

ARES

The Accelerated Reionization Era Simulations (ARES) code was designed to rapidly generate models for the global 21-cm signal. It can also be used as a 1-D radiative transfer code, stand-alone non-equilibrium chemistry solver, or meta-galactic radiation background calculator. As of late 2016, it also contains a home-grown semi-analytic model of galaxy formation.

A few papers on how it works:

	1-D radiative transfer: Mirocha et al. (2012) [http://adsabs.harvard.edu/abs/2012ApJ...756...94M].

	Uniform backgrounds & global 21-cm signal: Mirocha (2014) [http://adsabs.harvard.edu/abs/2014arXiv1406.4120M].

	Galaxy luminosity functions: Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M].

	Population III star formation: Mirocha et al. (2018) [http://adsabs.harvard.edu/abs/2018MNRAS.478.5591M]

Plus some more applications:

	First stars and early galaxies: Mirocha & Furlanetto (2019) [http://adsabs.harvard.edu/abs/2018arXiv180303272M], Mebane, Mirocha, & Furlanetto (2019) [https://ui.adsabs.harvard.edu/abs/2019arXiv191010171M/abstract].

	Warm dark matter: Schneider (2018) [http://adsabs.harvard.edu/abs/2018PhRvD..98f3021S], Leo et al. (2019) [https://ui.adsabs.harvard.edu/abs/2019arXiv190904641L/abstract], Rudakovskyi et al. (2019) [https://ui.adsabs.harvard.edu/abs/2019arXiv190906303R/abstract].

	Parameter inference & forecasting: Mirocha, Harker, & Burns (2015) [http://adsabs.harvard.edu/abs/2015ApJ...813...11M], Tauscher et al. (2017) [http://adsabs.harvard.edu/abs/2018ApJ...853..187T], Sims & Pober (2019) [https://ui.adsabs.harvard.edu/abs/2019arXiv191003165S/abstract].

Be warned: this code is still under active development – use at your own
risk! Correctness of results is not guaranteed. This documentation is as much of a work in progress as the code itself, so if you encounter gaps or errors please do let me know.

Current status:

[image: _images/55050d8e40ccd5536fc5d3ecfc3cfa9625abe662.svg]
 [http://ares.readthedocs.io/en/latest/?badge=latest]
Quick-Start

To make sure everything is working, a quick test is to generate a
realization of the global 21-cm signal using all default parameter values:

import ares

sim = ares.simulations.Global21cm()
sim.run()
sim.GlobalSignature()

See Simple Physical Models for the Global 21-cm Signal in Examples for a more thorough
introduction to this type of calculation.

Contents

	Home

	Installation

	Examples

	Performance

	Under the Hood

	Troubleshooting

	ARES Development: Staying Up To Date

	ARES Development: Contributing!

	Development History

	Acknowledgements

Installation

ARES depends on:

	numpy [http://numpy.scipy.org/]

	scipy [http://www.scipy.org/]

	matplotlib [http://matplotlib.sourceforge.net]

and optionally:

	progressbar2 [http://progressbar-2.readthedocs.io/en/latest/]

	hmf [http://hmf.readthedocs.org/en/latest/]

	emcee [http://dan.iel.fm/emcee/current/]

	distpy [https://bitbucket.org/ktausch/distpy]

	mpi4py [http://mpi4py.scipy.org]

	pymp [https://github.com/classner/pymp]

	h5py [http://www.h5py.org/]

	setuptools [https://pypi.python.org/pypi/setuptools]

	mpmath [http://mpmath.googlecode.com/svn-history/r1229/trunk/doc/build/setup.html]

	shapely [https://pypi.python.org/pypi/Shapely]

	descartes [https://pypi.python.org/pypi/descartes]

If you have mercurial installed, you can clone ARES and its entire revision history via:

hg clone https://bitbucket.org/mirochaj/ares ares
cd ares
python setup.py install

If you do not have mercurial installed, and would rather just grab a tarball
of the most recent version, select the Download repository [https://bitbucket.org/mirochaj/ares/downloads] option on bitbucket.

You’ll need to set an environment variable which points to the ARES install directory, e.g. (in bash)

export ARES=/users/<yourusername>/ares

ARES will look in $ARES/input for lookup tables of various kinds. To download said lookup tables, run

python remote.py

This might take a few minutes. If something goes wrong with the download, you can run

python remote.py fresh

to get fresh copies of everything. If you’re concerned that a download may have been interrupted and/or the file appears to be corrupted (strange I/O errors may indicate this), you can also just download fresh copies of the particular file you want to replace. For example, to grab a fresh initial conditions file, simply do

python remote.py fresh inits

ARES branches

ARES has two main branches. The first, default, is meant to be stable, and will only be updated with critical bug fixes or upon arrival at major development milestones. The “bleeding edge” lives in the ares-dev branch, and while you are more likely to find bugs in ares-dev, you will also find the newest features.

By default after you clone ARES you’ll be using the default branch. To switch, simply type:

hg update ares-dev

To switch back,

hg update default

For a discussion of the pros and cons of different branching techniques in mercurial, this article is a nice place to start [http://stevelosh.com/blog/2009/08/a-guide-to-branching-in-mercurial/].

ARES versions

The first stable release of ARES was used in Mirocha et al. (2015) [http://adsabs.harvard.edu/abs/2015ApJ...813...11M], and is tagged as v0.1 in the revision history. The tag v0.2 is associated with Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M]. Note that these tags are just shortcuts to specific revisions. You can switch between them just like you would switch between branches, e.g.,

hg update v0.2

If you’re unsure which version is best for you, see the Development History.

Don’t have Python already?

If you do not already have Python installed, you might consider downloading yt [http://yt-project.org/], which has a convenient installation script that will download and install Python and many commonly-used Python packages for you. Anaconda [https://www.continuum.io/downloads] is also good for this.

Help

If you encounter problems with installation or running simple scripts, first check the Troubleshooting page in the documentation to see if you’re dealing with a common problem. If you don’t find your problem listed there, please let me know!

Examples

Running Individual Simulations

	
	Reionization & Global 21-cm Signal

	
	Simple Physical Models for the Global 21-cm Signal

	Models with Multiple Source Populations

	Phenomenological Models for the Global 21-cm Signal

	
	Uniform Radiation Backgrounds

	
	The Metagalactic UV Background

	The Metagalactic X-ray Background

	
	1-D Radiative Transfer

	
	RT06 Test #1 (Strömgren Sphere, isothermal)

	RT06 Test #2 (Strömgren Sphere, thermal evolution allowed)

Parameter Studies and Inference

	
	Running Large Suites of Models

	
	Simple Parameter Study: 2-D Model Grid

	Monte-Carlo Sampling Higher Dimensional Spaces

	
	Fitting and Forecasting

	
	Fitting the Global 21-cm Signal

	Fitting Galaxy Luminosity Functions

	
	Analyzing Sets of Models

	
	Inline Analysis

	Analyzing Model Grids / Monte Carlo Simulations

	Analyzing MCMC Calculations

Extensions

	
	Advanced physics

	
	Including Helium in 1-D Radiative Transfer Calculations

	
	Advanced source populations

	
	More Realistic Galaxy Populations

	More General Star Formation Histories and Spectral Synthesis

	Including Population III Stars

	Fitting EDGES-like Signals

	
	Comparing to observational data

	
	Working with Data and Models From the Literature

	
	Customization

	
	Embedding ARES in your own code

	The ParameterizedQuantity Framework

	Creating New Source Populations

Performance

The default parameter settings in ARES are not necessarily optimal for all applications. In this section, we detail some tricks that may be useful if one can tolerate a small hit in accuracy.

Time-stepping

For Simple Physical Models for the Global 21-cm Signal, the main parameters that control the speed of the calculation are epsilon_dt and max_timestep, which are described a bit more in Control Parameters. In short, epsilon_dt determines the largest fractional change allowed in any property of the intergalactic medium (IGM) – if a given timestep results in a larger fraction change than epsilon_dt allows, the iteration will be repeated with a smaller timestep. On the other hand, max_timestep governs the “global” timestep, i.e., the largest step we are allowed to take even in the limit where IGM quantities are evolving slowly, and thus are not restricted by epsilon_dt. This parameter is in some sense aesthetic, as it determines how frequently data is saved and as a result controls the smoothness in the time evolution of quantities of interest.

The default values for these parameters, epsilon_dt=0.05 and max_timestep=1 (the latter in Myr) are set so that they have no discernible impact on the evolution of the IGM. However, relaxing epsilon_dt by a factor of a few and increasing max_timestep to \(\sim 10\) Myr can provide a factor of \(\sim 2-3\) speed-up, with only a limited impact in the results (e.g., \(\sim 5\%\) errors induced in global 21-cm signal). Their effects have not been studied exhaustively, so it is possible that for some combinations of parameters the impact of changing these parameters may be greater. Proceed with caution!

Time-stepping is controlled a little differently in models that properly solve for the evolution of the X-ray background (as in Mirocha (2014) [http://adsabs.harvard.edu/abs/2014arXiv1406.4120M]; see The Metagalactic X-ray Background). In this case, the time resolution is set to be logarithmic in \(1+z\), which accelerates solutions to the radiative transfer equation. The key parameter is tau_redshift_bins, which is 1000 by default in the mirocha2017:dpl models (see Working with Data and Models From the Literature). Reducing this to 400 or 500 can result in a factor of \(\sim 2\) speed-up. Just note that you will need to re-generate a lookup table for the IGM optical depth of that resolution – see Initial Conditions & Lookup Tables for a few notes about how to do that (the relevant adjustment is re-setting Nz in the $ARES/examples/generate_optical_depth_tables.py script).

Avoiding Overhead: Halo Mass Function and Stellar Population Synthesis Models

Most ARES calculations spend \(\sim 10-30\%\) of the run-time simply reading in some necessary look-up tables – this sounds like a lot but is of course much faster than re-generating them on-the-fly. However, for most applications, these tables are always the same, so you can read them into memory once and pass them along to subsequent calculations for a speed-up.

The two most common lookup tables are those for the halo mass function (HMF) and stellar population synthesis (SPS) models. The following example grabs instances of the HMF and SPS classes that are attached to an initial ARES simulation, and then supplies those objects to a subsequent model which then does not need to read them in for itself:

import ares
import time

First, setup a UVLF-calibrated model for the global signal.
pars = ares.util.ParameterBundle('mirocha2017:base')

Time it
t1 = time.time()
sim = ares.simulations.Global21cm(**pars)
sim.run()
t2 = time.time()

Grab the HMF and SPS model instances from the first source population
and pass them to the next model via parameters that exist solely for
this purpose.
pars['hmf_instance'] = sim.pops[0].halos
pars['pop_src_instance{0}'] = sim.pops[0].src

Time the new run.
t3 = time.time()
sim = ares.simulations.Global21cm(**pars)
sim.run()
t4 = time.time()

print("Sim 1 done in {} sec.".format(t2 - t1))
print("Sim 2 done in {} sec.".format(t4 - t3))

This should provide a \(\sim 20\%\) speed-up.

Note

The HMF speed-up applies also to the simplest global signal models,
but the pop_src_instance trick used above does not, as such models do
not initialize stellar population synthesis models.

Note

These tricks are built-in to the ModelGrid and ModelFit
machinery in ARES. Simply set the save_hmf and save_psm attributes of each class to True before running.

Turning off advanced solutions to radiative transfer

There are two main differences between the so-called \(f_{\mathrm{coll}}\) models and the 'mirocha2017' UVLF-calibrated models relevant to the performance of the code: (i) the UVLF-calibrated models generate an entire population of galaxies, rather than linking the star formation rate density to \(\dot{f}_{\mathrm{coll}}\), which is slightly slower, and (ii) by default, the 'mirocha2017:base' models will solve the cosmological radiative transfer equation in detail, as mentioned above in the “Time Stepping” section. The accuracy of this calculation can be reduced to achieve a speed-up (see above), but you can also just turn this off if you’d like – just beware that if performing inference, this will bias your constraints on any X-ray-related parameters.

To turn off the advanced RTE machinery, do the following:

pars = ares.util.ParameterBundle('mirocha2017:base')

X-rays are emitted by population #1: turn off RTE solution
pars['pop_solve_rte{1}'] = False

Must also switch to a simpler, energy-independent scheme for
depositing photo-electron energies in the IGM.
pars['secondary_ionization] = 1

Setting secondary_ionization=1 will revert to using the Shull & van Steenberg (1985) [https://ui.adsabs.harvard.edu/abs/1985ApJ...298..268S/abstract] approach to secondary ionization and heating, which is an asymtoptic high-energy limit. By default, secondary_ionization=3, which corresponds to the energy-dependent results of Furlanetto & Johnson-Stoever (2010) [https://ui.adsabs.harvard.edu/abs/2010MNRAS.404.1869F/abstract].

Under the Hood

Super incomplete, sorry!

Parameters, Fields, and Data Structures

	Parameter Listing

	Field Listing

	Initial Conditions & Lookup Tables

	The ParameterizedQuantity Framework

Source Populations

	Dark Matter Halo Populations

	Models for Star Formation in Galaxies

	Models for Radiation Emitted by Galaxies

Physics

	Cosmology

Solvers

	Non-Equilibrium Chemistry

Troubleshooting

This page is an attempt to keep track of common errors and instructions for how to fix them. If you encounter a bug not listed below, fork ares on bitbucket [https://bitbucket.org/mirochaj/ares/fork] and an issue a pull request to contribute your patch, if you have one. Otherwise, shoot me an email and I can try to help. It would be useful if you can send me the dictionary of parameters for a particular calculation. For example, if you ran a global 21-cm calculation via

import ares

pars = {'parameter_1': 1e6, 'parameter_2': 2} # or whatever

sim = ares.simulations.Global21cm(**pars)
sim.run()

and you get weird or erroneous results, pickle the parameters:

import pickle
f = open('problematic_model.pkl', 'wb')
pickle.dump(pars, f)
f.close()

and send them to me. Thanks!

Note

If you’ve got a set of problematic models that you encountered
while running a model grid or some such thing, check out the section
on “problem realizations” in Analyzing Model Grids / Monte Carlo Simulations.

Plots not showing up

If when running some ARES script the program runs to completion without errors but does not produce a figure, it may be due to your matplotlib settings. Most test scripts use draw to ultimately produce the figure because it is non-blocking and thus allows you to continue tinkering with the output if you’d like. One of two things is going on:

	You invoked the script with the standard Python interpreter (i.e., not iPython). Try running it with iPython, which will spit you back into an interactive session once the script is done, and thus keep the plot window open.

	Alternatively, your default matplotlib settings may have caused this. Check out your matplotlibrc file (in $HOME/.matplotlibrc) and make sure interactive : True.

Future versions of ARES may use blocking commands to ensure that plot windows don’t disappear immediately. Email me if you have strong opinions about this.

IOError: No such file or directory

There are a few different places in the code that will attempt to read-in lookup tables of various sorts. If you get any error that suggests a required input file has not been found, you should:

	Make sure you have set the $ARES environment variable. See the Installation page for instructions.

	Make sure the required file is where it should be, i.e., nested under $ARES/input.

In the event that a required file is missing, something has gone wrong. Run python remote.py fresh to download new copies of all files.

LinAlgError: singular matrix

This is known to occur in ares.physics.Hydrogen when using scipy.interpolate.interp1d to compute the collisional coupling coefficients for spin-exchange. It is due to a bug in LAPACK version 3.4.2 (see this thread [https://github.com/scipy/scipy/issues/3868]). One solution is to install a newer version of LAPACK. Alternatively, you could use linear interpolation, instead of a spline, by passing interp_cc='linear' as a keyword argument to whatever class you’re instantiating, or more permanently by adding interp_cc='linear' to your custom defaults file (see Parameter Listing section for instructions).

21-cm Extrema-Finding Not Working

If the derivative of the signal is noisy (due to numerical artifacts, for example) then the extrema-finding can fail. If you can visually see three extrema in the global 21-cm signal but they are either absent or crazy in ares.simulations.Global21cm.turning_points, then this might be going on. Try setting the smooth_derivative parameter to a value of 0.1 or 0.2. This parameter will smooth the derivative with a boxcar of width \(\Delta z=\) smooth_derivative before performing the extrema finding. Let me know if this happens (and under what circumstances), as it would be better to eliminate numerical artifacts than to smooth them out after the fact.

AttributeError: No attribute blobs.

This is a bit of a red herring. If you’re running an MCMC fit and saving 2-D blobs, which always require you to pass the name of the function, this error occurs if you supply a function that does not exist. Check for typos and/or that the function exists where it should.

TypeError: __init__() got an unexpected keyword argument 'assume_sorted'

Turns out this parameter didn’t exist prior to scipy version 0.14. If you update to scipy version >= 0.14, you should be set. If you’re worried that upgrading scipy might break other codes of yours, you can also simply navigate to ares/physics/Hydrogen.py and delete each occurrence of assume_sorted=True, which should have no real effect (except for perhaps a very slight slowdown).

Failed to interpret file '<some-file>.npz' as a pickle

This is a strange one, which might arise due to differences in the Python and/or pickle version used to read/write lookup tables ARES uses. First, try to download new lookup tables via:

python remote.py fresh

If that doesn’t magically fix it, please email me and I’ll do what I can to help!

ERROR: Cannot generate halo mass function

This error generally occurs because lookup tables for the halo mass function are not being found, and when that happens, ARES tries to make new tables. This process is slow and so is not recommended! Instead you should check that (i) you have correctly set the $ARES environment variable and (ii) that you have run the remote.py script (see Installation), which downloads the default HMF lookup table. If you have recently pulled changes, you may need to re-run remote.py since, e.g., the default HMF parameters may have been changed and corresponding tables may have been updated on the web. To save time, you can specify that you only want new HMF tables by executing python remote.py fresh hmf.

General Mysteriousness

	If you’re running ARES from within an iPython (or Jupyter) notebook, be wary of initializing class instances in one notebook cell and modifying attributes in a separate cell. If you re-run the the second cell without re-running the first cell, this can cause problems because changes to attributes will not automatically propagate back up to any parent classes (should they exist). This is known to happen (at least) when using the ModelGrid and ModelSamples classes in the inference sub-module.

ARES Development: Staying Up To Date

Things are changing fast! To keep up with advancements, a working knowledge of mercurial [https://mercurial.selenic.com/] will be very useful. If you’re reading this, you may already be familiar with mercurial to some degree, as its clone command can be used to checkout a copy of the most-up-to-date version (the ‘’tip’’ of development) from bitbucket. For example (as in Installation),

hg clone https://bitbucket.org/mirochaj/ares ares
cd ares
python setup.py install

If you don’t plan on making changes to the source code, but would like to make sure you have the most up-to-date version of ARES, you’ll want to use the hg pull command regularly, i.e., simply type

hg pull

from anywhere within the ARES folder. After entering your bitbucket credentials, fresh copies of any files that have been changed will be downloaded. In order to accept those updates, you should then type:

hg update

or simply hg up for short. Then, to re-install ARES:

python setup.py install

If you plan on making changes to ARES, you should fork it [https://bitbucket.org/mirochaj/ares/fork] so that your line of development can run in parallel with the ‘’main line’’ of development. Once you’ve forked, you should clone a copy just as we did above. For example (note the hyperlink change),

hg clone https://bitbucket.org/mirochaj/ares-jordan ares-jordan
cd ares-jordan
python setup.py install

There are many good tutorials online, but in the following sections we’ll go through the commands you’ll likely be using all the time.

Checking the Status of your Fork

You’ll typically want to know if, for example, you have changed any files recently and if so, what changes you have made. To do this, type:

hg status

This will print out a list of files in your fork that have either been modified (indicated with M), added (A), removed (R), or files that are not currently being tracked (?). If nothing is returned, it means that you have not made any changes to the code locally, i.e., you have no ‘’outstanding changes.’‘

If, however, some files have been changed and you’d like to see just exactly what changes were made, use the diff command. For example, if when you type hg status you see something like:

M tests/test_solver_chem_h.py

follow-up with:

hg diff tests/test_solver_chem_h.py

and you’ll see a modified version of the file with + symbols indicating additions and - signs indicating removals. If there have been lots of changes, you may want to pipe the output of hg diff to, e.g., the UNIX program less:

hg diff tests/test_solver_chem_h.py | less

and use u and d to navigate up and down in the output.

Making Changes and Pushing them Upstream

If you convince yourself that the changes you’ve made are good changes, you should absolutely save them and beam them back up to the cloud. Your changes will either be:

	Modifications to a pre-existing file.

	Creation of an entirely new file.

If you’ve added new files to ARES, they should get an ? indicator when you type hg status, meaning they are untracked. To start tracking them, you need to add them to the repository. For example, if we made a new file tests/test_new_feature.py, we would do:

hg add tests/test_new_feature.py

Upon typing hg status again, that file should now have an A indicator to its left.

If you’ve modified pre-existing files, they will be marked M by hg status. Once you’re happy with your changes, you must commit them, i.e.:

hg commit -m "Made some changes."

The -m indicates that what follows in quotes is the ‘’commit message’’ describing what you’ve done. Commit messages should be descriptive but brief, i.e., try to limit yourself to a sentence (or maybe two), tops. You can see examples of this in the ares commit history [https://bitbucket.org/mirochaj/ares/commits/all].

Note that your changes are still local, meaning the ARES repository on bitbucket is unaware of them. To remedy that, go ahead and push:

hg push

You’ll once again be prompted for your credentials, and then (hopefully) told how many files were updated etc.

If you get some sort of authorization error, have a look at the following file:

$ARES/.hg/hgrc

You should see something that looks like

[paths]
default = https://username@bitbucket.org/username/fork-name

[ui]
username = John Doe <johndoe@gmail.com>

If you got an authorization error, it is likely information in this file was either missing or incorrect. Remember that you won’t have push access to the main ARES repository: just your fork (hence the use of ‘’fork-name’’ above).

Contributing your Changes to the main repository

If you’ve made changes, you should let us know! The most formal way of doing so is to issue a pull request (PR), which alerts the administrators of ARES to review your changes and pull them into the main line of ARES development.

Dealing with Conflicts

Will cross this bridge when we come to it!

ARES Development: Contributing!

If ARES lacks functionality you’re interested in, but seems to exhibit some
features you’d like to make use of, adapting it to suit your purpose should
(in principle) be fairly straightforward. The following sections describe
how you might go about doing this.

If you end up developing something that might be useful for others and
are willing to share, you should absolutely fork ares on bitbucket [https://bitbucket.org/mirochaj/ares/fork].
Feel free to shoot me an email if you need help getting started!

Adding new modules: general rules

There are a few basic rules to follow in adding new modules to ARES that should prevent major crashes. They are covered below.

Imports

First and foremost, when you write a new module you should follow the hierarchy that’s already in place. Below, the pre-existing sub-modules within ARES are listed in an order representative of that hierarchy:

	inference

	simulations

	solvers

	static

	populations, sources

	physics, util, analysis

It will hopefully be clear which sub-module your new code ought to be added to. For example, if you’re writing code to fit a particular kind of dataset, you’ll want to add your new module to ares.inference. If you’re creating new kinds of source populations, ares.populations, and so on. If you’re adding new physical constants, rate coefficients, etc., look at ares.physics.Constants and ares.physics.RateCoefficients.

Now, you’ll (hopefully) be making use of at least some pre-existing capabilities of ARES, which means your module will need to import classes from other sub-modules. There is only one rule here:

When writing a new class, let’s say within sub-module X, you cannot import classes from sub-modules Y that lie above X in the hierarchy.

This is to prevent circular imports (which result in recursion errors).

Inheritance

You might also want to inherit pre-existing classes rather than simply making new instances of them in your own. For example, if creating a class to represent a new type of source population, it would be wise to inherit the ares.populations.Population class, which has a slew of convenience routines. More on that later.

Again, there’s only one rule, which is related to the hierarchy listed in the above section:

Parent Classes (i.e., those to be inherited) must be defined either at the same level in the hierarchy as the Child Classes or below.

This follows from the rule about imports, since a class must be either defined locally or imported before it can be inherited.

Development History

ARES used to exist as two separate codes: rt1d and glorb, which were introduced in Mirocha et al. (2012) [http://adsabs.harvard.edu/abs/2012ApJ...756...94M] and Mirocha (2014) [http://adsabs.harvard.edu/abs/2014arXiv1406.4120M], respectively. Since then, the codes have been combined and restructured to provide a more unified framework for doing radiative transfer calculations, modeling of the global 21-cm signal, and exploring all types of parameter spaces using MCMC.

Here’s an attempt to keep track of major changes to the code over time, which will be tagged in the bitbucket repository with version numbers. I haven’t followed conventions for version numbering so far. Instead, I’ve simply tagged commits with a version number when a paper is submitted using that version of the code (e.g., v0.1 and v0.2), or when a series of noteworthy improvements or bug fixes have been made (v0.3).

v0.5

	This is the version of the code used in Mirocha & Furlanetto (2019) [http://adsabs.harvard.edu/abs/2018arXiv180303272M].

	Note that several ``litdata’’ modules have been updated so that the year is reflective of the year the paper was published, not submitted!

v0.4

	This is the version of the code used in Mirocha et al. (2018) [http://adsabs.harvard.edu/abs/2018MNRAS.478.5591M]. The main addition is global Lyman-Werner feedback, which raises the minimum mass of star-forming halos self-consistently using an iterative technique.

v0.3

	Updated to work with hmf [http://hmf.readthedocs.org/en/latest/] version 2.0.1.

	Bug fix in \(S_{\alpha}\) calculation for Furlanetto & Pritchard (2006): sign error in higher order terms.

	Generalized HaloProperty objects from version 0.2 to allow dependence on any number of arbitrary quantities. Now called ParameterizedQuantity object.

v0.2

This is the version of the code used in Mirocha, Furlanetto, & Sun (submitted) [http://arxiv.org/abs/1607.00386].

Main (new) features:

	Can model the star-formation efficiency as a mass- and redshift-dependent quantity using HaloProperty objects.

	This, coupled with the GalaxyPopulation class, allows one to generate models of the galaxy luminosity function. Also possible to fit real datasets (using ares.inference.FitLuminosityFunction module).

	Creation of a litdata module to facilitate use of data from the literature. At the moment, this includes recent measurements of the galaxy luminosity function and stellar population synthesis models (starburst99 and BPASS).

	Creation of ParameterBundle objects to ease the initialization of calculations.

v0.1

This is the version of the code used in Mirocha et al. (2015) [http://arxiv.org/abs/1509.07868].

Main features:

	Simple physical models for the global 21-cm signal available.

	Can use * emcee [http://dan.iel.fm/emcee/current/] to fit these models to data.

Acknowledgements

Main developer(s):

	Jordan Mirocha [https://sites.google.com/site/jordanmirocha/home]

Additional contributions / corrections / suggestions from:

	Geraint Harker

	Jason Sun

	Keith Tauscher

	Jacob Jost

	Greg Salvesen

	Adrian Liu

	Saurabh Singh

	Rick Mebane

	Krishma Singal

	Donald Trinh

	Omar Ruiz Macias

	Arnab Chakraborty

	Madhurima Choudhury

	Saul Kohn

	Aurel Schneider

	Kristy Fu

	Garett Lopez

	Ranita Jana

	Daniel Meinert

	Henri Lamarre

	Matteo Leo

Index

Including Helium in 1-D Radiative Transfer Calculations

Test #2 from the Radiative Transfer Comparison Project (Iliev et al. 2006 [http://adsabs.harvard.edu/abs/2006MNRAS.371.1057I]).

This problem investigates the growth of an HII region around a blackbody
source of ionizing photons. The main parameters are:

	Stellar ionizing photon production rate of \(\dot{Q} = 5 \times 10^{48} \ \text{s}^{-1}\).

	Stellar spectrum is a \(10^5\) K blackbody.

	Medium composed of hydrogen only, with a density of \(n_{\text{H}} = 10^{-3} \ \text{cm}^{-3}\).

	Gas temperature is able to evolve. It is initially set to \(T=100\) K everywhere on the grid.

The ionization and heating rates are computed treating the source’s spectral
energy distribution in full. A lengthy discussion of this can be found in
Mirocha et al. (2012) [http://adsabs.harvard.edu/abs/2012ApJ...756...94M].

Including helium for pre-existing problem types is as simple as adding 10 to
the problem_type, i.e.,

import ares

sim = ares.simulations.RaySegment(problem_type=12)
sim.run()

Now, we initialize an instance of the appropriate analysis class:

and have a look at the temperature profile at 10, 30, and 100 Myr,

ax1 = sim.RadialProfile('Tk', t=[10, 30, 100])

radial profiles of the hydrogen species fractions,

ax2 = sim.RadialProfile('h_1', t=[10, 30, 100], fig=2)
sim.RadialProfile('h_2', t=[10, 30, 100], ax=ax2, ls='--')

and the species fractions for helium:

ax3 = sim.RadialProfile('he_1', t=[10, 30, 100], fig=3)
sim.RadialProfile('he_2', t=[10, 30, 100], ax=ax3, ls='--')
sim.RadialProfile('he_3', t=[10, 30, 100], ax=ax3, ls=':')

Broad-Band Metagalactic Backgrounds

The Metagalactic UV Background

One of the main motivations for ares was to be able to easily generate models for the metagalactic background. In this example, we’ll focus on the ultraviolet background , which is noteworthy given the ‘’sawtooth’’ modulation (e.g., Haiman et al. (1997) [http://adsabs.harvard.edu/abs/1997ApJ...476..458H]) caused by intergalactic hydrogen atoms.

In order to model this background, we need to decide on a few main ingredients:

	The spectrum of sources, which can be one of several pre-defined options (like a power-law, pl or blackbody, bb), or a Python function supplied by the user.

	How the background will evolve with redshift, which could be based on the rate of collapse onto dark matter haloes as a function of time, a parameterized form for the star-formation rate history, or more detailed models of star-formation (see Models for Star Formation in Galaxies).

	What (if any) approximations we’ll make in order to speed-up the calculation, aside from the assumption of a spatially uniform radiation background, which we make implicitly in ares throughout.

First things first:

import ares
import numpy as np
import matplotlib.pyplot as pl
from ares.physics.Constants import erg_per_ev, c, ev_per_hz

Now, let’s set some parameters that define the properties of the source population:

alpha = 0. # flat SED
beta = 0. # flat SFRD

pars = \
{

 'pop_sfr_model': 'sfrd-func',
 'pop_sfrd': lambda z: 0.1 * (1. + z)**beta,

 'pop_sed': 'pl',
 'pop_alpha': alpha,
 'pop_Emin': 1,
 'pop_Emax': 1e2,
 'pop_EminNorm': 13.6,
 'pop_EmaxNorm': 1e2,
 'pop_yield': 1e57,
 'pop_yield_units': 'photons/msun',

 # Solution method
 'pop_solve_rte': True,
 'lya_nmax': 8,
 'pop_tau_Nz': 400,

 'initial_redshift': 40,
 'final_redshift': 10,
}

To summarize these inputs, we’ve got:

	A constant SFRD of \(0.1 \ M_{\odot} \ \mathrm{yr}^{-1} \ \mathrm{cMpc}^{-3}\), given by the pop_sfrd parameter.

	A flat spectrum (power-law with index \(\alpha=0\)), given by pop_sed and pop_alpha.

	A yield of \(10^{57} \ \mathrm{photons} \ M_{\odot}^{-1}\) of star-formation in the \(13.6 \leq h\nu / \mathrm{eV} \leq 100\) band, set by pop_EminNorm, pop_EmaxNorm, pop_yield, and pop_yield_units.

See Population Parameters for a complete listing of parameters relevant to ares.populations.GalaxyPopulation objects.

Next, let’s initialize an ares.simulations.MetaGalacticBackground object (which will automatically create an ares.populations.GalaxyPopulation instance):

mgb = ares.simulations.MetaGalacticBackground(**pars)

To run the thing:

mgb.run()

The results of the calculation, as in any ares.simulations class, are stored in an attribute called history. Here, we’ll use a convenience routine to extract the redshifts, photon energies, and corresponding fluxes (a 2-D array):

z, E, flux = mgb.get_history(flatten=True)

Internally, fluxes are computed in units of \(\mathrm{s}^{-1} \ \mathrm{cm}^{-2} \ \mathrm{Hz}^{-1} \ \mathrm{sr}^{-1}\), but often it can be useful to look at the background flux in terms of its energy, i.e., in units of \(\mathrm{erg} \ \mathrm{s}^{-1} \ \mathrm{cm}^{-2} \ \mathrm{Hz}^{-1} \ \mathrm{sr}^{-1}\):

pl.semilogy(E, flux[0] * E * erg_per_ev, color='k', ls=':')

You should see the characteristic sawtooth modulation of an intrinsically flat spectrum.

Compare to the analytic solution, given by Equation A1 in Mirocha (2014) [http://adsabs.harvard.edu/abs/2014arXiv1406.4120M] (the cosmologically-limited solution to the radiative transfer equation), which does not take into account the sawtooth modulation:

\[J_{\nu}(z) = \frac{c}{4\pi} \frac{\epsilon_{\nu}(z)}{H(z)} \frac{(1 + z)^{9/2-(\alpha + \beta)}}{\alpha+\beta-3/2} \times \left[(1 + z_i)^{\alpha+\beta-3/2} - (1 + z)^{\alpha+\beta-3/2}\right]\]

with \(\alpha = \beta = 0\) (i.e., constant SFRD, flat spectrum), \(z=10\), and \(z_i=40\),

Grab the GalaxyPopulation instance
pop = mgb.pops[0]

Compute cosmologically-limited solution
zi, zf = 40., 10.
e_nu = np.array(map(lambda E: pop.Emissivity(zf, E), E))
e_nu *= (1. + zf)**(4.5 - (alpha + beta)) / 4. / np.pi \
 / pop.cosm.HubbleParameter(zf) / (alpha + beta - 1.5)
e_nu *= ((1. + zi)**(alpha + beta - 1.5) - (1. + zf)**(alpha + beta - 1.5))
e_nu *= c * ev_per_hz

Plot it
pl.semilogy(E, e_nu, color='k', ls='-')

Add some axis labels if you’d like:

pl.xlabel(ares.util.labels['E'])
pl.ylabel(ares.util.labels['flux_E'])

Note

In reality, the ionizing background before reionization should be heavily damped. This example is unphysical in some sense because while it treats the opacity of HI and HeI Lyman lines (which produce the sawtooth modulation) it ignores the continuum opacity at energies above 13.6 eV. This will be treated more carefully by setting pop_approx_tau='neutral' in the The Metagalactic X-ray Background example.

The Metagalactic UV Background

One of the main motivations for ARES was to be able to easily generate models for the metagalactic background. In this example, we’ll focus on the ultraviolet background , which is noteworthy given the ‘’sawtooth’’ modulation (e.g., Haiman et al. (1997) [http://adsabs.harvard.edu/abs/1997ApJ...476..458H]) caused by intergalactic hydrogen atoms.

In order to model this background, we need to decide on a few main ingredients:

	The spectrum of sources, which can be one of several pre-defined options (like a power-law, pl or blackbody, bb), or a Python function supplied by the user.

	How the background will evolve with redshift, which could be based on the rate of collapse onto dark matter haloes as a function of time, a parameterized form for the star-formation rate history, or more detailed models of star-formation (see Models for Star Formation in Galaxies).

	What (if any) approximations we’ll make in order to speed-up the calculation, aside from the assumption of a spatially uniform radiation background, which we make implicitly in ARES throughout.

First things first:

import ares
import numpy as np
import matplotlib.pyplot as pl
from ares.physics.Constants import erg_per_ev, c, ev_per_hz

Now, let’s set some parameters that define the properties of the source population:

alpha = 0. # flat SED
beta = 0. # flat SFRD

pars = \
{
 'pop_sfr_model': 'sfrd-func',
 'pop_sfrd': lambda z: 0.1 * (1. + z)**beta,

 'pop_sed': 'pl',
 'pop_alpha': alpha,
 'pop_Emin': 1,
 'pop_Emax': 1e2,
 'pop_EminNorm': 13.6,
 'pop_EmaxNorm': 1e2,
 'pop_rad_yield': 1e57,
 'pop_rad_yield_units': 'photons/msun',

 # Solution method
 'pop_solve_rte': True,
 'lya_nmax': 8,
 'tau_redshift_bins': 400,

 'initial_redshift': 40,
 'final_redshift': 10,
}

To summarize these inputs, we’ve got:

	A constant SFRD of \(0.1 \ M_{\odot} \ \mathrm{yr}^{-1} \ \mathrm{cMpc}^{-3}\), given by the pop_sfrd parameter.

	A flat spectrum (power-law with index \(\alpha=0\)), given by pop_sed and pop_alpha.

	A yield of \(10^{57} \ \mathrm{photons} \ M_{\odot}^{-1}\) of star-formation in the \(13.6 \leq h\nu / \mathrm{eV} \leq 100\) band, set by pop_EminNorm, pop_EmaxNorm, pop_yield, and pop_yield_units.

See Population Parameters for a complete listing of parameters relevant to ares.populations.GalaxyPopulation objects.

Next, let’s initialize an ares.simulations.MetaGalacticBackground object (which will automatically create an ares.populations.GalaxyPopulation instance):

mgb = ares.simulations.MetaGalacticBackground(**pars)

To run the thing:

mgb.run()

The results of the calculation, as in any ares.simulations class, are stored in an attribute called history. Here, we’ll use a convenience routine to extract the redshifts, photon energies, and corresponding fluxes (a 2-D array):

z, E, flux = mgb.get_history(flatten=True)

Internally, fluxes are computed in units of \(\mathrm{s}^{-1} \ \mathrm{cm}^{-2} \ \mathrm{Hz}^{-1} \ \mathrm{sr}^{-1}\), but often it can be useful to look at the background flux in terms of its energy, i.e., in units of \(\mathrm{erg} \ \mathrm{s}^{-1} \ \mathrm{cm}^{-2} \ \mathrm{Hz}^{-1} \ \mathrm{sr}^{-1}\):

pl.semilogy(E, flux[0] * E * erg_per_ev, color='k', ls=':')

You should see the characteristic sawtooth modulation of an intrinsically flat spectrum.

Compare to the analytic solution, given by Equation A1 in Mirocha (2014) [http://adsabs.harvard.edu/abs/2014arXiv1406.4120M] (the cosmologically-limited solution to the radiative transfer equation), which does not take into account the sawtooth modulation:

\[J_{\nu}(z) = \frac{c}{4\pi} \frac{\epsilon_{\nu}(z)}{H(z)} \frac{(1 + z)^{9/2-(\alpha + \beta)}}{\alpha+\beta-3/2} \times \left[(1 + z_i)^{\alpha+\beta-3/2} - (1 + z)^{\alpha+\beta-3/2}\right]\]

with \(\alpha = \beta = 0\) (i.e., constant SFRD, flat spectrum), \(z=10\), and \(z_i=40\),

Grab the GalaxyPopulation instance
pop = mgb.pops[0]

Compute cosmologically-limited solution
zi, zf = 40., 10.
e_nu = np.array(map(lambda E: pop.Emissivity(zf, E), E))
e_nu *= (1. + zf)**(4.5 - (alpha + beta)) / 4. / np.pi \
 / pop.cosm.HubbleParameter(zf) / (alpha + beta - 1.5)
e_nu *= ((1. + zi)**(alpha + beta - 1.5) - (1. + zf)**(alpha + beta - 1.5))
e_nu *= c * ev_per_hz

Plot it
pl.semilogy(E, e_nu, color='k', ls='-')

Add some axis labels if you’d like:

pl.xlabel(ares.util.labels['E'])
pl.ylabel(ares.util.labels['flux_E'])

pl.savefig('ares_crte_uv.png')

[image: _images/ares_crte_uv.png]
Sawtooth modulation of the UV background compared to optically-thin solution (solid).

Note

In reality, the ionizing background before reionization should be heavily damped. This example is unphysical in some sense because while it treats the opacity of HI and HeI Lyman lines (which produce the sawtooth modulation) it ignores the continuum opacity at energies above 13.6 eV. This will be treated more carefully by setting pop_approx_tau='neutral' in the The Metagalactic X-ray Background example.

The Metagalactic X-ray Background

In this example, we’ll compute the Meta-Galactic X-ray background over a
series of redshifts (\(10 \leq z \leq 40\)):

Initialize radiation background
pars = \
{
 # Source properties
 'pop_sfr_model': 'sfrd-func',
 'pop_sfrd': lambda z: 0.1,

 'pop_sed': 'pl',
 'pop_alpha': -1.5,
 'pop_Emin': 2e2,
 'pop_Emax': 3e4,
 'pop_EminNorm': 5e2,
 'pop_EmaxNorm': 8e3,
 'pop_rad_yield': 2.6e39,
 'pop_rad_yield_units': 'erg/s/sfr',

 # Solution method
 'pop_solve_rte': True,
 'tau_redshift_bins': 400,

 'initial_redshift': 60.,
 'final_redshift': 5.,
}

To summarize these inputs, we’ve got:

	A constant SFRD of \(0.1 \ M_{\odot} \ \mathrm{yr}^{-1} \ \mathrm{cMpc}^{-3}\), given by the pop_sfrd parameter.

	A power-law spectrum with index \(\alpha=-1.5\), given by pop_sed and pop_alpha, extending from 0.2 keV to 30 keV.

	A yield of \(2.6 \times 10^{39} \ \mathrm{erg} \ \mathrm{s}^{-1} \ (M_{\odot} \ \mathrm{yr})^{-1}\) in the \(0.5 \leq h\nu / \mathrm{keV} \leq 8\) band, set by pop_EminNorm, pop_EmaxNorm, pop_yield, and pop_yield_units. This is the \(L_X-\mathrm{SFR}\) relation found by Mineo et al. (2012) [http://adsabs.harvard.edu/abs/2012MNRAS.419.2095M].

See Population Parameters for a complete listing of parameters relevant to ares.populations.GalaxyPopulation objects.

Now, to initialize a calculation:

import ares

mgb = ares.simulations.MetaGalacticBackground(**pars)

Now, let’s run the thing:

mgb.run()

We’ll pull out the evolution of the background just as we did in the previous example:

z, E, flux = mgb.get_history(flatten=True)

and plot up the result (at the final redshift):

import matplotlib.pyplot as pl
from ares.physics.Constants import erg_per_ev

pl.semilogy(E, flux[0] * E * erg_per_ev, color='k')
pl.xlabel(ares.util.labels['E'])
pl.ylabel(ares.util.labels['flux_E'])

z, E, flux = mgb.get_history(flatten=True)

Compare to the analytic solution, given by Equation A1 in Mirocha (2014) [http://adsabs.harvard.edu/abs/2014arXiv1406.4120M] (the cosmologically-limited solution to the radiative transfer equation)

\[J_{\nu}(z) = \frac{c}{4\pi} \frac{\epsilon_{\nu}(z)}{H(z)} \frac{(1 + z)^{9/2-(\alpha + \beta)}}{\alpha+\beta-3/2} \times \left[(1 + z_i)^{\alpha+\beta-3/2} - (1 + z)^{\alpha+\beta-3/2}\right]\]

with \(\alpha = -1.5\), \(\beta = 0\), \(z=5\), and \(z_i=60\),

import numpy as np
from ares.physics.Constants import c, ev_per_hz

Grab the GalaxyPopulation instance
pop = mgb.pops[0]

Compute cosmologically-limited solution
e_nu = np.array(map(lambda E: pop.Emissivity(10., E), E))
e_nu *= c / 4. / np.pi / pop.cosm.HubbleParameter(5.)
e_nu *= (1. + 5.)**6. / -3.
e_nu *= ((1. + 60.)**-3. - (1. + 5.)**-3.)
e_nu *= ev_per_hz

Plot it
pl.semilogy(E, e_nu, color='b', ls='--')

Neutral Absorption by the Diffuse IGM

The calculation above is basically identical to the optically-thin UV background calculations performed in the previous example, at least in the cases where we neglected any sawtooth effects. While there is no modification to the X-ray background due to resonant absorption in the Lyman series (of Hydrogen or Helium II), bound-free absorption by intergalactic hydrogen and helium atoms acts to harden the spectrum. By default, ARES will not include these effects.

To “turn on” bound-free absorption in the IGM, modify the dictionary of parameters you’ve got already:

pars['tau_approx'] = 'neutral'

Now, initialize and run a new calculation:

mgb2 = ares.simulations.MetaGalacticBackground(**pars)
mgb2.run()

and plot the result on the same axes:

z2, E2, flux2 = mgb2.get_history(flatten=True)

pl.loglog(E2, flux2[0] * E2 * erg_per_ev, color='k', ls=':')

pl.savefig('ares_crte_xr.png')

[image: _images/ares_crte_xr.png]
X-ray background spectrum, with (dotted) and without (solid) neutral absorption from the IGM. Analytic solution for optically-thin case in dashed blue.

The behavior at low photon energies (\(h\nu \lesssim 0.3 \ \mathrm{keV}\))
is an artifact that arises due to poor redshift resolution. This is a trade
made for speed in solving the cosmological radiative transfer equation,
discussed in detail in Section 3 of Mirocha (2014) [http://adsabs.harvard.edu/abs/2014arXiv1406.4120M]. For more accurate
calculations, you must enhance the redshift sampling using the tau_redshift_bins
parameter, e.g.,

pars['tau_redshift_bins'] = 500

The optical depth lookup tables that ship with ARES use tau_redshift_bins=400
as a default. If you run with tau_redshift_bins=500, you should see some improvement in the soft X-ray spectrum. It’ll take a few minutes to generate a new table. Run $ARES/input/optical_depth/generate_optical_depth_tables.py to make more!

Alternative Methods

The technique outlined above is the fastest way to integrate the cosmological radiative transfer equation (RTE), but it assumes that we can tabulate the optical depth ahead of time. What if instead we wanted to study the radiation background in a decreasingly opaque IGM? Well, we can solve the RTE at several photon energies in turn:

E = np.logspace(2.5, 4.5, 100)

To determine the background intensity at \(z=10\) due to the same BH population
as above, we could do something like:

Function describing evolution of IGM ionized fraction with respect to redshift
(fully ionized for all time in this case, meaning IGM is optically thin)
xofz = lambda z: 1.0

Compute flux at z=10 and each observed energy due to emission from
sources at 10 <= z <= 20.
F = [rad.AngleAveragedFlux(10., nrg, zf=20., xavg=xofz) for nrg in E]

pl.loglog(E, F)

You’ll notice that computing the background intensity is much slower when
we do not pre-compute the IGM optical depth.

Let’s compare this to an IGM with evolving ionized fraction:

Here's a function describing the ionization evolution for a scenario
in which reionization is halfway done at z=10 and somewhat extended.
xofz2 = lambda z: ares.util.xHII_tanh(z, zr=10., dz=4.)

Compute fluxes
F2 = [rad.AngleAveragedFlux(10., nrg, zf=20., xavg=xofz2) for nrg in E]

Plot results
pl.loglog(E, F2)

Add some nice axes labels
pl.xlabel(ares.util.labels['E'])
pl.ylabel(ares.util.labels['flux'])

Notice how the plot of F2 has been hardened by neutral absorption in the IGM!

Self-Consistent Meta-Galactic Background & IGM

If we don’t already know the IGM optical depth a-priori, then the calculations above will only bracket the result expected in a more complex, evolving IGM, in which the radiation background ionizes the IGM, thus making the IGM more transparent, which then softens the meta-galactic background, and so on. A dynamic background calculator that takes this into account is on the ARES wish-list – shoot me an email if you’re so inclined.

Fitting EDGES-like Signals

In March of 2018, the EDGES collaboration reported an anamolously-strong absorption signal in the sky-averaged spectrum at 78 MHz (Bowman et al. (2018) [http://adsabs.harvard.edu/abs/2018Natur.555...67B]). This is roughly where one might expect the global 21-cm signal, though its amplitude is 2-3x larger than the most extreme cases in a \(\Lambda \text{CDM}\) framework. This has led to a variety of exotic explanations, such as milli-charged dark (see, e.g., Barkana (2018) [http://adsabs.harvard.edu/abs/2018Natur.555...71B], Fialkov et al. (2018) [http://adsabs.harvard.edu/abs/2018PhRvL.121a1101F], Berlin et al. (2018) [http://adsabs.harvard.edu/abs/2018PhRvL.121a1102B], Kovetz et al. (2018) [http://adsabs.harvard.edu/abs/2018PhRvD..98j3529K]) matter and excess power in the Rayleigh-Jeans tail of the microwave background (see, e.g., Feng & Holder (2018) [http://adsabs.harvard.edu/abs/2018ApJ...858L..17F], Ewall-Wice et al. (2018) [http://adsabs.harvard.edu/abs/2018ApJ...868...63E], Fraser et al. (2018) [http://adsabs.harvard.edu/abs/2018PhLB..785..159F], Pospelov et al. (2018) [http://adsabs.harvard.edu/abs/2018PhRvL.121c1103P]). These lists are horribly incomplete, so apologies for that!

In ARES, we have not included any specific models of dark matter. However, in Mirocha & Furlanetto (2019) [http://adsabs.harvard.edu/abs/2019MNRAS.483.1980M] we explored two general possibilities:

	A parametric “excess cooling” model, in which the thermal history at very high redshift is allowed to depart from the predictions of standard recombination codes in \(\Lambda \text{CDM}\) cosmologies.

	An astrophysically-generated radio background, whose strength scales with the star formation of galaxies as \(L_R \propto f_R \text{SFR}\). The parameter \(f_R\) was left as a free parameter.

In this section, we will show how to run these models within ARES.

Excess Cooling Models

At high-z the temperature of a mean-density gas parcel evolves between \(T(z) \propto (1+z)\) and \(T(z) \propto (1+z)^2\) – the \((1+z)\) dependence a signature that Compton scattering tightly couples the CMB, spin, and kinetic temperatures, and the \((1+z)^2\) dependence indicating that Compton scattering has become inefficient, allowing the gas to cool adiabatically. This thermal history can be modeled accurately by noting that the log-cooling rate, \(d\log T/ d\log t\), of a mean-density gas parcel transitions smoothly between -2/3 at very high-z and -4/3 in a matter-dominated cosmology. So, rather than modeling the thermal history directly, we take

\[\frac{d\log T}{d\log t} = \frac{\alpha}{3} - \frac{(2+\alpha)}{3} \bigg\{1 + \exp \left[-\left(\frac{z}{z_0}\right)^{\beta} \right] \bigg \} \label{eq:Thist}\]

and integrate to obtain the thermal history. We have constructed this relation such that \(\alpha=-4\) reproduces the typical thermal history, and while varying $alpha$ can change the late-time cooling rate, the cooling rate as \(z \rightarrow \infty\) tends to \(d\log T/ d\log t = -2/3\), as it must to preserve the thermal history during the recombination epoch. See Section 2.3.1 of our paper for more discussion of this model.

To switch to this parameteric cooling model, you can add the following updates to any dictionary of parameters you would usually supply to ARES:

New base_kwargs
cold = \
{
 'load_ics': 'parametric',
 'approx_thermal_history': 'exp', # other models are available
 'inits_Tk_p0': 189.5850442, # z0
 'inits_Tk_p1': 1.26795248, # Beta
 'inits_Tk_p2': -4, # alpha
}

The parameter values listed above are adopted to reproduce the standard \(\Lambda \text{CDM}\) result, which ARES draws from CosmoRec. To convince yourself of this, go ahead and compare to the standard scenario:

import ares
import matplotlib.pyplot as pl

Default simulation, turn off astrophysical sources.
sim1 = ares.simulations.Global21cm(radiative_transfer=False)
sim1.run()

ax, zax = sim1.GlobalSignature(label='CosmoRec')

Use the parameteric cooling
sim2 = ares.simulations.Global21cm(radiative_transfer=False, **cold)
sim2.run()

sim2.GlobalSignature(ax=ax, color='b', ls='--', label=r'$\alpha=-4$')

Now, if you make cooling faster than adiabatic:

colder = cold.copy()
colder['inits_Tk_p2'] = -6

sim3 = ares.simulations.Global21cm(radiative_transfer=False, **colder)
sim3.run()

sim3.GlobalSignature(ax=ax, color='r', label=r'$\alpha=-6$')
ax.legend()
pl.savefig('ares_edges_cold.png')

Voila!

[image: _images/ares_edges_cold.png]
Comparison of parametric excess cooling models with CosmoRec solution for \(\Lambda \text{CDM}\) cosmology.

By the way, if you would like to add the EDGES models you can do so via

b18 = ares.util.read_lit('bowman2018')
b18.plot_recovered(ax=ax, color='k', alpha=0.2)

If you want to use the exact models presented in Mirocha & Furlanetto (2019) [http://adsabs.harvard.edu/abs/2019MNRAS.483.1980M], you can summon the requisite parameters using the ParameterBundle framework.

pars = ares.util.ParameterBundle('mirocha2019:base') \
 + ares.util.ParameterBundle('mirocha2019:cold')

sim4 = ares.simulations.Global21cm(**pars)
sim4.run()

sim4.GlobalSignature(ax=ax, color='g', lw=3, ls='--', label='MF18 cooling', ymin=-600)
ax.legend()

pl.savefig('ares_edges_mf18_cooling.png')

[image: _images/ares_edges_mf18_cooling.png]
Various “excess cooling” models for the global 21-cm signal compared to the EDGES 78 MHz signal(s).

The main free parameters in this model are:

	pop_Tmin{0}: The minimum virial temperature of star-forming halos [Kelvin].

	pop_Z{0}: Metallicity assumed for stellar models (BPASS v1.0 by default).

	pop_fesc{0}: Escape fraction of ionizing radiation.

	pop_fstar{0}: Efficiency of star formation. Actually many parameters, see The ParameterizedQuantity Framework to decipher the relevant parameters (e.g., pq_func_par0{0}[0], pq_func_par1{0}[0], etc.)

	pop_rad_yield{1}: The normalization of the X-ray luminosity SFR relation [\(\mathrm{erg} \ \mathrm{s}^{-1} \ (M_{\odot} \ \mathrm{yr})^{-1}\)]

	pop_alpha{1}: Spectral index of X-ray emission.

	pop_logN{1}: Typical column density of hydrogen in galaxies that hardens intrinsic X-ray spectrum [\(\log_{10} \mathrm{cm}^{-2}\)]

Astrophysical Radio Backgrounds

The simplest way to augment the radio background is to parameterize it. You can do so easily in ARES via the parameter Tbg, to which you can supply a Python function (assumed to be defined in terms of redshift), or pl, to indicate use of a power-law model. In the latter case, you must also supply the parameters Tbg_p0, Tbg_p1, and Tbg_p2 which define the power-law as

\[T_r(z) = p_0 \left(\frac{1+z}{1+p_1} \right)^{p_2}\]

Another way to implement a new radio background is to link emission to star formation, in analogy with how we generally scale the cosmic UV and X-ray backgrounds. In Mirocha & Furlanetto (2019) [http://adsabs.harvard.edu/abs/2019MNRAS.483.1980M], we adopted an empirical relation between the monochromatic 1.4 GHz luminosity and SFR (see, e.g., Gurkan et al. 2018 [http://adsabs.harvard.edu/abs/2018MNRAS.475.3010G]),

\[L_R = 10^{22} f_R \left(\frac{\text{SFR}}{M_{\odot} \ \mathrm{yr}^{-1}} \right) \ \text{W} \ \text{s}^{-1} \ \text{Hz}^{-1}\]

and assumed a power-law spectrum with index \(\alpha=-0.7\).

Note

We have scaled the Gurkan et al. 150 MHz normalization to 1.4 GHz. See Section 2.3.2 in our paper for more details.

To create such a source population in ARES, we build off the standard approach calibrated to high-z UV luminosity functions. Because we’re assuming that the radio spectrum does not depend on host galaxy mass or time, we can simply link the SFRD of this new population to that of a pre-existing population, in this case with ID number 0:

from ares.physics.Constants import nu_0_mhz, h_p, erg_per_ev

Need rest 21-cm frequency and spectral bounds in eV
E21 = nu_0_mhz * 1e6 * h_p / erg_per_ev # 1.4 GHz -> eV
Emin = 1e7 * (h_p / erg_per_ev) # 10 MHz -> eV
Emax = 1e12 * (h_p / erg_per_ev) # 100 GHz -> eV

Setup new parameters
radio_pop = \
{
 'pop_sfr_model{2}': 'link:sfrd:0', # Link to SFRD of population #0
 'pop_sed{2}': 'pl',
 'pop_alpha{2}': -0.7,
 'pop_Emin{2}': Emin,
 'pop_Emax{2}': Emax,
 'pop_EminNorm{2}': None,
 'pop_EmaxNorm{2}': None,
 'pop_Enorm{2}': E21, # 1.4 GHz
 'pop_rad_yield_units{2}': 'erg/s/sfr/hz', # Indicate this normalization is monochromatic

 'pop_solve_rte{2}': True,
 'pop_radio_src{2}': True, # Only emit in the radio
 'pop_lw_src{2}': False,
 'pop_lya_src{2}': False,
 'pop_heat_src_igm{2}': False,
 'pop_ion_src_igm{2}': False,
 'pop_ion_src_cgm{2}': False,

 # Key parameters!
 'pop_rad_yield{2}': 1e22,
 'pop_zdead{2}': None,
}

Note

If you’re running with a different set of baseline parameters, you
may need to use a different population ID number!

Again, these parameters are stored as a ParameterBundle, with the best-fitting values used in our paper, so we can simply execute:

pars = ares.util.ParameterBundle('mirocha2019:base') \
 + ares.util.ParameterBundle('mirocha2019:radio')

sim5 = ares.simulations.Global21cm(**pars)
sim5.run()

sim5.GlobalSignature(ax=ax, color='r', label='MF18 radio', ymin=-600)
ax.legend()

pl.savefig('ares_edges_mf18_radio.png')

[image: _images/ares_edges_mf18_radio.png]
Same figure as before, with the addition of a source-generated radio background.

By default, the parameter pop_zdead{2} is used, which instantaneously shuts down the radio emission at the supplied redshift. To see the impact of this, simply set pop_zdead{2} to None.

Embedding ARES in your own code

If you want to summon ARES to generate models within a larger calculation (say, a model grid, MCMC fit, etc.) but for whatever reason do NOT want to use the built-in machinery for such things (no hard feelings!), the procedure should be fairly painless. You can basically follow the same approach as has been outlined in other areas of the documentation:

	Simple Physical Models for the Global 21-cm Signal

	Working with Data and Models From the Literature (see bottom for common models)

Typically, the only hurdle is to correctly supply parameters to new ARES simulation objects. ARES expects all parameters to be supplied via keyword arguments, so if you have an array of parameter combinations you’d like to run (as in the case of MCMC), you’ll have to convert each sub-array to a dictionary first.

For example, say you want to vary the minimum virial temperature of star-forming halos and the normalization of the \(L_X\)-SFR relation. First, setup a dictionary of parameters that will not change from model to model:

import ares

base_kwargs = ares.util.ParameterBundle('mirocha2017:dpl')

Note

See Working with Data and Models From the Literature regarding use of mirocha2017:dpl models.

Now, let’s setup a grid of models to evaluate.

The order here matters: we'll assume below that the first column
of values in the model grid correspond to Tmin, the second to rad_yield.
pars = ['pop_Tmin{0}', 'pop_rad_yield{1}']

Run models over all combinations of these values
vals = {'pop_Tmin{0}': [1e3, 1e4, 1e5], 'pop_rad_yield{1}': [1e38, 1e39, 1e40, 1e41]}

grid = []
for i, val1 in enumerate(vals['pop_Tmin{0}']):
 for j, val2 in enumerate(vals['pop_rad_yield{1}']):
 grid.append([val1, val2])

grid = np.array(grid)

This grid array has the same shape as an MCMC chain. In practice, you may have such an array that you constructed yourself by some other means. Regardless, once you’ve got it, you can loop through its elements and run ARES simulations via, e.g.,

for i, model in enumerate(grid):
 kw = {par:grid[i][j] for j, par in enumerate(pars)}

 kwargs = base_kwargs.copy()
 kwargs.update(kw)

 print "Running model #{0}...".format(i)
 sim = ares.simulations.Global21cm(**kwargs)
 sim.run()

 # To save the data, could simply use index i to get unique filenames
 sim.save('model_{}'.format(i))

This is kind of a silly example because the first step of structuring the parameter grid is completely unnecessary: we could have simply run the simulations within that double for loop. However, the idea is that you might in general have a grid of parameters you setup in some other way, or that you obtained from the outputs of an MCMC.

Note also that in this example you’d be left to parse all the outputs from individual calculations yourself. Not such a terrible thing, but if you’re going to run large sets of models, it might be worth using the built-in routines for running big model grids, which automatically collect and distill the information into a format that can be easily analyzed via (you guessed it) other built-in analysis routines. If you still want to do your own thing, that’s OK: you may want to eliminate the call to sim.save above, and extract only the pieces of information you are interested in (from sim.history) and write-out in a format of your choosing.

See Simple Parameter Study: 2-D Model Grid and Analyzing Model Grids / Monte Carlo Simulations for more information on ARES’ internal model grid routines.

Simple Parameter Study: 2-D Model Grid

Often we want to study how the 21-cm signal changes over a range of parameters. We can do so using the ModelGrid class, and use numpy arrays to represent the range of values we’re interested in.

Before we start, the few usual imports:

import ares
import numpy as np
import matploblib.pyplot as pl

Efficient Example: \(tanh\) model for the global 21-cm signal

Before we run a set of models, we need to decide what quantities we’d like to save. For a detailed description of how to do this in general cases, check out Inline Analysis.

For now, let’s save the redshift and brightness temperature of the global 21-cm emission maximum, which we dub “Turning Point D”, and the CMB optical depth,

blobs_scalar = ['z_D', 'dTb_D', 'tau_e']

in addition to the ionization, thermal, and global 21-cm histories at redshifts between 5 and 20 (at \(\Delta z = 1\) increments),

blobs_1d = ['cgm_h_2', 'igm_Tk', 'dTb']
blobs_1d_z = np.arange(5, 21)

Note

For a complete listing of ideas for 1-D blobs see Field Listing.

Now, we’ll make a dictionary full of parameters that will get passed to every global 21-cm signal calculation. In addition to the blobs, we’ll set tanh_model=True to speed things up (see next section regarding physical models), and problem_type=101:

base_pars = \
{
 'problem_type': 101,
 'tanh_model': True,
 'blob_names': [blobs_scalar, blobs_1d],
 'blob_ivars': [None, [('z', blobs_1d_z)]],
 'blob_funcs': None,
}

and create the ModelGrid instance,

mg = ares.inference.ModelGrid(**base_pars)

At this point we have yet to specify which parameters will define the axes of the model grid. Since we set tanh_model=True, we have 9 parameters to choose from: a step height, step width, and step redshift for the Ly-\(\alpha\), thermal, and ionization histories:

	Ly-\(\alpha\) history parameters: tanh_J0, tanh_Jz0, tanh_Jdz.

	Thermal history parameters: tanh_T0, tanh_Tz0, tanh_Tdz.

	Ionization history parameters: tanh_x0, tanh_xz0, tanh_xdz.

The Ly-\(\alpha\) step height, tanh_J0, must be provided in units of \(J_{21} = 10^{-21} \mathrm{erg} \ \mathrm{s}^{-1} \ \mathrm{cm}^{-2} \ \mathrm{Hz}^{-1} \ \mathrm{sr}^{-1}\), while the temperature step height is assumed to be in Kelvin. The ionization step height should not exceed unity – in fact it’s safe to assume tanh_x0=1 (we know that reionization ends!). See Harker et al. (2016) [http://adsabs.harvard.edu/abs/2016MNRAS.455.3829H] for more information about the tanh model.

Let’s take the reionization redshift, tanh_xz0, and duration, tanh_xdz, and sample them over a reasonable redshift interval with a spacing of \(\Delta z = 0.1\)

z0 = np.arange(6, 12.2, 0.2)
dz = np.arange(0.2, 8.2, 0.2)

Now, we just set the axes attribute to a dictionary containing the array of values for each parameter:

mg.axes = {'tanh_xz0': z0, 'tanh_xdz': dz}

To run,

mg.run('test_2d_grid', clobber=True, save_freq=100)

To speed things up, you could increase the grid spacing. Or, execute the above in parallel as a Python script (assuming you have MPI and mpi4py installed).

Note

If the model grid doesn’t finish running, that’s OK! Simply
re-execute the above command with restart=True as an
additional keyword argument and it will pick up where it left off.

To analyze the results, create an analysis instance,

anl = ares.analysis.ModelSet('test_2d_grid')

and, for example, plot the 2-d parameter space with points color-coded by tau_e,

ax1 = anl.Scatter(anl.parameters, c='tau_e', fig=1)
pl.savefig('tanh_2d_tau.png')

[image: _images/ares_tanh_2d_tau.png]
Models in a 2-D parameter space of the \(tanh\) reionization parameters, with points color-coded by the CMB optical depth, \(\tau_e\).

or instead, the position of the emission maximum with the same color coding:

ax2 = anl.Scatter(['z_D', 'dTb_D'], c='tau_e', fig=2)
pl.savefig('tanh_2d_D.png')

[image: _images/ares_tanh_2d_D.png]
Models in a 2-D parameter space of the \(tanh\) reionization parameters, with points color-coded by the CMB optical depth.

Note

In general, you may want to save 'z_C' and 'dTb_C', i.e., the location of the global 21-cm absorption feature. But, in this case since we’ve only varied parameters of the ionization history, that point will not change and so saving it as a blob is unnecessary.

See Analyzing Model Grids / Monte Carlo Simulations for more information.

Accessing the Data Directly

If you’d like to access the data directly for further manipulation, you’ll be looking at the following attributes of the ModelSet class:

	chain, which is a 2-D array with dimensions (number of models, number dimensions).

	get_blob, which is a function that can be used to read-in blobs from disk.

Note

The chain attribute is referred to as such because is analogous to an MCMC chain, but rather than random samples of the posterior distribution, it represents “samples” on a structured mesh.

For example, to retrieve the samples of the test_2d_grid dataset above, you could do:

Just the names of the axes
x, y = anl.parameters

xdata, ydata = anl.chain[:,0], anl.chain[:,1]

or equivalently,

xdata, ydata = anl.chain.T

And to plot the samples,

import matplotlib.pyplot as pl

pl.scatter(xdata, ydata)
pl.xlabel(x)
pl.ylabel(y)

To extract blobs, you could do :

QHII = anl.get_blob('cgm_h_2')

print QHII.shape

Notice that the first dimension of QHII is the same as the first dimension of chain – just the number of samples in the ModelGrid. The second dimension, however, is different. Now, rather than representing the dimensionality of the parameter space, it represents the dimensionality of this particular blob. Why 16 elements? Because our blobs were setup such that the quantities cgm_h_2, igm_Tk, and dTb were recorded at all redshifts in np.arange(5, 21), which has 16 elements.

So, we could for example color-code the points in our previous plot by the volume-averaged ionization fraction at \(z=10\) by doing:

pl.scatter(xdata, ydata, c=QHII[:,5], edgecolors='none')

If you forget the properties of a blob, you can type

group, element, nd, shape = anl.blob_info('cgm_h_2')

which returns the index of blob group, index of the element within that group, dimensionality of the blob, and the shape of blob. This can be useful, for example, to automatically figure out the independent variables for a blob:

Should be 10 (redshift of interest above)
anl.blob_ivars[i][5]

All of the built-in analysis routines are structured so that you don’t have to think about these things on a regular basis if you don’t want to!

More Expensive Models

Setting tanh_model=True sped things up considerably in the previous example. In general, you can run grids varying any ARES parameters you like, just know that physical models (i.e., those with tanh_model=False) generally take a few seconds each, whereas the \(tanh\) model takes much less than a second for one model.

For example, to repeat the previous exercise for a physical model, you could replace this commands:

z0 = np.arange(6, 12, 0.1)
dz = np.arange(0.1, 8.1, 0.1)
mg.axes = {'tanh_xz0': z0, 'tanh_xdz': dz}

with (for example)

fX = np.logspace(-1, 1, 21)
Tmin = np.logspace(3, 5, 21)
mg.axes = {'fX': z0, 'Tmin': dz}

In some cases – e.g., when Tmin or pop_Tmin is an axis of the model grid – load-balancing can be very advantageous. Just execute the following command before running the grid:

mg.LoadBalance(method=1, par='Tmin') # or 'pop_Tmin'

The method=1 setting assigns all models with common Tmin values to the same processor. This helps because ARES knows that it need only generate lookup tables for \(df_{\mathrm{coll}} / dz\) (which determines the star formation rate density in the simplest models) once per value of Tmin, which means you save a little bit of runtime at the outset of each calculation.

There is also a method=2 option for load balancing, which is advantageous if the runtime of individual models is strongly correlated with a given parameter. In this case, the models will be sorted such that each processor gets a (roughly) equal share of the models for each value of the input par. It helps to imagine the grid points of our 2-D parameter space color-coded by processor ID number: the resulting image for method=2 is simply the transpose of the image you’d get for method=1.

If the edges of your parameter space correspond to rather extreme
models you might find that the calculations grind to a halt. This can be a big problem because you’ll end up with one or more processors spinning their wheels while the rest of the processors continue. One way of dealing with this is to set an “alarm” that will be tripped if the runtime of a particular model exceeds some user-defined value. For example, before running a model grid, you might set:

mg.timeout = 60

to limit calculations to 60 seconds or less. Models that trip this alarm will be recorded in the *fail*.pkl files so that you can look back later and (hopefully) figure out why they took so long.

Note

This tends to happen because the ionization and/or heating rates
are very large, which drives the time-step to very small values. However,
in these circumstances the temperature and/or ionized fraction are
typically exceedingly large, at which point the 21-cm signal is zero and
need not be tracked any longer. As a result, terminating such calculations
before completion rarely has an important impact on the results.

Warning

This may not work on all operating systems for unknown reasons.
Let me know if you get a mysterious crash when using the timeout
feature.

Analyzing Model Grids / Monte Carlo Simulations

Once you have a model grid in hand, there are a slew of built-in analysis
routines that you might consider using. For the rest of this example,
we’ll assume you have completed a Simple Parameter Study: 2-D Model Grid, and have the associated set of files
with prefix test_2d_grid. If not, you can download a tarball of that model grid here [https://bitbucket.org/mirochaj/ares/downloads/test_2d_grid.tar.gz].

To begin, initialize an instance of the analysis class, ModelSet:

import ares

anl = ares.analysis.ModelSet('test_2d_grid')

First, let’s verify that we’ve surveyed the part of parameter space we
intended to:

ax = anl.Scatter(anl.parameters)

You should see a scatterplot with points in the \(z_{\mathrm{rei}}\)—\(\Delta z_{\mathrm{rei}}\)
plane representing the models in our grid.

Basic Inspection

Now, the kind of analysis you can do will be limited by what quantities
were saved for each model. Recall (from Simple Parameter Study: 2-D Model Grid) that we have
the following quantities at our disposal:

	21-cm brightness temperature, dTb.

	Kinetic temperature of the IGM, igm_Tk.

	HII region volume filling factor, cgm_h_2.

	CMB optical depth, tau_e.

	Position of 21-cm emission maximum, z_D and dTb_D.

Let’s have a look at how the ionization history depends on our two parameters of
interest in this example, tanh_xz0 and tanh_xdz,

ax = anl.Scatter(['tanh_xz0', 'tanh_xdz'], c='cgm_h_2', ivar=[None,None,10], fig=2, edgecolors='none')

Note

All ModelSet functions accept fig as an optional keyword
argument, which you can set to any integer to open plots in a new window.

The keyword argument ivar is short for “independent variables” – it is None by default. However, because we have chosen to plot cgm_h_2, which is a 1-D blob, we must specify the redshift of interest. Recall that we have access to integer redshifts in the interval \(5 \leq z \leq 20\), or check for yourself:

print anl.blob_ivars

So our choice of \(z=10\) should be OK.

If you forget what fields are available for analysis, see:

print anl.blob_names, anl.blob_ivars

Note

Calling quantities of interest blobs was inspired by the arbitrary meta-data blobs in emcee [http://dan.iel.fm/emcee/current/].

For more 21-cm-focused analyses, you may want to view how the extrema in the
global 21-cm signal change as a function of the model parameters:

Scatterplot showing where emission peak occurs
ax = anl.Scatter(['z_D', 'dTb_D'], fig=4)

or, color-code points by CMB optical depth,

ax = anl.Scatter(['z_D', 'dTb_D'], c='tau_e', fig=5, edgecolors='none')

You can also create your own derived quantities. A very simple example is to convert redshifts to observed frequencies,

1420.4057 is the rest frequency of the 21-cm line in MHz
anl.DeriveBlob(expr='1420.4057 / (1. + x)', varmap={'x': 'z_D'}, name='nu_D')

This will create a new blob, called nu_D, that can be used for subsequent analysis. For example,

Scatterplot showing where emission peak occurs
ax = anl.Scatter(['nu_D', 'dTb_D'], c='tau_e', fig=6, edgecolors='none')

Problem Realizations

You may have noticed that in this model grid there are three realizations whose emission maxima seem to occur at \(\delta T_b \approx 0\). In general, this is possible, but given the regularity of the grid points in parameter space it seems unlikely that any individual model would stray substantially from the locus of all other models.

To inspect potentially problematic realizations, it is first useful to isolate them from the rest. You can select them visually by first invoking

anl.SelectModels()

and then clicking and dragging within the plot window to define a rectangle, starting from its upper left corner (click) and ending with its bottom right corner (release). The set of models bounded by this rectangle will be saved as a new ModelSet object that can be used just like the original one. Each successive “slice” will be saved as attributes slice_0, slice_1, etc. that you can assign to a new variable, as, e.g.

slc0 = anl.slice_0
slc0.Scatter(['nu_D', 'dTb_D'], c='tau_e', fig=7, edgecolors='none')

Alternatively, you can specify a rectangle by hand. For example,

slc = anl.Slice([100, 120, 0, 10], pars=['nu_D', 'dTb_D'])

extracts all models with 100 <= nu_D <= 120 and 0 <= dTb_D <= 10. Check:

slc.Scatter(['nu_D', 'dTb_D'], c='tau_e', fig=8, edgecolors='none')

If you wanted to examine models in more detail, you could re-run them. Collecting the parameter dictionaries required to do so is easy:

kwargs_list = slc.AssembleParametersList(include_bkw=True)

This routine returns a list in which each element is a dictionary of parameters for a single model. The keyword argument include_bkw controls whether the “base kwargs,” i.e., those that are shared by all models in the grid, are included in each list element. If they are (as above), then any individual dictionary can be used to initialize a simulation. For example:

ax = None
for kwargs in kwargs_list:
 sim = ares.simulations.Global21cm(**kwargs)
 sim.run()
 ax = sim.GlobalSignature(color='b', alpha=0.5, ax=ax)

If you’ve got models that seem to have something wrong with them, sending me the dictionary (or a list of them as above) will help a lot. Just do something like:

import pickle
f = open('problematic_models.pkl', 'wb')
pickle.dump(kwargs_list, f)
f.close()

High Dimensional Grids

For parameter studies with \(\gtrsim 3\) dimensions, you might want to use
Monte Carlo sampling or MCMC. See Fitting the Global 21-cm Signal for an example.

Hybrid Models for the Global 21-cm Signal

By “hybrid” I mean part physical, part phenomenological.

To begin, first import ares:

import ares

To generate a model of the global 21-cm signal, we need to use the
ares.simulations.Global21cm class. With no arguments, default parameter
values will be used:

Models with Multiple Source Populations

ARES can handle an arbitrary number of source populations. To
access this functionality, create a dictionary representing each source
population of interest. Below, we’ll create a population representative of PopII stars and another representative of PopIII stars.

Before we start, it is important to note that in ARES, source populations are identified by their spectra over some contiguous interval in photon energy. This can be somewhat counterintuitive. For example, though UV emission from stars and X-ray emission from their compact remnants, e.g., X-ray binary systems, are both natural byproducts of star formation, we treat them as separate source populations in ARES even though the emission from each type of source is related to the same rate of star formation. However, because stars and XRBs have very different spectra, whose normalizations are parameterized differently, it is more convenient in the code to keep them separate. Because of this, what you might think of as a single source population (stars and their remnants) actually constitutes two source populations in ARES.

Let’s start with a PopII source population:

pars = \
{
 'problem_type': 100, # Blank slate global 21-cm signal calculation

 # Setup star formation
 'pop_Tmin{0}': 1e4, # atomic cooling halos
 'pop_fstar{0}': 1e-1, # 10% star formation efficiency

 # Setup UV emission
 'pop_sed_model{0}': True,
 'pop_sed{0}': 'bb', # PopII stars -> 10^4 K blackbodies
 'pop_temperature{0}': 1e4,
 'pop_rad_yield{0}': 1e42,
 'pop_fesc{0}': 0.2,
 'pop_Emin{0}': 10.19,
 'pop_Emax{0}': 24.6,
 'pop_EminNorm{0}': 13.6,
 'pop_EmaxNorm{0}': 24.6,
 'pop_lya_src{0}': True,
 'pop_ion_src_cgm{0}': True,
 'pop_heat_src_igm{0}': False,

 # Setup X-ray emission
 'pop_sed{1}': 'pl',
 'pop_alpha{1}': -1.5,
 'pop_rad_yield{1}': 2.6e38,
 'pop_Emin{1}': 2e2,
 'pop_Emax{1}': 3e4,
 'pop_EminNorm{1}': 5e2,
 'pop_EmaxNorm{1}': 8e3,

 'pop_lya_src{1}': False,
 'pop_ion_src_cgm{1}': False,
 'pop_heat_src_igm{1}': True,

 'pop_sfr_model{1}': 'link:sfrd:0',
}

Note

See Problem Types for more information about why we chose problem_type=100 here.

We might as well go ahead and run this to establish a baseline:

import ares

sim = ares.simulations.Global21cm(**pars)
sim.run()

ax, zax = sim.GlobalSignature(color='k')

Now, let’s add a PopIII-like source population. We’ll assume that PopIII sources are brighter on average (in both the UV and X-ray) but live in lower mass halos. We could just copy-pase the dictionary above, change the population ID numbers and, for example, the UV and X-ray pop_rad_yield parameters. Or, we could use some built-in tricks to speed this up.

First, let’s take the PopII parameter set and make a ParameterBundle object:

popII = ares.util.ParameterBundle(**pars)

This let’s us easily extract parameters according to their ID number, i.e.,

popIII_uv = popII.pars_by_pop(0, True)
popIII_uv.num = 2
popIII_xr = popII.pars_by_pop(1, True)
popIII_xr.num = 3

The second argument tells ARES to remove the parameter ID numbers.

Now, we can simply reset the ID numbers and update a few important parameters:

popIII_uv['pop_Tmin{2}'] = 300
popIII_uv['pop_Tmax{2}'] = 1e4
popIII_uv['pop_rad_yield{2}'] = 1e43
popIII_uv['pop_temperature{2}'] = 1e5
popIII_uv['pop_fstar{2}'] = 1e-3

popIII_xr['pop_sfr_model{3}'] = 'link:sfrd:2'
popIII_xr['pop_rad_yield{3}'] = 2.6e39

Now, let’s make the final parameter dictionary and run it:

pars.update(popIII_uv)
pars.update(popIII_xr)

sim = ares.simulations.Global21cm(**pars)
sim.run()

ax, zax = sim.GlobalSignature(color='b', ax=ax)

import matplotlib.pyplot as pl
pl.savefig('ares_gs_multipop.png')

[image: _images/ares_gs_multipop.png]
Example calculations with a single population (black) and multiple source
populations (blue).

Note that the parameter file hangs onto the parameters of each population separately. To verify a few key changes, you could do:

for key in ['pop_Tmin', 'pop_fstar', 'pop_rad_yield']:
 print key, sim.pf.pfs[0][key], sim.pf.pfs[2][key]

Note

These are very simple models for PopII and PopIII stars. For more
sophisticated approaches, see More Realistic Galaxy Populations and
Including Population III Stars.

Note in the final plot command, we supplied the previous ax object to overplot the results of the single population calculation on the same axes as before.

Alternative Population ID Tagging Syntax

Using the curly braces to denote population ID numbers will lead to problems if you don’t want to create a dictionary of parameters, but instead want to supply the parameters as keyword arguments directly to a simulation class. For this reason, it is also acceptable to bracket population ID numbers with underscores in parameter names. For example, instead of

pars['pop_Tmin{0}'] = 1e4

you could do

pars['pop_Tmin_0_'] = 1e4

Linking Populations

If you are fitting a realization of the 21-cm signal with a multi-population model, you may want to have parameters common to both models that are allowed to vary. To link two parameters together, you can simply replace a parameter value of one population (usually a number) to the name of a parameter for another population. For example, to make the PopII and PopIII star formation efficiencies the same (using the parameter dictionary above), you could do

pars['pop_fstar{2}'] = 'pop_fstar{0}'

and any change to pop_fstar{0} will automatically propagate to pop_fstar{2}.

Phenomenological Models for the Global 21-cm Signal

Two common phenomenological parameterizations for the global 21-cm signal are included in ARES and get their own set of pre-defined parameters: the tanh and Gaussian models. To generate them (without default parameters) one need only do:

import ares
import numpy as np
import matplotlib.pyplot as pl

sim_1 = ares.simulations.Global21cm(tanh_model=True)
sim_2 = ares.simulations.Global21cm(gaussian_model=True)

Have a look
ax, zax = sim_1.GlobalSignature(color='k', fig=1)
ax, zax = sim_2.GlobalSignature(color='b', ax=ax)

Now, you might say “I could have done that myself extremely easily.” You’d be right! However, sometimes there’s an advantage in working through ARES even when using simply parametric forms for the global 21-cm signal. For example, you can tap into ARES’ inference module and fit data, perform forecasting, or run large sets of models. In each of these applications, ARES can take care of some annoying things for you, like tracking the quantities you care about and saving them to disk in a format that can be easily analyzed later on. For more concrete examples, check out the following pages:

	Inline Analysis

	Fitting the Global 21-cm Signal

	Monte-Carlo Sampling Higher Dimensional Spaces

	Analyzing MCMC Calculations

In the remaining sections we’ll cover different ways to parameterize the signal.

Parameterizing the IGM

Whereas the Gaussian absorption model makes no link between the brightness temperature and the underlying quantities of interest (ionization history, etc.), the tanh model first models \(J_{\alpha}(z)\), \(T_K(z)\), and \(x_i(z)\), and from those histories produces \(\delta T_b(z)\).

Now, let’s assemble a set of parameters that will generate a global 21-cm signal using ParameterizedQuantity objects for each main piece: the thermal, ionization, and Ly-\(\alpha\) histories. We’ll assume that the thermal and ionization histories are tanh functions, but take the Ly-\(\alpha\) background evolution to be a power-law in redshift:

pars = \
{
 'problem_type': 100, # blank slate global 21-cm signal problem
 'parametric_model': True, # in lieu of, e.g., tanh_model=True

 # Lyman alpha history first: ParameterizedQuantity #0
 'pop_Ja': 'pq[0]',
 'pq_func[0]': 'pl', # Ja(z) = p0 * ((1 + z) / p1)**p2
 'pq_func_var[0]': '1+z',
 'pq_func_par0[0]': 1e-9,
 'pq_func_par1[0]': 20.,
 'pq_func_par2[0]': -7.,

 # Thermal history: ParameterizedQuantity #1
 'pop_Tk': 'pq[1]', # Tk(z) = p1 + (p0 - p1) * 0.5 * (1 + tanh((p2 - z) / p3))
 'pq_func[1]': 'tanh_abs',
 'pq_func_var[1]': 'z',
 'pq_func_par0[1]': 1e3,
 'pq_func_par1[1]': 0.,
 'pq_func_par2[1]': 8.,
 'pq_func_par3[1]': 6.,

 # Ionization history: ParameterizedQuantity #2
 'pop_xi': 'pq[2]', # xi(z) = p1 + (p0 - p1) * 0.5 * (1 + tanh((p2 - z) / p3))
 'pq_func[2]': 'tanh_abs',
 'pq_func_var[2]': 'z',
 'pq_func_par0[2]': 1,
 'pq_func_par1[2]': 0.,
 'pq_func_par2[2]': 8.,
 'pq_func_par3[2]': 2.,
}

Note

The thermal history automatically includes the adiabatic cooling term, so users need not add account for that explicitly.

To run it, as always:

sim_3 = ares.simulations.Global21cm(**pars)
sim_3.GlobalSignature(color='r', ax=ax)
pl.savefig('ares_gs_phenom.png')

[image: _images/ares_gs_phenom.png]
Comparing three phenomenological models for the global 21-cm signal.

Now, because the parameters of these models are hard to intuit ahead of time, it can be useful to run a set of them. As per usual, we can use some built-in machinery.

blob_pars = ares.util.BlobBundle('gs:basics') \
 + ares.util.BlobBundle('gs:history')

base_pars = pars.copy()
base_pars.update(blob_pars)

mg = ares.inference.ModelGrid(**base_pars)

Let’s focus on the \(J_{\alpha}(z)\) parameters:

mg.axes = {'pq_func_par1[0]': np.arange(15, 26, 1),
 'pq_func_par2[0]': np.arange(-9, -2.5, 0.5)}

mg.run('test_Ja_pl', clobber=True)

Just to do a quick check, let’s look at where the absorption minimum occurs in this model grid:

anl = ares.analysis.ModelSet('test_Ja_pl')

anl.Scatter(anl.parameters, c='z_C', fig=4, edgecolors='none')

pl.savefig('ares_gs_Ja_grid.png')

[image: _images/ares_gs_Ja_grid.png]
Basic exploration of a 2-D parameter grid.

Simple Physical Models for the Global 21-cm Signal

To begin, first import ares:

import ares

To generate a model of the global 21-cm signal, we need to use the
ares.simulations.Global21cm class. With no arguments, default parameter
values will be used:

sim = ares.simulations.Global21cm()

See the Parameter Listing page for a listing of parameters that can be passed
to ares.simulations.Global21cm as keyword arguments.

Since a lot can happen before we actually
start solving for the evolution of IGM properties (e.g., initializing radiation
sources, tabulating the collapsed fraction evolution and constructing splines
for interpolation, tabulating the optical depth, etc.), initialization and
execution of calculations are separate. To run the simulation, we do:

sim.run()

The main results are stored in the attribute sim.history, which is a dictionary
containing the evolution of many quantities with time (see Field Listing for more information on what’s available). To look at the results,
you can access these quantities directly:

import matplotlib.pyplot as pl

pl.plot(sim.history['z'], sim.history['dTb'])

Or, you can access convenience routines within the analysis class, which
is inherited by the ares.simulations.Global21cm class:

sim.GlobalSignature(fig=2)

[image: _images/ares_gs_default.png]
One possible realization for the global 21-cm signal. You should get something that looks like this, but may not be exactly the same depending on what version of ARES you’re using.

If you’d like to save the results to disk, do something like:

sim.save('test_21cm', clobber=True)
pl.savefig('ares_gs_default.png')

which saves the contents of sim.history at all time snapshots to the file test_21cm.history.pkl and the parameters used in the model in test_21cm.parameters.pkl.

Note

The default format for output files is pkl, though ASCII (e.g., .txt or .dat), .npz, and .hdf5 are also supported. Use the optional keyword argument suffix.

To read results from disk, you can supply a filename prefix to ares.analysis.Global21cm
rather than a ares.simulations.Global21cm instance if you’d like, e.g.,

anl = ares.analysis.Global21cm('test_21cm')

See analysis for more information about readily available analysis
routines.

DIY Parameter Study

To do simple parameter study, you could do something like:

ax = None
for i, fX in enumerate([0.1, 1.]):
 for j, fstar in enumerate([0.1, 0.5]):
 sim = ares.simulations.Global21cm(fX=fX, fstar=fstar)
 sim.run()

 # Plot the global signal
 ax, zax = sim.GlobalSignature(ax=ax, fig=3, z_ax=i==j==0,
 label=r'$f_X=%.2g, f_{\ast}=%.2g$' % (fX, fstar))

ax.legend(loc='lower right', fontsize=14)
pl.savefig('ares_gs_diy_param_study.png')

[image: _images/ares_gs_diy_param_study.png]
Four realizations of the global 21-cm signal, varying the normalization of
the \(L_X\)-SFR relation and the star formation efficiency.

These parameters, along with Tmin, Nlw, and Nion round out the simplest parameterization of the signal (that I’m aware of) that’s tied to cosmology/galaxy formation in any way. It’s of course highly simplified, in that it treats galaxies in a very average sense. For more sophisticated models, check out More Realistic Galaxy Populations.

Check out Population Parameters for a listing of the most common parameters that govern the properties of source populations, and Simple Parameter Study: 2-D Model Grid for examples of how to run and analyze large grids of models more easily. The key advantage of using the built-in model grid runner is having ARES automatically store any information from each calculation that you deem desirable, and store it in a format amenable to the built-in analysis routines.

A Note About Backward Compatibility

The models shown in this section are no longer the “best” models in ARES, though they may suffice depending on your interests. As alluded to at the end of the previous section, the chief shortcoming of these models is that their parameters are essentially averages over the entire galaxy population, when in reality galaxy properties are known to vary with mass and many other properties.

This was the motivation behind our paper in 2017 [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M], in which we generalized the star formation efficiency to be a function of halo mass and time, and moved to using stellar population synthesis spectra to determine the UV emissivity of galaxies, rather than choosing \(N_{\mathrm{LW}}\), \(N_{\mathrm{ion}}\), etc. by hand (see More Realistic Galaxy Populations). These updates led to a new parameter-naming convention in which all population-specific parameters were given a pop_ prefix. So, in place of Nlw, Nion, fX, now one should set pop_rad_yield in a particular band (set by pop_Emin and pop_Emax). See Population Parameters for more information about that.

Currently, in order to ensure backward compatibility at some level, ARES will automatically recognize the parameters used above and change them to pop_rad_yield etc. following the new convention. This means that there are three different values of pop_rad_yield: one for the soft UV (non-ionizing) photons (related to Nlw), one for the Lyman continuum photons (related to Nion), and one for X-rays (related to fX). This division was put in place because these three wavelength regimes affect the 21-cm background in different ways.

In order to differentiate sources of radiation in different bands, we now must add a population identification number to pop_* parameters. Right now, fX, Nion, Nlw, Tmin, and fstar will automatically be updated in the following way:

	The value of Nlw is assigned to pop_rad_yield{0}, and pop_Emin{0} and pop_Emax{0} are set to 10.2 and 13.6, respectively.

	The value of fX is multiplied by cX (generally \(2.6 \times 10^{39} \ \mathrm{erg} \ \mathrm{s}^{-1} \ (M_{\odot} \ \mathrm{yr}^{-1})^{-1})\) and assigned to pop_rad_yield{1}, and pop_Emin{0} and pop_Emax{0} are set to 200 and 30000, respectively.

	The value of Nion is assigned to pop_rad_yield{2}, and pop_Emin{0} and pop_Emax{0} are set to 13.6 and 24.6, respectively.

	pop_Tmin{0}, pop_Tmin{1}, and pop_Tmin{2} are all set to the value of Tmin. Likewise for fstar.

Unfortunately not all parameters will be automatically converted in this way. If you get an error message about an “orphan parameter,” this means you have supplied a pop_ parameter without an ID number, and so ARES doesn’t know which population is meant to respond to your change. This is an easy mistake to make, especially when working with parameters like Nlw, Nion etc., because ARES is automatically converting them to pop_* parameters.

Halo Abundance Matching

This technique relates measurements of the galaxy luminosity function (LF) to the dark matter halo mass function by assuming galaxies of luminosity \(L\) with number density \(\phi(L)\) live in halos of mass \(M_h\), whose number density is given by the HMF, \(n(M_h)\). By enforcing the condition:

\[\int_{L(M_h)} \phi(L) dL = \int_{M_h} n(M_h) dM_h\]

we can solve for the mass-to-light relationship, \(L(M_h)\). This allows us to model the galaxy population at lower luminosities and higher redshifts than have so far been observed, provided some model for extrapolating \(L(M_h)\) in mass and redshift.

The two most critical ingredients in this model are constraints on the luminosity function, and a model for the HMF. Let’s grab the constraints from Bouwens et al. (2015) to start:

b15 = ares.util.read_lit('bouwens2015')

The object b15 has four important attributes:

	info

	redshifts

	data

	fits

The first gives a full reference to the paper, while the data and fits entries tell us where in the paper the data is located.

For example, the best-fit Schecter parameters are:

print b15.fits['lf']['pars']

with corresponding redshifts:

print b15.redshifts

Note

Check out the primer on Using Data from the Literature if you
haven’t already!

To initialize a population, we must importantly set pop_model='ham':

pars = \
{
 'pop_model': 'ham',
 'pop_Macc': 'mcbride2009', # Halo MAR
 'pop_constraints': 'bouwens2015', # Galaxy LF
 'pop_kappa_UV': 1.15e-28, # Luminosity / SFR
}

pop = ares.populations.GalaxyPopulation(**pars)

This population instance has an attribute ham, which carries along all of the abundance matching info. For starters, let’s just plot up the constraints on the LF at each redshift, which have been converted from magnitudes to rest-frame \(1500 \AA\) luminosities:

L = np.logspace(27., 30.)
for i, z in enumerate(pop.ham.constraints['z']):
 Lh, phi = pop.ham.LuminosityFunction(z)
 pl.loglog(Lh, phi, ls='--', lw=3)

pl.xlabel(r'$L \ (\mathrm{erg} \ \mathrm{s}^{-1} \ \mathrm{Hz}^{-1})$')
pl.ylabel(r'$\phi(L)$')
pl.xlim(1e27, 1e30)
pl.ylim(1e-39, 1e-29)
pl.show()

Now, the key quantity yielded by the abundance matching procedure is \(L_h(M_h)\), which we convert to a star-formation efficiency (SFE), \(f_{\ast}\), assuming a model for the halo mass accretion rate (MAR; from McBride et al. (2009); see pop_Macc parameter above):

colors = ['r', 'b', 'g', 'k', 'm']

First, plot the discrete set of points for the SFE
for i, z in enumerate(pop.ham.redshifts):
 j = pop.ham.redshifts.index(z)
 Mh = pop.ham.MofL_tab[j]
 pl.scatter(Mh, pop.ham.fstar_tab[j], label=r'$z=%g$' % z, color=colors[i], marker='o', facecolors='none')

pl.plot([1e8, 1e15], [0.2]*2, color='k', ls=':')
pl.plot([1e8, 1e15], [0.3]*2, color='k', ls=':')
pl.xlabel(r'M_h / M_{\odot}')
pl.ylabel(r'f_{\ast}')
pl.legend(ncol=1, frameon=False, fontsize=16, loc='lower right')

Now, plot fits to the SFE over a range of masses
Marr = np.logspace(8, 14)
for i, z in enumerate(pop.ham.redshifts):
 j = pop.ham.redshifts.index(z)

 fast = pop.ham.SFE(z=z, M=Marr)
 pl.loglog(Marr, fast, color=colors[i])

You can also access the SFRD via pop.ham.SFRD, which just integrates the product of the SFE and MAR over the mass function.

Note

You can run simulations of the global 21-cm using the HAM model for
source populations. Just be sure to pass in the appropriate parameters, as
pop_model != 'ham' by default!

Inline Analysis

When running a large number of models, each of which takes a few seconds (or more), it’s important to do as much analysis “inline” as possible. For example, say we are interested in obtaining confidence intervals for quantities other than the free parameters of our model. Yes, we could go back later and re-run certain subsets of models and extract whatever information we want, but with a little planning, we can eliminate the need for these “extra” computations. The emcee code dubs such quantities arbitrary meta-data blobs [http://dan.iel.fm/emcee/current/user/advanced/#arbitrary-metadata-blobs], and as a result, any quantities computed during calculations in ARES will be named “blobs” as well.

The goal of this section is to outline the general procedure used to save meta-data blobs of your choosing, which can be tricky because different quantities of interest are computed in very different ways and often are of diverse shapes and variables types.

A few examples of meta-data blobs:

	Scalar blobs (e.g., the CMB optical depth, \(\tau_e\), the midpoint of reionization, \(z_{\mathrm{rei}}\))

	1-D blobs (e.g., the global 21-cm signal, \(\delta T_b(z)\), the thermal history, \(T_K(z)\))

	2-D blobs (e.g., the star-formation efficiency, \(f_{\ast}(z, M_h)\), the meta-galactic radiation background intensity, \(J(z, \nu)\))

Example: Common Scalar and 1-D Blobs

Let’s learn by example. Here is a typical calculation (model for the global 21-cm signal), where we have modified the input parameters so that a few quantities of interest are saved:

	Scalars: extrema in the global 21-cm signal (which we label turning points B, C, and D).

	1-D arrays: the full ionization history, thermal history, and the global 21-cm signal.

So, we define a nested list containing the names of our blobs:

blob_names = [['tau_e'], ['cgm_h_2', 'igm_Tk', 'dTb']]

The blobs ares sorted by their dimensionality: the first sublist contains the names of all scalar blobs, while the second contains the 1-D blobs. Important question: how do you know the names of blobs? The scalar blobs, in this case just tau_e (the CMB optical depth) are all attributes of the Global21cm simulation class (well, really of ares.analysis.Global21cm, but they get inherited). The 1-D blobs are all names of ARES fields: see Field Listing for more information.

Now, for the 1-D blobs we also need to provide a sequence of redshifts at which to save each quantity:

blob_ivars = [None, [('z', np.arange(6, 21))]]

Notice that blob_ivars is a 2-element list (ivars is short for “independent variables,” since in general they need not be redshifts): one element for each blob group (scalar and 1-D). Since the scalars are just numbers, the first element in this list is just None, while the second indicates that we’ll save the desired quantities at redshifts ('z') \(z=6,7,...,20\).

Note

ARES works with redshift internally, so, if you wanted to sample equally over some frequency range, simply define that array first and convert to redshifts via \(z = (\nu_0 / \nu) - 1\) where \(\nu_0 = 1420.4057\) MHz.

We supply these lists via parameters of the same name:

pars = \
{
 'problem_type': 101, # Simple global 21-cm problem
 'blob_names': blob_names,
 'blob_ivars': blob_ivars,
 'tanh_model': True, # Just to speed things up
}

Now, we just run the simulation in the usual way:

sim = ares.simulations.Global21cm(**pars)
sim.run()

sim.GlobalSignature()

To verify that the simulation knows about our blobs, some basic information is available via attributes:

print sim.blob_names
print sim.blob_ivars
print sim.blob_dims
print sim.blob_nd

The blobs themselves can be accessed via:

sim.blobs

Note

In this case, using blobs isn’t necessary since we have all data from the simulation at our fingertips. However, the attribute sim.blobs is extremely important for model grids or MCMC fits, as its contents are the only thing written to disk other than the MCMC samples themselves.

Special Redshifts

We’ll often be interested in saving a series of quantities at the redshifts corresponding to the extrema of the global 21-cm signal, or the midpoint of reionization, etc. However, since those aren’t known a-priori, we can’t specify them like we did above. Instead, we tag a suffix (either B, C, or D) onto pre-existing ARES fields, i.e.,

extrema = ['z_B', 'dTb_B', 'z_C', 'dTb_C', 'igm_Tk_C']
blob_names = [extrema, ['cgm_h_2', igm_Tk', 'dTb']]

and so on.

Example: Derived Blobs

There are many quantities one might be interested in that are not computed by ARES by default, but can be derived after-the-fact from quantities ARES does compute. Things are setup such that you can provide your own function to compute such “derived blobs,” or you can simply refer to built-in functions that are attributes of ARES simulation objects.

To build on our previous example:

Note the addition of 'fwhm' and 'slope'
blob_names = [['tau_e', 'z_C', 'dTb_C'], ['fwhm'], ['slope']]
blob_ivars = [None, None, [('freq', np.arange(40, 151, 1))]]

The 'fwhm' blob is just a number, while 'slope' here will be saved at integer frequencies between 40 and 150 MHz.

Now, we must specify the functions needed to compute 'fwhm' and 'slope'. In this case, we don’t need to write them from scratch, as they already exist in ares.analysis.Global21cm, which is inherited by ares.simulations.Global21cm. ARES will assume blob functions are attributes of the simulation class, which means these quantities are readily available:

Width in MHz, Slope in mK / MHz
blob_funcs = [None, ['Width()'], ['Slope']]

Notice that the width function gets an empty set of parentheses – this is because there is no independent variable for this quantity. Alternatively, the slope function is given without parentheses to indicate that it must be applied over a range of values.

Before running it, create a parameters dictionary:

pars = \
{
 'problem_type': 101, # Simple global 21-cm problem
 'blob_names': blob_names,
 'blob_ivars': blob_ivars,
 'blob_funcs': blob_funcs, # NEW!
 'tanh_model': True, # Just to speed things up
}

To test:

sim = ares.simulations.Global21cm(**pars)
sim.run()

Check that we got our blobs:

print sim.get_blob('fwhm')
print sim.get_blob('slope', 150.) # @ 150 MHz

Working with Data and Models From the Literature

A very incomplete set of data from from the literature exist in $ARES/input/litdata. Each file, named using the convention <last name of first author><year>.py, is composed of dictionaries containing the information most useful to ARES (at least when first transcribed). To see a complete listing of options, consult the following list:

import ares

ares.util.lit_options

If any of these papers ring a bell, you can check out the contents in the following way:

litdata = ares.util.read_lit('mirocha2017') # a self-serving example

or, look directly at the source code, which lives in $ARES/input/litdata. Hopefully the contents of these files are fairly self-explanatory!

We’ll cover a few options below that I’ve used often enough to warrant the development of special routines to interface with the data and/or to plot the results nicely.

The high-z galaxy luminosity function

Measured luminosity functions from the following works are included in ARES:

	Bouwens et al. (2015)

	Finkelstein et al. (2015)

	Parsa et al. (2016)

	van der Burg et al. (2010)

Stellar population models

Currently, ARES can handle both the starburst99 original dataset and the BPASS version 1.0 models (both of which are downloaded automatically). You can access the data via,

s99 = ares.util.read_lit('leitherer1999')
bpass = ares.util.read_lit('eldridge2009')

or, to create more useful objects for handling these data,

s99 = ares.sources.SynthesisModel(source_sed='leitherer1999')
bpass = ares.sources.SynthesisModel(source_sed='eldridge2009')

The spectra for these models are stored in the exact same way to facilitate comparison and uniform use throughout ARES. The most important attributes are wavelengths (or energies or frequencies), times, and data (a 2-D array with shape (wavelengths, times)). So, to compare the spectra for continuous star formation in the steady-state limit (ARES assumes continuous star formation by default), you could do:

import matplotlib.pyplot as pl

pl.loglog(s99.wavelengths, s99.data[:,-1])
pl.loglog(bpass.wavelengths, bpass.data[:,-1])

The most common options for these models are: pop_Z, pop_ssp, pop_binaries, pop_imf, and pop_nebular. See Population Parameters for a description of each of these parameters.

Parametric SEDs for galaxies and quasars

So far, there is only one litdata module in this category: the multi-wavelength AGN template described in Sazonov et al. 2004.

Reproducing Models from ARES Papers

If you’re interested in reproducing a model from a paper exactly, you can either (1) contact me directly for the model of interest, or preferably (someday) download it from my website, or (2) re-compute it yourself. In the latter case, you just need to make sure you supply the required parameters. To facilitate this, I store “parameter files” (just dictionaries) in the litdata framework as well. You can access them like any other dataset from the literature, e.g.,

m17 = ares.util.read_lit('mirocha2017')

A few of the models we focused on most get their own dictionary, for example our reference double power law model for the star-formation efficiency is stored in the dpl variable:

sim = ares.simulations.Global21cm(**m17.dpl)
sim.run()
sim.GlobalSignature() # voila!

Hopefully this results exactly in the solid black curve from Figure 2 of Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M], provided you’re using ARES version 0.2. If it doesn’t, please contact me!

Alternatively, you can use the ParameterBundle framework, which also taps into our collection of data from the literature. To access the set of parameters for the “dpl” model, you simply do:

pars = ares.util.ParameterBundle('mirocha2017:dpl')

This tells ARES to retrieve the dpl variable within the mirocha2017 module. See Parameter Bundles for more on these objects.

Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M] (mirocha2017)

This model has a few options: dpl, and the extensions floor and steep, as explored in the paper.

	Non-standard pre-requisites:

	
	High resolution optical depth table for X-ray background. To generate one for yourself, navigate to $ARES/input/optical_depth and open the generate_optical_depth_tables.py file. Between lines 35 and 45 there are a block of parameters that set the resolution of the table. Make sure that helium=1, zi=50, zf=5, and Nz=[1e3]. It should only take a few minutes to generate this table.

The following parameters are uncertain and typically treated as free parameters within the ranges denoted by brackets (not all of which are hard limits):

	pop_Z{0}, \([0.001, 0.04]\)

	pop_Tmin{0}, \([300, \sim \mathrm{few} \times 10^5]\) (pop_Tmin{1} is tied to this value by default).

	pop_fesc{0}, in general can lie in range \([0, 1]\), but for consistency with observational constraints on \(\tau_e\) (from, e.g., Planck), it’s probably best to limit values to \(\lesssim 0.2\).

	pop_fesc_LW{0}, \([0, 1]\)

	pop_rad_yield{1}, \([10^{38}, 10^{42}]\) \(2.6 \times 10^{39}\) by default

	pop_logN{1}, \([18, 23]\), \(-\infty\) by default.

Note

Changes in the metallicity (pop_Z{0}) in general affect the luminosity function (LF). However, by default, the normalization of the star formation efficiency will automatically be adjusted to guarantee that the LF does not change upon changes to pop_Z{0}. Set the pop_calib_L1600{0} parameter to None to remove this behavior.

To re-make the right-hand panel of Figure 1 from the paper, you could do something like:

import ares

dpl = ares.util.ParameterBundle('mirocha2017:dpl')

ax = None
for model in ['floor', 'dpl', 'steep']:
 pars = dpl + ares.util.ParameterBundle('mirocha2017:%s' % model)
 pars.update()
 sim = ares.simulations.Global21cm(**pars)
 sim.run()
 ax = sim.GlobalSignature(ax=ax)

For more thorough parameter space explorations, you might want to consider using the ModelGrid (Simple Parameter Study: 2-D Model Grid) or ModelSample (Monte-Carlo Sampling Higher Dimensional Spaces) machinery. If you’d like to do some forecasting or fitting with these models, check out Fitting the Global 21-cm Signal and Fitting Galaxy Luminosity Functions.

Note

Notice that the floor and steep options are defined relative to the dpl model, i.e., they only contain the parameters that are different from the dpl model, which is why we updated the parameter dictionary rather than creating a new one just with the steep or floor parameters.

Furlanetto et al. (2017) [https://arxiv.org/abs/1611.01169] (furlanetto2017)

The main options in this model are whether to use momentum-driven or energy-driven feedback, what are accessible separately via, e.g.,

E = ares.util.ParameterBundle('furlanetto2017:energy')
p = ares.util.ParameterBundle('furlanetto2017:momentum')
fshock = ares.util.ParameterBundle('furlanetto2017:fshock')

The only difference is the assumed slope of the star formation efficiency in low-mass halos, which is defined in the parameter 'pq_func_par2[0]', i.e., the third parameter (par2) of the first parameterized quantity ([0]), in addition to a power-law index that describes the rate of redshift evolution, pq_func_par2[1].

To do a quick comparison, you could simply do:

import ares

ls = ['-', '--']
for i, model in enumerate([E, p]):
 pars = model + fshock
 pop = ares.populations.GalaxyPopulation(**pars)
 M = np.logspace(7, 13)
 pl.loglog(M, pop.fstar(z=6, Mh=M), ls=ls[i])

Creating your own

As with parameter bundles, you can write your own litdata modules without modifying the ARES source code. Just create a new .py file and stick it in one of the following places (searched in this order!):

	Your current working directory.

	$HOME/.ares

	$ARES/input/litdata

For example, if I created the following file (junk_lf.py; which you’ll notice resembles the other LF litdata modules) in my current directory:

import numpy as np

redshifts = [4, 5]
wavelength = 1600.
units = {'phi': 1} # i.e., not abundances not recorded as log10 values

data = {}
data['lf'] = \
{
 4: {
 'M': [-23, -22, -21, -20],
 'phi': list(np.random.rand(4) * 1e-4),
 'err': [tuple(np.random.rand(2) * 1e-7) for i in range(4)]
 },
 5: {
 'M': [-23, -22, -21, -20],
 'phi': list(np.random.rand(4) * 1e-4),
 'err': [tuple(np.random.rand(2) * 1e-7) for i in range(4)],
 }
}

then the built-in plotting routines will automatically find it. For example, you could compare this completely made-up LF with the rest

obslf = ares.analysis.GalaxyPopulation()

ax = obslf.Plot(z=4, sources='junk_lf')
ax = obslf.Plot(z=4, sources='all', round_z=0.2, ax=ax)

Monte-Carlo Sampling Higher Dimensional Spaces

For one- or two-dimensional parameter studies, a gridded search of parameter space (as in Simple Parameter Study: 2-D Model Grid) is a reasonable approach. However, as the dimensionality grows, things quickly get out of hand. As a result, it can sometimes be advantageous to run Monte Carlo simulations instead, sampling more sparsely (but more efficiently) a high-dimensional space.

You can do this in ARES using the ModelSample class, which is just a wrapper around the ModelGrid class. As a result, the problem setup is very similar to that in Simple Parameter Study: 2-D Model Grid, and that structure of the output data are identical, which means the routines documented in Analyzing Model Grids / Monte Carlo Simulations translate as well.

Before we start, the few usual imports:

import ares
import numpy as np

Our “go-to” Efficient Example: \(tanh\) model for the global 21-cm signal

To facilitate a comparison between the model grid results, let’s start by choosing the same blobs as in Simple Parameter Study: 2-D Model Grid:

blobs_scalar = ['z_D', 'dTb_D', 'tau_e']
blobs_1d = ['cgm_h_2', 'igm_Tk', 'dTb']
blobs_1d_z = np.arange(5, 21)

base_pars = \
{
 'problem_type': 101,
 'tanh_model': True,
 'blob_names': [blobs_scalar, blobs_1d],
 'blob_ivars': [None, [('z', blobs_1d_z)]],
 'blob_funcs': None,
}

Now, instead of creating a ModelGrid instance, we make a ModelSample instance:

mc = ares.inference.ModelSample(**base_pars)

At this point we have yet to specify which parameters will to sample. Because we are now doing Monte Carlo simulations, we must define the distributions from which to draw samples in each parameter of interest, rather than the grid of values to sample. To do this we need Keith Tauscher’s distpy <https://bitbucket.org/ktausch/distpy> package, which is used in MCMC calculations (e.g., Fitting the Global 21-cm Signal) as well:

from distpy import DistributionSet

ps = DistributionSet()

Now, let’s study the same parameters as Simple Parameter Study: 2-D Model Grid with one addition: the duration of “reheating”:

from distpy import UniformDistribution

Draw samples from a uniform distribution between supplied (min, max) values for each parameter
ps.add_distribution(UniformDistribution(6, 12), 'tanh_xz0')
ps.add_distribution(UniformDistribution(0.1, 8), 'tanh_xdz')
ps.add_distribution(UniformDistribution(0.1, 8), 'tanh_Tdz')

Give distributions to the ModelSample instance
mc.prior_set = ps

Note

You can also draw samples from a Gaussian (via GaussianPrior), a truncated Gaussian (TruncatedGaussianPrior), and many more. See ares.inference.Priors for a complete listing.

One last thing: we must specify how many random samples to draw:

mc.N = 2e3 # Number of models to run

Finally, to run it:

mc.run('test_3d_mc', clobber=True, save_freq=100)

To analyze the results, create an analysis instance,

anl = ares.analysis.ModelSet('test_3d_mc')

and, for example, plot the 2-d parameter space with points color-coded by tau_e

anl.Scatter(['tanh_xz0', 'tanh_xdz'], c='tau_e', edgecolors='none')

Now that we have also varied the thermal history through tanh_Tdz, we can look at the interplay between reionization and reheating in setting the emission maximum of the global signal, e.g.,

anl.Scatter(['tanh_xdz', 'tanh_Tdz'], c='dTb_D', edgecolors='none', fig=2)

See Analyzing Model Grids / Monte Carlo Simulations for more information.

Analyzing MCMC Calculations

If you don’t yet have a dataset to work with, you can make one by following Fitting the Global 21-cm Signal or Fitting Galaxy Luminosity Functions. Also, the analysis machinery for MCMC calculations is identical to that used to analyze model grids, so it may also be useful to look at Analyzing Model Grids / Monte Carlo Simulations.

Fitting the Global 21-cm Signal

It’s relatively straightforward to call the Markov-Chain Monte Carlo code
emcee [http://dan.iel.fm/emcee/current/] (Foreman-Mackey et al. (2013) [http://adsabs.harvard.edu/abs/2013PASP..125..306F]),
and perform a fits to:

	The global 21-cm signal.

	The galaxy luminosity function.

	Something really cool I haven’t even thought of yet!

Here, we’ll focus on the global signal application.

Fitting the Global 21-cm Spectrum

A fast model that yields semi-realistic global 21-cm signals is one which treats the Lyman-\(\alpha\), ionization, and thermal histories as tanh functions (see Harker et al. 2016 [http://adsabs.harvard.edu/abs/2016MNRAS.455.3829H]), so that’s what we’ll use in this example.

First, define the parameters that remain unchanged from model to model (mostly abstracted away by problem_type=101 and tanh_model=True settings), including some metadata blobs:

import numpy as np

These go to every calculation
base_pars = \
{
 'problem_type': 101,
 'tanh_model': True,
 'blob_names': [['tau_e', 'z_C', 'dTb_C'], ['cgm_h_2', 'igm_Tk', 'dTb']],
 'blob_ivars': [None, [('z', np.arange(6, 31))]],
 'blob_funcs': None,
}

Note

These blob_* parameters were covered in Simple Parameter Study: 2-D Model Grid, so if you have yet to go through that example, now might be a good time!

Now, initialize a fitter:

import ares

Initialize fitter
fitter_gs = ares.inference.FitGlobal21cm()

and the signal to be fit (just a -100 mK Gaussian signal at 80 MHz with \(\sigma=20\) MHz for simplicity):

fitter_gs.frequencies = freq = np.arange(40, 200) # MHz
fitter_gs.data = -100 * np.exp(-(80. - freq)**2 / 2. / 20.**2)

Set errors
fitter_gs.error = 20. # flat 20 mK error

At this point, we’re ready to initialize the master fitter:

fitter = ares.inference.ModelFit(**base_pars)
fitter.add_fitter(fitter_gs)
fitter.simulator = ares.simulations.Global21cm

In general, we can add more fitters in this fashion – their likelihoods will simply be summed.

Now, we set the parameters to be varied in the fit and whether or not to explore their values in log10:

Set axes of parameter space
fitter.parameters = ['tanh_J0', 'tanh_Jz0', 'tanh_Jdz', 'tanh_Tz0', 'tanh_Tdz']
fitter.is_log = [True] + [False] * 4

as well as the priors on the parameters, which in this case we’ll take to be uninformative over a relatively broad range (to do this we need Keith Tauscher’s distpy [https://bitbucket.org/ktausch/distpy] package):

from distpy import DistributionSet
from distpy import UniformDistribution

ps = DistributionSet()
ps.add_distribution(UniformDistribution(-3, 3), 'tanh_J0')
ps.add_distribution(UniformDistribution(5, 20), 'tanh_Jz0')
ps.add_distribution(UniformDistribution(0.1, 20), 'tanh_Jdz')
ps.add_distribution(UniformDistribution(5, 20), 'tanh_Tz0')
ps.add_distribution(UniformDistribution(0.1, 20), 'tanh_Tdz')

fitter.prior_set = ps

Finally, we set the number of Goodman-Weare walkers

fitter.nwalkers = 16 # In general, the more the merrier (~hundreds)

and run the fit:

Do a quick burn-in and then run for 50 steps (per walker)
fitter.run(prefix='test_tanh', burn=10, steps=50, save_freq=10)

This will result in a series of files named test_tanh*.pkl. See the example on Analyzing MCMC Calculations to proceed with inspecting the above dataset.

Note

For a simple model like the tanh, this fitting will be slower to run through ARES due to the overhead of initializing objects and performing the analysis (like finding extrema) in real time. For more sophisticated models, this overhead is dwarfed by the cost of each simulation, and for the complex blobs, the built-in machinery for I/O is very useful. If all you’re interested in is phenomenological fits, then it’ll be much faster to simply write your own wrappers around emcee.

Hopefully you recover a signal with a peak at 80 MHz and -100 mK, but beware that this will be nowhere near converged, so the plots won’t be pretty unless you increase the number of steps, walkers, or both.

Fitting Galaxy Luminosity Functions

If you’ve already had a look at Fitting the Global 21-cm Signal, the approach detailed below will look familiar: we’ll define a dataset to be fit, a set of parameters that each model requires, and a set of parameters allowed to vary in the fit (and priors that tell us how much they are allowed to vary).

One notable distinction between this example and the last is that the “blobs” we are interested in are two dimensional (e.g., we’re generally interested in the galaxy luminosity function as a function of both magnitude and redshift), and so we must pay some attention to setting up the calculation. In this example, we’ll keep track of the luminosity function and the star formation efficiency. The latter is the thing our parameters describe, so so while we could re-generate the SFE later (for each element of the chain) at very little extra computational cost, we may as well save it. We could also simply re-generate the LF later, but that is a slightly less trivial cost, so it’ll save some time to track it as well.

OK, each of these quantities has a different independent variable, but we may as well track them at a common set of redshifts:

Independent variables
redshifts = np.array([3, 3.8, 4, 4.9, 5, 5.9, 6, 6.9, 7, 7.9, 8])
MUV = np.arange(-28, -8.8, 0.2)
Mh = np.logspace(7, 13, 61)

blob 1: the LF. Give it a name, and the function needed to calculate it.
blob_n1 = ['galaxy_lf']
blob_i1 = [('z', redshifts), ('x', MUV)]
blob_f1 = ['LuminosityFunction']

blob 2: the SFE. Same deal.
blob_n2 = ['fstar']
blob_i2 = [('z', redshifts), ('Mh', Mh)]
blob_f2 = ['fstar']

Note

For the independent variables, we must also supply the name of the argument (positional or keyword) expected by the provided function.

Stick this all in a dictionary:

blob_pars = \
{
 'blob_names': [blob_n1, blob_n2],
 'blob_ivars': [blob_i1, blob_i2],
 'blob_funcs': [blob_f1, blob_f2],
 'blob_kwargs': [None] * 2,
}

Note that the blob_f? variables contain string representations of functions. This is important! In Fitting the Global 21-cm Signal, we didn’t have to do this because we only tracked common blobs that live in the history attribute of the ares.simulations.Global21cm class (ARES knows to first look for blobs in the history attribute of simulation objects). So, dealing with 2-D blobs requires some knowledge of what’s happening in the code. For example, the above will only work if LuminosityFunction accepts redshift and UV magnitude in that order. Also, we had to know that this method is attached to the object stored in the pops[0] attribute of a simulation object.

Now, let’s make our master dictionary of parameters, with one important addition:

import ares

base_pars = ares.util.ParameterBundle('mirocha2017:base').pars_by_pop(0, True)
base_pars.update(blob_pars)

This is important!
base_pars['pop_calib_L1600'] = None

The pop_calib_L1600 parameter tells ARES the \(1600\AA\) luminosity per unit star formation conversion used to derive the input SFE parameters. This can be useful, for example, if you’d like to vary the parameters of a stellar population (e.g., the metallicity pop_Z) without impacting the luminosity function. Of course, when we’re fitting the LF, the whole point to allow parameter variations to affect the LF, which is why we must turn it off by hand here.

Note

By default, ARES does not apply a dust correction. This can be useful, for example, if you want to generate a single physical model and study the effects of dust after the fact (see More Realistic Galaxy Populations). However, when fitting data, we must make a choice about the dust correction ahead of time since each evaluation of the likelihood will depend on it.

OK, now let’s set the free parameters and priors:

free_pars = \
 [
 'pq_func_par0[0]',
 'pq_func_par1[0]',
 'pq_func_par2[0]',
 'pq_func_par3[0]',
]

is_log = [True, True, False, False]

from distpy import DistributionSet
from distpy import UniformDistribution

ps = DistributionSet()
ps.add_distribution(UniformDistribution(-3, 0.), 'pq_func_par0[0]')
ps.add_distribution(UniformDistribution(9, 13), 'pq_func_par1[0]')
ps.add_distribution(UniformDistribution(0, 2), 'pq_func_par2[0]')
ps.add_distribution(UniformDistribution(-2, 0), 'pq_func_par3[0]')

Some initial guesses (optional: will draw initial walker positions from priors by default):

guesses = \
{
 'pq_func_par0[0]': -1,
 'pq_func_par1[0]': 11.5,
 'pq_func_par2[0]': 0.5,
 'pq_func_par3[0]': -0.5,
}

Initialize the fitter object:

Initialize a fitter object and give it the data to be fit
fitter_lf = ares.inference.FitGalaxyPopulation(**base_pars)

The data can also be provided more explicitly
fitter_lf.data = 'bouwens2015'

Now, in earlier versions of ARES, we would have set a few other attributes (which we’ll now do below) and then executed fitter.run with some keyword arguments. But, now, to enable multi-wavelength fitting, we first create a master fitter object:

fitter = ares.inference.ModelFit(**base_pars)
fitter.add_fitter(fitter_lf)

Establish the object to which we'll pass parameters
from ares.populations.GalaxyCohort import GalaxyCohort
fitter.simulator = GalaxyCohort

and then set remaining attributes that establish the free parameters, initial guesses for walkers, number of walkers, etc.,

A few speed-ups
fitter.save_hmf = True # cache HMF for a speed-up!
fitter.save_psm = True # cache source SED model (e.g., BPASS, S99)

Setting this flag to False will make ARES generate new files for each checkpoint.
2-D blobs can get large, so this allows us to just download a single
snapshot or two if we'd like (useful if running on remote machine)
fitter.checkpoint_append = False

fitter.parameters = free_pars
fitter.is_log = is_log
fitter.prior_set = ps

In general, the more the merrier (~hundreds)
fitter.nwalkers = 16

fitter.jitter = [0.1] * len(fitter.parameters)
fitter.guesses = guesses

Run the thing
fitter.run('test_lfcal', burn=0, steps=10, save_freq=1, clobber=True)

This will only take a few minutes to run, but the results will be very crude. Increase the number of walkers, steps, and perhaps add a burn-in for better results.

Note

To simultaneously fit luminosity functions and other quantities,
one can create separate fitter objects and simply add them to the fit
using the fitter.add_fitter method, which is essentially just a list
of objects that have their own likelihoods.

To see if things are working in the right direction, let’s have a quick look at the crude initial results. First, create an analysis instance:

anl = ares.analysis.ModelSet('test_lfcal')

and now, let’s look at the reconstructed luminosity function, which will tell us if (i) our blobs are being correctly written out to disk, and (ii) if the parameter space is truly being surveyed (if not, all MCMC samples of the LF will be identical).

Since we don’t expect the calculation to have converged yet, let’s just look at the raw LF samples rather than confidence intervals:

ax = anl.ReconstructedFunction('galaxy_lf', ivar=[6, None], samples='all', color='b', alpha=0.01)

ax.set_yscale('log')

To compare to observational data quickly, do

gpop = ares.analysis.GalaxyPopulation()

Plot any data within dz=0.1 of z=6
gpop.PlotLF(6, ax=ax, round_z=0.1)
ax.set_ylim(1e-9, 1)

Hopefully there’s agreement at the :math:`sim`few order-of-magnitude level!

See Analyzing MCMC Calculations for general instructions for dealing with the outputs of MCMC calculations.

Including Population III Stars

One of the generic results of using More Realistic Galaxy Populations is that they tend to produce strong late-time absorption troughs in the global 21-cm signal (this was the point of Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M]). Our interpretation was that deviations from these predictions could indicate “new” source populations, like Population III stars and their remnants. Indeed, we found some evidence that such objects introduce asymmetries in the global 21-cm signal (see Mirocha et al. 2018 [http://adsabs.harvard.edu/abs/2018MNRAS.478.5591M] for details).

The PopIII stars in this paper are simple, and were designed to seamlessly integrate with ARES while capturing the general behavior of more detailed models (e.g., Mebane, Mirocha, & Furlanetto (2018) [http://adsabs.harvard.edu/abs/2018MNRAS.479.4544M]). This section will describe how to make use of these models yourself.

The easiest way to tap into these models is via the ParameterBundle framework. To begin,

import ares

then, for example,

pars = ares.util.ParameterBundle('mirocha2017:base') \
 + ares.util.ParameterBundle('mirocha2018:high')

Parameter bundles are designed to be added together, so as to build-up more complex calculations piece by piece. The above snippet takes the default model from Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M] and adds on the default PopIII model from Mirocha et al. 2018 [http://adsabs.harvard.edu/abs/2018MNRAS.478.5591M]. The “high” suffix refers to the mass of the PopIII stars – in this case, high means \(\sim 100 \ M_{\odot}\). There are also bundles for “low” and “med” mass PopIII stars, which just changes the mass (and resultant spectra) according to the Schaerer (2002) [http://adsabs.harvard.edu/abs/2002A%26A...382...28S] models.

Note

The mirocha2017 models use some non-standard lookup tables by default. See Working with Data and Models From the Literature for more info.

You’ll notice that while the ‘mirocha2017:base’ bundle contains parameters for two source populations – one that provides the UV emission and another that produces X-rays – the addition of the PopIII bundle adds two more populations, again one each for UV and X-ray. You can customize the properties of these sources further via the following parameters:

	
	pop_sfr{2}

	The typical star formation rate (SFR) in PopIII halos (in \(M_{\odot} \ \mathrm{yr}^{-1}\)), in a mass-bin-averaged sense (i.e., we assume PopIII star formation occurs in discrete bursts so the SFR in any individual halo is ill-defined).

	
	pop_time_limit{2}

	The critical length of the PopIII phase (in Myr).

	
	pop_bind_limit{2}

	The critical binding energy (in erg) at which point halos transition to PopII star formation.

	
	pop_temp_limit{2}

	The critical virial temperature (in K) at which point halos transition to PopII star formation.

	
	pop_rad_yield{3}

	The X-ray production efficiency in PopIII halos (in \(\mathrm{erg} \ \mathrm{s}^{-1} \ (M_{\odot} \ \mathrm{yr}^{-1})^{-1}\)).

Note

The duration of PopIII in individual halos will be determined by
whichever of pop_time_limit, pop_bind_limit, and pop_temp_limit results in the smallest value (once converted to mass).

Warning

When pop_time_limit is small (\(t \lesssim 20\) Myr) the difference between \(M_{\min}\) and \(M_{\max}\) approaches a single grid point in the halo mass function lookup table. As a result, the SFRD may suffer from numerical noise, which slows convergence.

It is possible to use a halo mass-dependent prescription for the PopIII SFR if you’d like. In that case, you’ll need to update pop_sfr_model{2} to be sfe-func. See More Realistic Galaxy Populations for a reminder on how to do that.

Note on Feedback

One of the defining features of PopIII sources is their susceptibility to the global Lyman-Werner (LW) background, which drives up the minimum halo mass for star formation and thus limits the PopIII star formation rate density (SFRD). Because the LW background depends on the SFRD, the introduction of PopIII sources means ARES calculations must be performed iteratively. As a result, you will notice that these models can be quite a bit slower than normal ares calculations (by a factor of a few up to an order of magnitude, typically.)

There is some control, here, however. If you’re not looking for much accuracy, you can change the default set of convergence criteria to accelerate things.

	
	feedback_LW

	If False, LW feedback will be turned off.

	
	feedback_LW_mean_err

	If True, calculations will terminate as soon as the mean error in \(M_{\min}\) or the PopIII SFRD satisfy the set tolerances (see next two parameters). By default, it is False.

	
	feedback_LW_sfrd_rtol

	The relative tolerance needed in order for calculations to terminate. By default, this is 0.05.

	
	feedback_LW_sfrd_atol

	The absolute tolerance needed in order for calculations to terminate. By default, this is 0.0 (i.e., unused).

	
	feedback_LW_maxiter

	Maximum number of iterations allowed. By default, 50.

	
	feedback_LW_mean_err

	If True, terminate calculation once mean error meets set tolerances. If False (which is the default), require SFRD and/or \(M_{\min}\) to meet tolerance at all redshifts.

	
	feedback_LW_mixup_freq

	Every feedback_LW_mixup_freq iterations, use average of last two iterations rather than the prediction for the next step. This has been found to help speed-up convergence (see footnote #3 in paper).

Performance Tricks

These models can be quite a bit more expensive than usual due to the iterative nature of the computation. To speed things up, you can run a grid of models and then use that grid to supply initial guesses to the solver for subsequent calculations, which generally reduces the number of iterations required dramatically, especially if the grid is finely sampled.

Note

For a more detailed intro to model grids, see Simple Parameter Study: 2-D Model Grid.

Let’s generate a very sparse grid just to get a feel for how this works.

import ares
import numpy as np

pars = ares.util.ParameterBundle('mirocha2017:base') \
 + ares.util.ParameterBundle('mirocha2018:high')

pars['feedback_LW'] = True
pars['feedback_LW_maxiter'] = 50
pars['pop_sfr{2}'] = 1e-5
pars['pop_time_limit{2}'] = 10.

Track the PopII and III SFRDs and Mmin values separately
blobs = ares.util.BlobBundle(**ares.util.ParameterBundle('mirocha2018:csfr_blobs'))

pars.update(blobs)

Initialize a ModelGrid object.
mg = ares.inference.ModelGrid(**pars)

Just vary one parameter for now.
mg.axes = {'pop_time_limit{2}': np.arange(10., 50., 10.)}

mg.run('popIII_grid', clobber=True, save_freq=1)

To speed this up, you could loosen the tolerance, e.g., feedback_LW_sfrd_rtol=0.2 instead of the default feedback_LW_sfrd_rtol=0.05.

Note

You can enter the above in Python script and invoke with mpirun if you’ve got MPI and mpi4py installed.

To verify that this grid has run successfully, you could do something like

anl = ares.analysis.ModelSet('popIII_grid')

Plot the time_limit vs. SFRD(z=15)
from ares.physics.Constants import rhodot_cgs
ax1 = anl.Scatter(['pop_time_limit{2}', 'popIII_sfrd_tot'],
 ivar=[None, 15.], multiplier=[1, rhodot_cgs], fig=1)

ax1.set_yscale('log')
ax1.set_ylim(1e-8, 1)

Just show all the PopIII SFRDs
ax2 = anl.ReconstructedFunction('popIII_sfrd_tot', samples='all', color='b', fig=2, multiplier=[rhodot_cgs])
ax2.set_yscale('log')
ax2.set_ylim(1e-8, 1e-2)

Now, to use this model grid for further calculations, you can simply do:

import ares

pars = ares.util.ParameterBundle('mirocha2017:base') \
 + ares.util.ParameterBundle('mirocha2018:high')

Choose a value not represented in the grid.
pars['pop_time_limit{2}'] = 12.

These are new!
pars['feedback_LW_guesses'] = 'popIII_grid'
pars['feedback_LW_guesses_from'] = ['pop_time_limit'] # no ID number needed

sim = ares.simulations.Global21cm(**pars)
sim.run()

ARES will initialize a ModelGrid object using the popIII_grid* files in the current working directory. Importantly, we’ve told ARES to use the parameter pop_time_limit to set initial guesses, which seems obvious here but in general we could have more parameters in the grid and we could opt to only use a subset here.

If all goes according to plan, ARES will use the pop_time_limit{2}=10 grid point, pulling the result for the minimum mass evolution (which we saved as a blob) and using it as the initial guess. This should result in a SFRD very similar, but not identical to, the pop_time_limit{2}=10 model in our grid. And, most importantly, whereas the pop_time_limit{2}=10 model took 20 iterations to complete, the ``pop_time_limit{2}=12’’ model should only take 10 (with default tolerances).

This kind of thing can be very useful if you want to vary parameters that do not affect the PopIII SFRD. In fact this is precisely what we did in Mirocha et al. (2018) [http://adsabs.harvard.edu/abs/2018MNRAS.478.5591M]. In this case, we knew ahead of time that we would only survey the exact models represented in the grid, so we set:

pars['feedback_LW_guesses_perfect'] = True

which told ARES not just to use results from the ModelGrid as first guesses, but to assume they are perfect, in which case no further iteration by the solver is required.

Star Clusters

One of the main simplifying assumptions in our main galaxy evolution model (see More Realistic Galaxy Populations) is that the UV luminosity of sources traces only the current star formation. This is in general a pretty good approximation because galaxy star formation histories (at least in our models) are rising rapidly with time, so the star formation on each successive time-step is greater than in those intervals preceding it. This will not be a good approximation for sources with more gradual star formation histories. In an extreme example, simple stellar populations (SSPs), i.e., those that form in an instantaneous burst and evolve in color and luminosity passively afterward as stars of different masses evolve, this approximation will be really bad.

The ClusterPopulation is an attempt to enable a proper treatment of the aging of stellar populations. Similar features may eventually be incorporated into the GalaxyCohort model as well, but for now they remain separate.

A few usual imports before we begin:

import ares
import numpy as np
import matplotlib.pyplot as pl

Globular Clusters as a Working Example

A simple model for a globular cluster’s emission can be extracted from one’s favorite stellar population synthesis model. For example,

src = ares.sources.SynthesisModel(source_sed='eldridge2009', source_ssp=True)

Setting source_ssp to True recovers the spectral evolution of an instantaneous burst of star formation, which is one of the main products of codes like BPASS and Starburst99. The main attributes of this class are:

	times: Array of times at which we have model spectra (in Myr)

	wavelengths: Array of wavelengths for which we have spectra (in \(\AA\))

	data: 2-D array containing the specific luminosity of the stellar population as a function of wavelength and time (in that order).

So, to plot the evolution of the UV luminosity (at \(1500 \AA\), let’s say) of a \(10^5 M_{\odot}\) star cluster, we could do something like

i = np.argmin(np.abs(1500. - src.wavelengths))
pl.loglog(src.times, src.data[i,:] * 1e5)

By default, ARES normalizes the spectra to be specific luminosities per solar mass of star formation, hence the factor of \(10^5\) in the second line.

Now, this seems all well and good, but what if we wanted to study a population of star clusters forming across the Universe with some mass distribution and perhaps some evolution in the rate at which such objects form over time. This is where the ClusterPopulation object comes into play. Essentially all it is doing is generating a whole population of such objects and integrating their spectra over time, while being careful to weight by the relative number of objects as a function of their mass (and thus overall luminosity).

The key quantities needed to model such a population include:

	The mass distribution of objects, i.e., how many clusters do we get as a function of mass.

	The formation rate density of objects, i.e., how many clusters form per unit volume as a function of time (or redshift).

	The metallicity of clusters, and any changes to their IMF or presence/absence of binary populations (in BPASS, at least).

Let’s construct a dictionary of parameters that describes a simple population of star clusters, that we assume form at a constant rate (per unit volume) and follow a log-normal distribution in mass:

pars = \
{
 # 1 cluster / Gyr / cMpc^3 between 10 <= z <= 25. Stop aging at z=3.
 'pop_frd': lambda z: 1e-9,
 'pop_zform': 25.,
 'pop_zdead': 10.,
 'final_redshift': 3.,

 # Cluster mass distribution
 'pop_mdist': 'pq[0]',
 'pq_func[0]': 'lognormal',
 'pq_func_var[0]': 'M',
 'pq_func_par0[0]': 1.0,
 'pq_func_par1[0]': np.log10(1e5), # i.e., xi=1
 'pq_func_par2[0]': 0.5,

 # Cluster MF resolution and range
 'pop_dlogM': 0.05,
 'pop_Mmin': 1e3,
 'pop_Mmax': 1e8,

 # Cluster SED
 'pop_sed': 'eldridge2009',
 'pop_Z': 1e-3,
 'pop_rad_yield': 'from_sed',
 'pop_Emin': 1.,
 'pop_Emax': 24.6,

 # A few switches to make sure these objects act like clusters
 'pop_aging': True,
 'pop_ssp': True,
 'pop_age_res': 10, # Myr
}

A few things of note here. First, we used a constant formation rate density (pop_frd) but can easily generalize to a more complex function. Second, we used the The ParameterizedQuantity Framework to create the cluster mass distribution (via pop_mdist). Finally, we opted for BPASS (pop_sed='eldridge2009') with low metallicity (:math:Z=0.001).

To go ahead and create the population, we first import the necessary class,

from ares.populations.ClusterPopulation import ClusterPopulation

and then create an instance of it,

cpop = ClusterPopulation(**pars)

Let’s first verify that this population has the properties we said it should, e.g., by looking at the star formation rate density (should be a constant) and the mass function (should be log-normal):

pl.figure(1)

z = np.arange(5, 40)
pl.plot(z, cpop.SFRD(z))
pl.xlabel(r'z')
pl.ylabel(ares.util.labels['sfrd'])

Internally, ARES uses cgs units, which is why the star-formation rate density (SFRDs) here is so small (it’s in \(\mathrm{g} \ \mathrm{s}^{-1} \ \mathrm{cm}^3\)).

Now, for the mass function:

pl.figure(2)

Marr = np.logspace(3, 8)
pl.semilogx(Marr, cpop.MassFunction(M=Marr))
pl.xlabel(r'M_{\star} / M_{\odot}')
pl.ylabel(r'Cluster Mass Function')

Having recovered our basic inputs, let’s move on to a more complex quantity: the UV luminosity function. We should notice a change in the luminosity function at different times – and in particular, just after new clusters stop forming (at pop_zdead=10):

pl.figure(3)
for z in [6, 8, 9, 10, 15, 20, 25]:
 mags, phi = cpop.LuminosityFunction(z=z)
 pl.semilogy(mags, phi, label=r'$z={}$'.format(z))

Tidy up a bit
pl.ylim(1e-7, 1)
pl.xlim(-25, 0)
pl.legend(loc='upper left', frameon=True, fontsize=14)
pl.xlabel(r'M_{UV}')
pl.ylabel(ares.util.labels['galaxy_lf'])

For a discussion of the shape of the GC luminosity function, see, e.g., Boylan-Kolchin (2018) [http://adsabs.harvard.edu/doi/10.1093/mnras/sty1490]. To contrast it with the luminosity function of ‘’normal’’ high-z galaxies for yourself, see More Realistic Galaxy Populations.

Using Star Clusters in ARES Simulations

A good place to start here is the example on Models with Multiple Source Populations. In this example, one could simply replace the PopIII source population with a globular cluster population, being sure to include the X-ray emission from GCs as a separate source population. It would also be wise to upgrade the simple PopII source prescription in that example with More Realistic Galaxy Populations, since the use of GCs implies an interest in luminosity functions at high-\(z\).

More Realistic Galaxy Populations

Most global 21-cm examples in the documentation tie the volume-averaged emissivity of galaxies to the rate at which mass collapses into dark matter halos (this is the default option in ARES). Because of this, they are referred to as \(f_{\text{coll}}\) models throughout, and are selected by setting pop_sfr_model='fcoll'. In the code, they are represented by GalaxyAggregate objects, named as such because galaxies are only modeled in aggregate, i.e., there is no distinction in the properties of galaxies as a function of mass, luminosity, etc.

However, we can also run more detailed models in which the properties of galaxies are allowed to change as a function of halo mass, redshift, and/or potentially other quantities.

A few usual imports before we begin:

import ares
import numpy as np
import matplotlib.pyplot as pl

A Simple Galaxy Population

The most common extension to simple models is to allow the star formation efficiency (SFE) to vary as a function of halo mass. This is motivated observationally by the mismatch in the shape of the galaxy luminosity function (LF) and dark matter halo mass function (HMF). In Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M], we adopted a double power-law form for the SFE, i.e.,

\[f_{\ast}(M_h) = \frac{2 f_{\ast,p}} {\left(\frac{M_h}{M_{\text{p}}} \right)^{\gamma_{\text{lo}}} + \left(\frac{M_h}{M_{\text{p}}} \right)^{\gamma_{\text{hi}}}}\]

where the free parameters are the normalization, \(f_{\ast,p}\), the peak mass, \(M_p\), and the power-law indices in the low-mass and high-mass limits, \(\gamma_{\text{lo}}\) and \(\gamma_{\text{hi}}\), respectively. Combined with a model for the mass accretion rate onto dark matter halos (\(\dot{M}_h\); see next section), the star formation rate as computed as

\[\dot{M}_{\ast} = f_{\ast} \left(\frac{\Omega_{b,0}}{\Omega_{m,0}} \right) \dot{M}_h\]

In general, the SFE curve must be calibrated to an observational dataset (see Fitting Galaxy Luminosity Functions), but you can also just grab our best-fitting parameters for a redshift-independent SFE curve as follows:

p = ares.util.ParameterBundle('mirocha2017:base')
pars = p.pars_by_pop(0, strip_id=True)

The second command extracts only the parameters associated with population #0, which is the stellar population in this calculation (population #1 is responsible for X-ray emission only; see Models with Multiple Source Populations for more info on the approach to populations in ARES). Passing strip_id=True removes all ID numbers from parameter names, e.g., pop_sfr_model{0} becomes pop_sfr_model. The reason for doing that is so we can generate a single GalaxyPopulation instance, e.g.,

pop = ares.populations.GalaxyPopulation(**pars)

If you glance at the contents of pars, you’ll notice that the parameters that define the double power-law share a pq prefix. This is short for “parameterized quantity”, and is discussed more generally on the page about The ParameterizedQuantity Framework.

Note

You can access population objects used in a simulation via the pops attribute, which is a list of population objects that belongs to instances of common simulation classes like Global21cm, MetaGalacticBackground, etc.

Now, to generate a model for the luminosity function, simply define your redshift of interest and array of magnitudes (assumed to be rest-frame \(1600 \AA\) AB magnitudes), and pass them to the aptly named LuminosityFunction function,

z = 6
MUV = np.linspace(-24, -10)
lf = pop.LuminosityFunction(z, MUV)

pl.figure(1)
pl.semilogy(MUV, lf)

To compare to the observed galaxy luminosity function, we can use some convenience routines setup to easily access and plot measurements stored in the ARES litdata module:

obslf = ares.analysis.GalaxyPopulation()
obslf.Plot(z=z, round_z=0.2)
pl.ylim(1e-8, 10)
pl.legend()

pl.savefig('ares_pop_galaxy_lf6.png')

[image: _images/ares_pop_galaxy_lf6.png]
Simple galaxy evolution model with \(M_h\)-dependent SFE compared to UV luminosity functions at \(z\sim 6\). Model calibrated only to the Bouwens et al. (2015) points.

The round_z makes it so that any dataset available in the range \(3.7 \leq z \leq 4.3\) gets included in the plot. To do this for multiple redshifts at the same time, you could do something like:

redshifts = [5,6,7,8]
MUV = np.linspace(-24, -10)

Create a 1x4 panel plot, include all available data sources
mp = obslf.MultiPlot(redshifts, round_z=0.3, ncols=4, sources='all', fig=2, mp_kwargs=dict(padding=(0.2,0.2)))

for i, z in enumerate(redshifts):

 obslf.Plot(z=z, round_z=0.3, ax=mp.grid[i])

 lf = pop.LuminosityFunction(z, MUV)

 mp.grid[i].semilogy(MUV, lf)

obslf.add_master_legend(mp, ncol=3)

pl.figure(2)
pl.savefig('ares_pop_galaxy_lf_allz.png')

[image: _images/ares_pop_galaxy_lf_allz.png]
Simple galaxy evolution model with \(M_h\)-dependent SFE compared to UV luminosity functions at \(5 \lesssim z \lesssim 8\). Again, model calibrated only to the Bouwens et al. (2015) points at \(z \sim 6\).

To create the GalaxyPopulation used above from scratch (i.e., without using parameter bundles), we could have just done:

pars = \
{
 'pop_sfr_model': 'sfe-func',
 'pop_sed': 'eldridge2009',

 'pop_fstar': 'pq',
 'pq_func': 'dpl',
 'pq_func_par0': 0.05,
 'pq_func_par1': 2.8e11,
 'pq_func_par2': 0.51,
 'pq_func_par3': -0.61,
}

pop = ares.populations.GalaxyPopulation(**pars)

Accretion Models

By default, ARES will derive the mass accretion rate (MAR) onto halos from the HMF itself (see Section 2.2 of Furlanetto et al. 2017 [http://adsabs.harvard.edu/abs/2017MNRAS.472.1576F]. for details). That is, pop_MAR='hmf' by default. There are also two other options:

	Plug-in your favorite mass accretion model as a lambda function, e.g., pop_MAR=lambda z, M: 1. * (M / 1e12)**1.1 * (1. + z)**2.5.

	Grab a model from litdata. The median MAR from McBride et al. (2009) is included (same as above equation), and can used as pop_MAR='mcbride2009'. If you’d like to add more options, use $ARES/input/litdata/mcbride2009.py as a guide.

Warning

Note that the MAR formulae determined from numerical simulations may not have been calibrated at the redshifts most often targeted in ARES calculations, nor are they guaranteed to be self-consistent with the HMF used in ARES. One approach used in Sun & Furlanetto (2016) [http://adsabs.harvard.edu/abs/2016MNRAS.460..417S] is to re-normalize the MAR by requiring its integral to match that predicted by \(f_{\text{coll}}(z)\), which can boost the accretion rate at high redshifts by a factor of few. Setting pop_MAR_conserve_norm=True will enforce this condition in ARES.

See Dark Matter Halo Populations for more information.

Dust

Correcting for reddening due to the presence of dust in star-forming galaxies can be extremely important, especially in massive galaxies. When calling upon the LuminosityFunction method as in the above example, be aware that all magnitudes are assumed to be observed magnitudes, not intrinsic magnitudes.

At its simplest, the dust correction looks as follows (e.g., Meurer et al. 1999) [https://ui.adsabs.harvard.edu/abs/1999ApJ...521...64M/abstract]

\[A_{\text{UV}} = a + b \beta\]

where \(\beta\) is the rest-frame UV slope, and \(a\) and \(b\) are empirically-derived constants.

Some common dust corrections can be accessed by name and passed in via the dustcorr_method parameter:

	meurer1999

	pettini1998

By default, ARES will assume a constant \(\beta=-2\). However, in general this is a poor approximation: fainter galaxies are known to suffer less from dust reddening than bright galaxies. Simply set dustcorr_beta='bouwens2014', for example, to adopt the Bouwens et al. 2014 \(M_{\text{UV}}-\beta\) relation.

More General Star Formation Histories and Spectral Synthesis

By default, ARES does not perform spectral synthesis. For example, in More Realistic Galaxy Populations, the luminosity of galaxies is determined using a fixed conversion factor between \(1600\AA\) luminosity and star formation rate (SFR). The proper way to do this is to sum the luminosity from stars of all ages. In practice, the constant conversion factor works well for rest UV studies, since the rest UV depends largely on massive, short-lived stars. However, for non-trivial star formation histories (SFHs), or predictions at longer wavelengths, performing spectral synthesis in details is a must.

To enable a more general treatment of galaxy growth histories, including the proper synthesis of their spectra, we must use the GalaxyEnsemble object, which supercedes the GalaxyCohort object. We describe this object in more detail below.

Setting up a GalaxyEnsemble object

We can build a new population object by modifying just a few parameters relative to the “base” double power-law SFE approach taken in Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M]:

Extract base set of parameters using a double power-law SFE
pars = ares.util.ParameterBundle('mirocha2017:base').pars_by_pop(0, 1)

Add modifications necessary to handle generalizations
pars['pop_sfr_model'] = 'ensemble'
pars['pop_aging'] = True
pars['pop_ssp'] = True

The pop_sfr_model setting ensures that the correct model is used, while pop_aging and pop_ssp force ARES to properly track the impact of aging on the spectra of galaxies, by treating star formation at each timestep as a “simple stellar population,” i.e., a burst, which ages passively from that point onward.

For illustrative purposes, let’s build two model galaxies: one with an exponentially rising (but noisy) SFH, and another that is identical for the first 900 Myr of evolution, but then is suddenly switched off:

tarr = np.arange(50, 1001, 1.) # array of times in Myr

Exponentially-rising SFH with log-normal scatter
sfh1 = np.exp(tarr / 200.)
sfh1 *= np.random.lognormal(size=tarr.size, sigma=0.5)
sfh1 = np.atleast_2d(sfh1)

For contrast, compare to same SFH that is nulled for last 50 Myr
sfh2 = sfh1.copy()
sfh2[:,tarr > 950] = 0.0

Plot histories for sanity check
pl.figure(1)
pl.plot(tarr, sfh1[0], color='k')
pl.plot(tarr, sfh2[0], color='b')
pl.xlabel(r't / Myr')
pl.ylabel(r'SFR')

Note

We’ve made the SFH arrays 2-D because in general we can perform
spectral synthesis on an entire population of galaxies all at once. The
first dimension of the SFH arrays corresponds to galaxy ID number.

Now, to pass these histories to ARES directly and bypass all the usual SFH-generating machinery, use the pop_histories parameter:

pars1['pop_histories'] = {'t': tarr, 'sfh': sfh1, 'nh': np.ones_like(sfh1)}
pars2['pop_histories'] = {'t': tarr, 'sfh': sfh2, 'nh': np.ones_like(sfh2)}

Note that we’ve added nh as well, the number density of halos. In this example, since we’re treating individual galaxies, this is set to unity. However, in general, one can treat the evolution of galaxies in halo mass bins, in which case nh may be set to the number density of the DM parent halos of these galaxies.

Now, create a few GalaxyPopulation instances:

pop1 = ares.populations.GalaxyPopulation(**pars1)
pop2 = ares.populations.GalaxyPopulation(**pars2)

All the spectral synthesis machinery lives in ares.util.SpectralSynthesis, which is initialized as an attribute synth belonging to each GalaxyEnsemble instance. So, to plot the spectra of our two idealized galaxies at \(t=1\) Gyr, we can do:

Just look at the rest UV for now.
waves = np.arange(800, 3000, 10)

Generate spectra in rest frame
spec1 = pop1.synth.Spectrum(sfh=sfh1[0], waves=waves, tarr=tarr, tobs=1000)
spec2 = pop2.synth.Spectrum(sfh=sfh2[0], waves=waves, tarr=tarr, tobs=1000)

Plot
pl.semilogy(waves, spec1, color='k')
pl.semilogy(waves, spec2, color='b')
pl.xlabel(r'λ / \AA')
pl.ylabel(r'f_{ν}')

Note

These spectra correspond to the BPASS [http://bpass.auckland.ac.nz/] v1.0 models, since that is the
default in the mirocha2017 parameter bundle. You can switch to starburst99 by setting pop_sed='leitherer1999'. You can also change the stellar metallicity via the pop_Z parameter. If you have a model for metal enrichment, that is possible to supply as well.

There are many options for outputting photometry in addition to / instead of rest spectra. Contact me if you’re interested in these features as they are not yet documented.

Using the GalaxyEnsemble from within ARES

In practice, you may want to leverage the features of the GalaxyEnsemble object from within an ARES simulation, e.g., the 21-cm signal, metagalactic gackground, or while modeling a population of galaxies and comparing to observed UV luminosity functions or stellar mass functions.

Once again, contact me if you’re interested in these features as they are not yet documented.

RT06 Test #1 (Strömgren Sphere, isothermal)

Test #1 from the Radiative Transfer Comparison Project (Iliev et al. 2006 [http://adsabs.harvard.edu/abs/2006MNRAS.371.1057I]).

This problem investigates the growth of an HII region around a monochromatic
source of ionizing photons. The main parameters are:

	Stellar ionizing photon production rate of \(\dot{Q} = 5 \times 10^{48} \ \text{s}^{-1}\).

	Medium composed of hydrogen only, with a density of \(n_{\text{H}} = 10^{-3} \ \text{cm}^{-3}\).

	Medium is isothermal at \(T=10^4\) K.

import ares

sim = ares.simulations.RaySegment(problem_type=1)
sim.run()
sim.PlotIonizationFrontEvolution()

RT06 Test #2 (Strömgren Sphere, thermal evolution allowed)

Test #2 from the Radiative Transfer Comparison Project (Iliev et al. 2006 [http://adsabs.harvard.edu/abs/2006MNRAS.371.1057I]).

This problem investigates the growth of an HII region around a blackbody
source of ionizing photons. The main parameters are:

	Stellar ionizing photon production rate of \(\dot{Q} = 5 \times 10^{48} \ \text{s}^{-1}\).

	Stellar spectrum is a \(10^5\) K blackbody.

	Medium composed of hydrogen only, with a density of \(n_{\text{H}} = 10^{-3} \ \text{cm}^{-3}\).

	Gas temperature is able to evolve. It is initially set to \(T=100\) K everywhere on the grid.

The ionization and heating rates are computed treating the source’s spectral
energy distribution in full. A lengthy discussion of this can be found in
Mirocha et al. (2012) [http://adsabs.harvard.edu/abs/2012ApJ...756...94M].

import ares

sim = ares.simulations.RaySegment(problem_type=2)
sim.run()

sim.PlotIonizationFrontEvolution(fig=1)

Snapshots at 10 and 50 Myr
ax = sim.RadialProfile('h_1', fig=2, t=[10, 50])
sim.RadialProfile('h_2', ax=ax, t=[10, 50], ls='--')
sim.RadialProfile('Tk', fig=3, t=[10, 50])

Optimal SEDs for RT Calculations

Field Listing

The most fundamental quantities associated with any calculation done in ares
are the gas density, species fractions and the gas temperature.

Species Fractions

Our naming convention is to denote ions using their chemical symbol (in lower-case), followed by the ionization state, separated by an underscore. Rather than denoting the ionization state with roman numerals, we simply use integers. For example, neutral hydrogen is h_1 and ionized hydrogen is h_2.

Here is a complete listing:

	Neutral hydrogen fraction: 'h_1'

	Ionized hydrogen fraction: 'h_2'

	Neutral helium fraction: 'he_1'

	Singly-ionized helium fraction: 'he_2'

	Doubly-ionized helium fraction: 'he_3'

	Electron fraction: 'e'

	Gas density (in \(g \ \text{cm}^{-3}\)): 'rho'

These are the default elements in the history dictionary, which is an attribute of all ares.simulations classes.

We also generally keep track of the ionization and heating rate coefficients:

	Rate coefficient for photo-ionization, k_ion.

	Rate coefficient for secondary ionization by photo-electrons, k_ion2.

	Rate coefficient for photo-heating, k_heat.

Each of these quantities are multi-dimensional because we store the rate coefficients for each absorbing species separately.

Two-Zone IGM Models

For calculations of the reionization history or global 21-cm signal, in which we use a two-zone IGM formalism, all quantities described in the previous sections keep their usual names with one important change: they now also have an igm or cgm prefix to signify which phase of the IGM they belong to. The igm phase is of course short for inter-galactic medium, while the cgm phase stands for the circum-galactic medium (really just meant to indicate gas near galaxies).

	Kinetic temperature, igm_Tk.

	HII region volume filling factor, cgm_h_2.

	Neutral fraction in the bulk IGM, igm_h_1.

	Heating rate in the IGM, igm_k_heat.

	Volume-averaged ionization rate, cgm_k_ion.

There are also new (passive) quantities, like the neutral hydrogen excitation
(or ``spin’’ temperature), the 21-cm brightness temperature, and the Lyman-\(\alpha\) background intensity:

	21-cm brightness temperature: 'igm_dTb'.

	Spin temperature: 'igm_Ts'.

	\(J_{\alpha}\): 'igm_Ja'.

Each of these are only associated with the IGM grid patch, since the other phase of the IGM is assumed to be fully ionized and thus dark at 21-cm wavelengths.

Initial Conditions & Lookup Tables

The Opacity of the Intergalactic Medium

Solutions for the evolution of the cosmic X-ray background are greatly accelerated if one tabulates the IGM opacity, \(\tau_{\nu}(z, z^{\prime})\), ahead of time (see in Appendix C of Haardt & Madau (1996) [http://adsabs.harvard.edu/abs/1996ApJ...461...20H] for some discussion of this technique). ARES automatically looks in $ARES/input/optical_depth for \(\tau_{\nu}(z, z^{\prime})\) lookup tables.

The shape of the lookup table is defined by the redshift range being considered (set by the parameters first_light_redshift and final_redshift), the number of redshift bins used to sample that interval, tau_redshift_bins, the minimum and maximum photon energies (pop_Emin and pop_Emax), and the number of photon energies (determined iteratively from the redshift and energy intervals and the value of tau_redshift_bins).

By default, ares generates tables assuming the IGM is fully neutral, but that is not required. To make optical depth tables of your own, see $ARES/input/optical_depth/generate_optical_depth_tables.py. See Section 3 of Mirocha (2014) [http://adsabs.harvard.edu/abs/2014MNRAS.443.1211M] for more discussion of this technique.

Tables for mirocha2017-like calculations

To generate the table used for the calculations in Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M], modify the following lines of $ARES/input/optical_depth/generate_optical_depth_tables.py:

zf, zi = (5, 50)
Emin = 2e2
Emax = 3e4
Nz = [1e3]
helium = 1

Note

You can run the generate_optical_depth_tables.py script in parallel via, e.g., mpirun -np 4 generate_optical_depth_tables.py, so long as you have MPI and mpi4py installed.

The set of parameters used for these calculations are described in the “Simulations” section of Parameter Bundles.

Integrating the Cosmological Radiative Transfer Equation

We implemented multiple methods for integrating the cosmological radiative transfer equation (C-RTE), which we outline here. The most important piece of this is computing the IGM optical depth,

\[\overline{\tau}_{\nu}(z, z^{\prime}) = \sum_j \int_{z}^{z^{\prime}} n_j(z^{\prime \prime}) \sigma_{j, \nu^{\prime\prime}} \frac{dl}{dz^{\prime\prime}}dz^{\prime\prime}\]

	not None None None 2-D table

	None not None None generator
None None not None generator
None None None function

Parameter Bundles

The goal of ParameterBundles is to neatly package sets of commonly-used parameters with their most often-used values. This means you don’t need to sift through the vast listing in SetDefaultParameterValues and attempt to determine which you’ll need every time you run a new type of calculation. Instead, you can initialize a ParameterBundle object and make modifications rather than starting from scratch. Think of them as building blocks for a complete set of parameters.

This sort of functionality already exists to some degree given the different Problem Types in ARES. However, problem types are reserved for simulations only, whereas parameter bundles can be used to separately initialize the sub-components of a typical ARES calculation, like GalaxyPopulation objects, parameters governing numerical approximations and the physics being included, etc.

In the future, the problem types in ARES will probably be re-defined in terms of parameter bundles.

All bundles listed below can be created via, e.g.,

import ares

pars = ares.util.ParameterBundle('pop:fcoll')

Populations

The following bundles return a base set of parameters that could be used to initialize a GalaxyPopulation object.

	
	pop:fcoll

	A basic \(f_{\mathrm{coll}}\)-based population described by the rate at which mass collapses onto dark matter halos exceeding some threshold mass (or equivalent virial temperature) and a constant star formation efficiency.

	
	pop:sfe or pop:lf

	A population in which the star formation efficiency (SFE) is parameterized as a function of halo mass. This allows one to generate models for the galaxy luminosity function.

Spectral Energy Distributions

The following bundles return a base set of parameters that can be added to the parameters of a Population bundle to modify its spectral energy distribution (SED). For example,

pop_pars = ares.util.ParameterBundle('pop:fcoll')
sed_pars = ares.util.ParameterBundle('sed:uv')

pars = pop_pars + sed_pars

For calculations using multiple populations, you will need to give an identification number to each population via

pars.num = 0

Currently, the following SED bundles are supported:

	
	sed:uv

	A simple SED in which the user sets the UV luminosity by hand.

	
	sed:pl

	A simple power-law X-ray spectrum, which by default spans the energy range \(200 \leq h\nu/\mathrm{eV} \leq 30000\).

	
	sed:mcd

	A multi-color disk black hole accretion spectrum. Assumes a \(10 \ M_{\odot}\) BH.

	
	sed:bpass

	A stellar SED from the BPASS code (version 1.0).

	
	sed:s99

	A stellar SED from the original starburst99 dataset.

Physics

	
	physics:lwb

	A few parameters that turn on a proper treatment of the Lyman-Werner background.

	
	physics:xrb

	A few parameters that turn on a proper treatment of the X-ray background.

Simulations

If the bundle you specify is not defined in ares.util.ParameterBundles, ARES will search for a module of the same name in ares/input/litdata. For more on these kinds of modules, see Using Data from the Literature.

	
	mirocha2017:dpl

	Parameters to initialize a simulation of the global 21-cm signal using a halo-mass-dependent star formation efficiency (a double power law (DPL) by default), as in Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M]. Changing the suffixed from dpl to steep or floor will instead use those models from the paper (see Figures 1 and 2). If you want to explore deviations from these models, check out the Population Parameters listing, especially the bit about parameterized halo properties.

Note

For this to work “out of the box” you will need a lookup table for the IGM opacity that is not included with ARES by default. See Initial Conditions & Lookup Tables: for more info on generating these lookup tables.

	
	mirocha2018:high

	Parameters to augment the mirocha2017 simulations of the global 21-cm by adding in a simple prescription for PopIII stars. Changing the suffixed from high to low or med will assume different masses for PopIII stars. See Including Population III Stars for more information.

Creating your own

While some parameter bundles are defined in the source code (e.g., all but those in the “Simulations” section above), they can also be defined in separate files. For example, the mirocha2017:dpl model is defined in the dpl dictionary in the file mirocha2017.py, which lives in $ARES/input/litdata. You can write your own parameter bundles in the same way, just stick them in one of the following places (searched in this order!):

	$ARES/input/litdata

	$HOME/.ares

	Your current working directory.

Parameter Listing

We use keyword arguments to pass parameters around to various ARES routines.
A complete listing of parameters and their default values can be found in
ares.util.SetDefaultParameterValues.py.

Here, we’ll provide a brief description of each parameter.

	Grid Parameters

	Physics Parameters

	Population Parameters

	Halo Mass Function Parameters

	Control Parameters

	Cosmology Parameters

	Source & Spectrum Parameters

	Parameters for Parameterized Quantities

For relatively complex calculations it can be difficult to know / remember which parameters are needed. Because of this, a convenience object called the ParameterBundle was introduced in June of 2016 to package together sets of commonly-used parameters and values. See the following page for more information on creating and using these objects:

	Parameter Bundles

also relevant to problem initialization:

	Problem Types

Custom Defaults

To adapt the defaults to your liking without modifying the source code (all
defaults set in ares.util.SetDefaultParameterValues.py), open the file:

$HOME/.ares/defaults.py

which by default contains nothing:

pf = {}

To craft your own set of defaults, simply add elements to the pf dictionary.
For example, if you want to use a default star-formation efficiency of 5% rather
than 10%, open $HOME/.ares/defaults.py and do:

pf = {'fstar': 0.05}

That’s it! Elements of pf will override the defaults listed in
ares.util.SetDefaultParameterValues.py at run-time.

Alternatively, within a python script you can modify defaults by doing

import ares
ares.rcParams['fstar'] = 0.05

This is similar to how things work in matplotlib (with the matplotlibrc
file and matplotlib.rcParams variable).

Custom Axis-Labels

You can do the analogous thing for axis labels (all
defaults set in ares.util.Aesthetics.py). Open the file:

$HOME/.ares/labels.py

which by default contains nothing:

pf = {}

If you wanted to change the default axis label for the 21-cm brightness
temperature, from \(\delta T_b \ (\mathrm{mK})\) to \(T_b\), you would
do:

pf = {'dTb': r'T_b'}

This change will automatically propagate to all built-in analysis routines.

Control Parameters

Output to screen

	verbose

	Print lots of output to screen regarding status of calculation?

Default: True

	progress_bar

	Use python progress-bar [https://code.google.com/p/python-progressbar/] (if installed)?

Default: True

Starting and stopping calculations

	initial_redshift

	Initial redshift of calculation, i.e., the redshift at which we switch from cosmological initial conditions to the ARES solver.

Default: 60

	final_redshift

	Calculation stops at this redshift.

Default: 5

	track_extrema

	Track 21-cm extrema in real-time. These are referred to as turning points
B (first stars), C (first black holes), and D (beginning of Epoch of Reionization) in works such as Burns et al. (2012) [http://adsabs.harvard.edu/abs/2012AdSpR..49..433B], Harker et al. (2012) [http://adsabs.harvard.edu/abs/2012MNRAS.419.1070H], and Mirocha et al. (2013) [http://adsabs.harvard.edu/abs/2013ApJ...777..118M].

Default: False

	stop

	If track_extrema==True, set stop to 'B', 'C', or 'D' to terminate the calculation once the given turning point is reached.

Default: None

	stop_xavg

	You can also stop a calculation once a given mean ionized fraction is reached. For instance, if you’d like to terminate once the IGM is half ionized, set stop_xavg=0.5.

Default: 0.99999

Time-stepping and data storage

	time_units

	Internal units for time.

Default: \(3.15576 \times 10^{13} \ \text{s}\) (i.e., 1 Myr)

	initial_timestep

	Time-step at initial_redshift.

Default: 0.01 [time_units]

	max_dt

	Maximum allowed time-step.

Default: 1 [time_units]

	max_dz

	Maximum allowed redshift-step.

Default: None

	dtDataDump

	Save all physical quantities at this time cadence.

Default: 1 [time_units]

	dzDataDump

	Save all physical quantities at this redshift cadence.

Default: None

	epsilon_dt

	Maximum fractional change in quantities of interest in a single time-step.
Quantities of interest are listed in restricted_timestep (see below).

Default: 0.01

	restricted_timestep

	A list containing quantities use to restrict the time-step via epsilon_dt. Options:

	'ions': restrict time-step based on rate of change in ion fractions.

	'neutrals': restrict time-step based on rate of change in neutral fractions.

	'electrons': restrict time-step based on rate of change in electron density.

	'temperature': restrict time-step based on rate of change in temperature.

	'hubble': restrict time-step based on Hubble expansion.

Default: ['ions', 'electrons', 'temperature']

Lookup tables

	tau_redshift_bins

	Number of points to use when discretizing the IGM optical depth in redshift.

Default: None

	tau_prefix

	Path to directory on disk where optical depth tables are stored. Set this if you keep optical depth tables stored in a place other than the $ARES environment variable!

Default: None

	load_sed

	Same as tau_prefix, but refers to lookup tables for complex spectral energy distributions (such as SIMPL) which are expensive to calculate.

Default: False

	sed_prefix

	Location of SED tables

Default: None

Cosmology Parameters

The default cosmological parameters in ARES are from Planck. Specifically, we take values from the last column of Table 4 in Planck XIII [http://adsabs.harvard.edu/abs/2015arXiv150201589P].

Note

Several input files (e.g., lookup tables for the halo mass
function, initial conditions, etc.) depend on these vales. There currently
is not a system in place to make sure there is a match between the
parameters you pass at run-time and the lookup tables read-in from disk.
Beware!

	omega_m_0

	Matter density, relative to the critical density.

Default: \(\Omega_{m,0} = 0.3089\)

	omega_b_0

	Baryon density, relative to the critical density.

Default: \(\Omega_{b,0} = 0.0486\)

	omega_l_0

	Dark energy density, relative to the critical density.

Default \(\Omega_{\Lambda,0} = 0.6911\)

	hubble_0

	Hubble parameter today.

Default: 0.6774 \([100 \ \text{km} \ \text{s}^{-1} \ \text{Mpc}^{-1}]\)

	helium_by_mass

	Fractional helium abundance by mass.

Default: 0.2453

	cmb_temp_0

	Temperature of the cosmic microwave blackbody, today.

Default: 2.7255 \([\text{K}]\)

	sigma_8

	Default: 0.8159

	primordial_index

	Default: 0.9667

Grid Parameters

	grid_cells

	Number of resolution elements in the grid (i.e., number of concentric
spherical shells to consider in 1-D calculation).

	logarithmic_grid

	If True, discretize space logarithmically, rather than linearly.

Default: False

	start_radius

	Ignore radiative transfer within this distance from the origin [length_units]
Must be done in order to avoid divergence in flux as \(r\rightarrow 0\)

	density_units

	Hydrogen number density in units of \(\text{cm}^{-3}\)
Default: \(1 \ \text{cm}^{-3}\)

	length_units

	Default: \(10 \times 3.08568 \times 10^{21} \ \text{cm}\) (i.e., 10 kilo-parsec) [centimeters]

	time_units

	Default: \(3.15576 \times 10^{13} \ \text{s}\) (i.e., 1 Myr) [seconds]

initial_ionization

initial_temperature

	include_igm

	Include IGM phase in the model?

Default: True

	include_cgm

	Include CGM phase in the model?

Default: True

Halo Mass Function Parameters

The halo mass function is at the core of many calculations related to the high-z universe. ARES uses hmf [https://github.com/steven-murray/hmf], a halo mass function calculator written by Stephen Murray.

	hmf_model

	Which fit to the halo mass function should be used?

Options:

	'PS': Press & Schecter (1974) [http://adsabs.harvard.edu/abs/1974ApJ...187..425P]

	'ST': Sheth & Tormen (1999) [http://adsabs.harvard.edu/abs/1999MNRAS.308..119S]

Default: 'PS'

Note

You can actually supply any of the options allowed by the hmf
code here (for the parameter mf_model). Just be aware that not every fit to the halo mass function in the literature is meant to work at high redshifts!

	hmf_table

	Path to a halo mass function lookup table.

Default: None

	hmf_analytic

	Compute collapsed fraction, \(f_{\text{coll}}\), analytically? Only possible if fitting_function='PS'. Useful for testing numerical integration of the mass function.

Default: False

	hmf_load

	Search $ARES/input/hmf for halo mass function lookup table?

Default: True

	hmf_logMmin

	Base-10 logarithm of the minimum halo mass to consider.

Default: 4

	hmf_logMmax

	Base-10 logarithm of the maximum halo mass to consider.

Default: 16

	hmf_dlogM

	Base-10 logarithm of the mass resolution in halo mass function lookup table.

Default: 0.05

	hmf_zmin

	Minimum redshift in lookup table.

Default: 4

	hmf_zmax

	Maximum redshift in lookup table.

Default: 80

	hmf_dz

	Redshift resolution in lookup table.

Default: 0.05

Parameter Estimation Parameters

blob_names

blob_ivars

blob_funcs

Physics Parameters

	radiative_transfer

	
	No astrophysical sources.

	Includes ionization/heating from astrophysical sources.

Default: 1

	compton_scattering

	
	OFF

	Include Compton scattering between free electrons and CMB.

Default: 1

	secondary_ionization

	Determine what fraction of photo-electron energy gets deposited in various
channels, such as heat, ionization, and excitation.

	All photo-electron energy deposited as heat.

	Compute using fits of Shull & vanSteenberg (1985).

	Compute using energy-dependent fits of Ricotti, Gnedin, & Shull (2002).

	Compute using look-up tables of Furlanetto & Stoever (2010).

Default: 1

	fXh

	Set fractional heating by photo-electrons by-hand. Currently must be a
constant. Will override choice of secondary_ionization if supplied.

Default: None

	clumping_factor

	Multiplicative enhancement to the recombination rate.

Default: 1

	approx_He

	See following table for possible behaviors depending on value of include_He.

Default: False

	include_He

	approx_He

	description

	False

	False

	Neglects helium entirely

	True

	True

	Set \(x_{\text{HeII}} = x_{\text{HII}}\), and set \(x_{\text{HeIII}} = 0\)

	True

	False

	Solve for helium self-consistently

	approx_sigma

	
	Compute bound-free absorption cross sections via fits of Verner et al. (1996).

	Approximate cross-sections as \(\sigma \propto \nu^{-3}\)

Default: 0

	approx_lwb

	
	Solves RTE (i.e., full “sawtooth” background).

	Assume flat spectrum between Lyman-\(\alpha\) and the Lyman limit.

Default: 1

	approx_xrb

	
	Solves RTE.

	Heating due to instantaneous X-ray luminosity.

Default: 1

	discrete_lwb

	
	Performs integrals numerically using continuous functions for integrands (very slow)

	Integrates transfer equation over discrete set of points.

Default: 1

	discrete_xrb

	
	Performs integrals numerically using continuous functions for integrands (very slow)

	Integrates transfer equation over discrete set of points.

Default: 1

	approx_Salpha

	
	Not implemented

	Assume \(S_{\alpha} = 1\)

	Use formulae of Chuzhoy, Alvarez, & Shapiro (2005).

	Use formulae of Furlanetto & Pritchard (2006)

Default: 1

	lya_nmax

	Default: 23

	lya_injected

	Include photons injected at line-center?

Default: True

	lya_continuum

	Include photons redshifting into the blue-wing of the Lyman-\(\alpha\) line?

Default: True

	recombination

	Which recombination method to use? Can be "A", "B", or 0, the
first two options being standard case-A or case-B recombination, whereas
the last option artificially turns off recombinations (useful for analytic
tests).

Default: B

Population Parameters

Basic Properties

	pop_zform

	Redshift when sources “turn on.”

Default: 50

	pop_zdead

	Population will not contribute to radiation backgrounds after this redshift.

Default: 0

	pop_lw_src

	Sources contribute to Lyman-Werner background? Only relevant if LW feedback is turned on.

Default: True

	pop_lya_src

	Sources contribute to Ly-\(\alpha\) background?

Default: True

	pop_ion_src_cgm

	Sources contribute to growth of HII regions?

Default: True

	pop_ion_src_igm

	Sources contribute ionization in bulk IGM?

If approx_xrb=True, this ionization rate assumes a mean X-ray photon energy
of xray_Eavg, which is 500 eV by default.

Default: True

	pop_heat_src_igm

	Sources emit X-rays and heat bulk IGM?

Default: True

	pop_solve_rte

	Solve the cosmological radiative transfer equation (RTE) in detail?

Options: bool, list, tuple

Default: False

Star formation history

The following parameters control the star-formation history of a population. See Models for Star Formation in Galaxies for more information.

	pop_sfr_model

	Value determines how star-formation history is computed.

	Options:

	
	fcoll: Relate SFRD to rate of collapse onto halos above minimum virial temperature (pop_Tmin) or mass (pop_Mmin) threshold assuming constant efficiency of star formation (pop_fstar).

	sfe-func: Model star formation efficiency as function halo mass and (perhaps) redshift. See next section for more details.

	sfrd-func: User-supplied function of redshift. See pop_sfrd below.

	link:<ID>: Link the SFRD to population with the given ID number (in <>’s).

	pop_Tmin

	Minimum virial temperature of star-forming halos.

Default: \(10^4\) [Kelvin]

	pop_Mmin

	Minimum mass of star-forming halos. Will override Tmin if set to
something other than None.

Default: None [\(M_{\odot}\)]

	pop_fstar

	Star formation efficiency, \(f_{\ast}\), i.e., fraction of collapsing
gas that turns into stars.

	Options:

	
	Any number between 0 and 1.

	pq for “parameterized halo property”. Requires pop_model=True. See next section for more details on setting the pq_* parameters. Note that if multiple PQ’s are being used for a single population, you can use square brackets to attach an ID number, e.g., pop_fstar=pq[0] and pop_fesc=pq[1]. The square brackets w/ ID numbers must be appended to each of the corresponding pq_* parameters as well.

Default: 0.1

Note

If you set fstar to None, the strength of radiation
backgrounds will be determined by the \(\xi\) parameters,
xi_LW, xi_XR, and xi_UV.

	pop_sfrd

	The star formation rate density (SFRD) as a function of redshift. If provided, will override Tmin and Mmin. For example, a constant (co-moving) SFRD of \(1 \ M_{\odot} \ \text{yr}^{-1} \ \text{cMpc}^{-3}\) would be sfrd=lambda z: 1.0. Also must set ``pop_sfrd_units=’msun/yr/mpc^3’ (see below).

Default: None

	pop_sfrd_units

	Sets the units of the parametric form for the SFRD (pop_sfrd).

	Options:

	
	msun/yr/mpc^3 for \(M_{\odot} \ \text{yr}^{-1} \ \text{cMpc}^{-3}\)

	g/s/cm^3

Default: g/s/cm^3

	pop_calib_L1600

	If not None, this parameter will guarantee that the \(1600\AA\) luminosity (per unit star formation) is fixed at the provided value. This can be useful if, for example, you’re modeling the galaxy luminosity function (LF) and want to change the stellar population model while preserving the LF. See Section 3.4 of Mirocha, Furlanetto, & Sun (2017) [http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M] for further discussion of this.

Radiation Fields

	pop_sed_model

	Treat the SED of this source population in detail? If True, it means that we use parameters like pop_sed, pop_Emin, pop_Emax, etc. in order to set the overall normalization of the emission. If False, parameters like pop_Nlw, pop_Nion, and pop_fX are used instead of pop_rad_yield.

See Models for Radiation Emitted by Galaxies for more information.

Default: True

	pop_rad_yield

	How many photons are emitted per unit star formation?

Default: \(2.6 \times 10^{39}\)

	pop_rad_yield_units

	How to normalize the yield?

Options:

	erg/s/SFR [i.e., \(\mathrm{erg} \ \mathrm{s}^{-1} \ (M_{\odot} \ \mathrm{yr}^{-1})^{-1}\)]

	photons/baryon

	photons/Msun

Default: erg/s/SFR

Internally, all units are cgs, which means at run-time all yields will be converted to units of \(\mathrm{erg} \ \mathrm{g}^{-1}\).

These parameters of course dictate an amount of energy produced per unit star formation in a particular band. That band is specified by the pop_EminNorm and pop_EmaxNorm parameters.

	pop_EminNorm

	Minimum photon energy to consider in normalization.

Default: 200 [eV]

	pop_EmaxNorm

	Maximum photon energy to consider in normalization.

Default: 3e4 [eV]

To be precise,

\[\int_{\texttt{pop_EminNorm}}^{\texttt{pop_EmaxNorm}} \frac{\epsilon_{\nu}}{\dot{\rho}_{\ast}} d\nu = \frac{\texttt{pop_yield}}{\texttt{pop_yield_units}}\]

where \(\epsilon_{\nu}\) is the emissivity of the population and \(\dot{\rho}_{\ast}\) is the star-formation rate density (SFRD).

This range does not necessarily determine the band in which photons are emitted. For example, you might want to normalize the emission in the 0.5-8 keV band (e.g., if you’re adopting the \(L_X\)-SFR relation), but allow sources to emit at all energies. To do so, you must choose an SED, which then gets used to extrapolate the 0.5-8 keV yield to lower/higher energies.

We use square brackets on this page to denote the units of parameters.

	pop_sed

	Spectral energy distribution assumed for this population.

Options:

	'bb': blackbody. If supplied, pop_temperature sets assumed blackbody temperature.

	'pl': power-law. If supplied, pop_alpha parameter sets power-law index.

	'mcd'; Multi-color disk (Mitsuda et al. 1984)

	'simpl': SIMPL Comptonization model (Steiner et al. 2009)

	'qso': Quasar template spectrum (Sazonov et al. 2004)

	leitherer1999: Stellar population synthesis models from the original starburst99 [http://www.stsci.edu/science/starburst99/docs/default.htm] dataset.

	eldridge2009: Stellar population synthesis models from BPASS [http://bpass.auckland.ac.nz/] version 1.0 models.

	pop_Z

	If pop_sed is leitherer1999 or eldridge2009, this is the stellar metallicity assumed for the synthesis models. Can take on values in the range \(0.001 \leq Z \leq 0.04\).

Default: 0.02 (solar)

	pop_imf

	If pop_sed is leitherer1999 or eldridge2009, this is the stellar initial mass function used.

Default: 2.35 (Salpeter)

	pop_nebular

	Whether or not to include nebular emission.

Default: False

	pop_ssp

	Whether or not to assume a “simple stellar population,” i.e., an instantaneous burst of star formation. If False, assumes continuous star formation.

Default: False

	pop_binaries

	If pop_sed is eldridge2009, this dictates whether binary systems are included in the model.

Default: False

	pop_Emin

	Minimum photon energy to consider in radiative transfer calculation.

Default: 200 [eV]

	pop_Emax

	Maximum photon energy to consider in radiative transfer calculation.

Default: 3e4 [eV]

For backward compatibility

There are many parameters that do not have the pop_ prefix attached to them, but are nonetheless convenient because they are the most common parameters in fiducial global 21-cm models. In addition, in ARES version 0.1, the pop_ formulation was not yet in place, and the following parameters were the norm. They can still be used for problem_type=101 (see Problem Types), but one should be careful otherwise.

	cX

	Normalization of the X-ray luminosity to star formation rate (\(L_X\)-SFR) relation in
band given by pop_EminNorm and pop_EmaxNorm. If approx_xrb=1, this represents the X-ray luminosity density per unit star formation, such that the heating
rate density will be equal to \(\epsilon_X = f_{X,h} c_X f_X \times \text{SFR}\).

Default: \(3.4 \times 10^{40}\) [\(\text{erg} \ \text{s}^{-1} \ (M_{\odot} \ \mathrm{yr}^{-1})^{-1}\)]

	fX

	Constant multiplicative factor applied to cX, which is typically
chosen to match observations of nearby star-forming galaxies, i.e.,
fX parameterizes ignorance in redshift evolution of cX.

Default: 0.2

	Nlw

	Number of photons emitted in the Lyman-Werner band per baryon of star formation.

If fstar is not None, the co-moving LW luminosity density is given by \(f_{\ast} N_{\mathrm{LW}} \text{SFRD}\).

Default: 9690

	Nion

	Number of ionizing photons emitted per baryon of star formation.

Default: 4000

	fesc

	Escape fraction of ionizing radiation.

Default: 0.1

	xi_UV

	Ionizing efficiency, \(\xi_{\mathrm{UV}}\). If supplied, overrides fesc, Nion, and fstar, as it is defined by:

\(\xi_{\mathrm{UV}} \equiv f_{\ast} f_{\mathrm{esc}} N_{\mathrm{ion}}\)

Default: None

	xi_LW

	Lyman-Werner efficiency, \(\xi_{\mathrm{LW}}\). If supplied, overrides Nlw, and fstar, as it is defined by:

\(\xi_{\mathrm{LW}} \equiv f_{\ast} N_{\mathrm{LW}}\)

Default: None

	xi_XR

	X-ray efficiency, \(\xi_{\mathrm{XR}}\). If supplied, overrides fX and fstar, as it is defined by:

\(\xi_{\mathrm{XR}} \equiv f_{\ast} f_X\)

Default: None

Parameters for Parameterized Quantities

Parameterized quantities are most often used in the context of the galaxy luminosity function, where model the efficiency of star formation as a function of halo mass and (perhaps) redshift. See the mirocha2017 option in Parameter Bundles for a concrete example of how these parameters can be used. The basic idea is to provide a framework that enables any parameter to be parameterized more generally as a function of redshift, halo mass, etc. This potential is not yet fully realized, so beware that not all parameters can utilize this functionality!

A more detailed description of the methodology can be found here: The ParameterizedQuantity Framework.

The relevant parameters are:

	pq_func

	Function adopted. Options include pl, dpl, and many more. See listing below parameter(s) pq_func_par[0-5].

Default: dpl

	pq_func_var

	Independent variable of pq_func.

	Options:

	
	mass

	redshift

Default: mass

	pq_func_par[0-5]

	Parameters required by pq_func. Their meaning depends on the type of function employed. See below for meaning of each parameter by pq_func and number (\(x\) is either redshift or halo mass in general).

	Options:

	
	pl: \(p[0] * (x / p[1])^{p[2]}\)

	dpl: \(p[0] / ((x / p[1])^{-p[2]} + (x / p[1])^{-p[3]})\)

	dpl_arbnorm: \(p[0](p[4]) / ((x / p[1])^-p[2] + (x / p[1])^-p[3])'\)

	pwpl: \(p[0] * (x / p[4])^{p[1]}\) if \(x \leq p[4]\) else \(p[2] * (x / p[4])^{p[3]}\)

	plexp: \(p[0] * (x / p[1])^{p[2]} * np.exp(-x / p[3])\)

	lognormal: \(p[0] * np.exp(-(logx - p[1])^2 / 2 / p[2]^2)\)

	astep: \(p[0]\) if \(x \leq p[1]\) else \(p[2]\)

	rstep: \(p[0] * p[2]\) if \(x \leq p[1]\) else \(p[2]\)

	plsum: \(p[0] * (x / p[1])^{p[2]} + p[3] * (x / p[4])^{p[5]}\)

Default: None

	pq_func_var

	Independent variable of pq_faux.

	Options:

	
	mass

	redshift

Default: None

Source & Spectrum Parameters

Below, we list the parameters that govern the bolometric luminosity of sources as well as their spectral energy distribution. These parameters are relevant to point sources (via the source_* parameters), as well as populations of sources used in global 21-cm signal and/or meta-galactic radiation background calculations (simply replace source_ with pop_).

Source Luminosity

	source_type

	Options:

	star: characterized by its temperature, source_temperature, and ionizing photon luminosity, source_qdot

	bh: characterized by its mass, source_mass etc.

	toy: completely parameterized

	source_temperature

	If source_type is star, this is its surface temperature. [Kelvin]

Default: \(10^5 \ \text{K}\)

	source_mass

	If source_type is bh, this is its mass [\(M_{\odot}\)]

Default: \(10 \ M_{\odot}\)

	source_qdot

	For toy radiation source, this is the ionizing photon luminosity. [\(\text{s}^{-1}\)]

Default: \(5 \times 10^{48}\ \text{s}^{-1}\)

	source_lifetime

	Time after which radiation from this source will no longer be considered.

Default: \(10^{10}\) [time_units]

The Source Spectrum

We’ll use \(I_E\) to denote to the SED of sources, which the user supplies via the parameter source_sed or pop_sed. It is proportional
to the energy emitted at energy \(E\), NOT the number of photons
emitted at energy \(E\), and is normalized (automatically by ARES) such that

\[\int_{\text{source_EminNorm}}^{\text{source_EminNorm}} \text{source_sed} dE = L_{\text{source_EminNorm}-\text{source_EminNorm}}\]

where the luminosity on the right-hand side is that determined by one of the parameters above (e.g., the Eddington luminosity of a source_mass \(M_{\odot}\) BH) or for source populations via the pop_rad_yield parameter. This auto-normalization guarantees the radiative yield of a single source (or source population) at some photon energy is equal to its bolometric luminosity times \(I_E\).

We use square brackets on this page to denote the units of parameters.

	source_sed

	Options:

	'bb': blackbody

	'pl': power-law

	'mcd'; Multi-color disk (Mitsuda et al. 1984)

	'simpl': SIMPL Comptonization model (Steiner et al. 2009)

	'qso': Quasar template spectrum (Sazonov et al. 2004)

	source_Emin

	Minimum photon energy to consider in radiative transfer calculation.

Default: 200 [eV]

	source_Emax

	Maximum photon energy to consider in radiative transfer calculation.

Default: 3e4 [eV]

	source_EminNorm

	Minimum photon energy to consider in normalization.

Default: 200 [eV]

	source_EmaxNorm

	Maximum photon energy to consider in normalization.

Default: 3e4 [eV]

	source_alpha

	Power-law index of emission. Only used if source_type is pl or simpl. Defined such that \(I_{\nu} \propto \nu^{\alpha}\).

Default: -1.5

Recall that \(I_{\nu}\) is proportional to the energy, not the number of photons,
emitted at frequency \(\nu\).

	source_logN

	Base-10 logarithm of the neutral absorbing column in units of \(\text{cm}^{-2}\).

Default: \(-\infty\)

	source_hardening

	For non-zero absorbing columns, this parameter determines whether or not the
column is applied before or after normalizing the source’s luminosity.

Default: extrinsic

	source_Rmax

	If source_type is ‘mcd’, this parameter sets the maximum size of the
accretion disk being considered.

Default: 1000 [gravitational radii, \(R_g = G M_{\bullet} / c^2\), where \(M_{\bullet}\) is the black hole mass]

Problem Types

There are several pre-defined problem types one can access via the parameter
ptype. Note that you can also grab the parameters for a given problem type using the Parameter Bundles machinery. For example,

import ares
pars = ares.util.ParameterBundle('prob:101')

will return a dictionary of parameters for problem_type=101.

ptype \(\leq 20\)

These are all 1-D radiative transfer problems. Will document eventually!

ptype \(\geq 100\)

These are all uniform background / reionization / global 21-cm problems.

100

Blank slate global 21-cm signal problem – no default populations will be initialized, and all “control parameters” take on their default values. Basically this means that the simplest solvers / assumptions will be adopted for everything. Only use this if you know what you’re doing!

101

Simple global 21-cm signal problem in which the Ly-\(\alpha\), LyC, and X-ray production is proportional to the rate of collapse onto all halos exceeding a minimum virial temperature threshold (pop_Tmin) or mass (pop_Mmin). The main free parameters are:

	pop_yield{0}: Number of LW photons emitted per baryon of star formation. Stellar spectrum assumed flat.

	pop_yield{1}: Normalization of the X-ray luminosity star-formation rate relation in the 0.5-8 keV band.

	pop_yield{2}: Number of LyC photons emitted per baryon of star formation.

	pop_fesc{2}: Escape fraction of LyC radiation.

	pop_Tmin{0}: Minimum virial temperature of star-forming halos. Note that pop_Tmin{1} and pop_Tmin{2} are automatically linked to pop_Tmin{0}.

Note

In earlier versions of ARES these parameters were denoted more simply as Nlw, fX, Nion, fesc, and Tmin. You can still use this approach (i.e., this shouldn’t break backward compatibility), though in the future this may not be true.

102

Slightly more advanced global 21-cm signal problem in which the Ly-\(\alpha\), LyC, and X-ray production is still proportional to the rate of collapse onto all halos exceeding a minimum virial temperature threshold (pop_Tmin) or mass (pop_Mmin), but the photon production efficiencies are calculated from a stellar synthesis model. The main difference between this problem and problem 101 is that the LW and LyC efficiencies are no longer independent. As a result, there are only two source populations: one stellar and one for X-rays. The main parameters are slightly different as a result:

	pop_sed{0}: Spectral energy distribution of stellar populations. By default, this is eldridge2009, i.e., the BPASS version 1.0 models.

	pop_Z{0}: Stellar metallicity.

	pop_fesc{0}: Escape fraction of LyC radiation.

	pop_yield{1}: Normalization of the X-ray luminosity star-formation rate relation in the 0.5-8 keV band.

	pop_Tmin{0}: Minimum virial temperature of star-forming halos. Note that pop_Tmin{1} is automatically linked to pop_Tmin{0}.

Code Structure

ARES is organized hierarchically, with particularly heavy use of Python
generators [https://wiki.python.org/moin/Generators]. This makes for a code
whose behavior can be easily adapted during run-time.

The top level submodule of ares is the ares.simulations submodule.

Using Data from the Literature

Within $ARES/input/litdata there are several empirical formulae and datasets
gathered from the literature, which typically include fits to the cosmic
star-formation rate density with redshift, the galaxy or quasar luminosity
function, and/or model spectral energy distributions.

The current list of papers currently included (at least to some extent) are:

	Leitherer et al. (1999) [http://adsabs.harvard.edu/abs/1999ApJS..123....3L] ('leitherer1999')

	Ueda et al. (2003) [http://adsabs.harvard.edu/abs/2003ApJ...598..886U] ('ueda2003')

	Sazonov et al. (2004) [http://adsabs.harvard.edu/abs/2004MNRAS.347..144S] ('sazonov2004')

	Haardt & Madau (2012) [http://adsabs.harvard.edu/abs/2012ApJ...746..125H] ('haardt2012')

	Ueda et al. (2014) [http://adsabs.harvard.edu/abs/2014ApJ...786..104U] ('ueda2014')

	Robertson et al. (2015) [http://adsabs.harvard.edu/abs/2015ApJ...802L..19R] ('robertson2015')

	Aird et al. (2015) [http://arxiv.org/abs/1503.01120] ('aird2015')

Notice that the shorthand for these papers are just the first author’s last
name and the year of publication.

For the rest of the examples on this page, we’ll assume you’ve already imported ARES, i.e. you’ve executed:

import ares

To read the data from e.g., Haardt & Madau (2012), simply do:

hm12 = ares.util.read_lit('haardt2012')

Then, access functions for e.g., the SFRD via

hm12.SFRD(6) # in Msun / yr / cMpc**3

or the quasar luminosity function:

u03 = ares.util.read_lit('ueda2003')
u03.LuminosityFunction(1e42, z=0)

See $ARES/tests/lit for more examples.

Expanding the Database

If you’d like to add your favorite empirical formulae from the literature to ARES, here are a few conventions to follow:

File contents:

	Dictionaries containing best-fit parameter values and \(1-\sigma\) error bars.

	Functions for computing the SFRD, LuminosityFunction, Emissivity, and/or Spectrum.

Naming conventions:

	Your file should be called <last name of first author><year of publication>.py.

	As long as this file lives in $ARES/input/litdata, ARES will find it.

	Keep best-fit parameter values and errors stored in dictionaries.

A generic MCMC example

In the example below, we’ll show how to write your own likelihood function in the style required by ARES.

First, some fake data to work with:

import numpy as np

x = np.arange(0, 10, 0.1)
y = np.exp(-(x - 5)**2 / 2. / 1.**2)

Add some "noise"
y += np.random.normal(loc=0., scale=0.1, size=len(y))

Now, initialize a fitter object and give it the data to be fit:

fitter = ModelFit()

fitter.xdata = x
fitter.ydata = y
fitter.error = 0.5 * np.ones_like(y)

and define the model (a Gaussian)

model = lambda x, *pars: pars[0] * np.exp(-(x - pars[1])**2 / 2. / pars[2]**2)

The most important part is defining the log-likelihood function, which we’ll stick in the __call__ method of a class:

class loglikelihood(object):
 def __init__(self, xdata, ydata, error, model):
 self.xdata = xdata
 self.ydata = ydata
 self.error = error
 self.model = model

 def __call__(self, pars):
 model = self.model(self.xdata, *pars)
 return -np.sum((self.ydata - model)**2 / 2. / self.error**2), {}

As long as your loglikelihood has the attributes xdata, ydata, and error, the ModelFit class will be able to use it.

Give the dimensions of the parameter space names (optional)
fitter.parameters = ['A', 'mu', 'sigma']
fitter.is_log = False

Setup # of walkers and initial guesses for them
fitter.nwalkers = 100

Set the loglikelihood attribute
fitter.loglikelihood = loglikelihood(x, y, fitter.error, model)

To set priors, use the PriorSet class:

ps = ares.inference.PriorSet()
ps.add_prior(UniformPrior(0, 5), 'A')
ps.add_prior(UniformPrior(2, 10), 'mu')
ps.add_prior(UniformPrior(0.1, 5), 'sigma')
fitter.prior_set = ps

And finally, to run the thing:

fitter.run('test_generic_mcmc', steps=500, save_freq=50, clobber=True)

Physical Constants

Cosmology

One quick note about cosmology: the convention in ARES is to eliminate all factors of “little h,” i.e., the Hubble parameter in units of \(100 \ \mathrm{km} \ \mathrm{s}^{-1} \ \mathrm{Mpc}^{-3}\). The most noticeable place where this happens is in the ares.physics.HaloMassFunction class. For example, whereas the hmf code yields the halo mass function with implicit h’s, ARES “undoes” these factors, meaning, e.g., that the halo mass function stored in ares.physics.HaloMassFunction.tab_dndm is simply in units of \(\mathrm{Mpc}^{-3}\), not \(h^4 \mathrm{Mpc}^{-3}\), so the user need not multiply tab_dndm by \(h^4\) to obtain the “true” mass function. The same goes for halo masses themselves (no need to divide by \(h\)) and the cumulative mass function (no need to multiply by \(h^3\) or \(h^2\) for \(n(>m)\) and \(m(>m)\), respectively).

For a nice discussion of little h check out this paper by Darren Croton [https://arxiv.org/abs/1308.4150].

Secondary Ionization & Heating

The Hydrogen Atom

Rate Coefficients

Black Hole Populations

In these examples, we will initialize a stellar population object, defined
by the minimum virial temperature of halos in which stars form, Tmin,
the star formation efficiency, fstar, and other optional keyword arguments.

To begin, import ares and initialize an instance of the BlackHolePopulation class:

import ares
pop = ares.populations.BlackHolePopulation(Tmin=1e4, fstar=0.1)

Once initialized, there are several class methods available to compute the star-formation rate density (SFRD) and emissivity (in the UV and X-ray):

z = 20.
pop.AccretionRateDensity(z) # [g / ccm**3 / s]
pop.XrayLuminosityDensity(z) # [erg / ccm**3 / s]
pop.LymanWernerLuminosityDensity(z) # [erg / ccm**3 / s]

Class methods always return values in cgs units, and when applicable, volume densities are assumed to be in comoving units (in the comments above, ccm stands for co-moving centimeters).

To convert to more recognizable units, use conversion factors from ares:

from ares.physics.Constants import rhodot_cgs
pop.SFRD(z) * rhodot_cgs # [Msun / cMpc**3 / yr]
pop.XrayLuminosityDensity(z) * cm_per_mpc**3 # [erg / cMpc**3 / s]

where Msun is solar masses, and cMpc is used to denote co-moving Megaparsecs.

Black hole models have a wider variety of behaviors available than stellar models.

To investigate the X-ray background that arises from a BH population,
see example_cxrb.

Dark Matter Halo Populations

Most of our models for star formation, black hole formation, etc., are painted onto a population of dark matter (DM) halos. In the simplest models, we just care about the total fraction of matter residing in halos, or the rate of change in that quantity (e.g., fcoll Models for Star Formation in Galaxies). In slightly more sophisticated models, we’ll need the halo mass function, which describes the number density of halos as a function of redshift and mass, and perhaps the growth rates of halos (again, with redshift and mass).

For all of this, ARES uses the hmf [http://hmf.readthedocs.org/en/latest/] code. In order to speed-up calculations, by default, ARES will read-in a lookup table for the mass function rather than using hmf to generate mass functions on-the-fly. This saves a lot of time.

Note

You do not necessarily need to install hmf to use ARES, e.g., if the default lookup table is OK for your purposes. However, you should know that this table was generated with hmf, and reference the relevant paper [https://arxiv.org/abs/1306.6721] in your work.

To initialize a halo population on its own (i.e., without any information about sources that live in the halos), do

import ares

pop = ares.populations.HaloPopulation()

This class is inherited by almost every other kind of source population available in ARES. Its most important attribute is simply called halos, and itself is an instance of the HaloMassFunction class, which does the heavy lifting. The attributes you’re most likely to need access to are:

	
	'tab_z'

	The array of redshifts over which we have tabulated the HMF.

	
	'tab_M'

	The array of masses over which we have tabulated the HMF.

	
	'tab_dndm'

	The differential halo mass function, i.e., number of halos per mass bin, \(dn/dm\). Note that the shape should be (len(z), ``len(M)).

	
	'tab_fcoll'

	Fraction of matter in collapsed halos as a function of redshift and lower limit of integration (see below).

To have a look at the mass function at a few redshifts, you could do something like:

import numpy as np
import matplotlib.pyplot as pl

for z in [4, 6, 10]:
 i = np.argmin(np.abs(z - pop.halos.tab_z))

 pl.loglog(pop.halos.tab_M, pop.halos.tab_dndm[i,:])

Tighten up, since high-mass end will stretch out y-axis a lot
pl.ylim(1e-25, 10)

Note

The default lookup table only spans the range \(3 \leq z \leq 60\), and \(4 \leq log_{10} M \leq 16\).

The Collapsed Fraction

Because it is used in simple models for star formation at high-z, the fraction of mass in collapsed DM halos (above some threshold mass) is pre-computed as a function of redshift and minimum mass, and stored in the default lookup table. That is, we have at our disposal

\[f_{\mathrm{coll}}(m > m_{\min},z) = \rho_m^{-1} \int_{M_{\min}}^{\infty} m \frac{dn}{dm} dm\]

where \(m\) is the halo mass, \(\rho_m\) is the mean matter density today, and \(dn/dm\) is the differential mass function.

Note

We can use this table to compute the fraction of mass in a finite mass range simply by subtracting off \(f_{\mathrm{coll}}(M_{\max},z)\).

For a quick sanity check, you could re-derive \(f_{\mathrm{coll}}\) from the mass function:

Arbitrarily choose a minimum mass of 10^8 Msun
i = np.argmin(np.abs(pop.halos.tab_M - 1e8))

pl.semilogy(pop.halos.tab_z, pop.halos.tab_fcoll[:,i])

Compute it ourselves
integrand = pop.halos.tab_M[i:] * pop.halos.tab_dndm[:,i:]
fcoll = np.trapz(integrand, x=pop.halos.tab_M[i:], axis=1) / pop.cosm.mean_density0
pl.semilogy(pop.halos.tab_z, fcoll, ls='--', lw=3)

Notice that we carry around the mean matter density at \(z=0\) in an instance of the Cosmology class, which hangs off of the population object in the cosm attribute. It has units of \(M_{\odot} \ \mathrm{cMpc}^{-3}\), so we did not need to do any unit conversions.

There are also some built-in routines to compute \(f_{\mathrm{coll}}\) and its derivatives at arbitrary redshifts, see attributes fcoll, dfcolldz, and dfcolldt.

Halo Growth Rates

For some models we need to know the growth rates of halos, in addition to their space density. There are a few ways to go about this.

The default option in ARES is to use the mass function itself to derive halo mass accretion rates, as is discussed in Section 2.2 of Furlanetto et al. 2017 [http://adsabs.harvard.edu/abs/2017MNRAS.472.1576F]. This approach assumes that halos evolve at fixed number density, which of course is not true in detail, but it is ultimately useful nonetheless as it preserves self-consistency between the abundance of halos and their growth histories.

To plot the growth rates, you can do, e.g.,

M = np.logspace(9, 13)
for z in [4, 6, 10]:
 pl.loglog(M, pop.MGR(z, M))

Alternatively, you can supply your own function for the mass growth rates, perhaps those from simulations. For example, we could use the median mass accretion rate found by McBride et al. 2009,

MAR = lambda z, Mh: 24.1 * (Mh / 1e12)**1.094 * (1. + 1.75 * z) * (1. + z)**1.5

pop = ares.populations.HaloPopulation(pop_MAR=MAR)

and compare to our previous plot,

M = np.logspace(9, 13)
for z in [4, 6, 10]:
 pl.loglog(M, pop.MGR(z, M), ls='--')

The agreement is decent considering the simplicity of the default model. Plus, few simulations have attempted to calibrate this relationship at high redshifts.

Generating new HMF Tables

If the default lookup table doesn’t suit your purpose, you can (i) generate your own using the same machinery, or (ii) create your own lookup table using some other code.

If all you want to do is change the redshift or mass ranges, resolution, cosmological parameters, or model for the mass function (e.g., Press-Schechter, Sheth-Tormen, etc.), I’d recommend option #1. If you navigate to $ARES/input/hmf, you can modify the script generate_hmf_tables.py. Have a look at Halo Mass Function Parameters to see what changes are possible. By default, ARES will go looking in $ARES/input/hmf for suitable lookup tables, so your new table will be found automatically if you supply the same set of parameters to an ARES simulation. If you want to make these changes permanent without modifying the source code locally, you could change your custom defaults (see Parameter Listing for instructions).

If you have your own code for generating the halo mass function, everything else in ARES should work as-advertised so long as the format of your table matches the expected format. Right now, ARES supports pickle files .npy or .npz files, and HDF5 files. Have a look in ares.physics.HaloMassFunction.save to see the expected order and/or names of fields in your file. Once you’ve got a complete file, you’ll want to provide the full path to ARES via the hmf_table parameter.

Creating New Source Populations

If you’re interested in using ARES to evolve radiation backgrounds at high-\(z\) but it doesn’t have the source populations you’re interested in, it shouldn’t be too hard to add your own. This section provides a brief tutorial on how to do that.

Before diving in, however, you may want to consider whether the current machinery has all the functionality you need. For example, though the main set of ARES source populations were designed to model galaxies, and so their parameters refer to galaxy properties, fundamentally these populations are all connected to dark matter halo populations. So, if that’s true of your source-population-of-interest as well, you may be able to trick ARES into doing what you want.

The main source populations that you might manipulate are:

	
	GalaxyAggregate

	Assumes star formation rate density (SFRD) proportional to rate at which matter collapses into halos. Radiation backgrounds proportional to SFRD. Key parameters include pop_fstar, pop_rad_yield, pop_fesc, which are all effectively population-averaged quantities, hence the “aggregate” designation.

	
	GalaxyCohort

	Assumes 1:1 galaxy:halo mapping, and assumes star formation rate (SFR) in galaxies is proportional to the mass accretion rate onto their parent halo. Luminosity of galaxies is proportional to their SFR, so radiation backgrounds are generated by performing an integral over the luminosity function of galaxies. Key parameters include pop_fstar (now a parameterizable function; see The ParameterizedQuantity Framework), pop_rad_yield, etc. Unlike GalaxyAggregate, galaxy properties now vary as a function of mass and redshift. But, because all galaxies formed at the same time with the same mass are identical, they still evolve as cohorts, i.e., galaxies don’t break mass-rank ordering.

If neither of these will accommodate your goals, continue onward! Perhaps someday your new source population will be listed in the list above.

Step One: A Simple Source Population

Let’s create a new source population with the following properties:

	Objects form at a constant rate (per co-moving volume element).

	Objects have a flat spectrum.

This isn’t a terribly interesting source population, but it’s one whose behavior we can easily test.

To get started, make a new file, let’s call it DummyPopulation.py, which we’ll eventually add to the aptly-named populations sub-module in ARES, i.e., in $ARES/ares/populations. For now, you can put this file anywhere.

A few important imports
import numpy as np
from ares.util import ParameterFile
from ares.populations.Halo import HaloPopulation

class DummyPopulation(HaloPopulation):
 def __init__(self, **kwargs):
 HaloPopulation.__init__(self, **kwargs)

A few things to notice off the bat. First, we inherited HaloPopulation (which itself inherits a generic Population object that holds all sorts of meta-data), and called its constructor. This creates a ParameterFile instance and stores it in the attribute pf, which is a dictionary that contains all the parameters relevant to this source population. If you haven’t supplied any parameters, this dictionary will be filled with a bunch of defaults.

Note

Once you move DummyPopulation.py into the ARES source code directory ($ARES/ares/populations), you’ll need to convert to relative imports for ARES. For example, from ares.util import ParameterFile should instead be from ..util import ParameterFile.

Inheritance of the HaloPopulation gives us immediate access to the halo mass function through the halos attribute.

To do some testing, copy-paste the above snippet into a Python terminal and then initialize an instance of your class:

pop = DummyPopulation()

print(pop.halos.z.shape, pop.halos.z.min(), pop.halos.z.max())
print(pop.halos.M.shape, pop.halos.M.min(), pop.halos.M.max())
print(pop.halos.dndm.shape)

So, the halo mass function is stored as a lookup table of shape (1145, 1200), with dimensions corresponding to (redshift, halo mass).

At this stage, your source population isn’t terribly useful – you could have just initialized a HaloPopulation and been done! However, the thing that sets apart source populations from halo populations is the radiation they emit. In order to evolve the cosmic radiation backgrounds generated by sources, the solvers in ARES simply loop over all population objects and access their Emissivity method, which means our DummyPopulation object needs such a method if it’s to be any use to us.

Note

Generally, this emissivity is tied to the SFRD, which (by convention) we simply call SFRD, though ARES will only go looking for the SFRD if requested by the user.

There are a few rules for the Emissivity function.

	It must take redshift, z, as its first positional argument.

	It must have three additional keyword arguments, E, Emin, and Emax, all set to None by default.

	It should return the volume-averaged emissivity of the source population in units of \(\mathrm{erg} \ \mathrm{s}^{-1} \ \mathrm{cm}^{-3}\) if E==None. If E!=None, then the user has requested a specific emissivity, and so the units should be \(\mathrm{erg} \ \mathrm{s}^{-1} \ \mathrm{cm}^{-3} \ \mathrm{eV}^{-1}\). In other words, in the latter case if you integrate the resulting emissivity over an array of photon energies (in eV) from pop_Emin to pop_Emax, you should recover the luminosity density of the population. In both cases, the \(\mathrm{cm}^3\) volume should be a co-moving volume!

So, here’s a start:

def Emissivity(self, z, E=None, Emin=None, Emax=None):
 """
 An informative docstring.
 """

 # Check to see if these sources are on, i.e., is the supplied redshift
 # in the range (pop_zdead, pop_zform).
 on = self.on(z)
 if not np.any(on):
 return z * on

 # Compute the emissivity
 if E is not None:
 # Compute a specific emissivity and return
 raise NotImplemented('do something!')
 else:
 # Compute a band-integrated emissivity and return
 raise NotImplemented('do something else!')

No matter what, the Emissivity method needs to know about the spectral energy distribution (SED) of the source population. The SED is defined by the user via the pop_sed parameter, which can be a variety of things (see Models for Radiation Emitted by Galaxies). This information is parsed by the Population class and stored in an attribute src, which we have access to already because we inherited Population!

The attribute src is an instance of yet another class that represents the SED of an object (these are defined in the sources sub-module of ARES). It’s most important method is Spectrum, which is a function of photon energy (in eV), and returns a normalized version of the SED. See params_sources` for a more detailed description of how this is done.

So, in completing your Emissivity function, you’ll need to use the src.Spectrum function to properly account for the SED of your sources.

Step Two: Integrating with ARES

In the previous section we created a stand-alone (but useless) source population. In order for it to work within ARES, we need to make a few changes in other areas of the code.

First, we must decide how the user is to indicate that this population is of interest, which means setting the pop_sfr_model parameter. Let’s set things up so that passing in pop_sfr_model='dummy' will trigger the creation of our DummyPopulation source. To make sure ARES knows about this, we need to navigate to ares.populations.GalaxyPopulation.py.

Note

Again, since the sources are generally assumed to be galaxies, whose luminosity is mostly from star formation, the main parameter is pop_sfr_model and the class that initializes a “generic” source population is GalaxyPopulation. Apologies if your model does not invoke star formation or galaxies!

Near the bottom of ares.populations.GalaxyPopulation.py, there is a series of if/else statements that are checking the value of pop_sfr_model, and initializing the appropriate class depending on its value. For example, if pop_sfr_model=='sfe-func' we initialize a GalaxyCohort, if ``pop_sfr_model=='fcoll' we initialize a GalaxyAggregate, and so on. Within this if/else block, you need only add

elif model in ['dummy']:
 return DummyPopulation(**kwargs)

You’ll of course need to be sure to add an import statement for DummyPopulation at the top of the file.

Finally, if you haven’t already, move DummyPopulation.py into the ares.populations module, and make sure to convert to relative imports (as noted in previous section).

Step Three: Testing the new population

First, let’s make sure we can initialize an instance of the new source population through ARES:

import ares

pop = ares.populations.GalaxyPopulation(pop_sfr_model='dummy')

and verify that its routines behave as expected.

Now, to verify that the population works within an ARES simulation, let’s compare the results of two calculations: one standard calculation, and the same calculation with this new source population.

Under construction!

Models for Radiation Emitted by Galaxies

There are three main ways to model the radiation emitted by galaxies, governed largely by whether or not pop_sed_model is True or False.

pop_sed_model=True

In this case, we’re assuming that the source population is well-described by a single spectral energy distribution (SED). The relevant parameters are:

	pop_sed

	pop_rad_yield

	pop_rad_yield_units

	pop_Emin

	pop_Emax

	pop_EminNorm

	pop_EmaxNorm

We’ll return to these parameters in more detail below.

pop_sed_model=False

In this case, the SED of sources will not be considered in detail. Instead, the amount of radiation emitted in the Lyman-Werner, Lyman-continuum, and X-ray bands is determined by independent parameters.

Option 1: pop_fstar is not None
In this case, the following parameters are fair game:

	pop_Nion

	pop_fesc

	pop_Nlw

	pop_cX

	pop_fX

Option 2: pop_fstar is None
In this case, only three parameters are relevant:

	pop_xi_LW

	pop_xi_UV

	pop_xi_XR

Available Models for Source Spectral Energy Distributions

If pop_sed_model=True, we of course have some decisions to make, e.g.:

	What is the appropriate spectral energy distribution (SED) for the source population I’m interested in?

	How should I normalize that SED, i.e., how much energy do sources of this type produce, and in what band?

Let’s run through some common choices. For simplicity we’ll work directly with the source spectra, which means we won’t make any assumptions about star formation or anything of that sort. The way ARES is structured, this means we’ll access objects in ares.sources directly. For more sophisticated calculations, all the source populations (ares.populations) are doing is initializing source objects for themselves. More on that in a bit.

Note

When working with source classes directly, just change the pop_ prefix to source_, and you’ll be good to go. This will be our approach in the examples below. When you initialize population objects defined by a series of pop_ parameters, ARES will automatically swap out the prefix when each population object initializes its source object.

Before we get going, as per usual:

import ares
import numpy as np
import matplotlib.pyplot as pl

Power-Law Sources

Let’s initialize a power-law source, which is about the simplest thing we can do:

Should switch to 'ares.sources.Generic'
src = ares.sources.BlackHole(source_sed='pl', source_Emin=2e2, source_Emax=3e4)

E = np.logspace(2, 4)

pl.loglog(E, src.Spectrum(E))

By default, this is just (shocking news) a power-law. It will be automatically normalized such that the flux in the (source_EminNorm, source_EmaxNorm) band integrates to unity. By default, its slope is -1.5, but we can change that via source_alpha. We can also add neutral attenuation, meant to describe a typical column density of hydrogen gas that “hardens” the intrinsic spectrum:

src2 = src = ares.sources.BlackHole(source_sed='pl', source_Emin=2e2, source_Emax=3e4, source_logN=20.)

pl.loglog(E, src2.Spectrum(E), ls='--')

pl.savefig('ares_sed_pl.png')

Note that the spectrum is normalized such that its intrinsic emission integrates to unity in the specified normalization band. If you’d like to force the hardened spectrum to be used to set the normalization, set source_hardening='extrinsic'.

[image: _images/ares_sed_pl.png]
Example power-law spectra, with (dashed) and without (solid) neutral absorption intrinsic to the source.

Black Hole Accretion Disk Spectra

The simplest analytic model an accretion disk spectrum is the so-called multi-color disk (MCD) spectrum (Mitsuda et al. 1984 [http://adsabs.harvard.edu/abs/1984PASJ...36..741M]), which gives rise to a modified black body spectrum since each annulus in the accretion disk has a different temperature. To access this spectrum in ARES, you can do, e.g.,

pars = \
{
 'source_mass': 10.,
 'source_rmax': 1e3,
 'source_sed': 'mcd',
 'source_Emin': 10.,
 'source_Emax': 1e4,
 'source_logN': 18.,
}

src = ares.sources.BlackHole(**pars)

pl.figure(2)
pl.loglog(E, src.Spectrum(E), ls='-')

Real BH accretion disks often have a harder power-law tail to their emission, likely due to up-scattering of disk photons by a hot electron corona. The SIMPL model (Steiner et al. 2009 [http://adsabs.harvard.edu/abs/2009PASP..121.1279S]) provides one method of treating this effect, and is included in ARES. It depends on the additional parameter source_fsc, which governs what fraction of disk photons are up-scatter to a high energy tail (with spectral index source_alpha). For example,

pars['source_sed'] = 'simpl'
pars['source_fsc'] = 0.1
pars['source_alpha'] = -1.5

src = ares.sources.BlackHole(**pars)

pl.loglog(E, src.Spectrum(E), ls='-')

pl.savefig('ares_sed_mcd_simpl.png')

You should see that there is a high energy tail, but also that the soft part of the spectrum has also been reduced (it is those photons that are up-scattered into the high energy tail).

You’ll notice that this spectrum is a bit more computationally expensive to generate than the rest, that are effectively instantaneous. You can degrade the native resolution over which the SIMPL model is generated via the parameter source_dlogE to make things faster, but of course this will cause numerical artifacts in the spectrum. If you’d prefer to build-up a database of these spectra so that they need not be re-generated at the outset of each new calculation, navigate to $ARES/input/bhseds, where you’ll find a script for generating SIMPL SEDs over a crudely sampled parameter space (in source_fsc and source_alpha).

Once you’ve got a spectrum tabulated, you can load it for a calculation via:

For example
np.savetxt('your_2column_sed_model.txt', np.array([E, (E / 1e3)**-1.5]).T)
x, y = np.loadtxt('your_2column_sed_model.txt', unpack=True)

pars['source_sed'] = (x, y)
src = ares.sources.BlackHole(**pars)

pl.loglog(E, src.Spectrum(E), ls='--')

[image: _images/ares_sed_mcd_simpl.png]
Comparison of MCD and SIMPL models.

Thanks to Greg Salvesen for contributing his Python implementation of this spectrum!

AGN Template

Ideally, one could build a physical model over a broad range of photon energies for accreting BHs, but such functionality does not currently exist in ARES. However, in the meantime, you can access a template AGN spectrum presented in Sazonov, Ostriker, & Sunyaev 2004 [http://adsabs.harvard.edu/abs/2004MNRAS.347..144S]:

pars = \
{
 'source_sed': 'sazonov2004',
 'source_Emin': 0.1,
 'source_Emax': 1e6,
}

src = ares.sources.BlackHole(**pars)

This model spans a very broad range in energy
E = np.logspace(-1, 5.5)

pl.figure(3)
pl.loglog(E, src.Spectrum(E))
pl.savefig('ares_sed_sos04.png')

[image: _images/ares_sed_sos04.png]
AGN template spectrum from Sazonov et al. (2004).

There is still a peak in the hard UV / X-ray, like we saw for the stellar mass BH spectra above, though it peaks at softer energies. There is also an additional peak visible at higher energies (the “Compton hump”).

Stellar Population Synthesis Models

You can also use ARES to access two popular stellar population synthesis models, starburst99 [http://www.stsci.edu/science/starburst99/docs/default.htm] (Leitherer et al. 1999 [http://adsabs.harvard.edu/abs/1999ApJS..123....3L]) and BPASS [http://bpass.auckland.ac.nz/] (Eldridge & Stanway 2009 [http://adsabs.harvard.edu/abs/2009MNRAS.400.1019E]). The requisite lookup tables for each will be downloaded when you install ARES and run the remote.py script (see Installation for more details).

Note

Currently, ARES will only download the BPASS version 1.0 models, though there are newer version available from the BPASS website.

Right now, these sources are implemented as “litdata” modules, i.e., in the same fashion as we store data and models from the literature (see Working with Data and Models From the Literature for more info). So, to use them, you must set pop_sed or source_sed to "eldridge2009" and "leitherer1999" for BPASS and starburst99, respectively.

Note

The spectral resolution of these SED models is needlessly high for certain applications. To degrade BPASS spectra and get a slight boost in performance, you can run the script $ARES/input/bpass_v1/degrade_bpass_seds.py with a command-line argument indicating the desired spectral resolution in \(\AA\). Just be sure to also set pop_sed_degrade to this same number in subsequent calculations in order to read-in the new tables.

Normalizing the Emission of Source Populations

In the previous section, all spectra were normalized such that the integral in the (source_EminNorm, source_EmaxNorm) band was unity. Importantly, all spectra internal to ARES are defined such that the function Spectrum yields a quantity proportional to the amount of energy emitted at the corresponding photon energy, not the number of photons emitted.

Ultimately, we generally want to use these spectral models to create entire populations of objects, assumed to exist throughout the Universe. This is the distinction between Population objects and Source objects – the latter know nothing about the global properties of the sources, like their star formation rate density or radiative yield (i.e., photons or energy per unit SFR).

In global 21-cm models we typically invoke a population of X-ray binaries (that live in star-forming galaxies). A simple example of such a population is explored in The Metagalactic X-ray Background.

Models for Star Formation in Galaxies

The are a number of different ways to model star formation in ARES. The method employed is determined by the value of the parameter pop_sfr_model, which can take on any of the following values:

	
	'fcoll'

	Relate the global star formation rate density (SFRD) to the rate at which matter collapses into halos above some threshold.

	
	'sfrd-func'

	Model the SFRD with a user-supplied function of redshift.

	
	'sfe-func'

	Model the star formation efficiency (SFE) as a function of halo mass and (optionally) redshift.

	
	'link:sfrd:ID'

	Link the SFRD to that of the population with given ID number.

Each of these is discussed in more detail below.

Note

In what follows, we show isolated examples for illustrative purposes, i.e., initialization of a single source population and verification of its properties. To implement these star formation models in global 21-cm or meta-galactic background calculations with multiple source populations, you’ll need to add population ID numbers to each star formation parameter. For example, pop_sfr_model{0} instead of pop_sfr_model, and so on.

fcoll models

In this case the SFRD is modeled as:

\[\mathrm{SFRD} = f_{\ast} \bar{\rho}_b^0 \frac{d f_{\mathrm{coll}}}{dt}\]

where \(f_{\ast}\) is the efficiency of star formation, \(\bar{\rho}_b^0\) is the mean baryon density today, and \(f_{\mathrm{coll}}\) is the fraction of mass in collapsed halos above some threshold.

A basic set of 'fcoll' parameters can be summoned via:

import ares

pars = ares.util.ParameterBundle('pop:fcoll')

To initialize a population, just do:

pop = ares.populations.GalaxyPopulation(**pars)

Print SFRD at redshift 20.
print pop.SFRD(20.)

This will be a very small number because ARES uses cgs units internally, which means the SFRD is in units of \(\mathrm{g} \ \mathrm{s}^{-1} \ \mathrm{cm}^{-3}\), with the volume assumed to be co-moving. To convert to the more familiar units of \(M_{\odot} \ \mathrm{year}^{-1} \ \mathrm{cMpc}^{-3}\),

from ares.physics.Constants import rhodot_cgs

print pop.SFRD(20.) * rhodot_cgs

Note

You can also provide pop_Tmax (or pop_Mmax) to relate the
SFRD to the rate of collapse onto halos above pop_Tmin and below
pop_Tmax (or pop_Mmax).

sfrd-func models

If pop_sfr_model=='sfrd_func' you’ll need to provide your SFRD function via the pop_sfrd parameter. You can use a ParameterBundle if you’d like, though in this case it is particularly short:

pars = ares.util.ParameterBundle('pop:sfrd-func')

A really simple example would be just to make this population have a constant star formation history:

pars['pop_sfrd'] = lambda z: 1e-2

However, you could also use a ParameterizedHaloProperty here (see param_populations for more details). This might be advantageous if, for example, you want to vary the parameters of the SFRD in a model grid or Monte Carlo simulation.

Let’s make a power-law SFRD. For example, the following:

pars['pop_sfr_model'] = 'sfrd-func'
pars['pop_sfrd'] = 'pq'
pars['pq_func'] = 'pl'
pars['pq_func_var'] = '1+z'
pars['pq_func_par0'] = 1e-2
pars['pq_func_par1'] = 7.
pars['pq_func_par2'] = -6

sets the SFRD to be

\[\mathrm{SFRD} = 10^{-2} \left(\frac{1 + z}{7} \right)^{-6} M_{\odot} \ \mathrm{year}^{-1} \ \mathrm{cMpc}^{-3}\]

sfrd-tab models

Alternatively, you can supply a lookup table for the SFRD. To do this, modify your parameters as follows:

pars['pop_sfr_model'] = 'sfrd-tab'
pars['pop_sfrd'] = (z, sfrd)

where z and sfrd are arrays you’ve generated yourself. ARES will construct an interpolant from these arrays using scipy.interpolate.interp1d, using the method supplied in pop_sfrd_interp. By default, this will be a 'cubic' spline, but you can also supply, e.g., pop_sfrd_interp='linear'.

By default, ARES assumes your SFRD is in units of \(\mathrm{g} \ \mathrm{s}^{-1} \ \mathrm{cm}^{-3}\) (co-moving) (corresponding to pop_sfrd_units='internal'), but if you can change this to ‘msun/yr/cmpc^3’ if you’d prefer the more sensible units of \(M_{\odot} \ \mathrm{yr}^{-1} \ \mathrm{cMpc}^{-3}\)! In fact, these are the only two options, so as long as pop_sfrd_units != 'internal', ARES assumes the \(M_{\odot} \ \mathrm{yr}^{-1} \ \mathrm{cMpc}^{-3}\) units.

sfe-func models

Rather than parameterizing the SFRD directly, it is possible to parameterize the star formation efficiency as a function of halo mass and redshift, and integrate over the halo mass function in order to obtain the global SFRD.

Grab a few parameters to begin:

pars = ares.util.ParameterBundle('pop:sfe-func')

This set of parameters assumes a double power-law for the SFE as a function of halo mass with sensible values for the parameters. To create a population instance, as per usual,

pop = ares.populations.GalaxyPopulation(**pars)

To test the SFE model,

import numpy as np
import matplotlib.pyplot as pl

Mh = np.logspace(7, 13, 100)
pl.loglog(Mh, pop.SFE(z=10, M=Mh))

and the SFRD:

pop.SFRD(10.)

See More Realistic Galaxy Populations for more information about this.

link models

Say you’re running a simulation with multiple populations and, while their radiative properties are different, you want them to have the same star formation histories. To be concrete, let’s make a simple fcoll population and tag it with an identification number:

pop0 = ares.util.ParameterBundle('pop:fcoll')
pop0.num = 0

Now, let’s make a second population with the same star-formation model:

pop1 = {'pop_sfr_model{1}': 'link:sfrd:0'}

Add together
pars = pop0 + pop1

The 'link:sfrd:0' means “link SFRD to population #0”. So, if we initialize a simulation with both populations, e.g.,

sim = ares.simulations.Global21cm(**pars)

and compare their SFRDs, they should be equal:

sim.pops[0].SFRD(20.) == sim.pops[1].SFRD(20.)

Note

The pop_sfr_model for population #0 could be anything in the example above. However, only the SFRD function will be shared between the two populations – all other attributes of populations #0 and #1 will be completely independent.

Stellar Populations

In these examples, we will initialize a stellar population object, defined
by the minimum virial temperature of halos in which stars form, \(T_{\text{min}}\),
the star formation efficiency, \(f_{\ast}\), and perhaps other things.

To begin, import ares and initialize an instance of the StellarPopulation class:

import ares
pop = ares.populations.StellarPopulation(Tmin=1e4, fstar=0.1)

Once initialized, there are several class methods available to compute the star-formation rate density (SFRD) and emissivity (in the UV and X-ray):

z = 20.
pop.SFRD(z) # [g / ccm**3 / s]
pop.XrayLuminosityDensity(z) # [erg / ccm**3 / s]
pop.LymanWernerLuminosityDensity(z) # [erg / ccm**3 / s]

The star formation rate density is given by:

\[\dot{\rho}_{\ast} = \bar{\rho}_{b,0} f_{\ast} \frac{d f_{\text{coll}}}{dt}\]

where \(\bar{\rho}_{b,0}\) is the mean baryon density today, \(f_{\ast}\) is
the star formation efficiency, and \(f_{\text{coll}}\) is the fraction of gas
in collapsed haloes. \(f_{\text{coll}}\) can be computed by integrating over
the halo mass function at masses above the corresponding minimum virial temperature.

Note: class methods always return values in cgs units, and when applicable,
volume densities are assumed to be in co-moving units (in the comments above,
“ccm” stands for “co-moving centimeters”).

To convert to more recognizable units, use conversion factors from the ares.physics.Constants module

from ares.physics.Constants import rhodot_cgs, cm_per_mpc
pop.SFRD(z) * rhodot_cgs # [Msun / cMpc**3 / yr]
pop.XrayLuminosityDensity(z) * cm_per_mpc**3 # [erg / cMpc**3 / s]

where Msun is solar masses, and cMpc is used to denote co-moving Megaparsecs.

Stellar SEDs

By default, stellar and black hole populations are defined by an ionizing
luminosity density, but we can also treat their
spectral energy distribution in detail. For example, we could create a population of
stars whose SED is a blackbody:

import ares

Parameters defining (roughly) an O/B type star
params = \
 {
 "source_type": 'star',
 "source_temperature": 3e4,
 "spectrum_type": 'bb',
 "spectrum_Emin": 1.,
 "spectrum_Emax": 1e2,
 "approx_lwb": False,
 "norm_by": 'lw',
 "Nlw": 1e4,
 }

Create Population instance
pop = ares.populations.StellarPopulation(**params)

The approx_lwb keyword argument tells StellarPopulation that we’ll be treating the UV spectrum of this population in detail. To verify this, access the rs attribute (which is short for ‘’radiation source’’ to indicate that it is an ares.sources.RadiationSource instance):

import numpy as np
import matplotlib.pyplot as pl

E = np.linspace(1., 13.6, 500) # energies in eV
F = map(pop.rs.Spectrum, E)

pl.plot(E, F) # should look like a blackbody!

pop.rs.Spectrum is a function that returns the specific luminosity at input
energy E, and is normalized such that the integral from Emin to Emax is 1.

To investigate the UV background that arises from such a population,
see example_cuvb.

The ParameterizedQuantity Framework

The goal of this framework is to make it possible to take any parameter in ARES (the ones that take on numerical values, anyways), and convert it from a constant to a function of an arbitrary set of variables.

One approach is to allow the user to supply a function of their own to each parameter in place of a numerical value. ARES permits this functionality for some parameters (e.g., pop_sed), however, it is often advantageous to retain access to the parameters of the user-supplied function, for example to allow these parameters to vary in some fit. This is the primary motivation for the ParameterizedQuantity framework.

We have already seen PQs in use in the More Realistic Galaxy Populations example, which showed how to make the efficiency of star formation a function of halo mass:

import ares
import numpy as np
import matplotlib.pyplot as pl

pars = \
{
 'pop_sfr_model': 'sfe-func',
 'pop_sed': 'eldridge2009',

 'pop_fstar': 'pq',
 'pq_func': 'dpl',
 'pq_func_var': 'Mh',
 'pq_func_par0': 0.05,
 'pq_func_par1': 2.8e11,
 'pq_func_par2': 0.51,
 'pq_func_par3': -0.61,
 'pq_func_par4': 1e10, # Halo mass at which fstar is normalized
}

pop = ares.populations.GalaxyPopulation(**pars)

There are three important steps shown above:

	Setting pop_fstar='pq' tells ARES that this quantity will be represented by a PQ object. With no ID number supplied, it is assumed that parameters with the prefix pq are used to construct this object.

	The function adopted is a double power-law, 'dpl', which is a four-parameter model. The parameters pq_func_par0, pq_func_par1, etc. store the values of these parameters. The meaning of the parameters is of course different depending on what function we choose – see Parameters for Parameterized Quantities for a listing of the available functions and their corresponding parameters.

	The independent variable is halo mass, Mh. Note that this name is important, i.e., just M will cause an error. This is a convention of the GalaxyCohort class.

Let’s plot it just for a sanity check:

Mh = np.logspace(8, 13)
pl.loglog(Mh, pop.fstar(z=6, Mh=Mh), color='k', ls='--', lw=3)

Multi-Variable Parameterized Quantities

More complicated models are also available. For example, say we wanted to allow the normalization of the SFE to evolve with redshift, i.e.,

\[f_{\ast}(M_h) = \frac{2 f_{\ast,0} \left(\frac{1+z}{7}\right)^{\gamma_z}} {\left(\frac{M_h}{M_{\text{p}}} \right)^{\gamma_{\text{lo}}} + \left(\frac{M_h}{M_{\text{p}}} \right)^{\gamma_{\text{hi}}}}\]

Starting from the pure dpl model above, we can make a few modifications:

Extra multiplicative boost with redshift, par0 * (var / par1)**par2
pars = \
{
 'pop_sfr_model': 'sfe-func',
 'pop_sed': 'eldridge2009',

 'pop_fstar': 'pq[0]', # Give it an ID this time, since we'll add another
 'pq_func[0]': 'dpl_evolN', # dpl w/ evolution in the Normalization
 'pq_func_var[0]': 'Mh',
 'pq_func_var2[0]': '1+z', # indicate 1+z as the second indep. variable

 # Old parameters that we still need
 'pq_func_par0[0]': 0.05,
 'pq_func_par1[0]': 2.8e11,
 'pq_func_par2[0]': 0.51,
 'pq_func_par3[0]': -0.61,
 'pq_func_par4[0]': 1e10,
 'pq_func_par5[0]': 7., # New param: "pivot" redshift
 'pq_func_par6[0]': 1., # New param: PL evolution index
}

To verify that this has worked, let’s again plot the SFE, now as a function of redshift, and compare to the previous \(z\)-independent model:

pop = ares.populations.GalaxyPopulation(**pars)

redshifts = [4,5,6]
Mh = np.logspace(8, 13)

for z in redshifts:
 fstar = pop.SFE(z=z, Mh=Mh)
 pl.loglog(Mh, fstar, label=r'$z={}$'.format(z))

pl.legend()
pl.savefig('ares_pq_fstar.png')

[image: _images/ares_pq_fstar.png]
A model with an \(M_h\)-dependent f_{ast} (dashed) and a model in which f_{ast} depends on both \(M_h\) and \(z\) (solid).

Note

The only method of ParameterizedQuantity objects ever called is the
__call__ method, which accepts **kwargs. As a result, we must
always supply arguments accordingly (i.e., supplying positional arguments
only will not suffice), hence the z=z, Mh=Mh usage above.

By default, all evolution is assumed to be a power-law. To implement more general models, emulate the structure in ares.phenom.ParameterizedQuantity.

Multiple Parameterized Quantities (PQs)

In general, we can use the same approach outlined above to parameterize other quantities as a function of halo mass and/or redshift. For example, we can use a double power-law SFE model and set the escape fraction to be a step function in halo mass,

pars = \
{
 'pop_sfr_model': 'sfe-func',
 'pop_sed': 'eldridge2009',

 'pop_fstar': 'pq[0]',
 'pq_func[0]': 'dpl',
 'pq_func_par0[0]': 0.05,
 'pq_func_par1[0]': 2.8e11,
 'pq_func_par2[0]': 0.5,
 'pq_func_par3[0]': -0.5,
 'pq_func_par4[0]': 1e10,

 'pop_fesc': 'pq[1]',
 'pq_func[1]': 'step_abs',
 'pq_func_par0[1]': 0.02,
 'pq_func_par1[1]': 0.2,
 'pq_func_par2[1]': 1e10,

}

Note that here we gave ID numbers for each PQ in square brackets, both when identifying the parameters to be treated as PQs (pop_fstar and pop_fesc) and when setting the values of their sub-parameters (e.g., pq_func[0], pq_func_par0[0], etc.

To check the result:

pop = ares.populations.GalaxyPopulation(**pars)

Mh = np.logspace(7, 13, 100)

fig, ax1 = pl.subplots(num=2)

ax1.semilogx(Mh, pop.fstar(z=6, Mh=Mh), color='k')
ax1.set_ylabel(r'f_{\ast}')
ax1.set_xlabel(r'M_h / M_{\odot}')

ax2 = ax1.twinx()
ax2.tick_params('y', colors='b')
ax2.set_ylabel(r'f_{esc}', color='b')
ax2.semilogx(Mh, pop.fesc(z=6, Mh=Mh), color='b')

pl.savefig('ares_pq_fstar_fesc.png')

[image: _images/ares_pq_fstar_fesc.png]
Each population can in principle use an arbitrary number of ParameterizedQuantity objects. Here, both \(f_{\ast}\) (black) and \(f_{\mathrm{esc}}\) (blue) have been parameterized.

Allowed Parameters

An incomplete list so far:

	pop_fstar

	pop_fesc

	pop_focc

Non-Equilibrium Chemistry

This example shows some of the inner-workings of the chemical network and solver using a simple hydrogen-only test problem in an isothermal medium.

To begin, first import a few things:

import ares
import numpy as np
import matplotlib.pyplot as pl

Let’s initialize a grid of 64 cells:

Initialize grid object
grid = ares.static.Grid(grid_cells=64)

So far, this grid object only knows how many cells it has. To give it
some physical properties, we’ll call several setter routines:

Set initial conditions
grid.set_physics(isothermal=True)
grid.set_chemistry(include_He=False)
grid.set_density(nH=1.)
grid.set_ionization()
grid.set_temperature(np.logspace(3, 5, 64))

The above commands initialize the grid to be isothermal, composed of hydrogen
only, with a density of 1 hydrogen atom per cubic centimeter, initialized to
be neutral and with temperatures between \(10^3 \leq T /\ \mathrm{K} \leq 10^5\).

To see how the ion fractions evolve with time, we can pass this grid off to
the chemistry solver:

Initialize chemistry network / solver
chem = ares.solvers.Chemistry(grid, rt=False)

Compute rate coefficients (only need to do this once; isothermal)
chem.chemnet.SourceIndependentCoefficients(grid.data['Tk'])

Now, to actually run the thing:

To compute timestep
timestep = ares.util.RestrictTimestep(grid)

Set initial time-step and maximum allowed change
data = grid.data
dt = ares.physics.Constants.s_per_myr / 1e3
dt_max = 1e2 * ares.physics.Constants.s_per_myr
t = 0.0
tf = ares.physics.Constants.s_per_gyr

Initialize progress bar [optional]
pb = ares.util.ProgressBar(tf)
pb.start()

Start calculation
while t < tf:
 pb.update(t)

 # Evolve system for time dt
 data = chem.Evolve(data, t=t, dt=dt)
 t += dt

 # Limit time-step based on maximum rate of change in grid quantities
 new_dt = timestep.Limit(chem.chemnet.q, chem.chemnet.dqdt)

 # Limit to factor of 2x increase in timestep
 dt = min(new_dt, 2 * dt)

 # Impose maximum timestep
 dt = min(dt, dt_max)

 # Make sure we end at t == tf
 dt = min(dt, tf - t)

pb.finish()

All of this work is done for you each time you call ares.simulations.Global21cm and ares.simulations.RaySegment.

To visualize the results:

ax = pl.subplot(111)
ax.loglog(T, data['h_1'], color='k', ls='-')
ax.loglog(T, data['h_2'], color='k', ls='--')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel(r'$T \ (\mathrm{K})$')
ax.set_ylabel('Species Fraction')
ax.set_ylim(1e-4, 2)
pl.draw()

The Intergalactic Medium

We’ve seen so far that you can initialize stellar and BH populations and
radiation backgrounds independently, i.e., without doing a full blown
21-cm calculation. However,
the radiation background will in general modify the
properties of the intergalactic medium, which will then influence the subsequent
evolution of the radiation background (and so on). Coupling radiation from
stars and BHs to the IGM requires use of the ares.solvers.IntergalacticMedium
module:

import ares

igm = ares.solvers.IGM()

Optical depth between 10 <= z <= 12 at 500 eV.
By default, assumes IGM is neutral
tau_neutral = igm.OpticalDepth(10, 12, 500)

Can supply ionized fraction as constant
tau_xconst = igm.OpticalDepth(10, 12, 500, xavg=0.5)

1-D Radiative Transfer

Cosmological Radiative Transfer

We’ve seen so far that you can initialize stellar and BH populations and
radiation backgrounds independently, i.e., without doing a full blown
21-cm calculation. However,
the radiation background will in general modify the
properties of the intergalactic medium, which will then influence the subsequent
evolution of the radiation background (and so on). Coupling radiation from
stars and BHs to the IGM requires use of the ares.solvers.IntergalacticMedium
module:

import ares

igm = ares.solvers.IGM()

Optical depth between 10 <= z <= 12 at 500 eV.
By default, assumes IGM is neutral
tau_neutral = igm.OpticalDepth(10, 12, 500)

Can supply ionized fraction as constant
tau_xconst = igm.OpticalDepth(10, 12, 500, xavg=0.5)

The Source Class

All types of radiation sources inherit from one master class: the Source
class. This class has numerous routines that are broadly applicable, e.g.,
integration of an SED over some band, computing spectrum-weighted
cross-sections, etc.

Black Hole Sources

Black hole sources currently have a wider array of potential behaviors than
stellar sources. For example, their spectra can be quite a bit more complicated.
ARES supports several standard SEDs for BHs:

	Power-law (see source_alpha parameter to set slope)

	Absorbed power-law (see source_logN to set absorbing column)

	The multi-color disk spectrum

BHs are also normalized differently.

Galaxy Sources

Stellar Sources

Stellar sources are those characterized by a

They

Toy Sources

Monochromatic or polychromatic sources.

 _images/ares_tanh_2d_tau.png
Az,

° 011
0.10
o
0.09
o 0.08 .+
0.07
. 0.06
0.05
oS ‘ i : 0.04
© 2 S v

~ e

Z

_static/ajax-loader.gif

_images/ares_sed_sos04.png
106

T
10

T T T T T T
10° 10' 102 10° 10 10°

_images/ares_tanh_2d_D.png
011
0.10
0.09
0.08 &
0.07
0.06
0.05
0.04

—————
R R A
(0) (31u) 4ze

_static/comment-bright.png

_images/ares_sed_mcd_simpl.png
1044

1054

106

1074

10%

10°

10*

_images/ares_sed_pl.png

_images/ares_pq_fstar.png
T T T T T T
108 10° 10%° 101 10%2 10%2

_images/ares_pq_fstar_fesc.png
fe

0.05 |-o.200
o175
0.04
l-o.150
0.03 lo.125
0,02 l-o.100
l-o.075
0.014 I-0.050
0.00 l-0.025
T T T T T T T
107 108 10° 10% 10! 102 10

M/ My

ese

nav.xhtml

 Table of Contents

 		
 ARES

 		
 Installation

 		
 ARES branches

 		
 ARES versions

 		
 Don’t have Python already?

 		
 Help

 		
 Examples

 		
 Running Individual Simulations

 		
 Parameter Studies and Inference

 		
 Extensions

 		
 Performance

 		
 Time-stepping

 		
 Avoiding Overhead: Halo Mass Function and Stellar Population Synthesis Models

 		
 Turning off advanced solutions to radiative transfer

 		
 Under the Hood

 		
 Parameters, Fields, and Data Structures

 		
 Source Populations

 		
 Physics

 		
 Solvers

 		
 Troubleshooting

 		
 Plots not showing up

 		
 IOError: No such file or directory

 		
 LinAlgError: singular matrix

 		
 21-cm Extrema-Finding Not Working

 		
 AttributeError: No attribute blobs.

 		
 TypeError: __init__() got an unexpected keyword argument 'assume_sorted'

 		
 Failed to interpret file '<some-file>.npz' as a pickle

 		
 ERROR: Cannot generate halo mass function

 		
 General Mysteriousness

 		
 ARES Development: Staying Up To Date

 		
 Checking the Status of your Fork

 		
 Making Changes and Pushing them Upstream

 		
 Contributing your Changes to the main repository

 		
 Dealing with Conflicts

 		
 ARES Development: Contributing!

 		
 Adding new modules: general rules

 		
 Imports

 		
 Inheritance

 		
 Development History

 		
 v0.5

 		
 v0.4

 		
 v0.3

 		
 v0.2

 		
 v0.1

 		
 Acknowledgements

_static/up.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_images/ares_crte_uv.png
J, (erg st em 2 Hz ! srt)

10234

10244

_images/ares_crte_xr.png
J, (erg st em 2 Hz ! srt)

1024

10254

1026

10274

1028

1022

hv (eV)

_images/ares_gs_diy_param_study.png
80

z
30 20 15 12 10
-

50 -—L P ! L
o4
& o
E
5 -100
% fx=01,£=01
— fx=01,£=05
~1507 — fx=1£=01
— fx=1/f.=05
—200 T T T T
0 50 100 150 200

v (MHz)

_images/ares_gs_multipop.png
2z
80 30 20 15 12 10 8 6
[a X
ol
— -50
=
E ~1001
S —150
~200
—250 T T T T
0 50 100 150 200

v (MHz)

_images/ares_gs_Ja_grid.png

_images/ares_gs_default.png
z
80 30 20 15 12 10 8 6
50 L L L L L L

—1004

-150

T T :
o 50 100 150 200
v (MHz)

_images/ares_pop_galaxy_lf_allz.png
¢ bouwens2015 % vanderburg2010 ¥ bouwens2017
§ finkelstein2015 ¥ weisz2014 4 atek2015

10t 10t 10t 10t
7 z~5.0 z~T.0 z~8.0

©

S0 t 10| 10| 107

< o

[

2010 107 10 10
£

£10° 10+ 10 10+

=
<

107 T T 107 T T 107 T T 107 T T
-20 =15 -10 -20 =15 -10 -20 =15 -10 -20 =15 -10

_images/ares_gs_phenom.png
z
80 30 20 15 12 10 8 6
50 .

mK)

= =501

8Ty,

—1004

-150

T T -
o 50 100 150 200
v (MHz)

_images/ares_pop_galaxy_lf6.png
ag~! cMpc~?

H(Muy) [m

1004 ¢ bouwens2015
§ finkelstein2015
¥ bouwens2017

1024

1044

10 !

10

T T T T T T
-25.0 =22.5 -20.0 -17.5 -=15.0 =12.5 -10.0
Myy

_images/ares_edges_mf18_cooling.png
6Tp (MK)

15

z
12 10 8

= = MF18 cooling

—_—————

50

100 150
v (MH2)

200

_images/ares_edges_mf18_radio.png
6Tp (MK)

CosmoRec
a=-4
a=-6
MF18 cooling
MF18 radio

50

100
v (MHZ)

150

200

_images/ares_edges_cold.png
6Tp (mMK)

80

20

15

12

50

-50

50

100
v (MHZ)

150

200

