

Arduino simpleRPC API client library and CLI

[image: _images/arduino-simple-rpc.svg]
 [https://github.com/jfjlaros/arduino-simple-rpc/graphs/commit-activity][image: _images/badge.svg]
 [https://github.com/jfjlaros/arduino-simple-rpc/actions/workflows/python-package.yml][image: _images/6115ffd2554cc14545a1def33673b696b2bae1b1.svg]
 [https://arduino-simple-rpc.readthedocs.io/en/latest][image: _images/arduino-simple-rpc1.svg]
 [https://github.com/jfjlaros/arduino-simple-rpc/releases][image: _images/arduino-simple-rpc2.svg]
 [https://github.com/jfjlaros/arduino-simple-rpc/releases][image: _images/arduino-simple-rpc3.svg]
 [https://pypi.org/project/arduino-simple-rpc/][image: _images/arduino-simple-rpc4.svg]
 [https://github.com/jfjlaros/arduino-simple-rpc][image: _images/arduino-simple-rpc5.svg]
 [https://github.com/jfjlaros/arduino-simple-rpc][image: _images/arduino-simple-rpc6.svg]
 [https://github.com/jfjlaros/arduino-simple-rpc][image: _images/arduino-simple-rpc7.svg]
 [https://raw.githubusercontent.com/jfjlaros/arduino-simple-rpc/master/LICENSE.md]

This library provides a simple way to interface to Arduino [https://www.arduino.cc] functions exported
with the simpleRPC [https://simpleRPC.readthedocs.io] protocol. The exported method definitions are communicated
to the host, which is then able to generate an API interface using this
library.

Features:

	User friendly API library.

	Command line interface (CLI) for method discovery and testing.

	Function and parameter names are defined on the Arduino.

	API documentation is defined on the Arduino.

	Support for disconnecting and reconnecting.

	Support for serial and ethernet devices.

Please see ReadTheDocs [https://arduino-simple-rpc.readthedocs.io] for the latest documentation.

Quick start

Export any function e.g., digitalRead() and digitalWrite() on the
Arduino, these functions will show up as member functions of the Interface
class instance.

First, we make an Interface class instance and tell it to connect to the
serial device /dev/ttyACM0.

>>> from simple_rpc import Interface
>>>
>>> interface = Interface('/dev/ttyACM0')

We can use the built-in help() function to see the API documentation of any
exported method.

>>> help(interface.digital_read)
Help on method digital_read:

digital_read(pin) method of simple_rpc.simple_rpc.Interface instance
 Read digital pin.

 :arg int pin: Pin number.

 :returns int: Pin value.

All exposed methods can be called like any other class method.

>>> interface.digital_read(8) # Read from pin 8.
0
>>> interface.digital_write(13, True) # Turn LED on.

Further reading

For more information about the host library and other interfaces, please see
the Usage [https://arduino-simple-rpc.readthedocs.io/en/latest/usage.html] and Library [https://arduino-simple-rpc.readthedocs.io/en/latest/library.html] sections.

Contents:

	Introduction

	Installation
	From source

	Usage
	Connecting

	Method discovery

	Calling a method

	Complex objects

	Low throughput networks

	Command Line Interface
	Positional Arguments

	Named Arguments

	Sub-commands:

	Library
	Generic interface

	Basic usage

	Complex objects

	API documentation
	SimpleRPC

	Protocol

	Extras

	Contributors

Introduction

This Python library provides a simple way to interface to Arduino [https://www.arduino.cc] functions
exported with the simpleRPC [https://simpleRPC.readthedocs.io] protocol.

For more background information and the reasons that led to this project, see
the motivation [https://simplerpc.readthedocs.io/en/latest/introduction.html#motivation] section of the device library documentation.

This project serves as a reference implementation for clients using the
simpleRPC protocol.

Installation

The software is distributed via PyPI [https://pypi.org/project/arduino-simple-rpc], it can be installed with pip.

pip install arduino-simple-rpc

From source

The source is hosted on GitHub [https://github.com/jfjlaros/arduino-simple-rpc.git], to install the latest development version, use
the following commands.

git clone https://github.com/jfjlaros/arduino-simple-rpc.git
cd arduino-simple-rpc
pip install .

Development

Tests are written in the pytest [https://docs.pytest.org/en/stable/index.html] framework which can be installed with pip.

pip install pytest

To run the automated tests, run py.test in the root of the project folder.

By default, all tests that rely on particular hardware to be connected are
disabled. The --device parameter can be used to enable these device
specific tests.

To test the Bluetooth [https://github.com/jfjlaros/simpleRPC/tree/master/examples/bluetooth] interface.

py.test --device bt

To test the HardwareSerial [https://github.com/jfjlaros/simpleRPC/tree/master/examples/hardwareserial] interface.

py.test --device serial

To test the WiFi [https://github.com/jfjlaros/simpleRPC/tree/master/examples/esp32] interface.

py.test --device wifi

Usage

The command line interface can be useful for method discovery and testing
purposes. It currently has two subcommands: list, which shows a list of
available methods and call for calling methods. For more information, use
the -h option.

$ simple_rpc -h

Note

Please note that the initialisation procedure has a built in two second
delay which can be modified with the -w parameter. For each invocation
of list or call, the device is reset and reinitialised, so using
the command line interface for time critical or high speed applications is
not advised. For these types of applications, the Library should be
used directly instead.

Connecting

To detect serial devices, we recommend using the arduino-cli [https://arduino.github.io/arduino-cli/latest/] toolkit.

$ arduino-cli board list
Port Type Board Name FQBN Core
/dev/ttyACM0 Serial Port (USB) Arduino Mega or Mega 2560 arduino:avr:mega arduino:avr

This command will not detect any devices connected via ethernet or WiFi. Use a
URL (e.g., socket://192.168.1.50:10000) instead.

Method discovery

When the device is known, the list subcommand can be used to retrieve all
available methods.

$ simple_rpc list /dev/ttyACM0

Alternatively, for ethernet and WiFi devices.

$ simple_rpc list socket://192.168.1.50:10000

If the Arduino has exposed the functions inc and set_led like in the
example [https://simplerpc.readthedocs.io/en/latest/usage.html#example] given in the device library documentation, the list subcommand
will show the following.

inc a
 Increment a value.

 int a: Value.

 returns int: a + 1.

set_led brightness
 Set LED brightness.

 int brightness: Brightness.

Calling a method

Any of the methods can be called by using the call subcommand.

$ simple_rpc call /dev/ttyACM0 inc 1
2

Alternatively, for ethernet or WiFi devices.

$ simple_rpc call socket://192.168.1.50:10000 inc 1
2

Please see the list of handlers [https://pyserial.readthedocs.io/en/latest/url_handlers.html] for a full description of the supported
interface types.

Complex objects

Complex objects are passed on the command line interface as a JSON string.
Binary encoding and decoding is taken care of by the CLI. The following example
makes use of the demo [https://github.com/jfjlaros/simpleRPC/blob/master/examples/demo/demo.ino] sketch in the device examples.

$ simple_rpc call /dev/ttyACM0 vector '[1, 2, 3, 4]'
[1.40, 2.40, 3.40, 4.40]

$ simple_rpc call /dev/ttyACM0 object '["a", [10, "b"]]'
["b", [11, "c"]]

Low throughput networks

When working with low throughput networks (e.g., LoRa [https://en.wikipedia.org/wiki/LoRa]), device initialisation
can take a long time. To counteract this problem, it is possible to save the
interface definition to a file, which can subsequently be used to initialise
the interface without having to query the device.

An interface definition can be saved to a file using the -s option of the
list subcommand.

$ simple_rpc list -s interface.yml /dev/ttyACM0

A saved interface definition can be loaded to skip the initialisation procedure
by using the -l option of the call subcommand.

$ simple_rpc call -l interface.yml /dev/ttyACM0 inc 1
2

Command Line Interface

Arduino simpleRPC API client library and CLI.

usage: simple_rpc [-h] [-v] {list,call} ...

Positional Arguments

	subcommand

	Possible choices: list, call

Named Arguments

	-v

	show program’s version number and exit

Sub-commands:

list

List the device methods.

simple_rpc list [-h] [-o OUTPUT] [-b BAUDRATE] [-w WAIT] [-s SAVE] DEVICE

Positional Arguments

	DEVICE

	device

Named Arguments

	-o

	output file

Default: -

	-b

	baud rate

Default: 9600

	-w

	time before communication starts

Default: 2

	-s

	interface definition file

call

Execute a method.

simple_rpc call [-h] [-o OUTPUT] [-b BAUDRATE] [-w WAIT] [-l LOAD]
 DEVICE NAME [ARG [ARG ...]]

Positional Arguments

	DEVICE

	device

	NAME

	command name

	ARG

	command parameter

Named Arguments

	-o

	output file

Default: -

	-b

	baud rate

Default: 9600

	-w

	time before communication starts

Default: 2

	-l

	interface definition file

Copyright (c) Jeroen F.J. Laros <jlaros@fixedpoint.nl>

Library

The API library provides several interfaces, discussed below. All interfaces
share the methods described in Section Methods.

Generic interface

The Interface class can be used when the type of device is not known
beforehand, A class instance is made by passing either the path to a device or
a URI to the constructor.

>>> from simple_rpc import Interface
>>> interface = Interface('/dev/ttyACM0')

The constructor takes the following parameters.

Constructor parameters.

	name

	optional

	description

	device

	no

	Device name.

	baudrate

	yes

	Baud rate.

	wait

	yes

	Time in seconds before communication starts.

	autoconnect

	yes

	Automatically connect.

	load

	yes

	Load interface definition from file.

Please see the list of handlers [https://pyserial.readthedocs.io/en/latest/url_handlers.html] for a full description of the supported
interface types.

Serial interface

When a path to a serial device is given, the Interface constructor returns
a SerialInterface class instance.

>>> from simple_rpc import Interface
>>> interface = Interface('/dev/ttyACM0')
>>> interface.__class__
<class 'simple_rpc.simple_rpc.SerialInterface'>

Alternatively, the SerialInterface class can be used directly.

>>> from simple_rpc import SerialInterface
>>> interface = SerialInterface('/dev/ttyACM0')

Socket interface

When a socket URI is given, the Interface constructor returns a
SocketInterface class instance.

>>> interface = Interface('socket://192.168.1.50:10000')
>>> interface.__class__
<class 'simple_rpc.simple_rpc.SocketInterface'>

Alternatively, the SocketInterface class can be used directly.

>>> from simple_rpc import SocketInterface
>>> interface = SocketInterface('socket://192.168.1.50:10000')

Methods

The Interface class provides the following methods.

Class methods.

	name

	description

	open()

	Connect to device.

	close()

	Disconnect from device.

	is_open()

	Query device state.

	call_method()

	Execute a method.

	save()

	Save the interface definition to a file.

The open() function is used to connect to a device, this is needed when
autoconnect=False is passed to the constructor.

>>> interface = Interface('/dev/ttyACM0', autoconnect=False)
>>> # Do something.
>>> interface.open()

The open() function accepts the optional parameter handle, which can be
used to load an interface definition from a file. This can be useful when
working with low throughput networks.

>>> interface.open(open('interface.yml'))

The connection state can be queried using the is_open() function and it can
be closed using the close() function.

>>> if interface.is_open():
>>> interface.close()

Additionally, the with statement is supported for easy opening and closing.

>>> with Interface('/dev/ttyACM0') as interface:
>>> interface.ping(10)

The class instance has a public member variable named device which
contains the device definitions and its exported method definitions.

>>> list(interface.device['methods'])
['inc', 'set_led']

Example of a method definition.

>>> interface.device['methods']['inc']
{
 'doc': 'Increment a value.',
 'index': 2,
 'name': 'inc',
 'parameters': [
 {
 'doc': 'Value.',
 'name': 'a',
 'fmt': 'h',
 'typename': 'int'
 }
],
 'return': {
 'doc': 'a + 1.',
 'fmt': 'h',
 'typename': 'int'}
}

Every exported method will show up as a class method of the interface class
instance. These methods can be used like any normal class methods.
Alternatively, the exported methods can be called by name using the
call_method() function.

The save() function is used to save the interface definition to a file.
This can later be used by the constructor or the open() function to
initialise the interface without having to query the device.

>>> interface.save(open('interface.yml', 'w'))

Basic usage

In the example [https://simplerpc.readthedocs.io/en/latest/usage_device.html#example] given in the device library documentation, the inc method
is exported, which is now present as a class method of the class instance.

>>> interface.inc(1)
2

Alternatively, the exported method can be called using the call_mathod()
function.

>>> interface.call_method('inc', 1)
2

To get more information about this class method, the built-in help()
function can be used.

>>> help(interface.inc)
Help on method inc:

inc(a) method of simple_rpc.simple_rpc.SerialInterface instance
 Increment a value.

 :arg int a: Value.

 :returns int: a + 1.

Note that strings should be encoded as bytes objects. If, for example, we
have a function named test that takes a string as parameter, we should call
this function as follows.

>>> interface.test(b'hello world')

Complex objects

Some methods may have complex objects like Tuples, Objects or Vectors as
parameters or return type.

In the following example, we call a method that takes a Vector of integers and
returns a Vector of floats.

>>> interface.vector([1, 2, 3, 4])
[1.40, 2.40, 3.40, 4.40]

In this example, we call a method that takes an Object containing a byte and an
other Object. A similar Object is returned.

>>> interface.object((b'a', (10, b'b')))
(b'b', (11, b'c'))

API documentation

Contents:

	SimpleRPC

	Protocol

	Extras

SimpleRPC

	
class simple_rpc.simple_rpc.Interface

	Generic simpleRPC interface wrapper.

	Parameters

	
	device – Device name.

	baudrate – Baud rate.

	wait – Time in seconds before communication starts.

	autoconnect – Automatically connect.

	load – Load interface definition from file.

	
class simple_rpc.simple_rpc.SerialInterface(device: str, baudrate: int = 9600, wait: int = 2, autoconnect: bool = True, load: TextIO = None)

	Serial simpleRPC interface.

	Parameters

	
	device – Device name.

	baudrate – Baud rate.

	wait – Time in seconds before communication starts.

	autoconnect – Automatically connect.

	load – Load interface definition from file.

	
call_method(name: str, *args) → Any

	Execute a method.

	Parameters

	
	name – Method name.

	args – Method parameters.

	Returns

	Return value of the method.

	
close() → None

	Disconnect from device.

	
is_open() → bool

	Query interface state.

	
open(handle: TextIO = None) → None

	Connect to device.

	Parameters

	handle – Open file handle.

	
save(handle: TextIO) → None

	Save the interface definition to a file.

	Parameters

	handle – Open file handle.

	
class simple_rpc.simple_rpc.SocketInterface(device: str, baudrate: int = 9600, wait: int = 2, autoconnect: bool = True, load: TextIO = None)

	Socket simpleRPC interface.

	Parameters

	
	device – Device name.

	baudrate – Baud rate.

	wait – Time in seconds before communication starts.

	autoconnect – Automatically connect.

	load – Load interface definition from file.

	
call_method(name: str, *args) → Any

	Execute a method.

	Parameters

	
	name – Method name.

	args – Method parameters.

	Returns

	Return value of the method.

	
close() → None

	Disconnect from device.

	
is_open() → bool

	Query interface state.

	
open(handle: TextIO = None) → None

	Connect to device.

	Parameters

	handle – Open file handle.

	
save(handle: TextIO) → None

	Save the interface definition to a file.

	Parameters

	handle – Open file handle.

Protocol

	
simple_rpc.protocol.parse_line(index: int, line: bytes) → dict

	Parse a method definition line.

	Parameters

	
	index – Line number.

	line – Method definition.

	Returns

	Method object.

Extras

	
simple_rpc.extras.dict_to_object(d: dict) → object

	Convert a dictionary using UTF-8 to an object using binary strings.

	Parameters

	d – Dictionary with UTF-8 encoded strings.

	Returns

	Object with binary encoded strings.

	
simple_rpc.extras.json_utf8_decode(obj: object) → object

	Decode all strings in an object to UTF-8.

	Parameters

	obj – Object.

	Returns

	Object with UTF-8 encoded strings.

	
simple_rpc.extras.json_utf8_encode(obj: object) → object

	Binary encode all strings in an object.

	Parameters

	obj – Object.

	Returns

	Object with binary encoded strings.

	
simple_rpc.extras.make_function(method: dict) → callable

	Make a member function for a method.

	Parameters

	method – Method object.

	Returns

	New member function.

	
simple_rpc.extras.object_to_dict(obj: object) → dict

	Convert an object using binary strings to a dictionary using UTF-8.

	Parameters

	obj – Object with binary encoded strings.

	Returns

	Dictionary with UTF-8 encoded strings.

Contributors

	Jeroen F.J. Laros <jlaros@fixedpoint.nl> (Original author, maintainer)

	Chris Flesher <chris.flesher@stoneaerospace.com> (Ethernet support)

Find out who contributed:

git shortlog -s -e

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 simple_rpc	

 	
 	
 simple_rpc.extras	

 	
 	
 simple_rpc.protocol	

 	
 	
 simple_rpc.simple_rpc	

Index

 C
 | D
 | I
 | J
 | M
 | O
 | P
 | S

C

 	
 	call_method() (simple_rpc.simple_rpc.SerialInterface method)

 	(simple_rpc.simple_rpc.SocketInterface method)

 	
 	close() (simple_rpc.simple_rpc.SerialInterface method)

 	(simple_rpc.simple_rpc.SocketInterface method)

D

 	
 	dict_to_object() (in module simple_rpc.extras)

I

 	
 	Interface (class in simple_rpc.simple_rpc)

 	
 	is_open() (simple_rpc.simple_rpc.SerialInterface method)

 	(simple_rpc.simple_rpc.SocketInterface method)

J

 	
 	json_utf8_decode() (in module simple_rpc.extras)

 	
 	json_utf8_encode() (in module simple_rpc.extras)

M

 	
 	make_function() (in module simple_rpc.extras)

O

 	
 	object_to_dict() (in module simple_rpc.extras)

 	
 	open() (simple_rpc.simple_rpc.SerialInterface method)

 	(simple_rpc.simple_rpc.SocketInterface method)

P

 	
 	parse_line() (in module simple_rpc.protocol)

S

 	
 	save() (simple_rpc.simple_rpc.SerialInterface method)

 	(simple_rpc.simple_rpc.SocketInterface method)

 	SerialInterface (class in simple_rpc.simple_rpc)

 	
 	simple_rpc.extras (module)

 	simple_rpc.protocol (module)

 	simple_rpc.simple_rpc (module)

 	SocketInterface (class in simple_rpc.simple_rpc)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Arduino simpleRPC API client library and CLI

 		
 Introduction

 		
 Installation

 		
 From source

 		
 Development

 		
 Usage

 		
 Connecting

 		
 Method discovery

 		
 Calling a method

 		
 Complex objects

 		
 Low throughput networks

 		
 Command Line Interface

 		
 Positional Arguments

 		
 Named Arguments

 		
 Sub-commands:

 		
 list

 		
 call

 		
 Library

 		
 Generic interface

 		
 Serial interface

 		
 Socket interface

 		
 Methods

 		
 Basic usage

 		
 Complex objects

 		
 API documentation

 		
 SimpleRPC

 		
 Protocol

 		
 Extras

 		
 Contributors

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

