

Welcome to Arenarium!

Getting Started

You are probably here because you want to get started playing Arenarium [http://www.arenarium.com/].
Arenarium is a game you play by writing code, and this guide explains how.

Rules

The rules of the basic Arena game are simple. The game starts with two or more gladiators (agents)
inside a dungeon. On each turn, your gladiator has the option between three types of moves:

	Move to a neighboring grid points.

	Attack another gladiator within range.

	Stay in the same place (and do nothing).

A fourth move will be coming soon :

(4.) Boost a stat of your gladiator to improve its accuracy, evasion, damage, protection or speed.

Objective: The last gladiator to survive wins.

Score: For each gladiator that your gladiator kills it receives one point. However, the score is set to zero if your gladiator dies.

Under the Hood

On a more detailed level, the Arena game is operating on an event queue system.
Each move is queued and then processed after some time, which is influenced by a gladiator’s speed.
The base speed is 23 ticks. This is how much ‘time’ it takes for a queued move to resolve.
After a move is resolved, the agent can queue the next move and so on.

Attacks are handled on a competitive d10 dice roll.
The attacker and defender each roll a die, to which attacker adds their accuracy (base 0) and the defender their evasion (base 0).
If the attacker’s total is at least as high as the defender’s one, the attack hits.
The amount of lost hit points of the defender is given by subtracting the defender’s protection (base 0) from the attacker’s damage (base 5), to a minimum of zero.

(Coming soon:) Boosts let you change certain stats of your gladiator. Improve your accuracy or evasion, hit harder by adding some points to your damage, reduce the amount of damage you take by strengthening your protection, or get faster by improving your speed.
For that, each gladiator has ten spirit points, which can be allocated to boost the aforementioned stats.
Raising a stat by one point costs one spirit point, raising it by two however costs three, raising it by three costs six, and raising it by four points costs ten spirit points.
You can also lower previously raised stats again to free up spirit points and re-allocate them.
Though all of this takes time and you will have to decide what is worth investing in!

Writing your own agent

In principle, all you need is a text editor. However, we recommend getting started with the agent development template [https://github.com/arenarium/battleground_agent_template] because it allows you to test your agents locally before uploading it to the Arenarium website.

Once you have set up your environment, it is time to learn about the basic anatomy of an agent.

Every agent you write should derive from the Agent class.
Don’t worry, the only thing you have to implement is the move function.
A minimal agent implementation would look like this:

from battleground.agent import Agent

class ArenaAgent(Agent):
 def move(self, state):
 """state is a dictionary representing the current game state."""

 # ... do something to read state ...

 move = {'type': 'stay', 'value': 1}
 return move

This agent just sits still for one turn. You are free to read the game state directly and process it however you like.
However, it is easiest to start with the basic building blocks provided by the building_blocks module.

The following example aggressively attacks the nearest other player.

from battleground.agent import Agent
from battleground.games.arena import building_blocks

class ArenaAgent(Agent):

 def move(self, state):
 """
 Attack nearest other or move towards nearest other.
 """

 # try attack move is valid
 move = building_blocks.attack_closest(state)
 if move is not None:
 return move

 # if attack is not possible, move towards closest other
 closest = building_blocks.closest_other_location(state)
 move = building_blocks.move_toward(state, closest)
 if move is not None:
 return move

 # if move is not possible, do nothing.
 return {}

From here it is up to you. Enjoy!

Agent Memory

Agents have the ability to remember information from previous games.
This enables them to learn and improve over time.

You can get/set this memory using the get_memory() and
set_memory() methods of the agent class.

A simple example would look like this:

from battleground.agent import Agent

class PersistentAgent(Agent):
 def __init__(self, **kwargs):
 super().__init__(**kwargs)
 self.default_mem = {"guess": 5}

 def move(self, state):
 memory = self.get_memory(default=self.default_mem)
 # do something with memory here
 my_move = {"value": memory["guess"]}

 # update memory
 memory['key 1'] = 'value _1'
 memory['key 2'] = 'value _2'
 self.set_memory(memory)

 # return move
 return my_move

Modules

	battleground.agent

	

	battleground.game_engine

	

	battleground.games.arena.building_blocks

	

Indices and tables

	Index

	Module Index

Battleground Agent

	
class battleground.agent.Agent(**kwargs)

	This is an interface for the agent class.
Every agent should sub-class this class.
The entrypoint for this class is the move() function.

	
get_memory(default=None)

	This function can be used by an agent to get its persistent memory.
This function is also used by site runner to get the agent’s memory
at the end of a game and store it in the database.

	Parameters

	default – if the agent memory is not set, return the default value (None).

	Returns

	the persistent memory of the agent.

	
move(state)

	Main entry point for the agent class, agent logic goes here.
This function is called by the game runner when it’s this
agent’s turn to make a move.

	Parameters

	state – the current game state.

	Returns

	a valid move.

	
observe(state)

	This function is called by the game engine every time an update to
the game state is available. (Even on other player’s turns.)

	Parameters

	state – the current game state.

	
set_memory(data)

	Set the persistent memory of the agent.
This function should be called by the agent if the persistent memory
needs to be updated.
This function is also called by the site runner at the start of a game.

	Parameters

	data – the data to save.

Game Engine

	
class battleground.game_engine.GameEngine(num_players, type, **kwargs)

	This is an interface for the game engine class.
An engine for a specific game
should implement these functions.

	
game_over()

	Check if the game is over.

	Returns

	(bool) is the game over.

	
get_current_player()

	This is used by the game runner to determine which player should
make the next move

	Returns

	(int) index of the current player in the players list of the GameRunner

	
get_game_name()

	
	Returns

	(str) the type of the current game.

	
get_save_state()

	
	Returns

	the state of the game as it should be saved in the database.

	
get_state()

	Get the current state of the game.

	Returns

	the current game state.

	
move(move)

	Resolve a move in the game engine on behalf of the current player.
This function is called by the game runner, taking the agent’s chosen move of the
current player.

	Parameters

	move – the move returned by the agent of the current player.

	
reset()

	Initialize the game to the starting point.

Arena Building Blocks

	
battleground.games.arena.building_blocks.attack(state, target)

	Generate a move object to attack the target, if that is a valid move.
Otherwise, return None.

	Parameters

	
	state – The current game state.

	target – id of the target.

	Returns

	A move object (dict) or None

	
battleground.games.arena.building_blocks.attack_closest(state)

	Generate a move object to attack the closest other player, if that is a valid move.
Otherwise, return None.

	Parameters

	state – The current game state.

	Returns

	A move object (dict), or None.

	
battleground.games.arena.building_blocks.attack_myself(state)

	Generate a move object to attack yourself.

	Parameters

	state – The current game state.

	Returns

	A move object (dict).

	
battleground.games.arena.building_blocks.closest_other(state)

	Get the id of the closest other player.

	Parameters

	state – The current game state.

	Returns

	(int) index in gladiator list.

	
battleground.games.arena.building_blocks.closest_other_location(state)

	Get the location of the closest other player, e.g., (x, y).

	Parameters

	state – The current game state.

	Returns

	tuple (x, y).

	
battleground.games.arena.building_blocks.distances(reference_location, locations)

	Compute distances from a reference location to a set of other locations.

	Parameters

	
	reference_location – iterable of coordinates, e.g., (1, 2)

	locations – iterable of iterables of coordinates, e.g., [(0, 0), (2, 1), …]

	Returns

	dict of distances {id: float, …}

	
battleground.games.arena.building_blocks.move_away(state, location)

	Generate move that takes you most quickly away from the specified location.

	Parameters

	
	state – The current game state.

	location – tuple of target position, e.g, (x, y)

	Returns

	A move object (dict).

	
battleground.games.arena.building_blocks.move_relative(state, location, towards)

	Generate move that takes you most directly towards or away from
the specified location.

shorthand functions move_toward and move_away are available.

	Parameters

	
	state – The current game state.

	location – tuple of target position, e.g, (x, y)

	towards – bool, move towards location if true, away otherwise

	Returns

	A move object (dict).

	
battleground.games.arena.building_blocks.move_toward(state, location)

	Generate move that takes you most directly to the specified location.

	Parameters

	
	state – The current game state.

	location – tuple of target position, e.g, (x, y)

	Returns

	A move object (dict).

	
battleground.games.arena.building_blocks.my_hitpoints(state)

	Return current health (hitpoints) of the player.

	Parameters

	state – The current game state.

	Returns

	int.

	
battleground.games.arena.building_blocks.my_location(state)

	Get the location of the current player.

	Parameters

	state – The current game state.

	Returns

	tuple (x, y)

	
battleground.games.arena.building_blocks.others(state, alive=True)

	Get a dictionary of other players.

	Parameters

	state – The current game state.

	Returns

	(dict) {id: player data, …}

	
battleground.games.arena.building_blocks.others_hitpoints(state)

	Return current health (hitpoints) of other players.

	Parameters

	state – The current game state.

	Returns

	dict(id: int).

	
battleground.games.arena.building_blocks.others_locations(state)

	Get a dictionary of the locations of players, excluding the current player.

	Parameters

	state – The current game state.

	Returns

	dict of locations, e.g., {id: (x, y), …}.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 battleground	

 	
 	
 battleground.agent	

 	
 	
 battleground.game_engine	

 	
 	
 battleground.games.arena.building_blocks	

Index

 A
 | B
 | C
 | D
 | G
 | M
 | O
 | R
 | S

A

 	
 	Agent (class in battleground.agent)

 	attack() (in module battleground.games.arena.building_blocks)

 	
 	attack_closest() (in module battleground.games.arena.building_blocks)

 	attack_myself() (in module battleground.games.arena.building_blocks)

B

 	
 	battleground.agent (module)

 	
 	battleground.game_engine (module)

 	battleground.games.arena.building_blocks (module)

C

 	
 	closest_other() (in module battleground.games.arena.building_blocks)

 	
 	closest_other_location() (in module battleground.games.arena.building_blocks)

D

 	
 	distances() (in module battleground.games.arena.building_blocks)

G

 	
 	game_over() (battleground.game_engine.GameEngine method)

 	GameEngine (class in battleground.game_engine)

 	get_current_player() (battleground.game_engine.GameEngine method)

 	
 	get_game_name() (battleground.game_engine.GameEngine method)

 	get_memory() (battleground.agent.Agent method)

 	get_save_state() (battleground.game_engine.GameEngine method)

 	get_state() (battleground.game_engine.GameEngine method)

M

 	
 	move() (battleground.agent.Agent method)

 	(battleground.game_engine.GameEngine method)

 	move_away() (in module battleground.games.arena.building_blocks)

 	
 	move_relative() (in module battleground.games.arena.building_blocks)

 	move_toward() (in module battleground.games.arena.building_blocks)

 	my_hitpoints() (in module battleground.games.arena.building_blocks)

 	my_location() (in module battleground.games.arena.building_blocks)

O

 	
 	observe() (battleground.agent.Agent method)

 	others() (in module battleground.games.arena.building_blocks)

 	
 	others_hitpoints() (in module battleground.games.arena.building_blocks)

 	others_locations() (in module battleground.games.arena.building_blocks)

R

 	
 	reset() (battleground.game_engine.GameEngine method)

S

 	
 	set_memory() (battleground.agent.Agent method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Arenarium!

 		
 Battleground Agent

 		
 Game Engine

 		
 Arena Building Blocks

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

