios-plugins-argus.PAP.status
PDP nagios-plugins-argus.PDP.memory
^ nagios-plugins-argus.PDP.status
^ nagios-plugins-argus.PDP.traffic
PEPD nagios-plugins-argus.PEP.memory
^ nagios-plugins-argus.PEP.status
^ nagios-plugins-argus.PEP.traffic

PAP probes

nagios-plugins-argus.PAP.status

Checks if the service is available. This is done by a call to https://`hostname`:8150/pap/status, if there
is a valid response the service is considered up and running.

96 Chapter 7. Argus Monitoring

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/
grid-security/
hostcert.pem

–key KEY The private key (the key must be unencrypted) /etc/
grid-security/
hostkey.pem

–capath CAP-
ATH

The directory where trust anchors are stored on the
system

/etc/
grid-security/
certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in sec-
onds

20

–verbose verbose mode False

nagios-plugins-argus.PAP.memory

The response of the call executed by the status probe is parsed. The value for the current memory consumption is read
out and displayed in the Status information field of the Nagios control panel and written into the Performance Data tab
of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

7.1. Nagios Probes for Argus (UMD) 97

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/
grid-security/
hostcert.pem

–key KEY The private key (the key must be unencrypted) /etc/
grid-security/
hostkey.pem

–capath CAP-
ATH

The directory where trust anchors are stored on the
system

/etc/
grid-security/
certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in sec-
onds

20

–verbose verbose mode False

nagios-plugins-argus.PAP.policies

The response of the call executed by the status probe is parsed. The value for the current number of policies in the
monitored PAP is read out and displayed in the Status information field of the Nagios control panel and written into
the Performance Data tab of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

98 Chapter 7. Argus Monitoring

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/
grid-security/
hostcert.pem

–key KEY The private key (the key must be unencrypted) /etc/
grid-security/
hostkey.pem

–capath CAP-
ATH

The directory where trust anchors are stored on the
system

/etc/
grid-security/
certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in sec-
onds

20

–verbose verbose mode False

PDP probes

nagios-plugins-argus.PDP.status

Checks if the service is available. This is done by a call to https://`hostname`:8152/status, if there is a
valid response the service is considered up and running.

7.1. Nagios Probes for Argus (UMD) 99

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/
grid-security/
hostcert.pem

–key KEY The private key (the key must be unencrypted) /etc/
grid-security/
hostkey.pem

–capath CAP-
ATH

The directory where trust anchors are stored on the
system

/etc/
grid-security/
certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in sec-
onds

20

–verbose verbose mode False

nagios-plugins-argus.PDP.memory

The response of the call executed by the status probe is parsed. The value for the current memory consumption is read
out and displayed in the Status information field of the Nagios control panel and written into the Performance Data tab
of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

100 Chapter 7. Argus Monitoring

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/
grid-security/
hostcert.pem

–key KEY The private key (the key must be unencrypted) /etc/
grid-security/
hostkey.pem

–capath CAP-
ATH

The directory where trust anchors are stored on the
system

/etc/
grid-security/
certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in sec-
onds

20

–verbose verbose mode False

nagios-plugins-argus.PDP.traffic

The response of the call executed by the status probe is parsed. The value for the current number of requests executed
and the number how many of them have been successful is read out and compared to the same numbers of the former
test executed. Out of this the requests per second, the completed requests per second and the erroneous requests per
second are computed and written into the Performance Data tab of Nagios. Hence it can be displayed as a graph over
time by Nagios add-ons, e.g. pnp. Additionally the number of requests since the last test is written into the Status
information field of the Nagios control panel.

7.1. Nagios Probes for Argus (UMD) 101

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/grid-security/hostcert.
pem

–key KEY The private key (the key must be unen-
crypted)

/etc/grid-security/hostkey.
pem

–capath CA-
PATH

The directory where trust anchors are stored
on the system

/etc/grid-security/
certificates

–tem-
pdir=TEMP_DIR

Storage path for the needed temporary file ../../../../var/lib/
grid-monitoring/
nagios-plugins-argus

–temp-
file=TEMP_FILE

Name for the needed temporary file hostname.nagios-plugins-
argus.PDP.traffic.pickle

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection
in seconds

20

–verbose verbose mode False

PEP Server probes

nagios-plugins-argus.PEP.status

Checks if the service is available. This is done by a call to https://`hostname`:8154/status, if there is a
valid response the service is considered up and running.

102 Chapter 7. Argus Monitoring

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/
grid-security/
hostcert.pem

–key KEY The private key (the key must be unencrypted) /etc/
grid-security/
hostkey.pem

–capath CAP-
ATH

The directory where trust anchors are stored on the
system

/etc/
grid-security/
certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in sec-
onds

20

–verbose verbose mode False

nagios-plugins-argus.PEP.memory

The response of the call executed by the status probe is parsed. The value for the current memory consumption is read
out and displayed in the Status information field of the Nagios control panel and written into the Performance Data tab
of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

7.1. Nagios Probes for Argus (UMD) 103

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/
grid-security/
hostcert.pem

–key KEY The private key (the key must be unencrypted) /etc/
grid-security/
hostkey.pem

–capath CAP-
ATH

The directory where trust anchors are stored on the
system

/etc/
grid-security/
certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in sec-
onds

20

–verbose verbose mode False

nagios-plugins-argus.PEP.traffic

The response of the call executed by the status probe is parsed. The value for the current number of requests executed
and the number how many of them have been successful is read out and compared to the same numbers of the former
test executed. Out of this the requests per second, the completed requests per second and the erroneous requests per
second are computed and written into the Performance Data tab of Nagios. Hence it can be displayed as a graph over
time by Nagios add-ons, e.g. pnp. Additionally the number of requests since the last test is written into the Status
information field of the Nagios control panel.

104 Chapter 7. Argus Monitoring

Argus Documentation, Release 1.7.0

Options

Manda-
tory

CLI option Description Default

YES –host-
name=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/grid-security/hostcert.
pem

–key KEY The private key (the key must be unen-
crypted)

/etc/grid-security/hostkey.
pem

–capath CA-
PATH

The directory where trust anchors are stored
on the system

/etc/grid-security/
certificates

–tem-
pdir=TEMP_DIR

Storage path for the needed temporary file ../../../../var/lib/
grid-monitoring/
nagios-plugins-argus

–temp-
file=TEMP_FILE

Name for the needed temporary file hostname.nagios-plugins-
argus.PDP.traffic.pickle

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection
in seconds

20

–verbose verbose mode False

7.1. Nagios Probes for Argus (UMD) 105

Argus Documentation, Release 1.7.0

106 Chapter 7. Argus Monitoring

CHAPTER 8

Argus Operations

8.1 Entropy related problems

In headless servers, sometimes Java processes hangs waiting on a thread that’s continuously in wait status, trying to
generate random numbers, because entropy is too low to generate enough random numbers.

Check the entropy level with the following command:

$ cat /proc/sys/kernel/random/entropy_avail

If the obtained value is less than 1000, entropy is too low. This problem can be solved in two different way:

• Running haveged daemon;

• Configure Argus daemons to use /dev/urandom as random device.

8.1.1 Run Haveged

Install EPEL repository and haveged package:

$ sudo yum install -y epel-release
$ sudo yum install -y haveged

Enable and run the daemon. On EL7 platforms:

$ sudo systemctl enable haveged
$ sudo systemctl start haveged

On EL6 platforms:

$ sudo chkconfig haveged on
$ sudo service haveged start

107

Argus Documentation, Release 1.7.0

8.1.2 Change random device

Edit the Argus services environment files, adding the option -Djava.security.egd=file:/dev/urandom
to the Java options.

For the PAP service, edit the PAP_JAVA_OPTS variable in /etc/sysconfig/argus-pap file. Example:

PAP_JAVA_OPTS="-Djava.security.egd=file:/dev/urandom"

For the PDP service, edit the PDP_JOPTS variable in /etc/sysconfig/argus-pdp file. Example:

PDP_JOPTS="-Xmx256M -Djdk.tls.trustNameService=true -Djava.security.egd=file:/dev/
→˓urandom"

For the PEP daemon, edit the PEPD_JOPTS variable in /etc/sysconfig/argus-pepd file. Example:

PEPD_JOPTS="-Xmx256M -Djdk.tls.trustNameService=true -Djava.security.egd=file:/dev/
→˓urandom"

Then restart the services. On EL7 platforms:

$ sudo systemctl restart argus-pap argus-pdp argus-pepd

On EL6 platforms:

$ for svc in pap pdp pepd; do sudo service argus-$svc restart; done

8.2 Bind services to localhost

Argus services can be deployed all on the same machine.

The service that is mandatory to expose outside the machine is only the PEP service. So to avoid to expose PAP and
PDP services, these daemon can configured to listen on loopback interface.

To achieve this kind of deployment, change the configuration as described below.

Warning: To bind the services on the loopback interface, ensure that the host certificate includes localhost
and 127.0.0.1 in the Subject Alternative Name.

8.2.1 PAP

Argus PAP service listen on all interfaces, by design. So, it cannot be binded only to loopback interface.

8.2.2 PDP

Edit /etc/argus/pdp/pdp.ini specifying localhost as hostname:

hostname = localhost
port = 8152

Update the paps option with the endpoint of the local PAP:

108 Chapter 8. Argus Operations

Argus Documentation, Release 1.7.0

[POLICY]
paps = https://localhost:8150/pap/services/ProvisioningService

8.2.3 PEP

Edit /etc/argus/pepd/pepd.ini with the local PDP endpoint:

[PDP]
pdps = https://localhost:8152/authz

8.2.4 Validation

Restart the services; on EL7 platforms:

$ systemctl restart argus-pap argus-pdp argus-pepd

On EL6 platforms:

$ for svc in pap pdp pepd; do service argus-$svc restart; done

Check the ports:

$ ss -tnpl sport ge :8150 and sport le :8155 | column -t
State Recv-Q Send-Q Local Address:Port Peer
→˓ Address:Port
LISTEN 0 50 :::8150 :::* users:(("java",pid=8030,
→˓fd=63))
LISTEN 0 50 ::ffff:127.0.0.1:8151 :::* users:(("java",pid=8030,
→˓fd=58))
LISTEN 0 50 ::ffff:127.0.0.1:8152 :::* users:(("java",pid=7963,
→˓fd=67))
LISTEN 0 50 ::ffff:127.0.0.1:8153 :::* users:(("java",pid=7963,
→˓fd=62))
LISTEN 0 50 ::ffff:10.0.0.173:8154 :::* users:(("java",pid=7979,
→˓fd=66))
LISTEN 0 50 ::ffff:127.0.0.1:8155 :::* users:(("java",pid=7979,
→˓fd=60))

From another host, scan the Argus ports:

$ nmap -p8150-8155 argus.cnaf.test

Starting Nmap 7.60 (https://nmap.org) at 2017-12-04 15:07 CET
Nmap scan report for argus.cnaf.test (10.0.0.173)
Host is up (0.00015s latency).
rDNS record for 10.0.0.173: argus

PORT STATE SERVICE
8150/tcp open unknown
8151/tcp closed unknown
8152/tcp closed unknown
8153/tcp closed quantastor
8154/tcp open unknown
8155/tcp closed unknown

(continues on next page)

8.2. Bind services to localhost 109

Argus Documentation, Release 1.7.0

(continued from previous page)

Nmap done: 1 IP address (1 host up) scanned in 0.03 seconds

See also

Firewall setup

References

GGUS ticket

8.3 Firewall setup

You can use a firewall to restrict access to Argus services.

A simple setup is to open only the Argus PEP port.

Edit the iptables configuration file /etc/sysconfig/iptables to open the PEP port 8154 in the INPUT chain
and drop network traffic on all other ports (except SSH):

*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 8154 -j ACCEPT
COMMIT

Save the changes and restart iptables. On EL7 platforms:

$ systemctl restart iptables

On EL6 platforms:

$ service iptables restart

8.3.1 Validation

From another host, scan the Argus ports:

$ nmap -Pn -p8150-8155 argus.cnaf.test

Starting Nmap 7.60 (https://nmap.org) at 2017-12-04 15:07 CET
Nmap scan report for argus.cnaf.test (10.0.0.173)
Host is up (0.00015s latency).
rDNS record for 10.0.0.173: argus

PORT STATE SERVICE

(continues on next page)

110 Chapter 8. Argus Operations

https://ggus.eu/index.php?mode=ticket_info&ticket_id=131284

Argus Documentation, Release 1.7.0

(continued from previous page)

8150/tcp filtered unknown
8151/tcp filtered unknown
8152/tcp filtered unknown
8153/tcp filtered quantastor
8154/tcp open unknown
8155/tcp filtered unknown

Nmap done: 1 IP address (1 host up) scanned in 2.14 seconds

8.4 Mapping details

Attention:

New behavior from Argus 1.7.0

Argus 1.7.0 fixes an incorrect behavior in groups mapping, in particular in the handling of secondary group names, as
described in issues pep-7 and pep-11.

This changes have an impact in the creation of hard links in the /etc/grid-security/gridmapdir directory,
links used to map Grid users to a local pool account.

Since version 1.7.0, these link are created with the following pattern:

<dn>:<primary group>:<secondary group>

If needed, to keep compatibility with the LCMAPS -do_not_use_secondary_gids option used by the
CREAM YAIM module, in Argus 1.7 you would need to add:

useSecondaryGroupNamesForMapping = false

in the [ACCOUNTMAP_OH] section of the /etc/argus/pepd/pepd.ini and restart the service.

8.4.1 Example

With the default settings, Argus PEP server use secondary groups for mapping. Performing a request with pepcli,
for example:

$ pepcli --capath /etc/grid-security/certificates/ --cert .globus/usercert.pem --key .
→˓globus/userkey.pem -k /tmp/x509up_u0 -p https://argus.cnaf.test:8154/authz -a "ANY"
→˓-r "resource-2"
Resource: resource-2
Decision: Permit
Obligation: http://glite.org/xacml/obligation/local-environment-map/posix (caller
→˓should resolve POSIX account mapping)
Username: tst13
Group: testvo
Secondary Groups: testvo testvo

Into /etc/grid-security/gridmapdir we’ll found the mapping:

8.4. Mapping details 111

https://github.com/argus-authz/argus-pep-server/issues/7
https://github.com/argus-authz/argus-pep-server/issues/11

Argus Documentation, Release 1.7.0

$ ll -hrt /etc/grid-security/gridmapdir/
...
-rw-r--r--. 2 root root 0 Jan 25 14:17 tst13
-rw-r--r--. 2 root root 0 Jan 25 14:17 %2fc%3dit%2fo%3digi%2fcn%3dtest0:testvo:testvo

To disable the usage of secondary groups, edit /etc/argus/pepd/pepd.ini setting:

[ACCOUNTMAP_OH]
parserClass = org.glite.authz.pep.obligation.dfpmap.
→˓DFPMObligationHandlerConfigurationParser
accountMapFile = /etc/grid-security/grid-mapfile
groupMapFile = /etc/grid-security/groupmapfile
gridMapDir = /etc/grid-security/gridmapdir

useSecondaryGroupNamesForMapping = false

Restart the PEP server. Now, repeating the same request with pepcli the mapping obtained will be:

$ ll -hrt /etc/grid-security/gridmapdir/
...
-rw-r--r--. 2 root root 0 Jan 25 14:08 tst06
-rw-r--r--. 2 root root 0 Jan 25 14:08 %2fc%3dit%2fo%3digi%2fcn%3dtest0:testvo

112 Chapter 8. Argus Operations

CHAPTER 9

Argus Quick Start Guide

This section contains a set of documentation allowing to set up a typical Argus installation without going in all the
details contained in other sections.

9.1 Argus Quick Start: Site Policy Setup

9.1.1 Policy Basics

A site’s policies are maintained using the command pap-admin. Initially the PAP contains an empty policy for the
site so no one will be permitted to do anything. The command

pap-admin list-policies

lists policies, in the simplified policy language notation, currently active in the PAP.

The policies you add will be evaluated from most to least recent and the first policy that matches is the result returned
by Argus. So, if you added a policy that would deny a user and then added one that would permit the user the result of
an authorization request will be permit since the permit policy is most recent. While not covered here, the exhaustive
PAP command line interface reference provides information for how to re-order policies.

To begin, you will need to create permit policies, for individuals users, VOs, and FQANs, which reflect your site’s
access policy. Each of the commands listed require a resource ID and action ID which are deployment and application
specific, respectively. These ID were described in the introduction to the Argus system. For the purposes of this
quick-start we’ll use http://example.org as the resource ID and http://example.org/action as the
action ID. At this point you do not need to worry about what the correct values would be for a production deployment.

Note: As you change policies you will need to restart the PDP in order to force it to reread the policy from the PAP.
It would do this by default but only after a couple of hours. Restarting forces it do this immediately.

113

Argus Documentation, Release 1.7.0

Permit by User

Command:

pap-admin add-policy permit --resource "RESOURCE_ID" --action "ACTION_ID" dn="USER_DN"

The provided USER_DN must be in the RFC2253 standard form, not the proprietary format used by OpenSSL by
default. To get the standard form of the DN you can use the command

openssl x509 -noout -nameopt RFC2253 -subject -in CERT_PATH

Here’s an example that permits a user identified by their DN:

pap-admin add-policy permit --resource "http://example.org" --action "http://example.
→˓org/action" dn="CN=John Smith,OU=Standard Commercial Certificate,O=SWITCH,L=Zuerich,
→˓ST=Zuerich,C=CH"

Permit by VO

Command:

pap-admin add-policy permit --resource "RESOURCE_ID" --action "ACTION_ID" vo="VO"

The name of a VO is the string that appears between, but no including, the first two forward slashes (‘/’) of an FQAN.

Here’s an example that permits a user identified by their VO:

pap-admin add-policy permit --resource "http://example.org" --action "http://example.
→˓org/action" vo="atlas"

Permit by Primary FQAN

Command:

pap-admin add-policy permit --resource "RESOURCE_ID" --action "ACTION_ID" pfqan="FQAN"

The provided FQAN must be in full canonical (long) form (e.g. /atlas/Role=Production/
Capability=NULL or /atlas/Role=NULL/Capability=NULL). You may use Java regular expression in
this string.

Here’s an example that permits a user identified by their primary FQAN:

pap-admin add-policy permit --resource "http://example.org" --action "http://example.
→˓org/action" pfqan="/atlas/Role=Production/.*"

Permit by Secondary FQAN

Command:

pap-admin add-policy permit --resource "RESOURCE_ID" --action "ACTION_ID" fqan="FQAN"

The provided FQAN must be in full canonical (long) form (e.g. /atlas/Role=Production/
Capability=NULL or /atlas/Role=NULL/Capability=NULL). You may use Java regular expression in
this string.

114 Chapter 9. Argus Quick Start Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Argus Documentation, Release 1.7.0

Here’s an example that permits a user identified by their secondary FQAN:

pap-admin add-policy permit --resource "http://example.org" --action "http://example.
→˓org/action" pfqan="/atlas/higgs/Role=NULL/Capability=NULL"

Explicit Banning

At times you may wish to deny a specific user, FQAN, or VO. As you may have guessed by looking at the commands
above, you can create deny policies by changing the permit argument to deny.

Here are some examples:

pap-admin add-policy deny --resource "http://example.org" --action "http://example.
→˓org/action" pfqan="/atlas/higgs/Role=NULL/Capability=NULL"

pap-admin add-policy deny --resource "http://example.org" --action "http://example.
→˓org/action" vo="cms"

Removing Policies

The command

pap-admin remove-policy POLICY_ID

will remove an existing policy from the PAP. The POLICY_ID is the ID for the policy shown by the command

pap-admin list-policies --show-all-ids

9.1.2 Loading and Testing Policies

Now that you have some basic policy commands you should experiment with creating and testing policies.

To test the policies you can use the command pepcli. This debugging tool can be used in two different ways. First
you can supply it the certificate of a user or you can mock up a request by specifying a subject DN and primary and
second FQANs. See the pepcli documentation for complete list of options or use the examples below.

This command provides the result that the user, represented by the given certificate, would receive:

pepcli --pepd !http://127.0.0.1:8154/authz --resourceid "http://example.org" --
→˓actionid "http://example.org/action" --certchain CERT_PATH

The certificate may be an end-entity certificate, a plain proxy certificate, or a proxy certificate with VOMS extensions.

This command allows you to create a request containing a specific user DN, primary FQAN (the first one listed), and
secondary FQANs (subsequent ones listed):

pepcli --pepd !http://127.0.0.1:8154/authz --resourceid "http://example.org" --
→˓actionid "http://example.org/action" --subjectid USER_DN --fqan PRIMARY_FQAN --
→˓fqan SECONDARY_FQAN --fqan SECONDARY_FQAN

So, for example add a policy to allows people with the primary FQAN of /atlas/higgs/Role=NULL/
Capability=NULL to be permitted using the following command

pap-admin add-policy permit --resource "http://example.org" --action "http://example.
→˓org/action" pfqan="/atlas/higgs/Role=NULL/Capability=NULL"

9.1. Argus Quick Start: Site Policy Setup 115

Argus Documentation, Release 1.7.0

Then test the policy using the pepcli command

pepcli --pepd !http://127.0.0.1:8154/authz --resourceid "http://example.org" --
→˓actionid "http://example.org/action" --subjectid "CN=John Smith,OU=Standard
→˓Commercial Certificate,O=SWITCH,L=Zuerich,ST=Zuerich,C=CH" --fqan "/atlas/higgs/
→˓Role=NULL/Capability=NULL"

The result should be a permit.

9.1.3 Cleaning Up

Before you go further be sure to clean out of your test policies from the PAP. You do this by removing select policies
as shown above or you may use the command

pap-admin remove-all-policies

to remove all policies from the PAP. Be sure to restart your PDP as well so that it picks up your new policy set.

Note: You are now done with this quick-start guide. At this point you should have a functioning Argus service and
be able to add/remove basic policies from your site. It is recommended that you

116 Chapter 9. Argus Quick Start Guide

CHAPTER 10

Example of Authorization Requests and Policies

The following examples of policies and associated requests are meant to illustrate some of the possible policies,
requests, and resulting authorization decisions.

Note, the examples below use the PAP’s simplified policy language to express policies. So please review this syntax,
before proceeding, if you are not yet familiar with it.

10.1 User Based Authorization

In this example one user is permitted, and one is denied, the ability to submit jobs on the CERN CE resource. Each
user is identified by a X.509 subject DN. This example also shows how identity-based access control is simply a
degenerate case of attribute-based access control.

10.1.1 Authorization Policy

resource "http://cern.ch/authz/ce1" {
action "http://cern.ch/authz/actions/ce-submit" {

rule permit {
subject="CN=John Doe,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,

→˓ST=Zuerich,C=CH"
}
rule deny {

subject="CN=Jane Smith,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,
→˓ST=Zuerich,C=CH"

}
}

}

10.1.2 Requests

A request of:

117

Argus Documentation, Release 1.7.0

• resource attributes:

– id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value: http://cern.
ch/authz/ce1

– any other attributes

• action attributes:

– id: urn:oasis:names:tc:xacml:1.0:action:action-id, value: http://cern.ch/
authz/actions/ce-submit

– any other attributes

• subject attributes:

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id, value: CN=John Doe,
OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH

would result in an authorization decision of permit because the given resource and actions IDs match what was given
in the policy and the subject ID DN matches what was given in the permit rule. If the request contained any other
resource, action, or subject attribute these would be ignored since the policy does not reference them. If the request
had not contained the attributes listed it would have resulted in an authorization decision of not applicable since
no policy would have matched the request.

A request of:

• resource attributes:

– id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value: http://cern.
ch/authz/ce1

– any other attributes

• action attributes:

– id: urn:oasis:names:tc:xacml:1.0:action:action-id, value: http://cern.ch/
authz/actions/ce-submit

– any other attributes

• subject attributes:

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id, value: CN=Jane Smith,
OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH

would result in an authorization decision of deny since the resource and action IDs match and this time the subject
ID matches the requirement for the deny rule.

Note, in the second request, if the subject ID had contained at least the values CN=John Doe ,
OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH and CN=Jane
Smith,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH the au-
thorization decision would have been permit since the permit rule would have been evaluated first and would have
returned the result.

10.2 Per-VO Pilot Job Authorization Policy

This example shows a policy that allows pilot jobs from one VO, atlas, and denies pilot jobs from others. It also
demonstrates rules that rely on more than one attribute.

118 Chapter 10. Example of Authorization Requests and Policies

Argus Documentation, Release 1.7.0

10.2.1 Authorization Policy

resource "http://cern.ch/authz/ce1" {
action "http://cern.ch/authz/actions/ce-submit" {

rule permit {
vo="atlas"
pilot-job="true"

}
rule deny {

pilot-job="true"
}

}
}

10.2.2 Requests

A request of:

• resource attributes:

– id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value: http://cern.
ch/authz/ce1

– any other attributes

• action attributes:

– id: urn:oasis:names:tc:xacml:1.0:action:action-id, value: http://cern.ch/
authz/actions/ce-submit

– any other attributes

• subject attributes:

– id: http://authz-interop.org/xacml/subject/vo, value: atlas

– id: http://example.org/authz/attribute/pilot-job, value: true

would result in a decision of permit since the atlas VO is permitted to submit pilot jobs. A request where the VO
was lhcb or cms would result in a decision of deny since these VOs are not permitted to submit jobs.

A request of: * resource attributes:

• id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value: http://cern.ch/
authz/ce1

• any other attributes * action attributes:

• id: urn:oasis:names:tc:xacml:1.0:action:action-id, value: http://cern.ch/authz/
actions/ce-submit

• any other attributes * subject attributes:

• id: http://authz-interop.org/xacml/subject/vo, value: atlas

would result in a decision of not applicable since the current policy indicates that only jobs from the VO atlas
that are also pilot jobs are permitted. Requests without a pilot-job attribute are not addressed by this policy.

10.2. Per-VO Pilot Job Authorization Policy 119

Argus Documentation, Release 1.7.0

120 Chapter 10. Example of Authorization Requests and Policies

CHAPTER 11

Argus Service Reference Card

11.1 Definitions

PAP The Policy Administration Point manages and publishes the authorization policies.

PDP The Policy Decision Point evaluates the authorization requests.

PEP Server The Policy Enforcement Point server processes the PEP clients requests and responses.

PEP client Lightweight PEP client library available for Java and C. Enforces the authorization decision locally.

11.2 Service Reference Card

Functional description: Render authorization decisions based on XACML policies: “Can user X performs action Y
on resource Z ?” or “Is user X banned for any action on any resource ?”

Services running:

• PAP: (Java application) org.glite.authz.pap.server.standalone.PAPServer

• PDP: (Java application) org.glite.authz.pdp.server.PDPDaemon

• PEP Server: (Java application) org.glite.authz.pep.server.PEPDaemon

Init scripts and options:

• PAP: systemctl {start|stop|restart|status} argus-pap or service argus-pap
{start|stop|restart|status}

• PDP: systemctl {start|stop|restart|status} argus-pdp or service argus-pdp
{start|stop|restart|status}

• PEP Server: systemctl {start|stop|restart|status} argus-pepd or service
argus-pepd {start|stop|restart|status}

Configuration files location with example:

121

Argus Documentation, Release 1.7.0

• PAP:

– Config directory: /etc/argus/pap

– Config files: pap_configuration.ini and pap_authorization.ini

• PDP:

– Config directory: /etc/argus/pdp

– Config file: pdp.ini

• PEP Server:

– Config directory: /etc/argus/pepd

– Config file: pepd.ini

Logfile locations (and management) and other useful audit information:

• PAP:

– Logging directory: /var/log/argus/pap

– Logging configuration: /etc/argus/pap/logging/standalone/logback.xml

– Example: PAP logback.xml

– Status handler: https://HOSTNAME:8150/pap/status

• PDP:

– Logging directory: /var/log/argus/pdp

– Logging configuration: /etc/argus/pdp/logging.xml

– Example: PDP logging.xml

– Status handler: https://HOSTNAME:8152/status

• PEP Server:

– Logging directory: /var/log/argus/pepd

– Logging configuration: /etc/argus/pepd/logging.xml

– Example: PEP logging.xml

– Status handler: https://HOSTNAME:8154/status

Open ports:

• PAP:

– Service port: *:8150

– Admin port: localhost:8151

• PDP:

– Service port: *:8152

– Admin port: localhost:8153

• PEP Server:

– Service port: *:8154

– Admin port: localhost:8155

122 Chapter 11. Argus Service Reference Card

https://raw.github.com/argus-authz/argus-pap/1_7/src/main/config/pap_configuration.ini
https://raw.github.com/argus-authz/argus-pap/1_7/src/main/config/pap_authorization.ini
https://raw.github.com/argus-authz/argus-pdp/1_7/src/main/config/pdp.ini
https://raw.github.com/argus-authz/argus-pep-server/1_7/src/main/config/pepd.ini
https://raw.github.com/argus-authz/argus-pap/1_7/src/main/config/logging/standalone/logback.xml
https://raw.github.com/argus-authz/argus-pdp/1_7/src/main/config/logging.xml
https://raw.github.com/argus-authz/argus-pep-server/1_7/src/main/config/logging.xml

Argus Documentation, Release 1.7.0

Possible unit test of the service: Nagios probes are available to monitor the services, see Nagios Probes for Argus
(UMD).

Where is service state held (and can it be rebuilt): The services (PAP, PDP, PEP Server) are stateless. However:

• PAP: The XACML policies are stored locally in the /usr/share/argus/pap/repository direc-
tory.

• PEP Server: The user pool account mapping leases are kept in the /etc/grid-security/
gridmapdir directory.

Cron jobs: None

Security information

• Access control mechanism (authentication & authorization):

– Authentication: SSL/TLS client authentication on the service ports

– Authorization: PAP uses access control list

• How to block/ban a user

• Network Usage

• Firewall configuration

• Security recommendations

• Security incompatibilities

• List of externals (packages are NOT maintained by Red Hat)

• Other security relevant comments

Utility scripts:

• pap-admin CLI to manage the PAP policies

• pdpctl {reloadPolicy|version|status} forces the PDP to reload the policies from the PAP,
print version, print status

• pepdctl {clearResponseCache|version|status} clears the PEP daemon response cache,
print version, print status

Location of reference documentation for users: Not applicable

Location of reference documentation for administrators:

• General documentation: Argus Authorization Service

• PAP admin CLI: Argus Policy Administration Point (PAP): Administration

• Simplified Policy Language: The Simplified Policy Language

11.2. Service Reference Card 123

Argus Documentation, Release 1.7.0

124 Chapter 11. Argus Service Reference Card

CHAPTER 12

Argus Service Deployment for 1.7 version

Argus Service Reference Card: Argus Service Reference Card.

12.1 Requirements

12.1.1 Platform

The supported platforms are:

• EL6/x86_64 with the EPEL and UMD3 repositories enabled.

• EL7/x86_64 with the EPEL, CERN WLCG and UMD4 repositories enabled.

12.1.2 Host Certificate

The Argus services require a valid host certificate. The key pair is typically installed in /etc/grid-security/
hostcert.pem and /etc/grid-security/hostkey.pem

12.2 Installation with YUM

The Argus Authorization Service is a bundle of 3 services (the PAP, PDP and PEP Server). Packages for the three
services can be easily installed on a given machine by installing the argus-authz metapackage, as in the following
command:

yum install argus-authz

125

http://fedoraproject.org/wiki/EPEL
http://repository.egi.eu/category/umd_releases/distribution/umd-3/
http://fedoraproject.org/wiki/EPEL
http://linuxsoft.cern.ch/wlcg/centos7/x86_64/
http://repository.egi.eu/category/umd_releases/distribution/umd-4/

Argus Documentation, Release 1.7.0

12.2.1 Install the EGI IGTF Bundle

If not already present on your host, install the EGI IGTF trust anchors. More information available online: https:
//wiki.egi.eu/wiki/EGI_IGTF_Release

• Install the EGI IGTF trust anchors with YUM

12.2.2 Verify fetch-crl

The Argus metapackage install the fetch-crl cron job; run it once, and verify that the cron job is enabled and
started:

run it immediately (it can take some time...)
fetch-crl

enable the periodic fetch-crl cron job
chkconfig fetch-crl-cron on
service fetch-crl-cron start

For EL7 system, enable fetch-crl cron job with:

systemctl start fetch-crl-cron
systemctl enable fetch-crl-cron

12.2.3 Install the Argus Metapackage

The argus-authz metapackage bundles the 3 Argus services: PAP, PDP and PEP Server

Therefore, the argus-authz metapackage is the simplest way to install the Argus Authorization Services (PAP,
PDP and PEP Server) on your host.

Use YUM to install the Argus metapackage: yum install argus-authz

At this point all 3 Argus services (PAP, PDP and PEP server) are installed on your host. You must now continue with
the Argus service configuration with YAIM.

12.3 Update with YUM

Argus and its components are packages in the UMD repositories, and therefore automatically updated if a new version
is available and yum update is executed. The updating process however is stopping the Argus services (PAP, PEPd
and PDP). To get Argus back to work after an update it is recommended to restart the services.

Warning: Please make sure that your system does not use the automated yum updating service, since this
may lead to a stopped Argus server in case of a unnoticed update.

12.4 Configuration

• Version 1.7: manual configuration.

• Older version: Configuration with YAIM.

126 Chapter 12. Argus Service Deployment for 1.7 version

https://wiki.egi.eu/wiki/EGI_IGTF_Release
https://wiki.egi.eu/wiki/EGI_IGTF_Release
https://wiki.egi.eu/wiki/EGI_IGTF_Release#Using_YUM_package_management

CHAPTER 13

Nagios Probes for Argus

A set of Nagios probes for Argus (EMI-2 and EMI-3) are available to monitor the Argus PAP, PDP and PEP Server:

• Argus Nagios Probes Documentation (EMI): Nagios Probes for Argus (UMD)

127

Argus Documentation, Release 1.7.0

128 Chapter 13. Nagios Probes for Argus

CHAPTER 14

EMIR Publisher for Argus 1.6 (EMI-3)

You can use EMIR-SERP to publish the Argus resource information to EMIR. EMIR-SERP uses the information
already available in the resource BDII and publish it to an EMIR DSR endpoint.

• See the Argus EMIR Configuration to publish the Argus into EMIR: Argus EMIR Publisher Configuration
(EMI-3)

129

https://twiki.cern.ch/twiki/bin/view/EMI/SERP
https://twiki.cern.ch/twiki/bin/view/EMI/EMIRegistry

Argus Documentation, Release 1.7.0

130 Chapter 14. EMIR Publisher for Argus 1.6 (EMI-3)

CHAPTER 15

Known Issues

In the 1.7 version, there are no known issues. For older versions, see Known Issues for older version

131

Argus Documentation, Release 1.7.0

132 Chapter 15. Known Issues

CHAPTER 16

Manual configuration

This guide shows how to configure Argus with a basic setup. Basically configuration consist in:

• set service host name in configuration files;

• set service endpoints

• set certificates path;

16.1 Requirements

First, verify that the operating system has Java 1.8 as default JVM:

$ java -version
openjdk version "1.8.0_77"

If the command above shows an older JVM version, change the system configuration with

alternatives --config java

16.2 PAP

/etc/argus/pap/pap-admin.properties

1. Set host variable with the machine host name.

/etc/argus/pap/pap_configuration.ini

1. Set entity_id.

2. Set hostname with server host name.

3. Set certificate with the absolute path of the X509 certificate of the server.

133

Argus Documentation, Release 1.7.0

4. Set private_key with the absolute path of the X509 private key of the server.

/etc/argus/pap/pap_authorization.ini Keep default values for basic setup.

/etc/sysconfig/argus-pap Keep default values for basic setup.

More details about PAP configuration can be found in PAP configuration.

16.3 PDP

/etc/argus/pdp/pdp.ini

1. Set entityId.

2. Set hostname with server host name.

3. Set paps with PAP endpoint; one or more PAP endpoints can be specified in a space separated list.

4. Set serviceCertificate with the absolute path of the X509 certificate of the server.

5. Set servicePrivateKey with the absolute path of the X509 private key of the server.

6. Set trustInfoDir with the absolute path of the trusted CAs.

/etc/sysconfig/argus-pdp Keep default values.

More details about PDP configuration can be found in PDP configuration.

16.4 PEP

/etc/argus/pepd/pepd.ini

1. Set entityId.

2. Set hostname with server host name.

3. Set pdps with PDP endpoint; one or more PDP endpoints can be specified in a space separated list.

4. Set serviceCertificate with the absolute path of the X509 certificate of the server.

5. Set servicePrivateKey with the absolute path of the X509 private key of the server.

6. Set trustInfoDir with the absolute path of the trusted CAs.

7. Set vomsInfoDir with the absolute path of the VOMS directory.

/etc/sysconfig/argus-pepd Keep default values.

More details about PEP configuration can be found in PEP configuration.

16.5 Grid Mapping

Ensure that following Grid mapping file are present:

/etc/grid-security/grid-mapfile: This file contains mapping between Grid users and local pool account

/etc/grid-security/groupmapfile: This file contains mapping between Grid users and local Unix groups.

Moreover, ensure there is present the directory:

/etc/grid-security/gridmapdir: This directory contains pool accounts and users linked to them.

134 Chapter 16. Manual configuration

Argus Documentation, Release 1.7.0

More information about the syntax can be found in Argus Grip Map File Syntax.

16.6 VOMS configuration

Ensure that following files are present:

/etc/grid-security/voms-grid-mapfile This file contains mapping between Grid users and local pool
account, similar to grid-mapfile described above.

Ensure that following directory are present:

/etc/grid-security/vomsdir This directory contains a sub-directory for each supported VOs. In each of
this sub-directory there is a .lsc, a file that contains a description of the certificate chain of the certificate used
by a VOMS server to sign VOMS attributes.

For example for the some test VO, the directory structure is:

vomsdir/
testers.eu-emi.eu

emitestbed07.cnaf.infn.it.lsc
test.vo

vgrid02.cnaf.infn.it.lsc
test.vo.2

vgrid02.cnaf.infn.it.lsc

The content for the test.vo lsc file is:

/C=IT/O=INFN/OU=Host/L=CNAF/CN=vgrid02.cnaf.infn.it
/C=IT/O=INFN/CN=INFN Certification Authority

More information about VOMS can be found in VOMS client documentation.

16.7 Restart services

Restart Argus services to enable the new configuration.

In EL6-based systems, run this command:

for srv in argus-pap argus-pdp argus-pepd; do service $srv restart; done

In EL7-based systems, run:

systemctl restart argus-pap argus-pdp argus-pepd

More details about service management can be found in PAP operations, PDP operations and PEP operation.

16.8 BDII configuration

Install BDII packages:

yum install bdii glite-info-provider-service

Move into directory /etc/glite/info/service and from the provided templates, create the files:

16.6. VOMS configuration 135

http://italiangrid.github.io/voms/documentation/voms-clients-guide/3.0.3/#voms-trust

Argus Documentation, Release 1.7.0

• glite-info-glue2-argus-pap.conf

• glite-info-glue2-argus-pdp.conf

• glite-info-glue2-argus-pep.conf

• glite-info-glue2-service-argus.conf

The provided templates contains a default configuration: for a basic setup, rename the files striping the extension
.template.

Into the directory /var/lib/bdii/gip/provider create a shell script, for example named
glite-info-glue2-provider-service-argus, with the content:

#!/bin/sh

##
Argus services GLUE 2 info provider
##

CONF_DIR=/etc/glite/info/service

/usr/bin/glite-info-glue2-multi \
$CONF_DIR/glite-info-glue2-argus-pap.conf,$CONF_DIR/glite-info-glue2-argus-pdp.

→˓conf,$CONF_DIR/glite-info-glue2-argus-pep.conf \
argus-site $CONF_DIR/glite-info-glue2-service-argus.conf

Ensure that this file is owned by the user ldap and that it is readable and executable:

chown ldap:ldap glite-info-glue2-provider-service-argus
chmod 0755 glite-info-glue2-provider-service-argus

Restart the BDII service:

systemctl restart bdii

136 Chapter 16. Manual configuration

CHAPTER 17

Configuration with YAIM

Warning: As of UMD 4.0, and in particular on CENTOS 7 YAIM is no longer supported to configure Argus.

The ARGUS_server node type is available to configure the Argus service with YAIM.

17.1 Argus YAIM Configuration Variables

Description of all the available Argus YAIM configuration variables: Argus YAIM Configuration for EMI

17.2 Mandatory YAIM Variables

• ARGUS_HOST Fully qualified host name (FQHN) of the Argus host

• PAP_ADMIN_DN Certificate distinguished name (DN) of the administrator, allowed to use the pap-admin
command

• SITE_NAME BDII site name

• USERS_CONF Absolute location of the users configuration file

• GROUPS_CONF Absolute location of the groups configuration file

• VOS List of supported VO names

• VO_<vo-name>_VOMS_CA_DN VOMS CA DN for each VO name listed in VOS

• VO_<vo-name>_VOMSES VOMS definition for each VO name listed in VOS

The USERS_CONF and GROUPS_CONF configuration files MUST be the same on the Argus host as on the client
host (CREAM, WMS, gLExec, . . .). On successful authorization, the Argus PEP Server is configured to determine
the user/group mapping (pool account) for this authorization and send it the client. Therefore, the client must be able
to map the resulting user mapping received with the authorization decision.

137

Argus Documentation, Release 1.7.0

17.3 Argus site-info.def Configuration

Your site-info.def for Argus must contain at least the following variable:

BDII site name
SITE_NAME=MySiteName

Argus service hostname
ARGUS_HOST=argus.example.org

PAP administrator DN allowed to use 'pap-admin' command
PAP_ADMIN_DN="/DC=org/DC=acme/CN=John Doe"

Users and Groups definition for grid and group mapfile
USERS_CONF=/opt/glite/yaim/examples/users.conf
GROUPS_CONF=/opt/glite/yaim/examples/groups.conf

Supported VOs
VOS="dteam"

VO_DTEAM_VOMSES="'dteam voms.hellasgrid.gr 15004 /C=GR/O=HellasGrid/OU=hellasgrid.gr/
→˓CN=voms.hellasgrid.gr dteam' 'dteam voms2.hellasgrid.gr 15004 /C=GR/O=HellasGrid/
→˓OU=hellasgrid.gr/CN=voms2.hellasgrid.gr dteam'"
VO_DTEAM_VOMS_CA_DN="'/C=GR/O=HellasGrid/OU=Certification Authorities/CN=HellasGrid
→˓CA 2006' '/C=GR/O=HellasGrid/OU=Certification Authorities/CN=HellasGrid CA 2006'"

See the documentation of all the supported Argus YAIM configuration variables: Argus YAIM Configuration for EMI.

17.4 Generate Argus Configuration

Run YAIM to generate the Argus configuration for your site:

/opt/glite/yaim/bin/yaim -c -s site-info.def -n ARGUS_server

At this point, the Argus services (PAP, PDP and PEP Server) must be configured, up and running.

138 Chapter 17. Configuration with YAIM

CHAPTER 18

Authorization Service: Grid Map File Syntax

18.1 Description

Grid Map files are used to express a mapping from subject attributes in to a local account.

18.2 File Syntax

Each line of a grid map file is either pure whitespace, a comment, or a mapping.

Comments begin with a number or hash sign (#), may be followed with any character and ends at the end of the line.
The following is an example of grid map file which contains only a single comment.

This is a map file with a single comment

A mapping line consists of two parts, the first is a key that identifies the subject that will be mapped. This part is
always enclosed in double quotes (“). The second part is the comma-separated list of targets to which the subject may
be mapped. The first and second parts of the map line are separated by any number of spaces or tabs. The following is
an example of a grid map file mapping an FQAN to an account.

"/vo/atlas/analysis" .atlas

18.3 Subject Keys

The subject key, the first component of a mapping line, may be either an X.509 DN or a Fully Qualified Attribute
Name (FQAN).

If an X.509 DN is used it may be either in the non-standard grid form (where each component is separated by a forward
slash (‘/’) and the CN comes last), or the standard RFC2253 format (where components are separated by a comma (‘,’)
and the CN comes first). The RFC2253 format is preferred. Both formats may be used within a single file and in both
case the following escape sequences may be used:

139

Argus Documentation, Release 1.7.0

Escape Sequence Represents
\' a single quote
\" a double quote
\\ a backwards slash
\/ a forward slash
\f a formfeed
\n a new line
\r a carriage return
\t a horizontal tab
\x## the ASCII character corresponding to the given hexadecimal digits
\u#### the UTF-8 character corresponding to the given hexadecimal digits

18.4 Map Targets

The map target, the second component of a mapping line, is a comma separated list of either an account or group
names.

A map target prefixed with a dot . represents a pool account.

140 Chapter 18. Authorization Service: Grid Map File Syntax

CHAPTER 19

Argus YAIM Configuration for EMI

Warning: As of UMD 4.0, and in particular on CENTOS 7, YAIM is no longer supported to configure Argus.
This page is kept for reference only.

19.1 YAIM Configuration for ARGUS_server

19.1.1 Mandatory General Variables

• SITE_NAME BDII site name

• USERS_CONF

• GROUPS_CONF

• VOS List of supported VO names

• VO_<vo-name>_VOMS_CA_DN VOMS CA DN for each VO name listed in VOS

• VO_<vo-name>_VOMSES VOMS definition for each VO name listed in VOS

More information on these variables available here: https://twiki.cern.ch/twiki/bin/view/LCG/Site-info_
configuration_variables

19.1.2 Mandatory Service Specific Variables

They can be found in /opt/glite/yaim/examples/siteinfo/services/glite-argus_server

141

https://twiki.cern.ch/twiki/bin/view/LCG/Site-info_configuration_variables
https://twiki.cern.ch/twiki/bin/view/LCG/Site-info_configuration_variables

Argus Documentation, Release 1.7.0

Variable Name Description Value type Ver-
sion

ARGUS_HOST Hostname of the Argus node. FQDN Host-
name

1.1.0-1

PAP_ADMIN_DN User certificate DN of the user that will be the PAP administra-
tor.

Certificate DN 1.0.0-1

19.1.3 Default Service Specific Variables

They can be found in /opt/glite/yaim/defaults/glite-argus_server(.pre|.post)

Variable Name Description Value type Default Value Version
CONFIG_PAP Set this variable to no if you don’t want yaim to create the PAP configuration files string yes 1.0.0-1
CONFIG_PDP Set this variable to no if you don’t want yaim to create the PDP configuration file string yes 1.0.0-1
CONFIG_PEP Set this variable to no if you don’t want yaim to create the PEP Server configuration file string yes 1.0.0-1
PAP_HOME Home directory of the pap service path ${PAP_HOME:-"/usr/share/argus/pap"} 1.3.0-1
PAP_ENTITY_ID This is a unique identifier for the PAP. It must be a URI (URL or URN) and the same entity ID should be used for all PAP instances that make up a single logical PAP. If a URL is used it doesn’t neet to resolve to any specific webpage. URI ${PAP_ENTITY_ID:-"http://${ARGUS_HOST}/pap"} 1.1.0-1
PAP_HOST Set this variable to another value if PAP_HOST is not installed in the same host as PDP and PEP. IP/DNS name ${ARGUS_HOST} 1.0.0-1
PAP_CONF_INI Configuration file for the pap service path ${PAP_CONF_INI:-"${PAP_HOME}/conf/pap_configuration.ini"} 1.0.0-1
PAP_AUTHZ_INI Configuration file for the pap service authorization policies path ${PAP_AUTHZ_INI:-"${PAP_HOME}/conf/pap_authorization.ini"} 1.0.0-1
PAP_ADMIN_PROPS Configuration properties for the pap-admin client path ${PAP_ADMIN_PROPS:-"${PAP_HOME}/conf/pap-admin.properties"} 1.3.0-1
PAP_REPO_LOCATION Path to the repository directory path ${PAP_REPO_LOCATION:-"${PAP_HOME}/repository"} 1.0.0-1
PAP_POLL_INTERVAL The polling interval (in seconds) for retrieving remote policies number 14400 1.0.0-1
PAP_ORDERING Comma separated list of pap aliases. Example: alias-1, alias-2, . . . , alias-n. Defines the order of evaluation of the policies of the paps, that means that the policies of pap “alias-1” are evaluated for first, then the policies of pap “alias-2” and so on. string default 1.0.0-1
PAP_CONSISTENCY_CHECK Forces a consistency check of the repository at startup. boolean false 1.0.0-1
PAP_CONSISTENCY_CHECK_REPAIR if set to true automatically fixes problems detected by the consistency check (usually means deleting the corrupted policies). boolean false 1.0.0-1
PAP_PORT PAP standalone service port port 8150 1.0.0-1
PAP_SHUTDOWN_PORT PAP standalone shutdown service port port 8151 1.0.0-1
PAP_SHUTDOWN_COMMAND PAP standalone shutdown command (password) port generated pseudo random 1.1.0-1
PDP_HOME Home directory of the pdp service path ${PDP_HOME:-"/usr/share/argus/pdp"} 1.3.0-1
PDP_CONF_INI Configuration file for the PDP service path ${PDP_CONF_INI:-"/etc/argus/pdp/pdp.ini"} 1.3.0-1
PDP_ENTITY_ID This is a unique identifier for the PEP. It must be a URI (URL or URN) and the same entity ID should be used for all PEP instances that make up a single logical PEP. If a URL is used it need not resolve to any specific webpage. URI ${PDP_ENTITY_ID:-"http://${ARGUS_HOST}/pdp"} 1.1.0-1
PDP_HOST Set this variable to another value if PDP_HOST is not installed in the same host as PAP and PEP. IP/DNS name ${ARGUS_HOST} 1.4.0-1
PDP_PORT PDP standalone service port port 8152 1.0.0-1
PDP_ADMIN_PORT PDP admin service port port 8153 1.1.0-1
PDP_ADMIN_PASSWORD PDP admin service password for shutdown, reload policy, . . . , commands port generated pseudo random 1.1.0-1
PDP_RETENTION_INTERVAL The number of minutes the PDP will retain (cache) a policy retrieved from the PAP. After this time is passed the PDP will again call out to the PAP and retrieve the policy number 240 1.0.0-1
PDP_PAP_ENDPOINTS Space separated list of PAP endpoint URLs for the PDP to use. Endpoints will be tried in turn until one returns a successful response. This provides limited failover support. If more intelligent failover is necessary or load balancing is required, a dedicated load-balancer/failover appliance should be used. URLs ${PDP_PAP_ENDPOINTS:-"https://${PAP_HOST}:8150/pap/services/ProvisioningService"} 1.1.0-1
PEP_HOME Home directory for the pep service path ${PEP_HOME:-"/usr/share/argus/pepd"} 1.3.0-1
PEP_CONF_INI Configuration for the pep service path ${PEP_CONF_INI:-"/etc/argus/pepd/pepd.ini"} 1.3.0-1
PEP_ENTITY_ID This is a unique identifier for the PEP. It must be a URI (URL or URN) and the same entity ID should be used for all PEP instances that make up a single logical PEP. If a URL is used it need not resolve to any specific webpage. URI ${PEP_ENTITY_ID:-"http://${ARGUS_HOST}/pepd"} 1.1.0-1
PEP_HOST Set this variable to another value if PEP_HOST is not installed in the same host as PAP and PDP. But remember to use the hostname and not 127.0.0.1 ! IP/DNS name ${ARGUS_HOST} 1.1.0-1
PEP_PORT PEP service port port 8154 1.0.0-1
PEP_ADMIN_PORT PEP admin service port port 8155 1.1.0-1
PEP_ADMIN_PASSWORD PEP admin service password for shutdown, clear cache, . . . , commands port generated pseudo random 1.1.0-1
PEP_MAX_CACHEDRESP The maximum number of responses from any PDP that will be cached. Setting this value to 0 (zero) will disable caching. number 500 1.0.0-1
PEP_PDP_ENDPOINTS Space separated list of PDP endpoint URLs for the PEP to use. Endpoints will be tried in turn until one returns a successful response. This provides limited failover support. If more intelligent failover is necessary or load balancing is required, a dedicated load-balancer/failover appliance should be used. URLs ${PEP_PDP_ENDPOINTS:-"https://${PDP_HOST}:8152/authz"} 1.1.0-1

– Main.ValeryTschopp - 11-Mar-2011

142 Chapter 19. Argus YAIM Configuration for EMI

CHAPTER 20

Known Issues for older version

20.1 Timeouts for certificates from CAs that use OCSP

As of late 2013 a few CAs (e.g. the CERN CA) have started using the Online Certificate Status Protocol (OCSP)
in addition to the CRL mechanism to advertise which certificates have been revoked. Some security libraries will
then by default contact the OCSP responder of the CA in real time when a certificate from such a CA needs to be
validated. If that outgoing traffic happens to be blocked, or if the responder is slow or even unreachable, the operation
will eventually time out (see GGUS:105666). Depending on the case at hand, such a timeout need not be a fatal error
in itself, but will at least slow down operations and may therefore cause timeouts downstream (e.g. for CREAM or
gLExec).

20.1.1 Workaround

In EGI and WLCG we do not need OCSP to work at this time, as the CRL mechanism is still deemed sufficient.
Therefore it is reasonable to disable OCSP for the time being and version 1.4.1 of the argus-pdp-pep-common
rpm does that by default. That version was officially released in Argus v1.6.3 as part of EMI-3 Update 27 (2015-06-
10).

20.2 Performance issue with Argus PEP Server (EMI-2, EMI-3, all ver-
sions)

After a large number of authorization requests, the PDP responses caching mechanism in the PEP Server becomes
unstable and the performance of the service deteriorates. It is recommended to completely disable the PDP responses
caching mechanism in the Argus PEP Server.

Additionally, the default memory settings for the Argus PEP Server could be too low for production site. It is recom-
mended to allocate at least 1GB memory.

143

http://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
http://www.eu-emi.eu/releases/emi-3-monte-bianco/updates/-/asset_publisher/5Na8/content/update-27-10-06-2015-v-3-15-3-1#ARGUS_v_1_6_3

Argus Documentation, Release 1.7.0

20.2.1 Workaround

Disabling the caching mechanism

Completely disabling the PDP responses caching mechanism in the PEP Server configuration solves the performance
issue. To disable the cache:

1. edit the /etc/argus/pepd/pepd.ini file

2. add the parameter maximumCachedResponses = 0 in the [PDP] section (see example)

3. restart PEP Server: /etc/init.d/argus-pepd restart (or increase the memory settings, then restart)

Example:

[PDP]
pdps = https://chaos.switch.ch:8152/authz
disabling the cache
maximumCachedResponses = 0

Increasing the default memory

Allocating 1GB of memory for the Argus PEP Server solves the performance issue. To increase the default memory:

1. edit the /etc/sysconfig/argus-pepd file

2. set the line PEPD_JOPTS="-Xmx1024M"

3. restart PEP Server: /etc/init.d/argus-pepd restart

20.3 Problem the EMI-3 update and Argus PEP Server v.1.6.1

Updating the Argus PEP Server to the last EMI-3 update (argus-pep-server-1.6.1) will not always restart the
Argus PEP Server

20.3.1 Workaround

After the update (yum update), restart the Argus PEP Server by hand:

root# /sbin/service argus-pepd restart

20.4 Problem with Argus 1.6 (EMI-3) and fetch-crl

The Argus metapackage emi-argus have no dependency on the fetch-crl cron job. Installing and starting the
Argus services, without having fetch-crl installed, will cause SSL errors when trying to connect to the services.

20.4.1 Workaround

Prior to installing the emi-argus metapackage, install the the fetch-crl package by hand, and run it at least
once:

root# yum install fetch-crl
root# fetch-crl -v

144 Chapter 20. Known Issues for older version

Argus Documentation, Release 1.7.0

If you have already installed and configured Argus, just install the fetch-crl package by hand, run it at least once,
and restart the Argus services:

root# yum install fetch-crl
root# fetch-crl -v
root# service argus-pap restart
root# service argus-pdp restart
root# service argus-pepd restart

20.5 Problem with Nagios plugins for Argus and TMP directory per-
mission

The nagios-plugins-argus package do not set the correct ownership for the /var/lib/
grid-monitoring/nagios-plugins-argus temp directory. The plugins will throw errors (Permission
denied) because the ownership of the directory is not nagios.

20.5.1 Workaround

To fix the temp directory ownership to nagios, please do:

root# yum install nagios-plugins-argus
root# chown -R nagios:nagios /var/lib/grid-monitoring/nagios-plugins-argus

20.6 Problem with Argus 1.5 (EMI-2) and CREAM

Under heavy load the Argus PEP Server (v1.5.1) does not always return a user mapping for a permitted operation,
causing CREAM to throw an error and abort the job. This typically occurs for 10% of the jobs submitted by CREAM.

20.6.1 Workaround

Disabling the PDP responses caching mechanism in the PEP Server configuration solve this issue. To disable the
cache:

1. edit /etc/argus/pepd/pepd.ini

2. add the parameter maximumCachedResponses = 0 in the [PDP] section (see example below)

3. restart PEP Server: /etc/init.d/argus-pepd restart

Example:

[PDP]
pdps = https://chaos.switch.ch:8152/authz
disabling the cache
maximumCachedResponses = 0

20.5. Problem with Nagios plugins for Argus and TMP directory permission 145

Argus Documentation, Release 1.7.0

20.7 Problem with upgrade from Argus 1.4 (EMI-1) to Argus 1.5 (EMI-
2)

When upgrading an previous Argus 1.4 (EMI-1) installation on SL5, you need to re-install Argus 1.5 (EMI-2). This is
due to an error in the Argus 1.4 post uninstall script.

20.7.1 Workaround

Simply reinstalling the components with YUM just after the upgrade solves the issue:

yum upgrade
(argus is upgraded...)
yum reinstall argus-pap argus-pdp argus-pep-server

146 Chapter 20. Known Issues for older version

CHAPTER 21

Legacy Pages from Twiki site

Warning: The pages below have been converted to the new documentation format without any specific review.
They are coming from the former Argus and are probably obsolete. They are kept here for reference only.

21.1 Argus EMIR Publisher Configuration (EMI-3)

You can use EMIR-SERP to publish the Argus resource information to the EMIRregistry. EMIR-SERP uses the
information already available in the resource BDII and publish it to an EMIR DSR endpoint.

21.1.1 Local Resource BDII

Check that the local resource BDII is running and return service information:

ldapsearch -x -h localhost -p 2170 -b 'GLUE2GroupID=resource,o=glue'
→˓objectCLass=GLUE2Service

This query should return 1 entry for the Argus service. If it is not the case, something is fishy in the installation. . .

21.1.2 Install and Configure EMIR SERP

Install the EMIR SERP package:

yum install emir-serp

Edit the configuration file /etc/emi/emir-serp/emir-serp.ini and set the following:

...
url = http://emitbdsr1.cern.ch:9126
...

(continues on next page)

147

https://twiki.cern.ch/twiki/bin/view/EMI/SERP
https://twiki.cern.ch/twiki/bin/view/EMI/EMIRegistry
https://twiki.cern.ch/twiki/bin/view/EMI/DSR

Argus Documentation, Release 1.7.0

(continued from previous page)

[servicesFromResourceBDII]
resource_bdii_url = ldap://localhost:2170/GLUE2GroupID=resource,o=glue
...

And start the EMIR-SERP service:

/sbin/service emir-serp start

You can verify that the information is correctly published by browsing: http://emitbdsr1.cern.ch:9126/
services

21.2 Argus Services Fine Tuning

21.2.1 Optimizing Argus Memory Usage

The Argus 1.3 services (PAP, PDP and PEP Server) don’t have fine tuned memory limits. For production sites it is
therefore recommended to manually set a memory limit for each service.

NOTICE: Starting with Argus 1.4, the memory limits are already set, but you can adapt them for your special need.

Argus PAP Memory

In the PAP, the memory usage of the PAP depends directly on the number of policies.

• Default memory limit: 512 MB (v.1.4), 256MB (v.1.5)

– No default memory limit set for version lower than v.1.4

• The default memory limit is typically enough for:

– ~2’000 policies (resource - action - obligation - rule)

– ~20’000 rules in one policy (~20’000 DN’s or FQAN’s)

PAP Memory Setting for Production

For production sites, which typically have less than 500 policies, we recommend to set the PAP memory limit to 256
MB

• Recommended memory limit (assuming less than 500 policies): 256 MB

• The value can be changed by setting the variable PAP_JAVA_OPTS="-Xmx256m" in the /etc/
sysconfig/argus-pap configuration file

You have to restart the Argus PAP service to apply the new memory limit settings.

Argus PDP Memory

The PDP memory usage depends on the number of policies it has to import from the PAP.

• Default memory limit: 256 MB (v.1.4)

– No default memory limit set for version lower than v.1.4

• The needed memory is comparable with the memory needed by the PAP

148 Chapter 21. Legacy Pages from Twiki site

Argus Documentation, Release 1.7.0

PDP Memory Setting for Production

For production sites, it is highly recommended to set a memory limit, to avoid a growing of the used memory (up to 1
GB) by the PDP.

• Recommended memory limit (assuming less than 500 policies in the PAP): 256 MB

• The value can be changed by setting the variable PDP_JOPTS="-Xmx256M" in the /etc/sysconfig/
argus-pdp configuration file

You have to restart the Argus PDP service to apply the new memory limit settings.

Argus PEP Server Memory

The PEP Server memory usage depends on the cache-size.

• Default memory limit: 512MB (v.1.3.1) and 128MB (v.1.4), and 256MB (v.1.5)

– No default memory limit set for version lower than v.1.3.1

• Default value for the cache size: max. 500 cached PDP responses

The value for the cache size (maximumCachedResponses) can be changed following the PEP Server Configura-
tion documentation.

PEP Server Memory Setting for Production

The default memory limit set for the PEP Server v1.3.1 is still rather high, It can safely be lowered without any
degradation of performance, and as long as the cache-size is not increased. For PEP Server version lower than v1.3.1,
it is highly recommended to set a memory limit, to avoid a growing of the used memory (up to 1 GB).

• Recommended memory limit: 256 MB

– The previous memory limit of 128MB in Argus 1.4.0 was too low for site with a lot of pool accounts.

• The value can be changed by setting the variable PEPD_JOPTS="-Xmx256M" in the /etc/sysconfig/
argus-pepd configuration file

You have to restart the Argus PEP Server service to apply the new memory limit settings.

21.2.2 Production Logging Settings

By default the Argus 1.3 (EMI-1) services don’t have production specific logging configuration, therefore, for produc-
tion sites it is recommended to manually configure the logging for each service.

NOTICE: Starting with Argus 1.4, the services already use these production logging configuration.

For production sites, we have define the following logging policy:

• Log files rotation:

– daily rotating (at midnight)

– or when the file size >= 100MB

• Rotated log files are gzipped

• History of log files keep for 90 days

The Argus services uses the Logback Logging Framework to do their logging. The logback framework can be config-
ured to implement the production logging policy.

21.2. Argus Services Fine Tuning 149

http://logback.qos.ch/manual/index.html

Argus Documentation, Release 1.7.0

Argus PAP Logging

The Argus PAP service logging configuration is configured with the /etc/argus/pap/logging/
standalone/logback.xml file.

PAP Logging Configuration for Production

To configure the Argus PAP service for production logging, please download the attached configuration file
and store it as /etc/argus/pap/logging/standalone/logback.xml.

You have to restart the PAP service to apply the new logging configuration.

Argus PDP Logging

The Argus PDP service logging configuration is configured with the /etc/argus/pdp/logging.xml file.

PDP Logging Configuration for Production

To configure the Argus PDP service for production logging, please download the attached configuration file
and store it as /etc/argus/pdp/logging.xml.

The PDP will automatically reload its logging configuration, no need to restart the service.

Argus PEP Server Logging

The Argus PEP Server service logging configuration is configured with the /etc/argus/pepd/logging.xml
file.

PEP Server Logging Configuration for Production

To configure the Argus PEP Server service for production logging, please download the attached configuration
file and store it as /etc/argus/pepd/logging.xml.

The PEP Server will automatically reload its logging configuration, no need to restart the service.

21.3 Argus Development Tools

The tools used by the Argus PT to develop the Argus Authorization Service

21.3.1 Development

• Eclipse IDE for all Java and C development (http://www.eclipse.org/)

• GitHub for the version control of all Argus components (https://github.com/argus-authz)

• Wiki for the development and product documentation (http://argus-documentation.readthedocs.org/en/latest/)

21.3.2 Build

• Maven for the compilation of the main Java components (http://maven.apache.org/)

• ANT for the compilation of the PEP Java client library (http://ant.apache.org/)

• Autotools, configure and make for the compilation of the C components

150 Chapter 21. Legacy Pages from Twiki site

http://www.eclipse.org/
https://github.com/argus-authz
http://argus-documentation.readthedocs.org/en/latest/
http://maven.apache.org/
http://ant.apache.org/

Argus Documentation, Release 1.7.0

21.3.3 Test

• JUnit for some of the Java components

• Grinder for the internal load and stress testing of the server components (http://grinder.sourceforge.net/)

21.3.4 QA

• GGUS for users support (http://www.ggus.org)

• LCG Savannah for bugs, tasks and patches tracking (https://savannah.cern.ch)

• A code review was done by the PSNC Security Team, but we don’t have enough resource within the Argus PT
to do it ourself

• CERN vNode test bed using the automatic YAIM-gen for product certification

21.3.5 Infrastructure and Repository

• Some virtual machines for internal testing

• CERN YUM repository for deployment

• YAIM for the glite-ARGUS node configuration

21.4 GGUS User Support for Argus

21.4.1 Argus Support Unit FAQ

1801 What is the purpose of the Argus Support?

Provide support for site administrators on the installation, the configuration and the operation of the Argus Authoriza-
tion Service.

1802 Who is responsible for Argus Support?

Argus product team (PT) members.

1803 How does a ticket arrive at Argus Support?

Currently through the existing argus-support@cern.ch mailing list.

1804 What does the Argus Support manager have to do?

Dispatch support request.

21.4. GGUS User Support for Argus 151

http://grinder.sourceforge.net/
http://www.ggus.org
https://savannah.cern.ch
mailto:argus-support@cern.ch

Argus Documentation, Release 1.7.0

1805 What does the person dealing with Argus Support have to do?

• Try to solve the problem with the user.

• If necessary, submit a bug in savannah.

• If relevant, update our FAQ with problem and solution.

1806 What documentation is available on Argus Support?

Extensive documentation is available at https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

21.5 Authorization Service: Load and Lifetime Testing

It is important to perform load and lifetime tests on any service being put in to production. Load tests are used to
determine how the service behaves, and eventually fails, under load while lifetime tests determine how the service
behaves over a prolonged period of time with average load.

Note, this testing framework used here was actually developed by the Shibboleth team for testing their software but it
allows other test packs to be installed so it can also be used in testing this service.

21.5.1 Testing Framework Basics

Requirements

• Unix OS based machine(s)

• Subversion client (necessary in order to download the framework)

• Java 1.5

Downloading and Installing the Framework

1. Checkout the base testing framework. The resulting grinder-framework directory will be known a
GF_HOME throughout the rest of this document.

• svn co https://svn.middleware.georgetown.edu/shib-extension/
java-loadtest/trunk/grinder-framework grinder-framework

2. Within _GFHOME/test checkout the Argus test packs

• svn co http://svnweb.cern.ch/guest/glxa/loadtests/pepcli-authz
pepcli-authz

• svn co http://svnweb.cern.ch/guest/glxa/loadtests/pepcli-multiauthz
pepcli-multiauthz

• svn co http://svnweb.cern.ch/guest/glxa/loadtests/pepj-authz
pepj-authz

Installation is now complete.

152 Chapter 21. Legacy Pages from Twiki site

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
http://shibboleth.internet2.edu
http://subversion.tigris.org/

Argus Documentation, Release 1.7.0

Running the Framework

The load testing framework is composed of two parts, an agent and a console. The agent performs the actual work
while the console, a GUI application, collects the results from agents and displays some metrics based on those results

To run the console execute the GF_HOME/bin/console.sh command. This will start the console which will listen
on port 6372 for agent results. Be sure that this port is accessible to the agents you start.

To run the console execute the GF_HOME/bin/agent.sh test_name command. The name of the test is de-
pendent on which test you will run and is given in the documentation for those tests. You can install agents on more
than one machine and have them report back to a single client. This is useful if one agent machine is not capable of
generating enough load.

Common Configuration Options

Each test package contains a test.properties file that contains configuration information for the given test. The
later half of these options are Grinder specific properties. In most cases you’ll need to change the following properties.

Prop-
erty
Name

Value

grinder.consoleHostThe IP address of the machine on which the console is running
grinder.processesNumber of grinder processes to run. Should be equal to the number of CPU cores on the agent machine.
grinder.threadsNumber of unique clients, per process, that will connect to the service
grinder.runs Number of times each client will connect to the service, 0 (zero) means to keep going until the console

indicates the test should be stopped. Using a value of 1 (one) is useful for testing that your configuration
is correct.

21.5.2 PEPCLI Test

This test uses the C language PEP CLI to issue basic authorization requests. It a good test to run if you are trying get
measurements for applications which do not maintain state between requests (e.g. a new client is created for every
request).

Test Name: pepcli-authz

21.5. Authorization Service: Load and Lifetime Testing 153

Argus Documentation, Release 1.7.0

Configuration Options

Property Name Value Required
pepcli.bin The path to the pepcli binary. Yes
pepcli.pepds A space separated list of PEPd endpoints Yes
pepcli.certchain Path, relative to GF_HOME, to the certchain used to identify the subject or

the request
Yes

pepcli.resourceid The resource ID used within the request One is re-
quired.

pep-
cli.resourceid.prefix

Prefix added to the grinder-agent-name to create the resource ID used in
the request

^

pepcli.actionid The action ID used within the request One is re-
quired.

pep-
cli.actionid.prefix

Prefix added to the grinder-agent-run-number to create the resource ID
used in the request

^

pepcli.timeout The connection timeout in seconds No, defaults to
30

21.5.3 PEPCLI Test

This test uses the C language PEP CLI to issue multiple basic authorization requests. It a good test to run if you are
trying get measurements for applications which do not maintain state between requests (e.g. a new client is created for
every request).

Test Name: pepcli-multiauthz

Configuration Options

Property Name Value Required
pepcli.bin The path to the pepcli binary. Yes
pepcli.pepds A space separated list of PEPd endpoints Yes
pepcli.timeout The connection timeout in seconds No, defaults to 30
pepcli.tests A set of test inputs. See below for format. Yes

Test Input Format

The test import format is as follows:

[
['ce1', 'submit', '/home/jsmith/.globus/usercert.pem', 'Permit'],
['ce2', 'submit', '/home/jsmith/.globus/usercert.pem', 'Deny'],
['ce3', 'submit', '/home/jsmith/.globus/usercert.pem', 'Not Applicable'],

]

The property value is contained in matching ‘[’ and ‘]’ brackets. Then each test individual test scenario is contained
with matching ‘[’ and ‘]’. Each testing scenario has four comma-separated values: the resource ID, action ID, and
certificate chain used in the request and then the expected outcome. Each test scenario is also comma-separated. The
use of the ‘’ character can be used to indicate that the property value continues on to the next line.

154 Chapter 21. Legacy Pages from Twiki site

Argus Documentation, Release 1.7.0

21.5.4 PEP-J Test

This test uses the Java language PEP CLI to issue authorization requests. It is a good test to run if you are trying to get
measurements for application which maintain state between requests (e.g. a single client is used for multiple requests).

Test Name: pepj-authz

Configuration Option

Property Name Value Re-
quired

au-
thz.client.config

Path to the client configuration file. Relative paths are relative to
GF_HOME.

Yes

21.6 Authorization Services Testing Summary

21.6.1 Hardware Description

For the performance and aging tests, we installed:

• EMI-1 Argus 1.3 (PAP, PDP and PEP Server):

– 1 Xeon CPU 2.33GHz (Dual Core)

– 5 GB RAM

• PEP client pepcli:

– 4 hosts running the Grinder framework

Update: Results for the 1.3.1 update using the same Hardware

There is a significant drop in memory consumption coming with the 1.3.1 update for the pepd and the pdp server. Find
some load test using those Versions below.

21.6.2 Performance Tests

The performance testing of the Authorization Services was done using the hardware described above. The setup of
the test was basically the same as described here, using the following options. Each agent (host running grinder-
framework) opens two worker, and each worker opens 5 threads. Therefore a maximum of 40 (4*2*5) simultaneous
requests are achieved.

Test Description (SSL enabled)

This is the most common case, since the default configuration with YAIM results in a PEPd with SSL enabled

On the Argus Server

The default configuration was used, only the cache-size was lowered to 200 requests

• pepd.ini: maximumCachedResponses = 200

The obligations needed for this test were added to the PAP

21.6. Authorization Services Testing Summary 155

Argus Documentation, Release 1.7.0

pap-admin ap permit subject="CN=Joel Casutt D88E5396,O=SWITCH,DC=slcs,DC=switch,DC=ch
→˓" --action "submit" --resource "ce1_.*"

pap-admin ap deny subject="CN=Joel Casutt D88E5396,O=SWITCH,DC=slcs,DC=switch,DC=ch" -
→˓-action "submit" --resource "ce2_.*"

The Test-Scripts

To assure that not only cached requests are used by the PEPd, but that the PEPd also sends requests to the PDP, more
than 200 different requests need to be defined in the properties file. This can easily be done by changing the resource
(e.g. ce1_100, ce1_101, . . .)

Results and Metrics

• Test ran for about 16h without interruption

• 1’698’886 authorization requests processed

• 30 requests per second sustained

• 1340 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

Memory usage of the PEPd during the load-test:

Memory usage of the PDP during the load-test:

156 Chapter 21. Legacy Pages from Twiki site

Argus Documentation, Release 1.7.0

Results and Metrics for the 1.3.1-update

• Test ran for about 63h without interruption

• ~6.9 M authorization requests processed

• 30 requests per second sustained

• 900 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

Requests per second during the load test for the 1.3.1 update:

Memory usage of the PDP during the load test for the 1.3.1 update:

21.6. Authorization Services Testing Summary 157

Argus Documentation, Release 1.7.0

Memory usage of the PEPd during the load test for the 1.3.1 update:

21.6.3 Aging Tests

This test was done analogue to the performance test, but with only one Agent starting one worker starting one thread.
This resulted in about 10 requests per second.

Test Description

The test was done using the same options as the performance test.

Results and Metrics

• Test ran for about 43h without interruption

• 1’486’711 authorization requests processed

• 10 requests per second sustained

• 101 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

Memory usage of the PDP during the long-test:

158 Chapter 21. Legacy Pages from Twiki site

Argus Documentation, Release 1.7.0

Memory usage of the PEPd during the long-test:

21.7 Authorization Services Testing Summary

21.7.1 Hardware Description

For the performance and aging tests, we installed:

• EMI-1 Argus 1.4.0 (PAP, PDP and PEP Server):

– 1 Xeon CPU 2.33GHz (Dual Core)

– 5 GB RAM

• PEP client pepcli:

– 3 hosts running the Grinder framework

21.7.2 Performance Tests

The performance testing of the Authorization Services was done using the hardware described above. The setup of
the test was basically the same as described here, using the following options. Each agent (host running grinder-

21.7. Authorization Services Testing Summary 159

Argus Documentation, Release 1.7.0

framework) opens two worker, and each worker opens 2 threads. Therefore a maximum of 12 (3*2*2) simultaneous
requests are achieved.

Test Description (SSL enabled)

This is the most common case, since the default configuration with YAIM results in a PEPd with SSL enabled.

On the Argus Server

The default configuration was used The policies needed for this test were added to the PAP

pap-admin ap permit pfqan="/dteam" --action "submit" --resource "ce1_.*"

pap-admin ap deny pfqan="/dteam" --action "submit" --resource "ce2_.*"

while the star denotes a number between 1 and 500, so in total the pap was loaded with 1’000 policies each one
containing a rule and a obligation

The Test-Scripts

To assure that not only cached requests are used by the PEPd, but that the PEPd also sends requests to the PDP, more
than 200 different sets of Action/Resource/Obligation have been defined in the properties file. This can easily be done
by changing the resource (e.g. ce1_100, ce1_101, . . .). More than that 100 certificates issued by the ARC instant
online CA were randomly combined with those sets, leading to roughly 1’000 different possible requests.

Results and Metrics

• Test ran for about 26.5h without interruption

• 4’078’768 authorization requests processed

• 43 requests per second sustained

• 274 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

Memory consumption of the 1.4.0 PDP during a load-test:

Memory consumption of the 1.4.0 PEPd during a load-test:

160 Chapter 21. Legacy Pages from Twiki site

https://arc-emi.grid.upjs.sk/instantCA/
https://arc-emi.grid.upjs.sk/instantCA/

Argus Documentation, Release 1.7.0

Average requests per second during the load-test:

21.7.3 Aging Tests

This test was done analogue to the performance test, but with only one Agent starting one worker starting one thread.
This resulted in about 9 requests per second.

Test Description

The test was done using the same options as the performance test.

Results and Metrics

• Test ran for about 140h without interruption

• 4’951’677 authorization requests processed

• 9 requests per second sustained

• 97.5 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

Memory consumption of the 1.4.0 PDP during a aging-test:

21.7. Authorization Services Testing Summary 161

Argus Documentation, Release 1.7.0

Memory consumption of the 1.4.0 PEPd during a aging-test:

Average requests per second during the aging-test:

162 Chapter 21. Legacy Pages from Twiki site

Argus Documentation, Release 1.7.0

21.8 Authorization Services Testing Summary

21.8.1 Hardware Description

For the performance and aging tests, we installed:

• EMI-1 Argus 1.4.0 (PAP, PDP and PEP Server):

– 1 QEMU Virtual CPU 2.66GHz

– 384 MB RAM

• PEP client pepcli:

– 3 hosts running the Grinder framework

21.8.2 Performance Tests

The performance testing of the Authorization Services was done using the hardware described above. The setup of
the test was basically the same as described here, using the following options. Each agent (host running grinder-
framework) opens two worker, and each worker opens 2 threads. Therefore a maximum of 12 (3*2*2) simultaneous
requests are achieved.

Test Description (SSL enabled)

This is the most common case, since the default configuration with YAIM results in a PEPd with SSL enabled

On the Argus Server

The default configuration was used The policies needed for this test were added to the PAP

pap-admin ap permit pfqan="/dteam" --action "submit" --resource "ce1_.*"

pap-admin ap deny pfqan="/dteam" --action "submit" --resource "ce2_.*"

while the star denotes a number between 1 and 500, so in total the PAP was loaded with 1’000 policies each one
containing a rule and a obligation

The Test-Scripts

To assure that not only cached requests are used by the PEPd, but that the PEPd also sends requests to the PDP, more
than 200 different sets of Action/Resource/Obligation have been defined in the properties file. This can easily be done
by changing the resource (e.g. ce1_100, ce1_101, . . .). More than that 100 certificates issued by the ARC instant
online CA were randomly combined with those sets, leading to roughly 1’000 different possible requests.

Results and Metrics

• Test ran for about 42h without interruption

• 4’362’423 authorization requests processed

• 28.9 requests per second sustained

21.8. Authorization Services Testing Summary 163

https://arc-emi.grid.upjs.sk/instantCA/
https://arc-emi.grid.upjs.sk/instantCA/

Argus Documentation, Release 1.7.0

• 409 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

Memory consumption of the 1.4.0 PDP during a load-test:

Memory consumption of the 1.4.0 PEPd during a load-test:

Average requests per second during the load-test:

164 Chapter 21. Legacy Pages from Twiki site

Argus Documentation, Release 1.7.0

21.8.3 Aging Tests

This test was done analogue to the performance test, but with only one Agent starting one worker starting one thread.
This resulted in about 9 requests per second.

Test Description

The test was done using the same options as the performance test.

Results and Metrics

• Test ran for about 190h without interruption

• 7’332’606 authorization requests processed

• 10.7 requests per second sustained

• 89.1 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

Memory consumption of the 1.4.0 PDP during a aging-test:

Memory consumption of the 1.4.0 PEPd during a aging-test:

Average requests per second during the aging-test:

21.8. Authorization Services Testing Summary 165

Argus Documentation, Release 1.7.0

21.9 Argus: Quick Start: Manual Installation

21.9.1 Prerequisites

In order to run the Argus service you will need the following:

• a working Java 5 or better installation. Use java -version to determine your Java version.

• a recent version of openssl (>0.9.7) installed on your system

• LCG trusted Certificate Autorities certificates installed. In SL4 and SL5, the lcg-CA package provides those
certificates.

• a valid, PEM encoded X509 server certificate issued by a trusted CA.

21.9.2 Installation

The Argus service is composed of three components, the PAP, PDP, and PEPd. The following steps provide instructions
for installing each component.

PAP Installation

1 Download the latest version version of the software. 1 Expand the downloaded archive to the /opt/argus direc-
tory.

• This resulting installation directory /opt/argus/pap will be referred to, in the documentation, as
PAP_HOME 1 Export the environment variable PAP_HOME=/opt/argus/pap 1 Add the /opt/argus/
pap/bin to your PATH in order to use the PAP pap-admin command

PDP Installation

1. Download the latest version version of the software. 1 Expand the downloaded archive in to the /opt/argus
directory.

• This resulting installation directory /opt/argus/pdp will be referred to, in documentation, as
PDP_HOME

166 Chapter 21. Legacy Pages from Twiki site

http://etics-repository.cern.ch:8080/repository/download/registered/org.glite/org.glite.authz.pap-service/
http://etics-repository.cern.ch:8080/repository/download/registered/org.glite/org.glite.authz.pdp

Argus Documentation, Release 1.7.0

PEPd Installation

1 Download the latest version version of the software. 1 Expand the downloaded archive in to the /opt/argus
directory.

• The resulting installation directory /opt/argus/pepd will be referred to, in documentation, as
PEPD_HOME

21.9.3 Starting/Stop the Services

To start/stop the PAP you can use the command /opt/argus/pap/bin/pap-standalone start|stop.

To start/stop the PDP you can use the command /opt/argus/pdp/bin/pdpctl.sh start|stop.

To start/stop the PEPd you can use the command /opt/argus/pepd/bin/pepdctl.sh start|stop.

You should always start the PAP before the PDP or else the PDP will not be to retrieve its policy from the PAP.

Installation is now complete, proceed to configuring the Argus service.

21.10 Argus: Quick Start: Manual Configuration

TODO

Configuration is now complete, proceed to setting up your site policies.

21.11 Quick Start: glite 3.2 Argus Installation

21.11.1 Installation and Configuration

The PAP, PDP, and PEPd are bundled together as the gLite node type glite-ARGUS.

YUM Repository

Copy the http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-ARGUS.repo repository file into
your local /etc/yum.repos.d directory.

Packages Installation

To install and initially configure the service do the following: 1 Install the EUGridPMA trust anchors bundle:
 yum
install lcg-CA 1 If not already installed, install the Java VM OpenJDK 1.6:
 yum install java-1.
6.0-openjdk 1 Install the glite-ARGUS metapackage:
 yum install glite-ARGUS 1 In your YAIM
site-info.def configuration set at least the following variables:

• the ARGUS_HOST property to the hostname of the machine on which you are installing

• the PAP_ADMIN_DN property to the subject DN of your user certificate. Allow the use the pap-admin
command

• the USERS_CONF, GROUP_CONF, and VOS property to their appropriate values for your site 1 Configure the
ARGUS_server node type with YAIM:
 yaim -c -s site-info.def -n ARGUS_server

21.10. Argus: Quick Start: Manual Configuration 167

http://etics-repository.cern.ch:8080/repository/download/registered/org.glite/org.glite.authz.pep-daemon/
http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-ARGUS.repo

Argus Documentation, Release 1.7.0

Example Configuration

Example site-info.def for the ARGUS_server node type:

#
glite-ARGUS hostname
#
ARGUS_HOST=vesta.switch.ch

users and groups
USERS_CONF=/opt/glite/yaim/etc/users.conf
GROUPS_CONF=/opt/glite/yaim/etc/groups.conf

Supported VOs
VOS="dteam"

VO_DTEAM_VOMS_CA_DN="'/DC=ch/DC=cern/CN=CERN Trusted Certification Authority' '/DC=ch/
→˓DC=cern/CN=CERN Trusted Certification Authority' '/DC=ch/DC=cern/CN=CERN Trusted
→˓Certification Authority'"
VO_DTEAM_VOMSES="'dteam lcg-voms.cern.ch 15004 /DC=ch/DC=cern/OU=computers/CN=lcg-
→˓voms.cern.ch dteam 24' 'dteam voms.cern.ch 15004 /DC=ch/DC=cern/OU=computers/
→˓CN=voms.cern.ch dteam 24' 'dteam lxbra2309.cern.ch 15002 /DC=ch/DC=cern/
→˓OU=computers/CN=lxbra2309.cern.ch dteam 24'"

PAP administrator DN
PAP_ADMIN_DN="/DC=org/DC=acme/CN=John Doe"

At this point, you should have a running PAP, PDP, and PEP daemon.

21.11.2 Operation Environment

You should now have Argus installed.

Directories

There a few directories that you should be aware of:

• /opt/argus/pap contains the PAP component of Argus

• /opt/argus/pdp contains the PDP component of Argus

• /opt/argus/pepd contains the PEPd component of Argus

• /etc/grid-security/certificates contains the CAs trusted by Argus

• /etc/grid-security/grid-mapfile contains the mappings from DN/FQANs to local user accounts

• /etc/grid-security/groupmapfile contains the mappings from FQANs to local groups

• /etc/grid-security/gridmapdir contains grid user to local user account mappings

• /etc/grid-security/vomsdir contains the VOMS servers trusted by Argus

Note, if you have an existing site and wish to use your existing account mappings you can move your existing mappings
over to the Argus host. Simply tar your existing mappings (tar -cf gridmap.tar /etc/grid-security/
gridmapdir) and then transfer them over the Argus host and untar them (tar -xf gridmap.tar).

168 Chapter 21. Legacy Pages from Twiki site

Argus Documentation, Release 1.7.0

Endpoint URL

Argus is a network service. Like other network services you should ensure that your network settings only allow
anticipated clients communicate with the service.

• Argus 1.1 enables by default client authentication on the service endpoint, therefore the endpoint URL scheme
is now HTTPS.

• Client applications must be able to contact the service port 8154

• Example Argus 1.1 endpoint URL (with client authN): https://argus.example.org:8154/authz

• All other ports (8150-8153) should only be accessible within the Argus service host itself.

21.11.3 Starting/Stopping the Services

To start/stop the PAP you can use the command /etc/init.d/pap-standalone start|stop.

To start/stop the PDP you can use the command /etc/init.d/pdp start|stop. You can also force a reload
of the policies, retrieved from the PAP, with /etc/init.d/pdp reloadpolicy.

To start/stop the PEPd you can use the command /etc/init.d/pepd start|stop. You can also clear the
responses cache with /etc/init.d/pepd clearcache.

You should always start the PAP before the PDP or else the PDP will not be to retrieve its policy from the PAP.

Installation is now complete, proceed to setting up your site policies.

21.11.4 Global Banning Configuration

The following are the required steps to make your Argus server import the global grid banning policies. These policies
are maintained by OSCT / EGI CSIRT. The server is located at CERN.

Notice that in following the steps below you will be trusting the global banning server and its policies, so that e.g.
users banned by the OSCT / EGI CSIRT will also be rejected at your site as a result.

The pap-admin command is normally installed in /opt/argus/pap/bin

Add the Global Banning PAP server from CERN as a remote PAP:

pap-admin add-pap centralbanning argus.cern.ch "/DC=ch/DC=cern/OU=computers/
CN=argus.cern.ch"

The CERN PAP is now listed but is by default still disabled.

pap-admin enable-pap centralbanning

The CERN PAP is now enabled.

pap-admin set-paps-order centralbanning default

The CERN PAP policies are now parsed before the local policies, so that e.g. a user banned by OSCT is immediately
rejected. This step is important as only with this order can black listing work.

pap-admin refresh-cache centralbanning

The local pap cache, comprising also the CERN policies, is refreshed and the new policies are made available. The
policies are then fetched automatically by the server every polling interval seconds or manually when the a
refresh-cache command is sent to the server.

21.11. Quick Start: glite 3.2 Argus Installation 169

Argus Documentation, Release 1.7.0

%META:TOPICMOVED{by=”ad968f62f612332eff6b” date=”1271340916” from=”EGEE.AuthzQSYaimInstall”
to=”EGEE.AuthzQSYumYaimInstall”}%

170 Chapter 21. Legacy Pages from Twiki site

CHAPTER 22

Indices and tables

• genindex

• modindex

• search

171

	Argus Release notes
	Argus 1.7.3 (24-09-2022)
	Argus 1.7.2 (01-08-2017)
	Argus 1.7.1 (05-05-2017)
	Argus 1.7.0 (09-02-2016)

	Argus Authorization Service
	Summary
	Argus Service Installation
	Service Components
	Enabled Applications
	Support and Monitoring
	Development Information
	Additional Support
	About the name Argus

	Argus Concepts
	Argus Introduction
	Attribute Based Descriptions
	Identifiers within Argus
	Resource ID
	Conclusion

	Argus: Policy Administration Point (PAP)
	Summary

	Argus: Policy Decision Point (PDP)
	Summary

	Argus: Policy Enforcement Point Daemon (PEP)
	Summary

	Argus Monitoring
	Nagios Probes for Argus (UMD)

	Argus Operations
	Entropy related problems
	Bind services to localhost
	Firewall setup
	Mapping details

	Argus Quick Start Guide
	Argus Quick Start: Site Policy Setup

	Example of Authorization Requests and Policies
	User Based Authorization
	Per-VO Pilot Job Authorization Policy

	Argus Service Reference Card
	Definitions
	Service Reference Card

	Argus Service Deployment for 1.7 version
	Requirements
	Installation with YUM
	Update with YUM
	Configuration

	Nagios Probes for Argus
	EMIR Publisher for Argus 1.6 (EMI-3)
	Known Issues
	Manual configuration
	Requirements
	PAP
	PDP
	PEP
	Grid Mapping
	VOMS configuration
	Restart services
	BDII configuration

	Configuration with YAIM
	Argus YAIM Configuration Variables
	Mandatory YAIM Variables
	Argus site-info.def Configuration
	Generate Argus Configuration

	Authorization Service: Grid Map File Syntax
	Description
	File Syntax
	Subject Keys
	Map Targets

	Argus YAIM Configuration for EMI
	YAIM Configuration for ARGUS_server

	Known Issues for older version
	Timeouts for certificates from CAs that use OCSP
	Performance issue with Argus PEP Server (EMI-2, EMI-3, all versions)
	Problem the EMI-3 update and Argus PEP Server v.1.6.1
	Problem with Argus 1.6 (EMI-3) and fetch-crl
	Problem with Nagios plugins for Argus and TMP directory permission
	Problem with Argus 1.5 (EMI-2) and CREAM
	Problem with upgrade from Argus 1.4 (EMI-1) to Argus 1.5 (EMI-2)

	Legacy Pages from Twiki site
	Argus EMIR Publisher Configuration (EMI-3)
	Argus Services Fine Tuning
	Argus Development Tools
	GGUS User Support for Argus
	Authorization Service: Load and Lifetime Testing
	Authorization Services Testing Summary
	Authorization Services Testing Summary
	Authorization Services Testing Summary
	Argus: Quick Start: Manual Installation
	Argus: Quick Start: Manual Configuration
	Quick Start: glite 3.2 Argus Installation

	Indices and tables

