

Welcome to Area4’s documentation!

Contents:

	Concept

	Installing
	With Pip

	With a requirements.txt

	With Pipenv

	Using

	Divider Looks

	Custom Dividers

	Other Functions
	Splitter

	Get Divider Character

	Reddit Horizontal

	Markdown Horizontal

	HTML Horizontal

	API Reference
	Main Module

	Utilities

	Migrating
	1.x -> 2.x

	2.x -> 3.x

By Reece Dunham 1

View on GitHub [https://github.com/area4lib/area4]

Welcome to area4, the flexible divider library.

From here, you may want to proceed to the Concept page.

Want to skip right to the action? Select the Installing page.

	1

	<me@rdil.rocks>

Concept

Warning

If you don’t understand what we mean by dividers, fear not.

We mean dividers that divide text or sections of text
in a console, or use cases like that.

For example:

 Hello World!

Welcome to my library.

In this example, the line between the two sections would be the divider.

The great part about area4 is that it is built to be flexible.

We have all kinds of dividers, from simple text strings similar to the one from the example,
to long emoji strings, to dividers in Markdown for programs such as GitHub bots!

Make sure to view our other documentation pages for more information!

Tip: Because area4 has a lot of emoji dividers, it can also double as an emoji database!

Installing

You may install in one of the following ways:

With Pip

To install via pip, open a terminal, and type one the following command:

Windows:
$ pip install --upgrade area4
macOS/Linux:
$ python3 -m pip install --upgrade area4

It should install.
If the install fails because of a permissions error, try running the command with sudo or with the –user flag.

With a requirements.txt

To use area4 as a dependency for your project, you can add the following line:

area4

Note

You must know how to use a requirements file to take this path.
If you don’t, search how to use a requirements file for Python dependencies.

With Pipenv

To install with pipenv, run:

pipenv install area4

Using

After you install the package (see the installing section), you need to import it into any Python file that you will use it in.

You can do this by adding the following line to the top:

import area4

Warning

Versions before 2.0 don’t work with the new methods.
1.x has reached its end-of-life, and you should migrate.
See the migrating guide for how to do so.

If you want to, you can check to make sure the library is working by running:

print(area4.area4info())

Now, to get dividers, use this function:

print(
 area4.divider(4)
) # This prints divider number 4 to the console

For what all the dividers look like, see the next section.

Divider Looks

The number before it is the number you pass to the divider function.
So if you want divider 1 you would use:
area4.divider(1).
If you don’t understand, see the examples part of the documentation.

	Dashes

	Underscores

	Periods

	Black squares

	Up arrow emojis

	Down arrow emojis

	Equal signs

	Hashtags

	Asterisks (stars)

	Commas

	Slashes

	Broken bars (|)

	Tildes

	Backslashes (not to be confused with #11)

	Coffee cups

	Plus signs

	Cthulhus

	Lenny faces

	And (&) signs

	Up arrow dividers (^)

	Shrug emojis

	Number 1s

	Number 2s

	Number 3s

	Number 4s

	Number 5s

	Number 6s

	Number 7s

	Number 8s

	Number 9s

	Number 10s

	<>s

	Smiley faces I think

	&*s

	Random numbers (returned as string which is automatically converted from an integer)

	The symbol that looks like ‘

	Lowercase a

	Uppercase a

	Lowercase b

	Uppercase b

	Lowercase c

	Uppercase c

	Lowercase d

	Uppercase d

	Lowercase e

	Uppercase e

	Lowercase f

	Uppercase f

	Lowercase g

	Uppercase g

	Lowercase h

	Uppercase h

	Lowercase i

	Uppercase i

	Lowercase j

	Uppercase j

	Lowercase k

	Uppercase k

	Lowercase l

	Uppercase l

	Lowercase m

	Uppercase m

	Lowercase n

	Uppercase n

	Lowercase o

	Uppercase o

	Lowercase p

	Uppercase p

	Lowercase q

	Uppercase q

	Lowercase r

	Uppercase r

	Lowercase s

	Uppercase s

	Lowercase t

	Uppercase t

	Lowercase u

	Uppercase u

	Lowercase v

	Uppercase v

	Lowercase w

	Uppercase w

	Lowercase x

	Uppercase x

	Lowercase y

	Uppercase y

	Lowercase z

	Uppercase z

	Beach umbrella emojis

	Airplane emojis

	Orange leave emojis

	Key emojis

	Big smiles

	Laughing face

	Toung-sticking-out faces

	Toung-sticking-out faces v2

	Surprised faces

	Upset face

	Pretend-smile face

	Scared face

	Surprised face

	Happy babies

	Happy ladies

	Happy men

	Happy ladies

	Happy men

	Happy grannies

	Happy grandpas

	Thumbs up

	Thumbs down

	Punch

	Fist

	Punch left

	Punch right

	Crossed fingers

	Crossed fingers v2

	Unknown emoji

	Ok-hand

	Point left

	Point right

	Point up

	Point down

	Finger up

	Hand

	Hand v2

	5 fingers on hand

	Vulcan solute emojis

	Bye wave

	Call me wave

	Strong arm emoji

	Dog emojis

	Cat emojis

	Mice emojis

	Hamster emojis

	Bunny emojis

	Fox emojis

	Bear emojis

	Panda emojis

	Koalas

	Tigers

	Lions

	Cows

	Pigs

	Frog

	Monkeys

	Monkey eyes shielded

	Monkey eyes open

	Monkey hands over mouth

	Sitting monkey

	Penguins

	Chickens

	Parrots

	Birds

	Hatching ducks

	Ducks

	Geese

	Flower bundles

	Pink flowers

	Roses

	Dead flowers

	Pink flowers 2

	Pink flowers 3

	White flowers

	Yellow flowers

	Small suns

	Big suns

	Half moons facing left

	Half moons facing right

	Full moons

	Stars

	Multiple stars

	Lightning bolts

	Water bolts

	Fires

	Thunder clouds

	Rainbows

	Partly eaten chickens

	Not-really-eaten chickens

	Hot dogs

	Hamburgers

	French fries

	Pizza

	Sandwiches

	Sno-cones

	Ice creams in cups

	Ice creams in cones

	Pies

	Cakes

	Cakes (other variant)

	Beers

	Two touching beers

	Two touching wine glasses

	Single wine glasses

	Soccer balls

	Medals

	Cars

	Alarm clocks

	Money bags

	Balloons

	Hearts

	Pins

	People

	Dice

	Bowling ball and pins

	Cookies

	Snowmen

	Potatoes

	Shrimp

	Hot people

	Cold people

	Robot emojis

	Person having party

	Mind blown emojis

	Be quiet emojis

	Semicolons

	Eye emojis

	Ghost emojis

	At signs

	Telephone emojis

	Colons

	Curly brackets

	[-] emojis

	=_=+ emojis

	Thinking emojis

	*- dividers

	Flower emojis

	Persian/Arabic words stretching character

	Percent symbols

	Hearts (alternative to #200)

	Negation (¬)

	Apple logo emoji (macOS only)

	Mountain ASCII characters

	Upside-down mountain ASCII characters

	Tomato emojis

	Left brackets

	Chili peppers

	⊷ (Image Of symbols - see https://www.compart.com/en/unicode/U+22B7)

	Akitas (dogs)

	Dollar signs

	Red dots

	Chain links

	Scooter emojis

	Avacado emojis

	1337 dividers

	Smiling cats

	Smiling cats 2

	Laughing cats

	Heart-eyed cats

	Mischievous cats

	Kissing cats

	Surprised cats

	Sad cats

	Mad cats

	Top hats

	Party poppers

	Sponges

	Satelite antennas

	Links

	Papers with pencils

	Crossed hammers and wrenches

	Download item icons

	Yarn balls

	Flags

	Flags alternative

	Flags alternative 2

	Cars alternative

	Cars alternative 2

	Question marks

	Lolly pops

	Cherries

	Keyboards

	Chess pawns

	Trophies

	Pencils

	Safety pins

	Tags

	Jester cards

	Bells

	Crossed out bells

	Gears

	Right brackets

	Lowercase ø

	Uppercase Ø

	Telescopes

	Greater than sign

	Flashing light

	Police officer

	Check mark

	Check mark button

	Cross mark button

	Card Index

	Baseballs

	Softballs

	Basketballs

	Volleyballs

	American footballs

	Rugby footballs

	Tennis rackets

	Flying discs

	Copyright symbols

	Joysticks

With more coming soon!

Thanks to amrutha3 [https://github.com/amrutha3] on GitHub for making the majority of the emoji dividers,
and everybody who has added a divider.

Warning

Depending on what platform the user
is on, some dividers may look different.
This includes some CI systems,
in which emojis are not rendered
in build logs.

Custom Dividers

You can generate a custom divider with the make_div function

Specify a repeating unit and a maximum length
area4.make_div('<>', length=24)
Returns a string

Add start or end elements
area4.make_div('=-', length=9, start='<', end='=>')
Returns: '<=-=-=-=>'

Resize existing dividers
area4.make_div(area4.divider(1), length=6)
Returns: '------'

Setting to custom div:
custom_div = area4.make_div('<>', length=24)

or directly printing
print(area4.make_div('<>', length=24))

specify an literal unit (the function will not attempt to find smaller repeating units)
area4.make_div('<><>~', length=10, literal_unit=True)
Returns '<><>~<><>~' instead of '<><><><><>'

Warning

The make_div() function will try to replicate whole repeating units to the specified length.
The output will always be less than or equal to the specified length.
Test the output to ensure the divider looks as you would like it.

BIG thank you to ninexball [https://github.com/ninexball] on GitHub for making this function and maintaining it!

Other Functions

This is a list of other functions you may want to use, and what the do in basic terms.

See the API Refrence page for more information.

Splitter

	area4.splitter()

New in version 2.1.0.

The splitter function takes a string or number as a divider,
and a series of strings to return, divided.
If the first parameter is a number, it looks it up in the divider list.
Otherwise, it uses the string provided as a divider.
If only one additional string is provided, nothing is returned.

For example:

import area4
print(area4.splitter(1, "Welcome to", "My **app**"))

outputs:
Welcome to

My **app**

Get Divider Character

	area4.utils.get_divider_character()

New in version 2.1.7.

Gets you the material, or character the divider is made of.
You need to pass an integer of the divider you want to get
the character it is made of.

For example:

from area4.util import get_divider_character

print(get_divider_character(7))

This example prints a single equal sign to the console,
because that divider is '============'

Reddit Horizontal

	area4.utils.reddit_horizontal()

New in version 2.3.1.

This function returns the Reddit Markdown divider (for Reddit bots).
This function takes no parameters.

Markdown Horizontal

	area4.utils.markdown_horizontal()

New in version 2.9.0.

This function returns the Markdown divider
(rendered as an HTML ‘hr’ tag by sites like GitHub).
This function takes no parameters.

Note

If you want the HTML tag equivalent of the rendered output,
see HTML Horizontal.

HTML Horizontal

	area4.utils.html_horizontal()

New in version 3.1.0.

This function returns the HTML tag(s) for the divider
element (rendered as a literal line by default, unless changed
via CSS).
This function takes 1 optional parameter, closing_tag,
more information is detailed in the API Reference section.

API Reference

Main Module

Main module.

	Copyright

	2018-present Reece Dunham.

	License

	MIT, see LICENSE for more details.

	
area4.area4info()

	Get some info about the package.

	Returns

	Package info.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
area4.divider(number)

	Get the divider you requested.

	Parameters

	number (int [https://docs.python.org/3/library/functions.html#int]) – The divider number (can’t be 0).

	Returns

	The requested divider.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If you request an invalid divider.

	Example

	area4.divider(3) will return ‘…………’

	
area4.make_div(unit, length=24, start='', end='', literal_unit=False)

	Generate a custom divider.

	Parameters

	
	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – A repeating unit.

	length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The maximum length (won’t be exceeded) (default: 24).

	start (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Starting string.

	end (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Ending string.

	literal_unit (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If True, it will not try to break
unit down into smaller repeating subunits.
Defaults to False.

	Returns

	A new, custom divider.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Example

	custom_div = make_div(unit='=-', length=40, start='<', end='=>')

Note

The generated string will be terminated
at the specified length regardless
of if all the input strings have been fully replicated.
A unit > 1 length may
not be able to be replicated to extend to the full length.
In this situation, the
string will be shorter than the specified length.
Example: unit of 10 characters and a specified length of
25 will contain 2 units for
a total length of 20 characters.

	
area4.splitter(div, *args)

	Split text with dividers easily.

	Returns

	The newly made value.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Parameters

	div (str [https://docs.python.org/3/library/stdtypes.html#str]) – The divider.

Utilities

Utilities module.

	Copyright

	2018-present Reece Dunham.

	License

	MIT, see LICENSE for more details.

	
area4.util.get_divider_character(divider_id)

	Get the character the divider is made of.

	Parameters

	divider_id (int [https://docs.python.org/3/library/functions.html#int]) – The divider’s number.

	Returns

	The character.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If you request an invalid divider.

	Example

	Get what divider 7 is made of:

get_divider_character(7)
returns '='.

	
area4.util.get_raw_file()

	Get the raw divider file in a string array.

	Returns

	The array.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
area4.util.html_horizontal(closing_tag=True)

	Get HTML horizontal divider.

	Parameters

	closing_tag (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If a closing tag should be added.

	Returns

	The HTML tag (the divider).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
area4.util.markdown_horizontal()

	Get Markdown horizontal divider.

	Returns

	The divider.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
area4.util.non_single_character_dividers()

	Get a list of all the dividers that are multiple unique characters.

Some examples of this include:

	Divider 18 - (͡° ͜ʖ ͡°)

	Divider 33 - ^,^,^,^,^,^,

	Divider 34 - &*&*&*&*&*&*

	Returns

	A list of divider IDs.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
area4.util.reddit_horizontal()

	Get Reddit horizontal divider.

	Returns

	The divider.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
area4.util.reduce_to_unit(divider)

	Reduce a repeating divider to the smallest repeating unit possible.

This function is used by make_div().

	Parameters

	divider (str [https://docs.python.org/3/library/stdtypes.html#str]) – The divider.

	Returns

	Smallest repeating unit possible.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Example

	‘XxXxXxX’ -> ‘Xx’

Migrating

Here are steps required to migrate to certain versions:

1.x -> 2.x

To migrate from v1, you will need to change all divider calls from:

area4.dividerX
or
area4.divX()

Where X is the divider number, to:

area4.divider(X)

2.x -> 3.x

This version removed the duplicate divider (was #201), so all the dividers with
numbers/IDs BIGGER than 201 need to be shifted down by 1, so if you are using any
of those dividers, you will need to change the number. For example:

area4.divider(208)
needs to be changed to:
area4.divider(207)

however, anything BELOW 201 does NOT need to be changed!

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 area4	

 	
 	
 area4.util	

Index

 A
 | D
 | G
 | H
 | M
 | N
 | R
 | S

A

 	
 	
 area4

 	module

 	
 	
 area4.util

 	module

 	area4info() (in module area4)

D

 	
 	divider() (in module area4)

G

 	
 	get_divider_character() (in module area4.util)

 	
 	get_raw_file() (in module area4.util)

H

 	
 	html_horizontal() (in module area4.util)

M

 	
 	make_div() (in module area4)

 	markdown_horizontal() (in module area4.util)

 	
 	
 module

 	area4

 	area4.util

N

 	
 	non_single_character_dividers() (in module area4.util)

R

 	
 	reddit_horizontal() (in module area4.util)

 	
 	reduce_to_unit() (in module area4.util)

S

 	
 	splitter() (in module area4)

 nav.xhtml

 Table of Contents

 		
 Welcome to Area4’s documentation!

 		
 Concept

 		
 Installing

 		
 With Pip

 		
 With a requirements.txt

 		
 With Pipenv

 		
 Using

 		
 Divider Looks

 		
 Custom Dividers

 		
 Other Functions

 		
 Splitter

 		
 Get Divider Character

 		
 Reddit Horizontal

 		
 Markdown Horizontal

 		
 HTML Horizontal

 		
 API Reference

 		
 Main Module

 		
 Utilities

 		
 Migrating

 		
 1.x -> 2.x

 		
 2.x -> 3.x

_static/file.png

_static/minus.png

_static/plus.png

