
Argbash Documentation
Release 2.10.0

Matěj Týč

Jan 09, 2023

Contents

1 Argbash 1
1.1 Requirements . 1

2 Quickstart 3
2.1 Generating a template . 3
2.2 Writing a template . 4
2.3 Limitations . 6

3 FAQ 7

4 Index 9
4.1 Installation . 9
4.2 Template writing guide . 11
4.3 Argbash tools . 23
4.4 Examples . 28
4.5 Others . 35

5 Indices and tables 39

i

ii

CHAPTER 1

Argbash

Argbash (https://argbash.dev) is a bash code generator that can assist you in writing scripts that accept arguments.
You declare arguments that your script should use in a few lines and then, you run Argbash on those declarations to
get a parsing code that can be used on all platforms that have bash (Linux, macOS, MS Windows, . . .).

You can have your parsing code in the script, you can have Argbash to help you to use it as a bash library, or you can
generate the library yourself and include it yourself too, it’s up to you. A basic template generator argbash-init
is part of the package, and you can get started with it in a couple of seconds.

Argbash is free and open source software, you are free to use it, share it, modify it and share the modifications with
the world, since it is published under the 3-clause BSD linense.

Version 2.10.0

Authors Matěj Týč

Copyright 2014–2023, Matěj Týč

Website https://argbash.dev

1.1 Requirements

Both you and your users need:

• bash>=3.0

Only you need those on the top:

• autoconf>=2.64 (Argbash makes use of the autom4te utility)

• grep, sed, etc. (if you have autoconf, you probably have those already)

1

https://argbash.dev
https://github.com/matejak/argbash
https://argbash.dev/generate
https://github.com/matejak
https://argbash.dev

Argbash Documentation, Release 2.10.0

2 Chapter 1. Argbash

CHAPTER 2

Quickstart

In a nutshell, using Argbash consists of these simple steps:

1. You write (or generate) a simple template of your script based on arguments your script is supposed to accept.

2. You run the argbash script (located in the package’s bin directory) on it to get the fully functional script.

Eventually, you may want to add/remove/rename arguments your script accepts. In that case, you just need to edit the
script — you don’t need to repeat the two steps listed above! Why? It is so because the script retains the template
section, so if you need to make adjustments to the template, you just edit the template section of the script and run
argbash on top of the script to get it updated.

How to use Argbash? You can either

• download and install it locally,

• use the online generator, or

• use the Docker container.

2.1 Generating a template

Argbash features the argbash-init script that you can use to generate a template in one step. Assume that
you want a script that accepts one (mandatory) positional argument positional-arg and two optional ones
--option and --print, where the latter is a boolean argument.

In other words, we want to support these arguments:

• --option that accepts one value,

• --print or --no-print that doesn’t accept any value, and

• an argument named positional-arg that we are going to refer to as positional that must be passed and that
is not preceded by options (such as --foo, -f).

We call argbash-init and as the desired result is a script, we directly pipe the output of argbash-init to
argbash:

3

https://argbash.dev/generate
https://hub.docker.com/r/matejak/argbash/

Argbash Documentation, Release 2.10.0

bin/argbash-init --pos positional-arg --opt option --opt-bool print - | ../bin/
→˓argbash -o script.sh -

Let’s see what the auto-generated script can do!

./script.sh -h

<The general help message of my script>
Usage: ./script.sh [--option <arg>] [--(no-)print] [-h|--help] <positional-arg>

-h, --help: Prints help

./script.sh --print --option opt-value pos-value

Value of --option: opt-value
'print' is on
Value of 'positional-arg': pos-value

We didn’t have to do much, yet the script is pretty capable.

2.2 Writing a template

Now, let’s explore more advanced argument types on a trivial script that accepts some arguments and then prints their
values. So, let’s say that we would like a script that produces the following help message:

This is a minimal demo of Argbash potential
Usage: ../resources/examples/minimal.sh [-o|--option <arg>] [--(no-)print] [-h|--
→˓help] [-v|--version] <positional-arg>

<positional-arg>: Positional arg description
-o, --option: A option with short and long flags and default (default: 'boo')
--print, --no-print: A boolean option with long flag (and implicit default:

→˓off) (off by default)
-h, --help: Prints help
-v, --version: Prints version

Then, it means that we need following arguments:

• One mandatory positional argument. (In other words, an argument that must be passed and that is not preceded
by options)

• Four optional arguments:

– --option that accepts one value,

– --print or --no-print that doesn’t accept any value — it either is or isn’t specified,

– --version that also doesn’t accept any value and the program is supposed just to print its version and
quit afterwards, and finally

– --help that prints a help message and quits afterwards.

Therefore, we call argbash-init like we did before:

bin/argbash-init --pos positional-arg --opt option --opt-bool print minimal.m4

Next, we edit the template so it looks like this:

4 Chapter 2. Quickstart

Argbash Documentation, Release 2.10.0

#!/bin/bash

m4_ignore(
echo "This is just a script template, not the script (yet) - pass it to 'argbash' to
→˓fix this." >&2
exit 11 #)Created by argbash-init v2.10.0
ARG_OPTIONAL_SINGLE([option], o, [A option with short and long flags and default],
→˓[boo])
ARG_OPTIONAL_BOOLEAN([print], , [A boolean option with long flag (and implicit
→˓default: off)])
ARG_POSITIONAL_SINGLE([positional-arg], [Positional arg description],)
ARG_DEFAULTS_POS
ARG_HELP([This is a minimal demo of Argbash potential])
ARG_VERSION([echo $0 v0.1])
ARGBASH_SET_INDENT([])
ARGBASH_GO

The body of the script (i.e. lines past the template) is trivial, but note that it is enclosed in a pair of square brackets.
They are “hidden” in comments and not seen by the shell, but still, they have to be there for the “use the script as a
template” feature to function.

[<-- needed because of Argbash

vvv PLACE YOUR CODE HERE vvv
For example:
if ["$_arg_print" = on]
then

echo "Positional arg value: '$_arg_positional_arg'"
echo "Optional arg '--option' value: '$_arg_option'"

else
echo "Not telling anything, print not requested"

fi

^^^ TERMINATE YOUR CODE BEFORE THE BOTTOM ARGBASH MARKER ^^^

] <-- needed because of Argbash

We generate the script from the template:

bin/argbash minimal.m4 -o minimal.sh

Now we launch it and the output is good!

./minimal.sh posi-tional -o opt-ional --print

Positional arg value: posi-tional
Optional arg --option value: opt-ional

Note: If something still isn’t totally clear, take look at the Examples section.

2.2. Writing a template 5

Argbash Documentation, Release 2.10.0

2.3 Limitations

Warning: Please read this carefully.

1. The square brackets in your script have to match (i.e. every opening square bracket [has to be followed at some
point by a closing square bracket]).

There is a workaround — if you need constructs s.a. red=$'\e[0;91m', you can put the matching square
bracket behind a comment, i.e. red=$'\e[0;91m' # match square bracket:].

This limitation does apply only to files that are processed by argbash — you are fine if you have the argument
parsing code in a separate file and you don’t use the INCLUDE_PARSING_CODE macro. You are also OK if
you use argbash-init in the decoupled mode.

2. The generated code generally contains bashisms as it relies heavily on bash arrays to process any kind of
positional arguments and multi-valued optional arguments. That said, if you stick with optional arguments only,
a POSIX shell s.a. dash should be able to process the Argbash-generated parsing code.

6 Chapter 2. Quickstart

CHAPTER 3

FAQ

• Q: What is the license of generated code? Is it also the 3-clause BSD, as it contains parts of Argbash source
code?

A: No, as it is mentioned in the LICENSE file, you can distribute Argbash output under your terms. We rec-
ommend you to adhere to the BSD license — keeping comments indicating that the code is generated is fair
towards script’s users.

7

Argbash Documentation, Release 2.10.0

8 Chapter 3. FAQ

CHAPTER 4

Index

Contents:

4.1 Installation

4.1.1 User installation

If you want to use Argbash locally, you have to download the software package and run the installation script.

1. Go to the release section of the GitHub project, choose the version to download, and download the source code
package.

2. Unpack the contents of the archive. You can use the bin/argbash script without any installation (as it is
described in the Quickstart), but you can proceed to the installation in order to be able to use argbash system-
wide.

3. Go to the resources folder. There is a Makefile.

4. According to whether you have your $HOME/.local/bin folder in the PATH:

• If so, run make install PREFIX=$HOME/.local,

• else, run sudo make install PREFIX=/usr.

Note: If you want multiple Argbash versions installed in parallel, install them using make altinstall
(and uninstall using make uninstall) commands. This will create argbash-X.Y.Z script under the
bin directory, with argbash-X.Y, argbash-X and argbash symlinks pointing transitively to it. If you
altinstall another version of Argbash, the common symlinks will be overwritten (i.e. at least argbash).

This way of installation won’t install the argbash-xtoy migration scripts.

5. Optional:

9

https://github.com/matejak/argbash/releases

Argbash Documentation, Release 2.10.0

• Supply INSTALL_COMPLETION=yes as an installation argument to install bash completion for
argbash to $(SYSCONFDIR)/bash_completion.d. The default SYSCONFDIR is /etc, but
you may override it in the same way as you can override the PREFIX variable.

• To be able to let Argbash generate manpages, rst2man needs to be installed on your system. It’s part
of the Python package docutils which can be installed on Debian/Ubuntu using sudo apt install
python3-docutils.

• Run some checks by executing: make check (still in the resources folder). You should get a message
All is OK at the bottom.

Argbash has this audience:

• Users — people that use scripts that make use of Argbash.

• Developers — people that use Argbash to write scripts.

• Tinkerers — people that come in contact with Argbash internals, typically curious Developers.

• bash >= 3.0 — this is obvious, everybody needs bash. There is only one exception — in cases of simple
scripts, a POSIX shell s.a. dash will be enough for Users.

• autoconf >= 2.63 — Argbash is written in a m4 language extension called m4sugar, which is con-
tained in autoconf. Developers and Tinkerers need this. autoconf is available on Linux, macOS, BSDs
and can be installed on MS Windows.

• grep, sed, coreutils — The argbash script uses grep, sed, cat, and test. If you have autoconf,
you probably have those already.

• GNU Make >= 4.0 — the project uses Makefiles to perform a wide variety of tasks, although it is more of
interest to Tinkerers.

4.1.2 Building Argbash

If you identify yourself as a tinkerer (i.e. you want to play with internals of Argbash), you may use a different set of
steps:

1. Clone the Git repository: git clone https://github.com/matejak/argbash.git

2. Go to the resources directory consider running a develop install there, e.g. make develop
PREFIX=$HOME/.local,

This type of installation ensures that whenever you make a change to the bin/argbash script in the repository,
the argbash command always calls that bin/argbash script.

3. After you make modifications the source files (.m4 files in the src directory), you regenerate bin/argbash
by running make ../bin/argbash in the resources directory.

If you let a bug through that prevents the argbash script to regenerate itself, run make bootstrap to
regenerate it in a more robust way.

4. Remember to run make check in the resources directory often to catch bugs as soon as possible.

4.1.3 Argbash components

The Argbash package consists of these scripts:

• argbash, the main part of Argbash. It is basically a wrapper around the autom4te utility that uses the
Argbash “source code” located in the src directory. In course of an installation, both the script and the
source are copied under the prefix — script goes to $PREFIX/bin and source to $PREFIX/lib/argbash.

10 Chapter 4. Index

https://docutils.sourceforge.io/sandbox/manpage-writer/rst2man.txt
https://pypi.org/project/docutils/

Argbash Documentation, Release 2.10.0

The argbash script itself is generated using Argbash. It can be (re)generated using a Makefile that can be
found in the resources folder.

• argbash-xtoy scripts (x, y are major version numbers) that assist users in modifying their scripts in
case that Argbash changes its API. For example, Argbash 2.1.4 (we say Argbash of major version
2) has argbash-1to2 script and Argbash of major version 3 will have scripts argbash-1to3 and
argbash-2to3.

• argbash-init is a quickstart script — it enables you to create a basic template for your script. Then, you
just have to make some slight modifications, feed it to argbash and you are done.

4.1.4 The main Makefile

The Makefile in the resources folder can do many things:

Installation

• make install [PREFIX=foo] runs the installation into the prefix you can specify (default is $(HOME)/
.local). This will install the argbash script (notice the missing .sh extension) into $PREFIX/bin (and
some support files into $PREFIX/lib/argbash).

• make develop [PREFIX=foo] is similar to make install, but it installs a wrapper around the local
bin/argbash, so any change to the file will be immediately reflected for everybody who uses the system-wide
one. This is inspired by Python’s python setup.py develop pattern.

• make uninstall [PREFIX=foo] inverse of the above.

Running argbash

• make ../bin/argbash, make bootstrap makes (or updates) the argbash script (the script basically
overwrites itself). Use the latter if previous update broke the current ../bin/argbash so it is not able to
regenerate itself.

• make examples compiles examples from .m4 files to .sh files in the examples folder.

• make foo/bar.sh generates a script provided that there is a foo/bar.m4 file.

• make foo/bar2.sh generates a script provided that there is a foo/bar.sh file.

Releasing

• make check runs the tests.

• make version VERSION=1.0.0 sets the project’s version to all corners of the project where it should go.

• make release [VERSION=1.0.0] refreshes date in the ChangeLog and regenerates all of the stuff
(and runs tests).

• make tag tags the version.

4.2 Template writing guide

This section tells you how to write templates, the next one is about argbash script invocation.

4.2. Template writing guide 11

Argbash Documentation, Release 2.10.0

4.2.1 Definitions

Positional and optional arguments

There are two major types of arguments — take an example:

ls -l --sort time /home

• Optional arguments are -l and --sort, while we have only one

• positional argument — /home.

Here, the argument -l is optional of a boolean type (it is either on or off), --sort is also optional, taking exactly
one value (in this case time). -l and --sort are called options, hence the name optional arguments. The common
pattern is that optional arguments are not required, being there just in the case you need them.

The /home argument is a positional one. In case of ls, the positional argument has a default — running ls without
parameters is the same as running ls ".". ls itself accepts an arbitrary number of positional arguments and it treats
them all in the same way.

On the other hand, the grep command requires at least one positional argument. The first one is supposed to be the
regular expression you want to match against, and the other ones correspond to filenames, so they are not treated the
same. The first positional argument grep accepts (i.e. the regular expression), doesn’t have a default, whereas the
second one normally defaults to -, which means grep will try to read input from stdin.

Option, Value, and others

We have positional and optional arguments sorted out, so let’s define some other terms now keeping the example of
ls -l --sort time /home:

• Option (also flag or switch): The string that identifies optional arguments on the command-line, can have
a short (dash and a character, e.g. -l, -?) or long (double dash and string, e.g. --sort) form. POSIX
conventions mention only short options, whereas the GNU conventions mention long options.

• Value: In connection with optional arguments, value of an argument is the string that follows it (provided that
the argument expects a value to be given). Concerning positional arguments, it is simply the string on the
command-line (whose location matches the location in which we expect the given positional argument). So in
our example, the values are time and home.

• Name: Both positional and optional arguments have a name. In case of optional argument, the name is what
appears after the long option’s the double dash, e.g. name of --project-path is project-path. The
argument’s name is used in help and later in your script when you access argument’s value. Names of positional
arguments are much less visible to the script’s user — one can see them only in the help message.

• Argument: An argument is the high-level concept. On command-line, arguments are identified by options
(which themselves may or may be not followed by values). Although this is confusing, it is a common way of
putting it. In our example, we have

– -l — this argument has only the option, but never accepts values.

– --sort — this argument accepts exactly one value (in this case, the string time). If you don’t provide
a value, you will get an error.

Argbash exposes values of passed arguments as environmental variables.

• Default: In case of positional and boolean arguments, you may specify their default values.

Note: General notice: There is no way of how to find out whether an argument was passed or not just by looking
at the value of the corresponding environmental variable in the script. bash doesn’t distinguish between empty

12 Chapter 4. Index

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html

Argbash Documentation, Release 2.10.0

variables and variables containing an empty string. Also note that it is perfectly possible to pass an empty string
as an argument value.

So let’s get back to argument types. Below, is a list of argument types and macros that you have to write to support
those (e.g. ARGBASH_GO is a macro and ARG_OPTIONAL_BOOLEAN([verbose], [Verbose mode]) is a
macro called with two arguments — verbose and Verbose mode). Place those macros in your files as bash
comments.

4.2.2 Your script

You have to decide what arguments should your script support. As of this version, Argbash lets you choose from:

• Single-value positional arguments (with optional defaults),

• single-value optional arguments,

• boolean optional arguments,

• action optional arguments (i.e. the --version and --help type of args) and

• incremental arguments that “remember” how many times they have been repeated (e.g. --verbose) and

• repeatable arguments that sequentially store their values into an array (e.g. -I).

Plus, there are convenience macros that don’t relate to argument parsing, but they might help you to write better scripts
and a helper that enables you to easily wrap other Argbash-aware scripts without fuss.

Take a look at the API and place the declarations either to your script or in a separate file. Let yourself be inspired
by the resources/examples/simple.m4 example (bash syntax highlighting is recommended, despite the
extension).

Then, run the following command to your file:

bin/argbash myfile.m4 -o myfile.sh

to either get a script that should just work, or a file that you include in your script.

4.2.3 Argbash API

Put macro parameters in square brackets. Parameters marked as optional can be left out blank.

The following code leaves second and last parameters blank. Values of first and third parameters are verbose and
Turn on verbose mode respectively.

ARG_OPTIONAL_BOOLEAN([verbose], , [Turn on verbose mode],)

Positional arguments

• Single-value positional argument (with optional default):

ARG_POSITIONAL_SINGLE([argument-name], [help message (optional)], [default
→˓(optional)])

The argument is mandatory, unless you specify a default.

If you leave the default blank, it is understood that you don’t want one (and that the argument is mandatory). If
you really want to have an explicit default of empty string, pass a quoted empty string (i.e. "" or '').

4.2. Template writing guide 13

Argbash Documentation, Release 2.10.0

• Multi-value positional argument (with optional defaults):

ARG_POSITIONAL_MULTI([argument-name], [help message (optional)], [number of
→˓arguments], ..., [default for the second-to-last (i.e. penultimate) argument
→˓(optional)], [default for the last argument (optional)])

Given that your argument accepts 𝑛 values, you can specify 𝑚 defaults, (𝑚 ≤ 𝑛) for last 𝑚 values.

For example, consider that your script makes use of only one multi-value argument, which accepts 3 values with
two defaults bar and baz. Then, it is imperative that at least one value is specified on the command-line. So If
you pass a value val1 on the command-line, you will be able to retrieve val1, bar and baz inside the script.
If you pass val1 and val2, you will be able to retrieve val1, val2 and baz. If you pass nothing, or more
than three values, an error will occur.

Arguments are available as a bash array (first element has index of 0).

• Infinitely many-valued positional argument (with optional defaults):

ARG_POSITIONAL_INF([argument-name], [help message (optional)], [minimal number of
→˓arguments (optional, default=0)], [default for the first non-required argument
→˓(optional)], ...)

Argbash supports arguments with arbitrary number of values. However, you can require a minimal amount of
values the caller has to provide and you can also assign defaults for the values that are not required. Given that
your argument accepts at least 𝑛 values, you can specify defaults for (𝑛+ 1)th argument (and so on).

For example, consider that your script makes use of infinitely many-valued argument, which accepts at least 1
value and also has two defaults bar and baz. Then, it is imperative that at least one value is specified on the
command-line. So If you pass a value val1 on the command-line, you will be able to retrieve val1, bar and
baz inside the script. If you pass val1, val2, val3 and val4, you will be able to retrieve val1, val2
val3 and val4.

Arguments are available as a bash array (first element has index of 0).

Note: The main difference between ARG_POSITIONAL_MULTI and ARG_POSITIONAL_INF is in han-
dling of defaults. In ARG_POSITIONAL_MULTI, defaults determine the number of values that are required to
be supplied. In ARG_POSITIONAL_INF, you determine the number of required values and defaults follow.

• End of optional arguments and beginning of positional ones (the double-dash --):

ARG_POSITIONAL_DOUBLEDASH()

You are encouraged to add this to your script if you use both positional and optional arguments.

This pattern is known for example from the grep command. The idea is that you specify optional arguments
first and then, whatever argument follows it, it is considered to be a positional one no matter how it looks. For
example, if your script accepts a --help optional argument and you want it to be recognized as positional,
using the double-dash is the only way.

Optional arguments

• Single-value optional arguments:

ARG_OPTIONAL_SINGLE([argument-name-long], [argument-name-short (optional)], [help
→˓message (optional)], [default (optional)])

The default default is an empty string.

14 Chapter 4. Index

Argbash Documentation, Release 2.10.0

• Boolean optional arguments:

ARG_OPTIONAL_BOOLEAN([argument-name-long], [argument-name-short (optional)],
→˓[help message (optional)], [default (optional)])

The default default is off (the only alternative is on).

• Incremental optional arguments:

ARG_OPTIONAL_INCREMENTAL([argument-name-long], [argument-name-short (optional)],
→˓[help message (optional)], [default (optional)])

The default default is 0. The argument accepts no values on command-line, but it tracks a numerical value
internally. That one increases with every argument occurrence.

• Repeated optional arguments:

ARG_OPTIONAL_REPEATED([argument-name-long], [argument-name-short (optional)],
→˓[help message (optional)], [default (optional)])

The default default is an empty array. The argument can be repeated multiple times, but instead of the later
specifications overriding earlier ones (s.a. ARG_OPTIONAL_SINGLE does), arguments are gradually appended
to an array. The form of the default is what you normally put between the brackets when you create bash arrays,
so put whitespace-separated values in there, for example:

ARG_OPTIONAL_REPEATED([include], [I], [Directories where to look for include
→˓files], ['/usr/include' '/usr/local/include'])

The specified values are appended to defaults, so if you consider a script that accepts the --include argu-
ment due to the directive above, if you pass it -I src/include, the argument-holding array will have three
elements — /usr/include, /usr/local/include and src/include.

Unlike the rest of the Argbash macros, you are responsible to quote the defaults properly. Therefore, if
you pass "one two three" as default, it will translate to a 1-element array with the sole element "one
two three. Typically, you will want one two three, or maybe even "${one_to_nineteen[@]}"
twenty "twenty one" passed to the macro.

• Action optional arguments (i.e. the --version and --help type of comments):

ARG_OPTIONAL_ACTION([argument-name-long], [argument-name-short (optional)], [help
→˓message (optional)], [code to execute when specified])

The scripts exits after the argument is encountered. You can specify a name of a function, echo
"my-script: v0.5" and whatever else. This is simply a shell code that will be executed as-is (including
" and ' quotes) when the argument is passed. It can be multi-line, but if you need something sophisticated, it is
recommended to define a shell function in your script template and call that one instead.

Special arguments

• Help argument (a special case of an optional action argument):

ARG_HELP([short program description (optional)], [long program description
→˓(optional)],

[short option (optional, "h" by default)], [long option (optional, "help" by
→˓default)], [option description (optional, "Prints help" by default)])

By default, it will generate the --help and -h action arguments that will print the usage information. You
can use the last three arguments to override the default help argument handling. If you wish to disable the short

4.2. Template writing guide 15

Argbash Documentation, Release 2.10.0

argument for the help, just leave it blank, and specify either the long argument, or the description. Notice that
the usage information is generated even if this macro is not used — we print it when we think that there is
something wrong with arguments that were passed.

The long program description is a string quoted in double quotation marks (so you may use environmental
variables in it) and additionally, occurrences of \n will be translated to a line break with indentation (use
\\n to have the actual \n in the help description). If you want to have environmental variables and new-
lines, you have to make sure that the env variable contains literal newlines/tabs — you can either use the
foo=$'broken\nline' pattern, or you can use quotes to define the variable so it contains real literal new-
lines / tabs.

Example invocation:

ARG_HELP([My app], [Parses arguments ...\n... perfectly.], [], [?])

• Version argument (a special case of an action argument):

ARG_VERSION([code to execute when specified],
[short option (optional, "v" by default)], [long option (optional, "version"

→˓by default)], [option description (optional, "Prints version" by default)])

By default, it will generate the --version and -v action arguments that will print the version information.
You can use the last three arguments to override the default version argument handling. If you wish to disable
the short argument for the version, just leave it blank, and specify either the long argument, or the description.

• Enhanced version argument (a special case of an action argument):

ARG_VERSION_AUTO([version number or macro containing it], [additional version
→˓message (optional)],

[short option (optional, "v" by default)], [long option (optional, "version"
→˓by default)], [option description (optional, "Prints version" by default)])

The macro will take it’s first argument, expands it, and treats it as a version number. This allows you to use a
quoted macro containing the version number as the first argument. Then, it attempts to detect the basename of
the generated script and outputs a version message out of those two.

If the ARG_HELP([MSG], ...) macro has been used before, it also outputs the MSG below the program
name — version pair.

For example, for argbash, it yields

argbash 2.10.0

Argbash is an argument parser generator for Bash.

• Verbose argument (a special case of a repeated argument):

ARG_VERBOSE([short arg name])

Default default is 0, so you can use a test $_arg_verbose -ge 1 pattern in your script.

• Collect leftovers:

ARG_LEFTOVERS([help text (optional)])

This macro allows your script to accept more arguments and collect them consequently in the
_arg_leftovers array.

A use case for this is wrapping of scripts that are completely Argbash-agnostic. Therefore, your script can
take its own arguments and the rest that is not recognized can go to the wrapped script.

16 Chapter 4. Index

https://stackoverflow.com/a/3182519

Argbash Documentation, Release 2.10.0

Typing macros

Warning: Features described in this section are experimental. Macros in the type-related section below are not
an official part of the API yet — their names and/or signature may change.

The documentation here is just a peek into the Argbash future. Please raise an issue if you feel you can provide
helpful feedback!

Argbash supports typed argument values. For example, you can declare that a certain argument requires an inte-
ger value, and if its value by the time of conclusion of the parsing part of the script is not of an integer type, an
error is raised. The validator sometimes returns the value in a canonical form (e.g. it may trim leading and trailing
whitespaces).

Note: Users of your script have to have a working grep in order to use this.

Generally, macros accept these parameters:

• Type code. In some cases, you make it up and in other cases, you have to know the right one. End-users of your
script won’t even see it.

• Type string. This is used in the script’s help.

• List of arguments whose values are of the given type. Typically, [arg1, arg2] is OK*0.

You have these possibilities:

• Built-in types:

ARG_TYPE_GROUP([type code], [type string], [list of arguments of that type])

Type code is a code of one of the types that are supported, type string is used in help.

Type code Description
int integer
pint positive integer
nnint non-negative integer
float floating-point number (e.g. 4.2e1)
decimal float without the exponential stuff (e.g. 42.0)
string anything†0

As an example, if you have an argument --iterations that accepts a value representing how many times to
repeat something, you use

ARG_TYPE_GROUP([nnint], [COUNT], [iterations])

• One-of values (i.e. values are restricted to be members of a set).

ARG_TYPE_GROUP_SET([type code], [type string], [list of arguments of that type],
→˓[list of values of that type], [suffix of the index variable (optional)])

0 Passing arg1, arg2 won’t work (of course — this represents two arguments, not one that is a list), [arg1, arg2] will work in most
cases (when neither arg1 or arg2 have been defined as a macro), whereas [[arg1],[arg2]] will work no matter what.

0 The type string is used as a means to modify the help message, no validation or conversion takes place.

4.2. Template writing guide 17

Argbash Documentation, Release 2.10.0

If the suffix of the index variable is provided, each argument of the type will have a variable
arg<stem>_<suffix> that contains the 0-based index of the argument value in the allowed values list.
You will typically want to use it as described in the next example:

Remarks:

– Pass the list of values without shell-quoting. Double quotes will be applied later.

ARG_TYPE_GROUP_SET([operations], [OPERATION], [start-with,stop-with], [configure,
→˓make,install], [index])

and later in the code, you can use a construct like

fail e.g. when we start-with make and stop-with configure.
It would work if it was the other way.
test "$_arg_stop_with_index" -gt "$_arg_start_with_index" \

|| die "The last operation has to be a successor of the first one, which is
→˓not the case."

Convenience macros

Plus, there are convenience macros:

• Set the indentation in the parsing part of the script:

ARGBASH_SET_INDENT([indentation character(s)])

The default indentation is one tab per level. If you wish to use two spaces as the Google style recommends,
simply pass two spaces (in square brackets!) as an argument to the macro.

• Set the delimiter between option and value:

ARGBASH_SET_DELIM([option-value delimiter character(s)])

The default delimiter is either space or equal sign. You can either restrict delimiter to only space or only equal
sign, or you can keep both. Assuming you have an option accepting value (can be either single-valued or
repeated) --option with short option -o, the following works with these arguments to the macro:

– ARGBASH_SET_DELIM([]): Either of --option value, --o value assigns value to the
option argument. --option=value will be considered as a single positional argument.

– ARGBASH_SET_DELIM([=]): Either of --option=value, --o value assigns value to the
option argument. --option value will result in both --option and value to be considered
as two positional arguments. -o=value will also be considered as a positional argument.

– ARGBASH_SET_DELIM([=]) (or [=]): Either of --option=value, --o value, --option
value assigns value to the option argument; they are treated the same way. This is the default behavior.

• Add a line where the directory where the script is running is stored in an environmental variable:

DEFINE_SCRIPT_DIR([variable name (optional, default is 'script_dir')])

You can use this variable to e.g. source bash snippets that are in a known location relative to the script’s parent
directory.

DEFINE_SCRIPT_DIR_GNU([variable name (optional, default is 'script_dir')])

Does the same as DEFINE_SCRIPT_DIR, but it uses the readlink -e to determine the real script directory
by resolving symlinks.

18 Chapter 4. Index

https://google.github.io/styleguide/shell.xml

Argbash Documentation, Release 2.10.0

Warning: This command is available only on GNU systems, so be very careful with its usage — it won’t
work for OSX users, and for users on non-GNU based Linux distributions (s.a. Alpine Linux). Don’t use it
unless you need the functionality AND you are sure that the script will be used only on systems with GNU
coreutils.

• Add a function that you can use to source modules relative to the script’s location

DEFINE_LOAD_LIBRARY([loader function name (optional, default is load_lib_
→˓relativepath)])

Defines a function (load_lib_relativepath by default) that takes a path relative to the script’s directory
as an input, and attempts to source a file at that path. In case of failure, die is called, displays an error message,
and quits the program.

• Include a file (let’s say a parse.sh file) that is in the same directory during runtime. If you use this in
your script, Argbash finds out and attempts to regenerate parse.sh using parse.sh or parse.m4 if the
former is not available. Thanks to this, managing a script with body and parsing logic in separate files is really
easy.

INCLUDE_PARSING_CODE([filename], [SCRIPT_DIR variable name (optional, default is
→˓script_dir)])

In order to make use of INCLUDE_PARSING_CODE, you have to use DEFINE_SCRIPT_DIR on preceding
lines, but you will be told so if you don’t.

See also:

Check out the example: Separating the parsing code

• Point to a script that uses Argbash (or to its template), and your script will inherit its arguments (unless you
exclude some of them).

ARGBASH_WRAP(filename stem, [list of long options to exclude], [flags to exclude
→˓certain arg types, default is HV for (h)elp and (v)ersion])

Given that you have a script process_single.sh and you write its wrapper process_file.sh Imagine
that one reads a file and passes data from every line to process_single.sh along with some options that
process_file.sh accepts.

In this case, you write ARGBASH_WRAP([process_single], [operation]) to your
process_file.m4 template.

– Filename stem is a filename without a directory component or an extension. Stems are searched for in
search paths (current directory, directory of the template) and extensions .m4 and .sh are tried out.

– The list of long options is a list of first arguments to functions such as ARG_POSITIONAL_SINGLE,
ARG_OPTIONAL_SINGLE, ARG_OPTIONAL_BOOLEAN, etc. Therefore, don’t include leading double
dash to any of the list items that represent blacklisted optional arguments. To blacklist the double dash
positional argument feature, add the -- symbol to the list.

– Flags is a string that may contain some characters. If a flag is set, a class of arguments is excluded from
the file. The default HVIS should be enough in most scenarios — you want your own help, version info,
indentation and option–value separator, not ones from the wrapped script, right?

Following flags are supported:

4.2. Template writing guide 19

Argbash Documentation, Release 2.10.0

Character Meaning
H Don’t include help.
V Don’t include version info.
I Don’t use wrapped script’s indentation
S Don’t use wrapped script’s option–value separator

– As a convenience feature, if you wrap a script with stem process_single, all options that
are part of the wrapped script’s interface (both arguments and values) are stored in an array
_args_process_single. In the case where there may be issues with positional arguments (they
are order-dependent and the wrapping script may want to inject its own to the wrapped script), you
can use _args_process_single_opt, or _args_process_single_pos, where only op-
tional/positional arguments are stored. Therefore, when you finally decide to call process-single.
sh in your script with all wrapped arguments (e.g. --some-opt foo --bar), all you have to do is to
write

./process-single.sh "${_args_process_single_opt[@]}"

which is exactly the same as

MAYBE_BAR=
test $_arg_bar = on && MAYBE_BAR='--bar'
./process-single.sh --some-opt "$_arg_some_opt" $MAYBE_BAR

The stem to array name conversion is the same as with argument names except the prefix _args_ is
prepended.

Note: The wrapping functionality actually only makes your script to inherit (all or some of the) the
wrapped script’s arguments. If you really wish to call the wrapped script, it is your responsibility to know
its location, Argbash essentially can’t and won’t help you with that.

However, if you know the relative location of the wrapped script to the wrapper, you can use the DE-
FINE_SCRIPT_DIR macro.

See also:

Check out the example: Wrapping scripts

– The wrap functionality works recursively, so you can wrap scripts that wrap scripts in a similar manner as
you use class inheritance in object-oriented programming languages. More precisely, it is like the private
inheritance — the _args_... variables will be generated only for first-order wrapped scripts.

Warning: Features described at the rest of this section are experimental. Convenience macros below are not an
official part of the API yet — their names and/or signature may change.

The documentation here is just a peek into the Argbash future. Please raise an issue if you feel you can provide
helpful feedback!

• Declare that your script uses an environment variable, set a default for it if it is blank upon the script’s invocation
and optionally mention it in the script’s help:

ARG_USE_ENV([variable name], [default if empty (optional)], [help message
→˓(optional)])

20 Chapter 4. Index

Argbash Documentation, Release 2.10.0

For instance, if you declare ARG_USE_ENV([ENVIRONMENT], [production], [The default
environment]), the value of the ENVIRONMENT environmental variable won’t be empty — if the user
doesn’t do anything, it will be production and if the user overrides it, it will stay that way. It is undefined
whether the user can override it so it has a blank value in the script due to the user override (i.e. it is not possible
now, but it may become possible in a later release.).

• Declare that your script calls a program and enable the caller to set it using an environmental variable.

ARG_USE_PROGRAM([program name], [env variable name (optional)], [message if not
→˓found (optional)], [help message (optional)])

For instance, if you use ARG_USE_PROGRAM([python], [PYTHON], [], [The preferred
Python interpreter]) in your script, you can use constructs s.a. "$PYTHON" script.py later in
the script body.

Remarks:

– If the environment variable is not given, it defaults to the transliteration of the command. Lowercase
characters are converted to uppercase, the dashes are converted to underscore.

– If the script is called with the environment variable defined, then no checking will be done — the variable
contents are trusted, and passed on.

– If the environment variable is empty, the program will be given to command -v as an argument. If that
doesn’t succeed, a default or provided message will be displayed, and the script will terminate.

• Declare every variable related to every positional argument:

ARG_DEFAULTS_POS()

By default, only variables with defaults are declared. Since values are assigned using eval, static analysis tools
s.a. shellcheck may complain about referencing undeclared variables. This macro helps to ensure that there are
not these false positives.

• Activate Argbash-powered scripts strict mode:

ARG_RESTRICT_VALUES([mode code])

The mode code restricts allowed values for all arguments.

Mode code What is restricted
none nothing is restricted (default behavior)
no-any-options anything that looks like as an option (be it long or short)
no-local-options option (long or short) of any optional argument this script supports

You may want to restrict argument values in order to prevent these possible confusions:

– The user forgets to supply value to an optional argument, so the next argument is mistaken for it. For ex-
ample, when we leave time from ls --sort time --long /home/me/*, we get a syntactically
valid command-line ls --sort --long /home/me/*, where --long is identified as value of the
argument --sort instead an argument on its own.

– The user intends to pass an optional argument on the command-line (e.g. --sort), but makes a typo,
(e.g. --srot), or the script actually doesn’t support that argument. As an unwanted consequence, it is
interpreted as a positional argument.

• Make Argbash-powered scripts getopts-compatible:

4.2. Template writing guide 21

https://www.shellcheck.net

Argbash Documentation, Release 2.10.0

ARG_OPTION_STACKING([mode code])

The mode code either enables getopt-like grouping (a.k.a. stacking) of short arguments according to Guideline
5, or disables it.

Mode code What is restricted
none no grouping support
getopts support full getopts-like functionality (default behavior)

Action macro

Finally, you have to express your desire to generate the parsing code, help message etc. You do it by specifying an
“action macro” past all arguments definitions.

You can either let the parsing code to be executed (carefree mode), or you can just generate parsing functions and call
them yourself (DIY mode).

• Carefree mode: Use action macro ARGBASH_GO. The macro doesn’t take any parameters.

ARGBASH_GO

• DIY mode: Use action macro ARGBASH_PREPARE. The macro doesn’t take any parameters.

If you are not familiar with the DIY mode, generate the script with embedded helpful comments that tell you
what functions you have to call in your code to fully use the Argbash potential.

ARGBASH_PREPARE

Warning: This feature is under development and not part of the stable API.

Available shell stuff

• Variable script_dir that is available if the DEFINE_SCRIPT_DIR is used.

• Function die.

Accepts two parameters — string that is printed to stderr and exit status number (optional, default is 1). If
an environmental variable _PRINT_HELP is set to yes, it prints help before the error message.

Using parsing results

The key is that parsing results are saved in shell variables that relate to argument (long) names. The argument name is
transliterated like this:

1. All letters are made lower-case

2. Dashes are transliterated to underscores (include-batteries becomes include_batteries)

3. _arg_ is prepended to the string. So given that you have an argument --include-batteries that expects
a value, you can access it via shell variable _arg_include_batteries.

• Boolean arguments have values either on or off. If (a boolean argument) --quiet is passed, value of
_arg_quiet is set to on. Conversely, if --no-quiet is passed, value of _arg_quiet is set to off.

22 Chapter 4. Index

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html#tag_12_02
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html#tag_12_02

Argbash Documentation, Release 2.10.0

• Repeated arguments collect values to a bash array.

• Incremental arguments have a default value (0 by default) and their value in the script corresponds to the default
plus the number of times the argument was specified.

4.3 Argbash tools

Argbash is a code generator, so what it does, it gives you code that has the ability to parse command-line arguments.
The question is — what to do with the generated code? You have three options here, they are sorted by the estimated
preference:

1. One file with both parsing code and script body — batteries are included!

This is a both simple and functional approach, but the argument parsing code will pollute your script.

2. Two files — one for the parsing code and one for the script body, both taken care of by Argbash — separation
of code, but you get things managed by Argbash..

This is more suitable for people that prefer to keep things tidy, you can have the parsing code separate and
included in the script at run-time. However, Argbash can assist you with that.

3. Same as the above, just without Argbash assistance — the parsing code is decoupled from the script.

You have to take this path if your script has a non-matching square brackets problem (see Limitations). This
approach is similar to the approach of bash argument parsing libraries with one difference — here, the library is
generated by Argbash, so it may be significantly less complex than those generic libraries such as EasyOptions.
This is very unlikely.

Note: We assume that you have installed (see Installation) the argbash script, so it is available in your terminal
as a command argbash. If it is not the case, you just have to substitute argbash by direct invocation of bin/
argbash.

4.3.1 Template generator

It is not advisable to write a template from scratch, since Argbash contains a tool for that. The argbash-init
can generate a good starting template for you, so you can get started within minutes.

General usage

The most efficient way of using Argbash is probably this one (also covered in an example):

1. Get an idea of what arguments your script should accept.

2. Execute argbash-init with the right arguments to get a basic template.

3. Replace placeholders in the template with meaningful values.

4. Expand the template with another directives (if necessary) based on argbash API.

5. Run argbash over the template.

argbash-init supports generating templates with these types of arguments:

• Single-valued positional arguments (--pos argument).

• Single-valued optional arguments (--opt argument).

4.3. Argbash tools 23

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_10_02.html

Argbash Documentation, Release 2.10.0

• Boolean optional arguments (--opt-bool argument).

Generally, you specify argument name and you add help etc. by editing the template file.

Next, argbash-init supports wrapping of another argbash-aware scripts. The help macro is always included.

Modes of operation

argbash-init allows you to select the way how the parsing code is handled (via the -s, --standalone option):

• Batteries-included mode:

If you don’t specify it, you get the case 1 from above — the parsing code is embedded in the script.

• Managed mode:

If you specify it exactly once, you get the case 2 from above — parsing code is in a separate file, but both files
contain Argbash directives.

• Decoupled mode:

If you specify twice, you get the case 3 from above — parsing code is in a separate file, the script includes it
without any magic involved. This also means that the brackets matching limitation doesn’t apply to you.

There is also a --mode option you can use to tune the balance between parsing features and complexity of the
generated code.

• default: Assume the standard Argbash behavior. Check the documentation out to find out what that means.

• full: Maximize script features. * The long option and the corresponding value may be separated by
whitespace or by the equal sign. * Variables corresponding to every positional argument is declared (..
seealso::_declare_pos).

• minimal: Make the code as simple as possible, which means: * The long option and the corresponding value
may be separated only by whitespace.

4.3.2 Argbash

So, you have a template and now it is time to (re)generate a shell script from it!

Template layout

A template consists of multiple parts that are treated differently during the argbash operation. Depending on the
value of the --strip argument, the third and/or the first parts can be dropped.

Here are those parts of the template:

1. Beginning of the script up to the ARGBASH_GO or ARGBASH_PREPARE line:

If --strip all is passed as argument to argbash, this section of the file will be discarded. Otherwise, it
is left intact, except:

• All m4sugar macros are expanded. Typically, the only macros in this section are Argbash public API
macros. They expand to their definitions as part of their expansion, so it looks like that nothing happened.

• One level of square brackets is removed. This is the consequence of the previous point — if you e.g. use a
regular expression with square brackets, they may either disappear or cause an error. Square brackets that
are arguments to the Argbash macros calls are preserved.

24 Chapter 4. Index

Argbash Documentation, Release 2.10.0

2. Script body past ARGBASH_GO:

This is the generated content. Shortly after the ARGBASH_GO line, you encounter an invocation of
m4_ignore([...]). Everything contained within the first level of the square brackets is discarded by a
consecutive run of argbash.

3. The rest of the file.

If you run argbash with --strip user-content or --strip all argument, this section will be
missing from the output altogether. Otherwise, the preexisting content is preserved with some noteworthy
points:

• You may notice the # [<-- needed because of Argbash and #] <-- needed
because of Argbash guards. The first guard has an opening square bracket, the second guard at the
bottom of the file has a closing square bracket. Don’t remove them, they are necessary for argbash to
be idempotent.

• This part of the file (typically the hand-written content supplied by the user) is treated in the same way
as the beginning of the file that is described in point 1. However, thanks to the opened and closed square
brackets, no changes to it will be made.

Parsing code and script body together

Assuming that you have created a template file my-template.m4, you simply run argbash over the script*0:

argbash my-template.m4 -o my-script.sh

If you want to regenerate a new version of my-script.sh after you have modified its template section, you can run

argbash my-script.sh -o my-script.sh

as the script can deal with input and output being the same file.

Separate file for parsing with assistance

You have two files, let’s say it is a my-parsing.m4 and my-script.sh. The my-parsing.m4 file contains
just the template section of my-script.sh. Then, you add a very small template code to my-script.sh at the
beginning:

DEFINE_SCRIPT_DIR
INCLUDE_PARSING_CODE([my-parsing.sh])
ARGBASH_GO

[<-- needed because of Argbash

HERE GOES THE SCRIPT BODY

] <-- needed because of Argbash

i.e. you add those three lines with definitions and you enclose the script in square brackets.

Finally, you just make sure that my-script.sh and my-parsing.m4 are next to each other and run

argbash my-script.sh -o my-script.sh

0 m4 is the file extension used for the M4 language, but we use the m4sugar language extension built on top of it.

4.3. Argbash tools 25

Argbash Documentation, Release 2.10.0

which finds my-parsing.m4 (it would find my-parsing.sh too) and generates new my-parsing.sh and
my-script.sh that you can use right away. If both my-parsing.m4 and my-parsing.sh are found, the
more recent one is used to generate the my-parsing.sh.

Separate file for parsing

If you want/have to take care of including the parsing code yourself, just make sure you do it in the script — for
example:

source $(dirname $0)/my-parsing.sh

HERE GOES THE SCRIPT BODY

Then, you just generate my-parsing.sh using --strip user-content option:

argbash my-parsing.m4 -o my-parsing.sh --strip user-content

The --strip user-content argument takes care that the output will contain the Argbash definitions lines and
the generated parsing code, but the body of the script will not be included.

Commented output

You can call argbash in commented mode, when the generated code is commented, so you can run through the
generated code and understand the big picture fast.

To generate code with those comments, just call argbash with the according switch:

argbash my-parsing.m4 -c -o my-parsing.sh

4.3.3 Argbash outputs

Argbash is able to generate more than just scripts. You can change the output type by supplying another value to he
--type optional argument. Next, it doesn’t make sense to keep all of the template content in the output, so you may
typically want to strip all but the generated content from alternative outputs:

Description --type value --strip value
Bash script bash-script none
Bash script parsing section bash-script user-content
POSIX script posix-script none
POSIX script parsing section posix-script user-content
Bash completion completion all
docopt help message docopt all
manpage template manpage all
manpage template definitions manpage-defs all

POSIX script

Argbash is able to generate code that will work with POSIX shells. Due to limitations of those shells (mainly absence
of arrays), the generated interface features are limited:

• All options have to have short option. Those short options are the only user-visible element of the interface.

26 Chapter 4. Index

Argbash Documentation, Release 2.10.0

• Mixing optional and positional arguments is not supported, all arguments that follow the first positional argu-
ment are considered positional.

• Certain arguments are not supported:

– Repeated arguments.

– Multi-valued arguments.

Internally, Argbash uses the getopts shell builtin to handle optional arguments parsing. Then, checks for positional
arguments are generated and applied, ditto for positional arguments processing, and the help message is generated. As
a result, the parsing section of a POSIX script is shorter.

Bash completion

The output will be a Bash completion script.

Notice that in this case, the completion file has to “know” the basename of the script the completion is meant for. The
basename is inferred either from the source filename, or from the destination by stripping the .m4 suffix if applicable

Note: The general recommendation is not to save your scripts to files without suffixes. Keep the .sh suffix only for
files that are Bash modules.

After you generate the completion file, put it in the appropriate place (which may vary depending on your environ-
ment). In order to use it right away, simply source it.

Typically, you generate bash completion my-script.sh from the generated script my-script by executing

$ argbash my-script --type completion --strip all -o my-script.sh

and you move the created completion file my-script.sh to /etc/bash_completion.d/ directory.

Note: Completion is not implemented for positional arguments. The corresponding Bash completion algorithm has
to be much more complex in order to distinguish between 1st, 2nd etc. positional arguments.

Docopt help message

Docopt is a project that provides argument-parsing libraries for various languages. Those libraries accept a help
message as an input, and that’s all they want to construct a parser. Argbash scripts don’t come with help that conforms
to the docopt format due to its constraints, but you can still generate docopt-compliant help for your script.

This allows you to use Argbash for projects in other languages — you can leave the parser technicalities to docopt
library, which you supply with the Argbash docopt output. Then, you may use Argbash for Bash completion and other
possible goodies.

Typically, you generate docopt output to the standard output from the generated script my-script by executing

$ argbash my-script --type docopt --strip all

Note: Docopt output doesn’t work with likes of the decoupled mode. You can’t pass the script which sources the
parsing code as Argbash input, as it doesn’t contain any Argbash macros. If you pass the parsing code script/template
as Argbash input, the output will have wrong basename, as Argbash will use the basename of the parsing code file, not
of the real script.

4.3. Argbash tools 27

http://docopt.org/

Argbash Documentation, Release 2.10.0

Manpage output

Argbash can generate source for the manual page for your script. There are two files in the process — the template,
and definitions. Those two files are in the reStructuredText format, and the template is supposed to be processed by
the rst2man utility.

The manpage template is supposed to be generated as script’s metadata change, definitions are required to be main-
tained manually, as they are supposed to contain content that is not present in the script. You can regenerate the
template using the manpage output, while you are probably going to use the manpage-defs once to get you
kickstarted and then continue to maintain it manually.

So given a argbash-powered script or m4 file, your manpage workflow will typically look like this:

$ argbash my-script --type manpage-defs --strip all -o my-script-defs.rst
$ argbash my-script --type manpage --strip all -o my-script.rst
$ vim my-script-defs.rst # Edit the definitions file
$ rst2man my-script.rst > my-script.1
$ man ./my-script.1

4.3.4 API changes support

The API of the Argbash project may change. This typically means that

• names, parameters or effect of macros change, or

• parsed arguments are exposed differently

in a way that is not compatible with the previous API.

In case that you regenerate a script, argbash is able to deduce that it has been created with another version of
Argbash and warns you. In that case, you can use a argbash-xtoy script, where x is the version of Argbash
your script is written for and y is version of Argbash you use now.

To upgrade your script from Argbash version 1 to 2, you simply invoke:

argbash-1to2 my-script.sh -o my-script.sh

You can use the utility to convert scripts as well as .m4 templates.

Warning: Always back your scripts up and perform diff between the output and the original after using
argbash-xtoy.

API 2

Parsed arguments were exposed as lowercase (_ARG_LONG_OPTION became _arg_long_option). The change
was motivated by effort to comply to bash standard variable naming convention1,2.

4.4 Examples

4.4.1 Templates

1 Unix StackExchange
2 Google bash styleguide

28 Chapter 4. Index

https://docutils.sourceforge.net/rst.html
https://docutils.sourceforge.net/sandbox/manpage-writer/rst2man.txt
https://unix.stackexchange.com/a/42849
https://google.github.io/styleguide/shell.xml#Naming_Conventions

Argbash Documentation, Release 2.10.0

Minimal example

Let’s call minimal example a script that accepts some arguments and prints their values. Let’s consider a positional,
optional, optional boolean, --version and --help arguments with parsing code embedded in the script. First of
all, we can generate the template using argbash-init. Then, we will edit it and add the script body.

First of all, we go examine argbash-init help — either by running argbash-init -h or looking into the
documentation. We find out that we can have argbash-init generate the positional, optional arguments and help,
so we go ahead:

bin/argbash-init --pos positional-arg --opt option --opt-bool print minimal.m4

The output of argbash-init looks like this:

#!/bin/bash

m4_ignore(
echo "This is just a script template, not the script (yet) - pass it to 'argbash' to
→˓fix this." >&2
exit 11 #)Created by argbash-init v2.10.0
ARG_OPTIONAL_SINGLE([option])
ARG_OPTIONAL_BOOLEAN([print])
ARG_POSITIONAL_SINGLE([positional-arg])
ARG_DEFAULTS_POS
ARG_HELP([<The general help message of my script>])
ARGBASH_GO

[<-- needed because of Argbash

vvv PLACE YOUR CODE HERE vvv
For example:
printf 'Value of --%s: %s\n' 'option' "$_arg_option"
printf "'%s' is %s\\n" 'print' "$_arg_print"
printf "Value of '%s': %s\\n" 'positional-arg' "$_arg_positional_arg"

^^^ TERMINATE YOUR CODE BEFORE THE BOTTOM ARGBASH MARKER ^^^

] <-- needed because of Argbash

We add useful information and the line with the --versionmacro (by looking it up in the API docs) and the template
finally looks better. Plus, we append the actual script body to the template:

#!/bin/bash

m4_ignore(
echo "This is just a script template, not the script (yet) - pass it to 'argbash' to
→˓fix this." >&2
exit 11 #)Created by argbash-init v2.10.0
ARG_OPTIONAL_SINGLE([option], o, [A option with short and long flags and default],
→˓[boo])
ARG_OPTIONAL_BOOLEAN([print], , [A boolean option with long flag (and implicit
→˓default: off)])
ARG_POSITIONAL_SINGLE([positional-arg], [Positional arg description],)
ARG_DEFAULTS_POS
ARG_HELP([This is a minimal demo of Argbash potential])
ARG_VERSION([echo $0 v0.1])
ARGBASH_SET_INDENT([])
ARGBASH_GO

(continues on next page)

4.4. Examples 29

Argbash Documentation, Release 2.10.0

(continued from previous page)

[<-- needed because of Argbash

vvv PLACE YOUR CODE HERE vvv
For example:
if ["$_arg_print" = on]
then

echo "Positional arg value: '$_arg_positional_arg'"
echo "Optional arg '--option' value: '$_arg_option'"

else
echo "Not telling anything, print not requested"

fi

^^^ TERMINATE YOUR CODE BEFORE THE BOTTOM ARGBASH MARKER ^^^

] <-- needed because of Argbash

Here, we can notice multiple notable things:

1. argbash-init has produced code that warn us if we treat the template as a script (i.e. if we execute it). This
code will not be in the final script — it will disappear as we pass the template to argbash.

2. Definitions of arguments are placed before the script body. From bash point of view, they are commented out,
so the “template” can be a syntactically valid script.

3. You access the values of argument foo-bar as $_arg_foo_bar etc. (this is covered more in-depth in Using
parsing results).

So let’s try the script in action! We have to generate it first by passing the template to argbash:

./../bin/argbash -o ../resources/examples/minimal.sh ../resources/examples/minimal.m4

This has produced the code we can observe below (notice that the leading “this is not a script error” lines have
disappeared). Let’s see what happens when we pass the -h option:

resources/examples/minimal.sh -h

This is a minimal demo of Argbash potential
Usage: ../resources/examples/minimal.sh [-o|--option <arg>] [--(no-)print] [-h|--
→˓help] [-v|--version] <positional-arg>

<positional-arg>: Positional arg description
-o, --option: A option with short and long flags and default (default: 'boo')
--print, --no-print: A boolean option with long flag (and implicit default:

→˓off) (off by default)
-h, --help: Prints help
-v, --version: Prints version

OK, so it seems that passing it one (mandatory) positional arg will do the trick:

resources/examples/minimal.sh foo -o bar

Not telling anything, print not requested

Oops, we have forgot to turn print on! Let’s fix that. . .

resources/examples/minimal.sh foo -o bar --print

(continues on next page)

30 Chapter 4. Index

Argbash Documentation, Release 2.10.0

(continued from previous page)

Positional arg value: 'foo'
Optional arg '--option' value: 'bar'

Separating the parsing code

Let’s take a look at a script that takes filename as the only positional argument and prints size of the corresponding
file. The caller can influence the unit of display using optional argument --unit. This script is a bit artificial, but
hang on — we will try to use it from within a wrapping script.

This time, we will separate the parsing code and the script itself . The parsing code will be in the
simple-parsing.sh file and the script then in simple.sh.

Note: This is the manual approach. A simpler way would be calling argbash-init in the managed or decoupled
mode — it will create the basic templates as in the previous example.

The template for the script’s parsing section is really simple. Below are the sole contents of simple-parsing.m4
file:

#!/bin/bash

ARG_POSITIONAL_SINGLE([filename])
ARG_OPTIONAL_SINGLE([unit], u, [What unit we accept (b for bytes, k for kibibytes,
→˓M for mebibytes)], b)
ARG_VERSION([echo $0 v0.1])
ARG_OPTIONAL_BOOLEAN(verbose)
ARG_HELP([This program tells you size of file that you pass to it in chosen units.])
ARGBASH_SET_INDENT([])
ARGBASH_GO

Then, let’s take a look at the script’s template body (i.e. the simple.m4 file):

#!/bin/bash

DEFINE_SCRIPT_DIR()
INCLUDE_PARSING_CODE([simple-parsing.sh])
ARGBASH_GO

[<-- needed because of Argbash

Now we take the parsed data and assign them no nice-looking variable names,
sometimes after a basic validation
verbose=$_arg_verbose
unit=$_arg_unit

test -f $_arg_filename || { echo "Filename $_arg_filename doesn't seem to belong to a
→˓file"; exit 1; }
filename="$_arg_filename"

if [$verbose = on]
then

_b="bytes (B)"
_kb="kibibytes (kiB)"
_mb="mebibytes (MiB)"

(continues on next page)

4.4. Examples 31

Argbash Documentation, Release 2.10.0

(continued from previous page)

else
_b="B"
_kb="kiB"
_mb="MiB"

fi

size_bytes=$(wc -c "$filename" | cut -f 1 -d ' ')

test "$unit" = b && echo $size_bytes $_b && exit 0

size_kibibytes=$(($size_bytes / 1024))
test "$unit" = k && echo $size_kibibytes $_kb && exit 0

size_mebibytes=$(($size_kibibytes / 1024))
test "$unit" = M && echo $size_mebibytes $_mb && exit 0

test "$verbose" = on && echo "The unit '$unit' is not supported"
exit 1

] <-- needed because of Argbash

We obtain the script from the template by running argbash over it — it detects the parsing template and interconnects
those two.

argbash simple.m4 -o simple.sh

In other words, it will examine the simple.m4 template, finding out that there is the INCLUDE_PARSING_CODE
macro. If the parsing template (in our case simple-parsing.m4 or simple-parsing.sh) is found, a parsing
script is produced out of it (otherwise, an error occurs). Finally, the simple.sh script is (re)generated — basically
only the source directive is added, see those few lines:

#!/bin/bash

DEFINE_SCRIPT_DIR([])
INCLUDE_PARSING_CODE([simple-parsing.sh])
ARGBASH_GO()
needed because of Argbash --> m4_ignore([
START OF CODE GENERATED BY Argbash v2.10.0 one line above
Argbash is a bash code generator used to get arguments parsing right.
Argbash is FREE SOFTWARE, see https://argbash.dev for more info

OTHER STUFF GENERATED BY Argbash
script_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)" || { echo "Couldn't
→˓determine the script's running directory, which probably matters, bailing out" >&2;
→˓exit 2; }
. "$script_dir/simple-parsing.sh" # '.' means 'source'

END OF CODE GENERATED BY Argbash (sortof) ###])

When invoked with the help option, we get:

resources/examples/simple.sh -h

This program tells you size of file that you pass to it in chosen units.
Usage: ../resources/examples/simple.sh [-u|--unit <arg>] [-v|--version] [--(no-
→˓)verbose] [-h|--help] <filename>

(continues on next page)

32 Chapter 4. Index

Argbash Documentation, Release 2.10.0

(continued from previous page)

-u, --unit: What unit we accept (b for bytes, k for kibibytes, M for
→˓mebibytes) (default: 'b')

-v, --version: Prints version
-h, --help: Prints help

It will work as long as the parsing code’s location (next to the script itself) doesn’t change:

Wrapping scripts

We will show how to write a script that accepts a list of directories and a glob pattern, combines them together, and
displays size of files using the previous script. In order to do this, we will introduce positional argument that can
accept an arbitrary amount of values and we will also use the wrapping functionality that Argbash possesses.

We want to wrap the simple.m4 (or simple.sh). However, since the script doesn’t include any command defini-
tions, we have to wrap the parsing component simple-parsing.. The script’s template is still quite simple:

#!/bin/bash

DEFINE_SCRIPT_DIR
ARG_POSITIONAL_INF([directory], [Directories to go through], 1)
ARG_OPTIONAL_SINGLE([glob], , [What files to match in the directory], [*])
ARGBASH_WRAP([simple-parsing], [filename])
ARG_HELP([This program tells you size of specified files in given directories in
→˓units you choose.])
ARGBASH_SET_INDENT([])
ARGBASH_GO

[<-- needed because of Argbash

script="$script_dir/simple.sh"
test -f "$script" || { echo "Missing the wrapped script, was expecting it next to me,
→˓in '$script_dir'."; exit 1; }

for directory in "${_arg_directory[@]}"
do

test -d "$directory" || die "We expected a directory, got '$directory', bailing out.
→˓"
printf "Contents of '%s' matching '%s':\n" "$directory" "$_arg_glob"
for file in "$directory"/$_arg_glob
do
test -f "$file" && printf "\t%s: %s\n" "$(basename "$file")" "$("$script" "${_

→˓args_simple_parsing_opt[@]}" "$file")"
done

done

] <-- needed because of Argbash

The simple-parsing in ARGBASH_WRAP argument refers to the parsing part of the script from the previous
section. Remember, we say that we are wrapping a script, but in fact, we just inherit a subset of its arguments and
the actual wrapping (i.e. calling the wrapped script) is still up to us, although it is made easy by a great deal. The
filename argument means that our wrapping script won’t “inherit” the filename argument — that’s correct, it is
the wrapping script that decides what arguments make it to the wrapped one.

When invoked with the help option, we get:

4.4. Examples 33

Argbash Documentation, Release 2.10.0

resources/examples/simple-wrapper.sh -h

This program tells you size of specified files in given directories in units you
→˓choose.
Usage: ../resources/examples/simple-wrapper.sh [--glob <arg>] [-u|--unit <arg>] [--
→˓(no-)verbose] [-h|--help] <directory-1> [<directory-2>] ... [<directory-n>] ...

<directory>: Directories to go through
--glob: What files to match in the directory (default: '*')
-u, --unit: What unit we accept (b for bytes, k for kibibytes, M for

→˓mebibytes) (default: 'b')
-h, --help: Prints help

So let’s try it!

resources/examples/simple-wrapper.sh --glob '*.m4' ../src ../resources/examples -u k

Contents of '../src' matching '*.m4':
argbash-1to2.m4: 1 kiB
argbash-init.m4: 6 kiB
argbash-lib.m4: 0 kiB
argbash.m4: 10 kiB
argument_value_types.m4: 5 kiB
collectors.m4: 21 kiB
constants.m4: 0 kiB
default_settings.m4: 0 kiB
docopt.m4: 3 kiB
env_vars.m4: 1 kiB
function_generators.m4: 7 kiB
list.m4: 6 kiB
output-bash-script.m4: 1 kiB
output-completion.m4: 4 kiB
output-docopt.m4: 0 kiB
output-manpage-defs.m4: 1 kiB
output-manpage.m4: 1 kiB
output-posix-script.m4: 3 kiB
output-strip-all.m4: 0 kiB
output-strip-none.m4: 0 kiB
output-strip-user-content.m4: 0 kiB
progs.m4: 2 kiB
stuff.m4: 47 kiB
utilities.m4: 11 kiB
value_validators.m4: 5 kiB

Contents of '../resources/examples' matching '*.m4':
minimal.m4: 0 kiB
minimal-raw.m4: 0 kiB
simple.m4: 0 kiB
simple-parsing.m4: 0 kiB
simple-standalone.m4: 0 kiB
simple-wrapper.m4: 0 kiB

4.4.2 Source

Minimal example

Let’s examine the generated minimal example script (the contents are displayed below).

34 Chapter 4. Index

Argbash Documentation, Release 2.10.0

We can see that the header still contains the Argbash definitions. They are not there for reference only, you can
actually change them and re-run Argbash on the script again to get an updated version! Yes, you don’t need the .m4
template, the .sh file serves as a template that is equally good!

4.5 Others

4.5.1 Utilities

You want to write a script that does argument parsing and don’t like Argbash or you just want to find out how
awesome it really is? Then read through this list of influences and/or alternatives!

• Python argparse: The main inspiration: https://docs.python.org/3/library/argparse.html

– Pros:

* Works really well.

* Has more features.

– Cons:

* It is Python, we are bash.

* It has a strict value restriction turned on (analogous to having
ARG_RESTRICT_VALUES([no-option-all]) in every script) that can’t be switched
off.

– Argbash says:

* We handle the boolean options better.

* We have the awesome wrapping functionality.

• bash — shflags: The bash framework for argument parsing: https://github.com/kward/shflags

– Pros:

* It works great on Linux.

– Cons:

* Doesn’t work with Windows bash

* Doesn’t support long options on OSX.

– Argbash says:

* We work the same on all platforms that have bash.

• getopt: Eternal utility for parsing command-line. This is what powers shflags.

– Pros:

* The GNU version can work with long and short optional arguments.

– Cons:

* Its use is discouraged — it seems to have some issues, you still need to deal with positional arguments
by other means.

• getopts: bash builtin for parsing command-line.

– Pros:

* Being included with bash, it behaves the same on all platforms.

4.5. Others 35

https://docs.python.org/3/library/argparse.html
...
...
https://github.com/kward/shflags
http://bash.cumulonim.biz/BashFAQ(2f)035.html#getopts

Argbash Documentation, Release 2.10.0

– Cons:

* Supports only short optional arguments.

– Argbash says:

* argbash>=2.7.0 can generate code that uses getopts in the POSIX mode, so there is no reason
any longer to write that code manually.

• EasyOptions: Ruby utility with a bash interface as well as its pure bash implementation: https://github.
com/renatosilva/easyoptions

– Pros:

* Very simple to use.

* Very elegant.

– Cons:

* You have to distribute easyoptions.sh with your script.

* The library itself provides only very basic functionality.

* The project does not seem to have any tests (as of 07/2016).

– Argbash says:

* We have more of nice features.

* We offer an option to produce battery-included scripts.

* Our declarations as not so elegant, but they are not bad either.

* The parsing part of the script generated by Argbash is only as complex as necessary.

• bash-modules - module argument: bash-modules aims to become a standard bash framework and
comes with an argument-parsing treat: https://github.com/vlisivka/bash-modules

– Pros:

* Seems to have nice features.

– Cons:

* bash-modules have to be available at run-time to run the script.

* The documentation is poor (as of 07/2016).

– Argbash says:

* We have good documentation with examples.

* We offer an option to produce battery-included scripts.

• docopt: Umbrella project of parsing code modules for various languages. The interface is based on help mes-
sages: http://docopt.org/ The shell interface is called docopts and it is implemented as a standalone executable
(in fact a Python script) that consumes the help message of the script it is used in, passed arguments, and exposes
collected values via environmental variables.

– Pros:

* The help message as an interface is convenient.

– Cons:

* You need docopts installed in every environment where you run scripts that use it.

– Argbash says:

36 Chapter 4. Index

https://github.com/renatosilva/easyoptions
https://github.com/renatosilva/easyoptions
https://github.com/vlisivka/bash-modules
http://docopt.org/
https://github.com/docopt/docopts

Argbash Documentation, Release 2.10.0

* Argbash is compatible with docopt — when using Argbash, you can go the docopt way whenever
you want .

4.5.2 Learning resources

Do you want to write the argument-parsing part of your script yourself or you want to improve Argbash? Then read
through this list of high-quality learning resources!

• Best practices in argument parsing: http://www.shelldorado.com/goodcoding/cmdargs.html Don’t miss the list
of short options and their common meaning!

• StackOverflow thread about argument parsing: https://stackoverflow.com/questions/192249/
how-do-i-parse-command-line-arguments-in-bash It was mainly this thread which inspired Argbash.
There are plenty of recipes and suggestions available. If you are a happy user of Argbash, consider upvoting
the answer that promotes it since more people know Argbash, the better for them.

• Argument parsing for dummies: https://wiki.bash-hackers.org/scripting/posparams A short and nice-looking
introduction with all basics covered (wiki).

• The POSIX conventions — the reason why getopts are still mentioned in bash learning resources.

4.5. Others 37

http://www.shelldorado.com/goodcoding/cmdargs.html
https://stackoverflow.com/questions/192249/how-do-i-parse-command-line-arguments-in-bash
https://stackoverflow.com/questions/192249/how-do-i-parse-command-line-arguments-in-bash
https://stackoverflow.com/a/38297066/592892
https://wiki.bash-hackers.org/scripting/posparams
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html

Argbash Documentation, Release 2.10.0

38 Chapter 4. Index

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

39

	Argbash
	Requirements

	Quickstart
	Generating a template
	Writing a template
	Limitations

	FAQ
	Index
	Installation
	Template writing guide
	Argbash tools
	Examples
	Others

	Indices and tables

