
The Architect Documentation
Release 0.2.0

The Architect Team

Dec 04, 2018

Contents

1 The Architect System 1
1.1 Architect Introduction . 1

1.1.1 The Project History . 1
1.1.2 PhD Thesis Abstract . 2

1.2 Architect Components . 3
1.2.1 Inventory Component . 3
1.2.2 Manager Component . 3
1.2.3 Monitor Component . 4
1.2.4 Document Component . 4

1.3 Architect Services Installation . 5
1.3.1 Service architect-api Installation . 5
1.3.2 Service architect-worker Installation . 8
1.3.3 Service architect-client Installation . 9
1.3.4 Complete Installation Scripts . 9

2 Architect Inventory 15
2.1 Architect Inventory Backends . 15

2.1.1 Reclass Inventory . 15
2.1.2 Hierarchical Inventory . 15

2.2 Architect Inventory Consumers . 17
2.2.1 SaltStack Consumer . 17
2.2.2 Ansible Consumer . 17
2.2.3 Puppet Consumer . 18
2.2.4 Chef Consumer . 18

3 Architect Manager 19
3.1 Configuration Management . 19

3.1.1 SaltStack Infrastructures . 19
3.2 Cloud Resource Management . 23

3.2.1 Amazon Web Services . 23
3.2.2 OpenStack Cloud Resources . 24

3.3 Container Resource Management . 30
3.3.1 Kubernetes Clusters . 30

3.4 Template Based Orchestration . 35
3.4.1 Heat Templates . 35
3.4.2 TerraForm Templates . 36

i

4 Architect Monitor 41
4.1 Time-series Monitoring . 41

4.1.1 Graphite Time-series Database . 41
4.1.2 InfluxDB Time-series Database . 42
4.1.3 Prometheus Server . 42

5 Architect Repository 45
5.1 Image Building Overview . 45
5.2 BeagleBone/BeagleBoard Images . 45

5.2.1 Build Script . 45
5.3 RaspberryPi Images . 47

5.3.1 Build Script . 47

6 Architect Document 49
6.1 Visual Infographics . 49

6.1.1 Core Presentation Libraries . 50
6.1.2 Presentation Helper Libraries . 50

6.2 Relational Data Analysis . 51
6.2.1 Relational Schema . 51
6.2.2 Relational Operations . 51

6.3 Quantitative Data Analysis . 53
6.3.1 Query Options . 53
6.3.2 Alarm Options . 53
6.3.3 Advanced Usage . 54

6.4 Network Graph Visualizations . 54
6.4.1 Arc Diagram . 54
6.4.2 Force-Directed Graph . 55
6.4.3 Hierarchical Edge Bundling . 57
6.4.4 Hive Plot . 57
6.4.5 Adjacency Matrix . 58
6.4.6 Sankey Diagram . 60
6.4.7 Alluvial Diagram . 60

6.5 Hierarchical Visualizations . 60
6.5.1 Dendrogram, Reingold–Tilford Tree . 60
6.5.2 Sunburst Chart . 61
6.5.3 Circle Packing . 62
6.5.4 Treemap . 62
6.5.5 Voronoi Treemap . 63
6.5.6 Orbital Layout . 64

6.6 DAG Visualizations . 64
6.6.1 Layered Graph . 64

6.7 Numerical Visualizations . 64
6.7.1 Progress Bar . 64
6.7.2 Gauge . 65
6.7.3 Pie Chart, Doughnut Chart . 65
6.7.4 Bullet Graph . 66
6.7.5 Isotype . 66

6.8 Time-series Visualizations . 67
6.8.1 Line Chart . 67
6.8.2 Area Chart . 67
6.8.3 Radar Chart . 68
6.8.4 Bar Chart . 68
6.8.5 Radial Bar Chart . 68
6.8.6 Calendar Heat Map . 68

ii

6.9 Temporal Visualizations . 69
6.9.1 Timeline . 69

iii

iv

CHAPTER 1

The Architect System

1.1 Architect Introduction

The aim of this project is to provide unified service modeling, management and visualization platform agnostic of
delivery or orchestration method. It creates virtual representations of any software services or physical resources and
allows control over crucial steps in their life cycle. Both reductionist and holistic approaches are used to descibe target
systems. The project name comes from Architect program in Matrix movie series:

In the Matrix the Architect is a highly specialized, humorless program of the machine world as well as the
creator of the Matrix. As the chief administrator of the system, he is possibly a collective manifestation,
or at the very least a virtual representation of the entire Machine mainframe.

The The Architect project was started as part of my thesis “Visualization of cloud performace metrics”. Now we
explore the possible implications of combining the relational models of infrastructures with quantitative data that
relates to it. This the implementation of holistic approach to the IT system modeling. You combine the capabilities
of the brain (inventory), muscles (manager) and senses (monitor) to create the full body of IT system. This vague
analogy, but you seldom see all the parts of infrastrucure working together as one, the source of truth providing the
vital information to the orchestration engines and configuring the monitoring to reflect the actual state. Then you can
start implementing your policy engines and machine learching techiques to improve the state of your initial models.
This is not possible to achieve withnout proper decomposition your system to individual pieces but also you need to
put it back together and look at it as whole.

1.1.1 The Project History

Academic research in particular fields has been undergoing since 2013. We have published series of research papers
covering in detail specificic areas of capabilities that became part of Architect project.

In 2014 we got published Security information and event management in the cloud computing infrastructure and
presented at CINTI 2014 - 15th IEEE International Symposium on Computational Intelligence and Informatics, Pro-
ceedings.

In 2015 we got published Opensource automation in cloud computing at Lecture Notes in Electrical Engineering and
Network visualization survey at Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

1

The Architect Documentation, Release 0.2.0

Intelligence and Lecture Notes in Bioinformatics).

Also High level models for IaaS cloud architectures published at Studies in Computational Intelligence and Mea-
surement of cloud computing services availability published in Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST made in year 2015.

In 2017 we got published Hybrid system orchestration with TOSCA and salt in Journal of Engineering and Applied
Sciences and VNF orchestration and modeling with ETSI MANO compliant frameworks which got published at Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics).

We tried to identify possible options to model cloud architectures, ontologies, definition hiearchies. The good, the bad
and the ugly of metadata. Then we focused on ways to manage orchestration processes, not only for compute servers
but also for virtual network resources. Some works focuced on measuring cloud metrics and evaluating log event
data important to undestand the types of data the systems emit and how to normalise these to consitent domains. And
last type of works, some of them unpublished, were concerned with the visualization layout methods, transformation
techniques for relational and quatitative data. The individual reseach papers were focusec on gaining expertise in
given domain. The Architect project wraps the outcome of individual research into consistent holistic framework for
modeling complete IT infrastructures.

1.1.2 PhD Thesis Abstract

This thesis provides implementation of platform for holistic system modeling. It tries to define the main components
of system governance, that are required for autonomous long-term opertations and interactions. These components are
the brain, source of truth that provides models to the muscles and senses. The orchestration platforms or cloud service
providers are the virtual muscles. The senses are the tools that create and process the metrics and event data. Usually
sences are backed by multiple levels of human powered support teams. The proposed platform allows combination of
brain, muscles and senses to create entity which can displayes in different perspectives by well tailored visualizations
that reflect the actual life-cycle state of the governed infrastructures.

The main part of work presents implementation of Architect project, that has been developed as proof-of-concept
implementation of holistic governance system capable of modern user and systems interactions. It can display service
relations and gathered metrics and give advanced insight to important Cloud computing performance qualities. Modern
systems rely closely on cloud and virtualisation architectures. To optimize utilization of resources, applications and
infrastructure must not be controlled separately.

We propose a united platform that can discribe major orchestration engines and monitoring solutions in common
schema, create metadata inventories that can provide proper context to any of these services. On top of this infrastruc-
ture models, you have powerful interfactive visualizations that can be used to display properties of interest. On other
side the models of actual infrastructure states are good entrypoint for further machine assisted analysis and learning
techniques.

Keywords

Cloud Computing, Metadata, Virtualization, Metering, Monitoring, SOA, Data Transformation, Data Visualization,
Chart, Time-series, Event, Holism, Service Science, System Science

Resources

• Documentation: https://architect-api.readthedocs.io/en/latest/

• API source: https://github.com/cznewt/architect-api

• Client source: https://github.com/cznewt/architect-client

• Research papers: https://www.scopus.com/authid/detail.uri?authorId=56501819000

2 Chapter 1. The Architect System

https://architect-api.readthedocs.io/en/latest/
https://github.com/cznewt/architect-api
https://github.com/cznewt/architect-client
https://www.scopus.com/authid/detail.uri?authorId=56501819000

The Architect Documentation, Release 0.2.0

1.2 Architect Components

Following figure shows high-level achitecture of Architect system.

Fig. 1: High-level achitecture of Architect system

The Architect project consists of 4 core compontents. A quick summary of properties, capabilities and integrations for
each component.

1.2.1 Inventory Component

Inventory is the Architect’s metadata engine. It encapsulates and unifies data from various metadata sources to provide
inventory metadata for various orchestration services. Basically serves as metadata proxy with clients. It works best
integrated with http://salt-formulas.readthedocs.io/.

Currently supported metadata backends are:

• salt-formulas

• reclass (python3 version)

The currently supported customers of metadata provided by Inventory using architect-api client library are:

• SaltStack

• Ansible

• Puppet

• Chef

Following orchestrators have direct support for injecting context metadata:

• Heat

1.2.2 Manager Component

Manager is the Architect’s orchestration engine. The aim of this module is to enforce infrastructure topologies models
and acquire live infrastructure topology data from any resource provider for further relational and quantitative analysis

1.2. Architect Components 3

http://salt-formulas.readthedocs.io/
./inventory-backends.html#salt-formulas-inventory
./inventory-backends.html#reclass-inventory

The Architect Documentation, Release 0.2.0

and visualisations.

The pull approach for querying endpoint APIs is supported at the moment, the processing push from target services is
supported for SaltStack events.

Currently supported resource providers are:

• Kubernetes clusters

• OpenStack clouds

• Heat templates

• Amazon web services

• SaltStack infrastructures

• Terraform templates

• Jenkins pipelines

1.2.3 Monitor Component

Monitor is the Architect’s monitoring engine. It can connect to multiple data endpoints and subject them for further
analysis. We can define queries for quantitative data or time-series in Document component.

Currently supported monitoring services are:

• Graphite

• ElasticSearch

• Prometheus

• InfluxDB

1.2.4 Document Component

Document component is responsible for analysis and visualization of infrastructure resources in form of directed
graph. We can perform several transformation functions on this graph data. The other part is analysis of quantitative
data provided by monitoring solutions and corellating it to the relational structures provided by Manager component.

Currently supported relational visualization layouts:

• Adjacency matrix

• Arc diagram

• Force-directed graph

• Hierarchical edge bundling

• Hive plot

• Circle packing

• Node-link tree (Reingold-Tilford tidy trees, dendrograms)

• Partition layout (sunburst, icicle diagrams, treemaps)

• Sankey diagram

Currently supported quatitative visualization layouts:

• Line chart

4 Chapter 1. The Architect System

The Architect Documentation, Release 0.2.0

• Bar chart, stacked bar chart

• Horizon chart

• Donut chart, pie chart

1.3 Architect Services Installation

Following steps show how to deploy various components of the Architect service and connections to external services.
It covers the basic development deployment.

1.3.1 Service architect-api Installation

The core service responsible for handling HTTP API requests and providing simple UI based on Material design.
Release version of architect-api is currently available on Pypi, to install it, simply execute:

pip install architect-api

To bootstrap latest development version into local virtualenv, run following commands:

virtualenv -p python3 venv
source venv/bin/activate

git clone git@github.com:cznewt/architect-api.git

cd architect-api

python setup.py install

Or you you can install service by pip architect-api package.

virtualenv venv
source venv/bin/activate

pip install architect-api -e

Initial Setup for UI

Architect-api uses the npm to install its JavaScript dependencies, which are collected by django-npm static files
collector. You can install all static nodesj libraries by following commands. More about installing Node.js and NPM
can be found at https://www.npmjs.com/get-npm.

apt install npm

cd architect-api

npm install

Architect uses the Bootstrap 4 library wich uses SASS 3.5 style preprocessing. No python SASS interpreter does it
well so we need to get the ruby’s gems this time. The static file compress utility uses this ruby binary to perform the
processing of SASS styles. You can install the SASS compiler by following commands. More about installing SASS
can be found at http://sass-lang.com/install.

1.3. Architect Services Installation 5

https://pypi.org/project/architect-api/
https://www.npmjs.com/get-npm
http://sass-lang.com/install

The Architect Documentation, Release 0.2.0

apt install gem ruby-dev

sudo gem install sass --no-user-install

sass --version

The saas --version command should return Sass 3.5 or higher.

Now you can collect all your static assets, run following command in architect base dir and sourced.

$ python manage.py collectstatic --noinput

X static files copied to '/python-apps/architect/static', Y unmodified.

Now you can compress and compile your static assets, in architect base dir and sourced run following command.

$ python manage.py compress

Found 'compress' tags in:
/python-apps/architect/architect/templates/_head.html
/python-apps/architect/architect/templates/_body.html

Initial Setup for Database

You must synchronise your database content with the current migration scheme, command will create entire schema
and apply all the migrations if run for the first time. In architect base dir and sourced run following command.

python manage.py migrate

You need also setup your user credentials if creating a new deployment.

python manage.py createsuperuser

You can install sample metadata fixtures by following command.

$ python manage.py loaddata sample_saltstack

Installed 614 object(s) from 2 fixture(s)

You must set database configuration by settings in architect-api configuration file. Example PostgreSQL settings in
architect-api configuration file.

databases:
default:
ENGINE: django.db.backends.postgresql_psycopg2
NAME: architect
USER: architect
PASSWORD: password
HOST: 127.0.0.1
PORT: 5432

The similar applies for the cache backend, which can be changed to the Memcached backend, for example:

caches:
default:

(continues on next page)

6 Chapter 1. The Architect System

The Architect Documentation, Release 0.2.0

(continued from previous page)

BACKEND: django.core.cache.backends.memcached.MemcachedCache
LOCATION: 127.0.0.1:11211

Main Configuration File

You provide one YAML configuration file for all settings. The default location is /etc/architect/api.yml.

You can setup basic configuration of database and cache also you can provide defaults for your initial inventories,
managers and monitors.

You can override the default location of the configuration file by setting the ARCHITECT_CONFIG_FILE environ-
mental variable to your custom location.

The configuration file currently supports following options:

databases:
default:
ENGINE: django.db.backends.postgresql_psycopg2
...

caches:
default:
BACKEND: django.core.cache.backends.memcached.MemcachedCache
...

monitor:
monitor01:
name: Dashboard 01
...

manager:
manager01:
engine: salt
...

inventory:
inventory01:
engine: reclass
...

The databases and caches keys are used in the application settings. But the monitor, manager and
inventory configuration settings need to be sychronised to database by management commands in architect base
dir and sourced.

$ python manage.py sync_inventories

Inventory "inventory01" resource updated
...

$ python manage.py sync_managers

Manager "manager01" resource updated
...

$ python manage.py sync_monitors

Monitor "monitor01" resource updated
...

You can run the configuration multiple times and update existing resources. The actual resources used are stored in

1.3. Architect Services Installation 7

The Architect Documentation, Release 0.2.0

the database and can be changed at the architect’s admin app available at http://127.0.0.1:8181/admin/ after you start
the development server.

Look at the the documentation pages for individual inventory, manager or monitor configuration options and installa-
tion problems.

Running Development Server

To start development server, in architect base dir and sourced run following command.

$ python manage.py runserver 0.0.0.0:8181

Performing system checks...

System check identified no issues (0 silenced).
January 27, 2018 - 13:12:47
Django version 2.0.1, using settings 'architect.settings'
Starting development server at http://0.0.0.0:8181/
Quit the server with CONTROL-C.

1.3.2 Service architect-worker Installation

The architect relies on standalone workers to perform the tasks asynchronously. For the development environment,
you can just simply install redis server to serve as message bus by following command.

apt install redis server

Now you can start running your architect worker instances. The redis is hardcoded and celery can be replaced by
airflow, this is up to discussion.

Running development worker

To start development worker, in architect base dir and sourced run following command.

$ celery -A architect worker -l info

-------------- celery@wst01 v4.1.0 (latentcall)
---- **** -----
--- * *** * -- Linux-4.10.0-42
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: architect:0x7ff566a38e80
- ** ---------- .> transport: redis://localhost:6379//
- ** ---------- .> results: redis://localhost:6379/
- *** --- * --- .> concurrency: 4 (prefork)
-- ******* ---- .> task events: OFF
--- ***** -----
-------------- [queues]

.> celery exchange=celery(direct) key=celery

[tasks]
. architect.celery.debug_task
. get_manager_status_task

(continues on next page)

8 Chapter 1. The Architect System

http://127.0.0.1:8181/admin/

The Architect Documentation, Release 0.2.0

(continued from previous page)

[2018-01-27 13:15:55,852: INFO/MainProcess] Connected to redis://localhost:6379//
[2018-01-27 13:15:55,860: INFO/MainProcess] mingle: searching for neighbors
[2018-01-27 13:15:56,880: INFO/MainProcess] mingle: all alone
[2018-01-27 13:15:56,892: INFO/MainProcess] celery@<your-node-hostname> ready.

You should see celery@<your-node-hostname> ready in the output of the command run. If not, check if
redis service systemctl status redis-server is running. You need at least one instance of worker running.

1.3.3 Service architect-client Installation

Following steps show how to deploy and configure Architect Client. You need to install client on configuration
management servers to integrate the inventory service.

pip install architect-client

Create configuration file /etc/architect/client.yml for client.

project: project-name
host: architect-api
port: 8181
username: salt
password: password

1.3.4 Complete Installation Scripts

Architect API Dependencies

You can install requried services.

#!/bin/bash -ex

export DEBIAN_FRONTEND=noninteractive
export LC_ALL=en_US.utf8

printf "Update Ubuntu ..."
sudo apt-get update -y

printf "Install servers ..."
apt-get -y install memcached redis-server postgresql-9.5

printf "Setup Postgresql ..."
sudo -u postgres psql -c "CREATE DATABASE architect"
sudo -u postgres psql -c "CREATE USER architect WITH PASSWORD 'password'"
sudo -u postgres psql -c "GRANT ALL PRIVILEGES ON DATABASE architect TO architect"

Or use local docker-compose.yml to start the same services.

Architect API Core

Install full development environment.

1.3. Architect Services Installation 9

The Architect Documentation, Release 0.2.0

#!/bin/bash -ex

export DEBIAN_FRONTEND=noninteractive
export LC_ALL=en_US.utf8

printf "Update Ubuntu ..."
sudo apt-get update -y

printf "Installing Python 3 dependencies..."
apt-get -y install python-virtualenv python3-dev python3-pip libxml2-dev libxslt1-dev
→˓libffi-dev graphviz libpq-dev libssl-dev

printf "Upgrading pip"
pip3 install --upgrade pip

mkdir -p /etc/architect
cat << EOF > /etc/architect/api.yml
databases:

default:
ENGINE: django.db.backends.postgresql_psycopg2
NAME: architect
USER: architect
PASSWORD: password
HOST: 127.0.0.1
PORT: 5432

caches:
default:
BACKEND: django.core.cache.backends.memcached.MemcachedCache
LOCATION: 127.0.0.1:11211

inventory:
sample-cluster:
engine: hier-cluster
service_class_dir:
system_class_dir:
cluster_class_dir:
class_dir: /srv/architect/mcp/classes
formula_dir: /srv/salt-formulas/formulas

sample-deploy:
engine: hier-deploy
class_dir: /srv/architect/mcp/classes
node_dir: /srv/architect/mcp/nodes/sample-deploy

EOF

git clone https://github.com/cznewt/architect-api.git /opt/architect
cd /opt/architect

printf "Installing architect-api code"
virtualenv -p python3 venv
. venv/bin/activate
pip install -r requirements/base.txt
pip install psycopg2-binary
pip install git+https://github.com/salt-formulas/reclass.git@python3

printf "Installing static files tools"
apt-get -y install npm rubygems ruby-dev

sudo gem install sass --no-user-install

(continues on next page)

10 Chapter 1. The Architect System

The Architect Documentation, Release 0.2.0

(continued from previous page)

npm install

python manage.py collectstatic --noinput
python manage.py compress
python manage.py migrate

Now you can run following 2 services

python manage.py runserver 0.0.0.0:8181

celery -A architect worker -l info

Repository Image Builders

#!/bin/bash -ex

export DEBIAN_FRONTEND=noninteractive
export LC_ALL=en_US.utf8

printf "Update Ubuntu ..."
sudo apt-get update -y

printf "Install Raspberry Pi build dependencies ..."
apt-get install -y debootstrap debian-archive-keyring qemu-user-static binfmt-support
→˓dosfstools bmap-tools whois bc crossbuild-essential-armhf

printf "Install BeagleBone build dependencies ..."
apt-get install -y m4 bmap-tools dosfstools rsync git-core kpartx wget parted pv

Sample Hierarchical Inventory

#!/bin/bash -ex

mkdir -p /srv/architect/mcp/classes/deployment
mkdir -p /srv/architect/mcp/classes/service
mkdir -p /srv/architect/mcp/classes/cluster/sample/infra
mkdir -p /srv/architect/mcp/nodes/sample-deploy

if [! -d "/srv/architect/mcp/classes/system"]; then
git clone https://github.com/Mirantis/reclass-system-salt-model /srv/architect/mcp/

→˓classes/system
fi;

if [! -d "/srv/salt-formulas"]; then
git clone https://github.com/salt-formulas/salt-formulas.git --recursive /srv/salt-

→˓formulas
fi;

for i in /srv/salt-formulas/formulas/* ; do
if [-d "$i"]; then
service=$(basename "$i")
formula="${service/-/_}"

(continues on next page)

1.3. Architect Services Installation 11

The Architect Documentation, Release 0.2.0

(continued from previous page)

if [-d "/srv/salt-formulas/formulas/$service/metadata/service"]; then
if [! -L "/srv/architect/mcp/classes/service/$formula"]; then

ln -s "/srv/salt-formulas/formulas/$service/metadata/service" "/srv/architect/
→˓mcp/classes/service/$formula"

fi;
fi;

fi;
done

cat << EOF > /srv/architect/mcp/classes/cluster/sample/infra/config.yml
classes:
- service.git.client
- system.linux.system.single
- system.linux.system.repo.mcp.salt
- system.salt.master.pkg
parameters:

_param:
salt_master_host: 127.0.0.1
salt_master_environment_name: dev
salt_master_environment_repository: https://github.com/salt-formulas
salt_master_environment_revision: master
salt_minion_ca_authority: salt_master_ca

salt:
master:

user:
salt:
permissions:
- '.*'
- '@local'
- '@wheel' # to allow access to all wheel modules
- '@runner' # to allow access to all runner modules
- '@jobs' # to allow access to the jobs runner and/or wheel modules

engine:
architect:
engine: architect
project: sample-deploy
host: 127.0.0.1
port: 8181
username: architect
password: password

EOF

cat << EOF > /srv/architect/mcp/classes/deployment/sample-deploy.yml
parameters:

_param:
cluster_name: sample-deploy
cluster_domain: sample.deploy

EOF

cat << EOF > /srv/architect/mcp/nodes/sample-deploy/cfg01.sample.deploy.yml
classes:
- cluster.sample.infra.config
- deployment.sample-deploy
parameters:

_param:
linux_system_codename: xenial

linux:
(continues on next page)

12 Chapter 1. The Architect System

The Architect Documentation, Release 0.2.0

(continued from previous page)

system:
name: cfg01
domain: sample.deploy

EOF

1.3. Architect Services Installation 13

The Architect Documentation, Release 0.2.0

14 Chapter 1. The Architect System

CHAPTER 2

Architect Inventory

Each manager endpoint expects different configuration. Following samples show the required parameters to setup
individual inventory backends.

2.1 Architect Inventory Backends

2.1.1 Reclass Inventory

Following configuration points to the reclass inventory storage on local filesystem.

inventory:
reclass-inventory:
storage_type: yaml_fs
class_dir: /srv/salt/reclass/classes
node_dir: /srv/salt/reclass-nodes/{{ inventory-name }}

References

• http://reclass.pantsfullofunix.net/

• https://github.com/salt-formulas/reclass

2.1.2 Hierarchical Inventory

Hier-cluster Inventory

Following configuration points to the hiearchical-cluster inventory storaged on local filesystem.

15

http://reclass.pantsfullofunix.net/
https://github.com/salt-formulas/reclass

The Architect Documentation, Release 0.2.0

inventory:
hier-cluster-inventory:
engine: hier-cluster
service_class_dir:
system_class_dir:
cluster_class_dir:
class_dir: /srv/salt/reclass/classes
formula_dir: /srv/salt/base
form:

test:
name: Generate new cluster class
layout: page
templates:
- file: cluster/{{ cluster_name }}.yml
content: |

parameters:
meta: {{ cluster_name }}
{%- if cluster_domain %}
domain: {{ cluster_name }}
{%- endif %}

steps:
- name: form-single
layout: inline
fields:
- name: cluster_name

label: Cluster name
value_type: string
help_text: Name of the cluster, used as cluster/CLUSTER_NAME.yml in

→˓directory structure.
initial: deployment_name
style: col-md-6

- name: cluster_domain
label: Cluster domain
value_type: boolean
help_text: Is cluster appended?
initial: deploy-name.local
width: half
style: col-md-6

Hier-deploy Inventory

Following configuration points to the hiearchical-deploy inventory storaged on local filesystem.

inventory:
hier-deploy-inventory:
engine: hier-deploy
class_dir: /srv/salt/reclass/classes
node_dir: /srv/salt/reclass/nodes

References

• http://salt-formulas.readthedocs.io/

16 Chapter 2. Architect Inventory

http://salt-formulas.readthedocs.io/

The Architect Documentation, Release 0.2.0

2.2 Architect Inventory Consumers

2.2.1 SaltStack Consumer

http_architect pillar backend

To enable Salt Master inventory, you need to install http_architect Pillar and Top modules and add following to
the Salt Master configuration files. To support the grains.

http_architect: &http_architect
project: local-salt
host: architect.service.host
port: 8181

ext_pillar:
- http_architect: *http_architect

master_tops:
http_architect: *http_architect

Native pillar backend

To setup architect as Salt master Pillar source, set following configuration to your Salt master at /etc/salt/
master.d/_master.conf file.

ext_pillar:
- cmd_yaml: 'architect-salt-pillar %s'

To setup architect as Salt master Tops source, set following configuration to your Salt master at /etc/salt/
master.d/_master.conf file.

master_tops:
ext_nodes: architect-salt-top

You can test the SaltStack Pillar by calling command:

$ architect-salt-pillar {{ minion-id }}

References

• https://docs.saltstack.com/en/latest/ref/tops/all/salt.tops.ext_nodes.html

• https://docs.saltstack.com/en/latest/ref/pillar/all/salt.pillar.cmd_yaml.html#module-salt.pillar.cmd_yaml

2.2.2 Ansible Consumer

To setup architect as Ansible dynamic inventory source, set following configuration to your Ansible control node.

$ ansible -i architect-ansible-inventory

You can test the ansible inventory by calling command:

2.2. Architect Inventory Consumers 17

https://docs.saltstack.com/en/latest/ref/tops/all/salt.tops.ext_nodes.html
https://docs.saltstack.com/en/latest/ref/pillar/all/salt.pillar.cmd_yaml.html#module-salt.pillar.cmd_yaml

The Architect Documentation, Release 0.2.0

$ architect-ansible-inventory --list

References

• http://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html

2.2.3 Puppet Consumer

To tell Puppet Server to use an ENC, you need to set two settings: node_terminus has to be set to “exec”, and
external_nodes must have the path to the executable.

[master]
node_terminus = exec
external_nodes = /usr/local/bin/architect-puppet-classifier

References

• https://puppet.com/docs/puppet/5.3/nodes_external.html

2.2.4 Chef Consumer

We can use -j parameter of chef-client command, It’s the path to a file that contains JSON data used to setup
the client run. We pass

$ architect-chef-data {{ node_name }} {{ file_name }}.json
$ chef-client -j {{ file_name }}.json --environment _default

References

• https://docs.chef.io/ctl_chef_client.html

18 Chapter 2. Architect Inventory

http://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://puppet.com/docs/puppet/5.3/nodes_external.html
https://docs.chef.io/ctl_chef_client.html

CHAPTER 3

Architect Manager

3.1 Configuration Management

3.1.1 SaltStack Infrastructures

Configuration for connecting to Salt API endpoint.

monitor:
salt-manager:
auth_url: http://{{ salt-api }}:8000
username: {{ user-name }}
password: {{ user-password }}

Following figure shows how SaltStack integrates with Architect Inventory and Manager. Please note that you can use
Inventory integration independently of the Manager integration.

The metadata schema for SaltStack manager:

query:
salt_complete_graph:
name: All Resources
layout: graph

salt_minion_service_graph:
name: Salt Minion Services
layout: graph
filter_node_types:
- salt_master
- salt_minion
- salt_service

salt_minions_tree:
name: Simple Minions
layout: hierarchy
hierarchy_layers:

0:

(continues on next page)

19

The Architect Documentation, Release 0.2.0

(continued from previous page)

name: Salt Master
kind:

1:
kind: salt_minion

salt_minion_services_tree:
name: Minion Services
layout: hierarchy
hierarchy_layers:

0:
name: Salt master
kind:

1:
kind: salt_minion

2:
target: runs_on_minion
kind: salt_service

salt_minion_lowstates_tree:
name: Minion States
layout: hierarchy
hierarchy_layers:

0:
name: Salt master
kind:

1:
kind: salt_minion

2:
target: runs_on_minion
kind: salt_service

(continues on next page)

20 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

3:
target: state_of_service
kind: salt_lowstate

relation:
controlled_by_master:
relation:

default: master
applied_on_minion:
relation:

default: minion
runs_on_minion:
relation:

default: minion
applied_lowstate:
relation:

default: lowstate
state_of_service:
relation:

default: service
action_by_user:
relation:

default: user
requires_service:
relation:

default: require
default_resource: salt_minion
resource:

salt_master:
client: ''
icon: fa:server
name: Master
resource: master
workflow:

generate_key:
name: Generate key

salt_minion:
client: ''
icon: fa:server
name: Minion
resource: minion
workflow:

run_module:
name: Run module

model:
master:

type: relationship_to
model: controlled_by_master
target: salt_master

salt_lowstate:
client: ''
icon: fa:cube
name: Lowstate
resource: lowstate
model:

service:
type: relationship_to

(continues on next page)

3.1. Configuration Management 21

The Architect Documentation, Release 0.2.0

(continued from previous page)

model: state_of_service
target: salt_service

salt_job:
client: ''
icon: fa:clock-o
name: Job
resource: job
model:

user:
type: relationship_to
model: action_by_user
target: salt_user

minion:
type: relationship_to
model: applied_on_minion
target: salt_minion

lowstate:
type: relationship_to
model: applied_lowstate
target: salt_lowstate

salt_service:
client: ''
icon: fa:podcast
name: Service
resource: service
model:

minion:
type: relationship_to
model: runs_on_minion
target: salt_minion

require:
type: relationship_to
model: requires_service
target: salt_service

salt_user:
client: ''
icon: fa:user
name: User
resource: user

Salt Master Integration

You can control salt master infrastructure and get the status of managed hosts and resources. The Salt engine
architect relays the state outputs of individual state runs and architect runners and modules provide the
capabilities to interface with salt and architect functions. The Salt Master is managed through it’s HTTP API service.

http_architect: &http_architect
project: newt.work
host: 127.0.0.1
port: 8181

22 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

3.2 Cloud Resource Management

3.2.1 Amazon Web Services

AWS manager uses boto3 high level AWS python SDK for accessing and manipulating AWS resources.

region: us-west-2
aws_access_key_id: {{ access_key_id }}
aws_secret_access_key: {{ secret_access_key }}

The metadata schema for AWS manager:

query:
aws_complete_graph:
name: Complete Account
layout: graph

relation:
in_ec2_vpc:
relation:

default: vpc
in_ec2_subnet:
relation:

default: subnet
using_ec2_key_pair:
relation:

default: key_pair
default_resource: ec2_instance
resource:

ec2_elastic_ip:
client: ec2
icon: fa:cube
name: Elastic IP
resource: AWS::EC2::EIP

ec2_elastic_ip_association:
client: ec2
icon: fa:cube
name: Elastic IP Association
resource: AWS::EC2::EIPAssociation

ec2_image:
client: ec2
icon: fa:server
name: Image
resource: AWS::EC2::Image

ec2_instance:
client: ec2
icon: fa:server
name: Instance
resource: AWS::EC2::Instance
model:

vpc:
type: relationship_to
model: in_ec2_vpc
target: ec2_vpc

subnet:
type: relationship_to
model: in_ec2_subnet
target: ec2_subnet

(continues on next page)

3.2. Cloud Resource Management 23

The Architect Documentation, Release 0.2.0

(continued from previous page)

key_pair:
type: relationship_to
model: using_ec2_key_pair
target: ec2_key_pair

ec2_internet_gateway:
client: ec2
icon: fa:cube
name: Internet Gateway
resource: AWS::EC2::InternetGateway

ec2_key_pair:
client: ec2
icon: fa:key
name: Key Pair
resource: AWS::EC2::KeyPair

ec2_route_table:
client: ec2
icon: fa:cube
name: Route Table
resource: AWS::EC2::RouteTable

ec2_security_group:
client: ec2
icon: fa:cubes
name: Security Group
resource: AWS::EC2::SecurityGroup

ec2_subnet:
client: ec2
icon: fa:cube
name: Subnet
resource: AWS::EC2::Subnet

ec2_vpc:
client: ec2
icon: fa:cubes
name: VPC
resource: AWS::EC2::VPC

ec2_vpc_gateway_attachment:
client: ec2
icon: fa:cube
name: VPC Gateway Attachment
resource: AWS::EC2::VPCGatewayAttachment

s3_bucket:
client: s3
icon: fa:hdd-o
name: Bucket
resource: AWS::S3::Bucket

3.2.2 OpenStack Cloud Resources

Configuration for keystone v2.0 and keystone v3 clouds. Configuration sample for single tenant access.

scope: local
region_name: RegionOne
auth:

username: {{ user-name }}
password: {{ user-password }}
project_name: {{ project-name }}

(continues on next page)

24 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

auth_url: https://{{ keystone-api }}:5000/v2.0

Config for managing resources of entire cloud, including hypervisors, tenants, etc in given region.

scope: global
region_name: RegionOne
auth:

username: {{ admin-name }}
password: {{ admin-password }}
project_name: admin
auth_url: https://{{ keystone-api }}:5000/v2.0

The metadata schema for OpenStack manager:

query:
os_complete_graph:
name: Complete Cloud
layout: graph

os_clear_project_graph:
name: Project Resources
layout: graph
filter_node_types:
- os_server
- os_key_pair
- os_flavor
- os_network
- os_subnet
- os_floating_ip
- os_port
- os_router
filter_lone_nodes:
- os_key_pair
- os_flavor

os_network_topology_graph:
name: Network Topology
layout: graph
filter_node_types:
- os_server
- os_network
- os_subnet
- os_port
- os_floating_ip
- os_router

relation:
in_os_project:
relation:

default: project
in_os_stack:
relation:

default: stack
in_os_network:
relation:

default: network
use_os_port:
relation:

default: port
os_server: network

(continues on next page)

3.2. Cloud Resource Management 25

The Architect Documentation, Release 0.2.0

(continued from previous page)

use_os_image:
relation:

os_server: image
use_os_flavor:
relation:

os_server: flavor
use_os_key_pair:
relation:

default: key_pair
on_os_hypervisor:
relation:

os_server: hypervisor
os_port: hypervisor

in_os_aggregate:
relation:

os_hypervisor: aggregate
default_resource: os_server
resource:

os_aggregate:
resource: OS::Nova::Aggregate
client: nova
name: Aggregate
icon: fa:cube

os_flavor:
resource: OS::Nova::Flavor
client: nova
name: Flavor
icon: fa:cube

os_floating_ip:
resource: OS::Neutron::FloatingIP
client: neutron
name: Floating IP
icon: fa:cube
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

project:
type: relationship_to
model: in_os_project
target: os_project

port:
type: relationship_to
model: use_os_port
target: os_port

os_floating_ip_association:
resource: OS::Neutron::FloatingIPAssociation
client: neutron
name: Floating IP Association
icon: fa:cube

os_group:
resource: OS::Keystone::Group
client: keystone
name: Group
icon: fa:cube

os_hypervisor:
(continues on next page)

26 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

resource: OS::Nova::Hypervisor
client: nova
name: Hypervisor
icon: fa:server
model:

aggregate:
type: relationship_to
model: in_os_aggregate
target: os_aggregate

os_image:
resource: Glance::Image
client: glance
name: Image
icon: fa:cube

os_key_pair:
resource: OS::Nova::KeyPair
client: nova
name: Key Pair
icon: fa:key
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

os_network:
resource: OS::Neutron::Net
client: neutron
name: Network
icon: fa:share-alt
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

project:
type: relationship_to
model: in_os_project
target: os_project

subnets:
type: relationship_from
model: in_os_network
target: os_subnet

os_port:
resource: OS::Neutron::Port
client: neutron
name: Port
icon: fa:cube
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

project:
type: relationship_to
model: in_os_project
target: os_project

hypervisor:
(continues on next page)

3.2. Cloud Resource Management 27

The Architect Documentation, Release 0.2.0

(continued from previous page)

type: relationship_to
model: on_os_hypervisor
target: os_hypervisor

network:
type: relationship_to
model: in_os_network
target: os_network

os_project:
resource: OS::Keystone::Tenant
client: keystone
name: Project
icon: fa:cube

os_resource_type:
resource: OS::Heat::ResourceType
client: heat
name: Resource Type
icon: fa:cube

os_router:
resource: OS::Neutron::Router
client: neutron
name: Router
icon: fa:arrows-alt
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

project:
type: relationship_to
model: in_os_project
target: os_project

port:
type: relationship_to
model: use_os_port
target: os_port

os_server:
resource: OS::Nova::Server
client: nova
name: Server
icon: fa:server
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

project:
type: relationship_to
model: in_os_project
target: os_project

network:
type: relationship_to
model: use_os_port
target: os_port

hypervisor:
type: relationship_to
model: on_os_hypervisor
target: os_hypervisor

(continues on next page)

28 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

key_pair:
type: relationship_to
model: use_os_key_pair
target: os_key_pair

image:
type: relationship_to
model: use_os_image
target: os_image

flavor:
type: relationship_to
model: use_os_flavor
target: os_flavor

os_stack:
resource: OS::Heat::Stack
client: heat
name: Stack
icon: fa:cubes
model:

project:
type: relationship_to
model: in_os_project
target: os_project

os_subnet:
resource: OS::Neutron::Subnet
client: neutron
name: Subnet
icon: fa:share-alt
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

project:
type: relationship_to
model: in_os_project
target: os_project

network:
type: relationship_to
model: in_os_network
target: os_network

os_user:
resource: OS::Keystone::User
client: keystone
name: User
icon: fa:cube

os_volume:
resource: OS::Cinder::Volume
client: cinder
name: Volume
icon: fa:cube
model:

stack:
type: relationship_to
model: in_os_stack
target: os_stack

project:
type: relationship_to

(continues on next page)

3.2. Cloud Resource Management 29

The Architect Documentation, Release 0.2.0

(continued from previous page)

model: in_os_project
target: os_project

3.3 Container Resource Management

3.3.1 Kubernetes Clusters

Kubernetes requires some information from kubeconfig file. You provide the parameters of the cluster and the user
to the manager. These can be found under corresponding keys in the kubernetes configuration file.

scope: global
cluster:

certificate-authority-data: |
{{ ca-for-server-and-clients }}

server: https://{{ kubernetes-api }}:443
user:

client-certificate-data: |
{{ client-cert-public }}

client-key-data: |
{{ client-cert-private }}

Note: Options config.cluster and config.user can be found in your kubeconfig file. Just copy the
config fragment with cluster parameters and fragment with user parameter.

The metadata schema for Kubernetes manager:

query:
k8s_complete_graph:
name: Complete Cluster
layout: graph

k8s_pods_in_namespaces_tree:
name: Pods by Namespace
layout: hierarchy
hierarchy_layers:

0:
name: Kubernetes
kind:

1:
kind: k8s_namespace

2:
kind: k8s_pod
target: in_k8s_namespace

3:
kind: k8s_container
source: in_k8s_pod

k8s_pods_on_nodes_tree:
name: Pods by Node
layout: hierarchy
hierarchy_layers:

0:
name: Kubernetes

(continues on next page)

30 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

kind:
1:

kind: k8s_node
2:

kind: k8s_pod
target: on_k8s_node

relation:
in_k8s_namespace:
relation:

default: namespace
in_k8s_deployment:
relation:

default: deployment
expose_k8s_pod:
relation:

default: pod

in_k8s_pod:
relation:

default: pod
use_k8s_replication:
relation:

default: replication_control
k8s_replication_controller: pod
k8s_replica_set: pod

use_k8s_secret:
relation:

default: secret
on_k8s_node:
relation:

default: node

contains_k8s_node:
relation:

default: node
uses_k8s_config_map:
relation:

default: config_map
contains_k8s_namespace:
relation:

default: namespace
default_resource: k8s_namespace
resource:

k8s_config_map:
client: ''
icon: fa:file-text-o
name: Config Map
resource: ConfigMap

k8s_container:
client: ''
icon: fa:cube
name: Container
resource: Container
model:

pod:
type: relationship_to
model: in_k8s_pod

(continues on next page)

3.3. Container Resource Management 31

The Architect Documentation, Release 0.2.0

(continued from previous page)

target: k8s_pod
k8s_cron_job:
client: ''
icon: fa:cube
name: Cron Job
resource: CronJob

k8s_deployment:
client: ''
icon: fa:cubes
name: Deployment
resource: Deployment
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

k8s_endpoint:
client: ''
icon: fa:cube
name: Endpoint
resource: Endpoint
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

k8s_event:
client: ''
icon: fa:cube
name: Event
resource: Event
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

k8s_job:
client: ''
icon: fa:cube
name: Job
resource: Job

k8s_namespace:
client: ''
icon: fa:cube
name: Namespace
resource: Namespace

k8s_node:
client: ''
icon: fa:server
name: Node
resource: Node

k8s_persistent_volume:
client: ''
icon: fa:hdd-o
name: Persistent Volume
resource: PersistentVolume

k8s_persistent_volume_claim:
(continues on next page)

32 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

client: ''
icon: fa:hdd-o
name: Persistent Volume Claim
resource: PersistentVolumeClaim
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

k8s_pod:
client: ''
icon: fa:cubes
name: Pod
resource: Pod
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

node:
type: relationship_to
model: on_k8s_node
target: k8s_node

k8s_replica_set:
client: ''
icon: fa:cubes
name: Replica Set
resource: ReplicaSet
model:

pod:
type: relationship_from
model: use_k8s_replication
target: k8s_pod

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

deployment:
type: relationship_to
model: in_k8s_deployment
target: k8s_deployment

k8s_replication_controller:
client: ''
icon: fa:cubes
name: Replication Controller
resource: ReplicationController
model:

pod:
type: relationship_from
model: use_k8s_replication
target: k8s_pod

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

deployment:
type: relationship_to

(continues on next page)

3.3. Container Resource Management 33

The Architect Documentation, Release 0.2.0

(continued from previous page)

model: in_k8s_deployment
target: k8s_deployment

k8s_role:
client: ''
icon: fa:cube
name: Role
resource: Role

k8s_secret:
client: ''
icon: fa:lock
name: Secret
resource: Secret
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

k8s_service:
client: ''
icon: fa:podcast
name: Service
resource: Service
workflow:

discover_service:
name: Discover service

model:
namespace:

type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

pod:
type: relationship_to
model: expose_k8s_pod
target: k8s_pod

k8s_service_account:
client: ''
icon: fa:user
name: Service Account
resource: ServiceAccount
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

secret:
type: relationship_to
model: use_k8s_secret
target: k8s_secret

k8s_ingress:
client: ''
icon: fa:user
name: Ingress
resource: Ingress
model:

namespace:
type: relationship_to
model: in_k8s_namespace

(continues on next page)

34 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

target: k8s_namespace
k8s_daemon_set:
client: ''
icon: fa:user
name: Daemon Set
resource: DaemonSet
model:

namespace:
type: relationship_to
model: in_k8s_namespace
target: k8s_namespace

k8s_cluster:
client: ''
icon: fa:user
name: Cluster
resource: Cluster
workflow:

download_config:
name: Download Config

model:
namespaces:

type: relationship_to
model: contains_k8s_namespace
target: k8s_namespace

nodes:
type: relationship_to
model: contains_k8s_node
target: k8s_node

3.4 Template Based Orchestration

3.4.1 Heat Templates

Heat templates with local context (env) definitions.

engine: heat
cloud_endpoint: {{ openstack-manager-name }}
root_path: /path/to/heat-templates
template_path: /path/to/heat-templates/template
context_source: local
context_path: /path/to/heat-templates/env

Heat templates with remote context (env) definitions coming from Inventory service.

engine: heat
cloud_endpoint: {{ openstack-manager-name }}
root_path: /path/to/heat-templates
template_path: /path/to/heat-templates/template
context_source: remote
context_inventory: {{ inventory-name }}

The metadata schema for Heat manager:

3.4. Template Based Orchestration 35

The Architect Documentation, Release 0.2.0

query:
heat_complete_graph:
name: Complete Stack
layout: graph

heat_template_stacks_tree:
name: Template Stacks
layout: hierarchy
hierarchy_layers:

0:
name: Heat heat_template_stacks_tree
kind:

1:
kind: heat_template

2:
kind: heat_stack
target: defined_by

relation:
defined_by:
relation:

default: template
default_resource: heat_template
resource:

heat_template:
client: heat
icon: fa:cube
name: Template
resource: OS::Heat::Stack
workflow:

create:
name: Launch stack

heat_stack:
client: heat
icon: fa:cube
name: Stack
resource: OS::Heat::Stack
model:

template:
type: relationship_to
model: defined_by
target: heat_template

References

• https://docs.openstack.org/heat/pike/template_guide/openstack.html

• https://github.com/openstack/heat-templates

3.4.2 TerraForm Templates

Configuration for parsing Hashicorp TerraForm templates.

monitor:
terraform-local-manager:
engine: terraform
endpoints:

(continues on next page)

36 Chapter 3. Architect Manager

https://docs.openstack.org/heat/pike/template_guide/openstack.html
https://github.com/openstack/heat-templates

The Architect Documentation, Release 0.2.0

(continued from previous page)

- {{ kubernetes-manager-name }}
- {{ openstack-manager-name }}
- {{ amazon-manager-name }}
terraform_bin: /path/to/terraform-bin
template_path: /path/to/terraform-templates

The metadata schema for Terraform manager:

query:
tf_complete_graph:
name: Complete Template
layout: graph

relation:
uses_tf_template:
relation:

default: template
in_tf_state:
relation:

default: state
in_tf_module:
relation:

default: module
in_tf_net:
relation:

default: network
in_tf_subnet:
relation:

default: subnet
has_tf_security_group:
relation:

default: security_group
using_tf_key_pair:
relation:

default: key_pair
links_tf_router:
relation:

default: router
links_tf_floating_instance:
relation:

default: instance
links_tf_floating_ip:
relation:

tf_openstack_compute_floatingip_associate_v2: floating_ip
tf_openstack_networking_floatingip_v2: router

default_resource: tf_template
resource:

tf_template:
client: ''
icon: fa:map-signs
name: Template
resource: ''
workflow:

create:
name: Deploy template

tf_state:
client: ''
icon: fa:map-signs

(continues on next page)

3.4. Template Based Orchestration 37

The Architect Documentation, Release 0.2.0

(continued from previous page)

name: State
resource: ''
workflow:

destroy:
name: Destroy

model:
template:

type: relationship_to
model: uses_tf_template
target: tf_template

tf_module:
client: ''
icon: fa:map-signs
name: Module
resource: ''
model:

state:
type: relationship_to
model: in_tf_state
target: tf_state

tf_openstack_compute_floatingip_associate_v2:
client: ''
icon: fa:map-signs
name: Floating IP Association
resource: openstack_compute_floatingip_associate_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

floating_ip:
type: relationship_to
model: links_tf_floating_ip
target: tf_openstack_networking_floatingip_v2

instance:
type: relationship_to
model: links_tf_floating_instance
target: tf_openstack_compute_instance_v2

tf_openstack_compute_instance_v2:
client: ''
icon: fa:server
name: Instance
resource: openstack_compute_instance_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

key_pair:
type: relationship_to
model: using_tf_key_pair
target: tf_openstack_compute_keypair_v2

security_group:
type: relationship_to
model: has_tf_security_group
target: tf_openstack_compute_secgroup_v2

network:
(continues on next page)

38 Chapter 3. Architect Manager

The Architect Documentation, Release 0.2.0

(continued from previous page)

type: relationship_to
model: in_tf_net
target: tf_openstack_networking_network_v2

tf_openstack_compute_keypair_v2:
client: ''
icon: fa:key
name: Key Pair
resource: openstack_compute_keypair_v2

tf_openstack_compute_secgroup_v2:
client: ''
icon: fa:cube
name: Security Group
resource: openstack_compute_secgroup_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

tf_openstack_networking_floatingip_v2:
client: ''
icon: fa:map-signs
name: Floating IP
resource: openstack_networking_floatingip_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

router:
type: relationship_to
model: links_tf_floating_ip
target: tf_openstack_networking_router_interface_v2

tf_openstack_networking_network_v2:
client: ''
icon: fa:share-alt
name: Net
resource: openstack_networking_network_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

key_pair:
type: relationship_to
model: in_tf_net
target: tf_openstack_networking_network_v2

tf_openstack_networking_router_interface_v2:
client: ''
icon: fa:arrows-alt
name: Router Interface
resource: openstack_networking_router_interface_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

subnet:
(continues on next page)

3.4. Template Based Orchestration 39

The Architect Documentation, Release 0.2.0

(continued from previous page)

type: relationship_to
model: in_tf_subnet
target: tf_openstack_networking_subnet_v2

router:
type: relationship_to
model: links_tf_router
target: tf_openstack_networking_router_v2

tf_openstack_networking_router_v2:
client: ''
icon: fa:arrows-alt
name: Router
resource: openstack_networking_router_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

tf_openstack_networking_subnet_v2:
client: ''
icon: fa:share-alt
name: Subnet
resource: openstack_networking_subnet_v2
model:

module:
type: relationship_to
model: in_tf_module
target: tf_module

network:
type: relationship_to
model: in_tf_net
target: tf_openstack_networking_network_v2

References

• https://www.terraform.io/docs/index.html

• https://github.com/terraform-providers

40 Chapter 3. Architect Manager

https://www.terraform.io/docs/index.html
https://github.com/terraform-providers

CHAPTER 4

Architect Monitor

4.1 Time-series Monitoring

Monitor components can query metrics from several time-series databases into uniform Pandas DataFrames.

It support two types of metric queries, the first is instant metric, returning the value in precise moment in time.
The second is the range metric, giving you the series of values for given time range and step.

The Monitor supports several major time-series databases to get the results in normalised way. The endpoints are
queried thru HTTP API calls.

4.1.1 Graphite Time-series Database

Example configuration for the Graphite server.

monitor:
graphite-inventory:
auth_url: http://{{ graphite-api }}:8000

Example query to the Graphite server.

averageSeries(server.web*.load)

The metadata schema for Graphite monitor:

query:
prometheus_test_range_query_long:
metric: hdd_errors
step: 30m
start: "2018-01-25T12:00:00Z"
end: "2018-01-30T12:00:00Z"

prometheus_test_range_query:
metric: hdd_errors

(continues on next page)

41

The Architect Documentation, Release 0.2.0

(continued from previous page)

step: 4h
start: "2018-01-25T12:00:00Z"
end: "2018-01-30T12:00:00Z"

prometheus_test_instant_query:
metric: hdd_errors
moment: "2018-01-28T12:00:00Z"

metric:
hdd_errors:
job: carbon
name: HDD errors

References

• http://graphite.readthedocs.io/en/latest/render_api.html

4.1.2 InfluxDB Time-series Database

Example configuration for the InfluxDB server.

monitor:
influxdb-inventory:
auth_url: http://{{ influxdb-api }}:8086
username: {{ influxdb-username }}
password: {{ influxdb-password }}
database: {{ influxdb-database }}

Example query to the InfluxDb server.

SELECT mean("value") FROM "alertmanager_notifications_total"

References

• https://docs.influxdata.com/influxdb/v1.3/guides/querying_data/

4.1.3 Prometheus Server

Example configuration for the Prometheus server.

monitor:
prometheus-inventory:

auth_url: http://{{ prometheus-api }}:8000

Example query to the Prometheus server.

alertmanager_notifications_total

The metadata schema for Prometheus monitor:

42 Chapter 4. Architect Monitor

http://graphite.readthedocs.io/en/latest/render_api.html
https://docs.influxdata.com/influxdb/v1.3/guides/querying_data/

The Architect Documentation, Release 0.2.0

query:
prometheus_test_range_query_long:
query: hdd_errors
step: 30m
start: "2018-01-25T12:00:00Z"
end: "2018-01-30T12:00:00Z"

prometheus_test_range_query:
query: hdd_errors
step: 4h
start: "2018-01-25T12:00:00Z"
end: "2018-01-30T12:00:00Z"

prometheus_test_instant_query:
query: hdd_errors
moment: "2018-01-28T12:00:00Z"

default_resource: prom_target
relation:

by_job:
relation:

default: prom_job
metric_value:
relation:

default: prom_target
resource:

prom_metric:
client: prometheus/series
icon: fa:cube
name: Metric
resource: Prometheus::Series
workflow:

display_metric:
name: Display chart

model:
target:

type: relationship_to
model: metric_value
target: prom_target

prom_target:
client: prometheus/targets
icon: fa:cube
name: Target
resource: Prometheus::Target
model:

job:
type: relationship_to
model: by_job
target: prom_job

prom_job:
client: prometheus/job
icon: fa:cube
name: Job
resource: Prometheus::Job

References

• https://prometheus.io/docs/prometheus/latest/querying/api/

• https://github.com/infinityworks/prometheus-example-queries

4.1. Time-series Monitoring 43

https://prometheus.io/docs/prometheus/latest/querying/api/
https://github.com/infinityworks/prometheus-example-queries

The Architect Documentation, Release 0.2.0

44 Chapter 4. Architect Monitor

CHAPTER 5

Architect Repository

5.1 Image Building Overview

The architect is capable of pre-building images with specific content by SaltStack. For this you need to setup the
metadata model of the node and select the Salt Master server. The procedure of building is:

1. Create the new inventory object (node definition), the reclass and cluster-deploy inventory types are
supported.

2. Build the new image for the selected platform and node definition. The node does not need to be registered at
Salt master, it can be added in process.

5.2 BeagleBone/BeagleBoard Images

The BeagleBoard image builder used is fork of official Beagle image builder. To install this image builder, clone repo
https://github.com/salt-formulas/beagleboard-image-builder to the location specified in repository configuration.

repository:
bbb-repo:
engine: bbb
builder_dir: /path/to/bbb-image-build
image_dir: /storage/dir
manager: salt-manager
inventory: reclass-inventory

5.2.1 Build Script

#!/bin/bash -e

Usage:

(continues on next page)

45

https://github.com/salt-formulas/beagleboard-image-builder

The Architect Documentation, Release 0.2.0

(continued from previous page)

#
./gen-image.sh node.domain.com-20180405 node.domain.com bbb
#
bbb - BeagleBone Black Rev B/C, BeagleBone Blue
bbx15 - BeagleBoard-X15

IMAGENAME="${1:-rpi.domain-config-datetime}"
HOSTNAME="${2:-rpi.domain-config}"
PLATFORM="${3:-bbb}"
OUTPUT="${4:-noop}"

base_rootfs="$IMAGENAME"
wfile="$IMAGENAME"

DIR="$PWD"

archive_base_rootfs () {
if [-d ./${base_rootfs}] ; then

rm -rf ${base_rootfs} || true
fi
if [-f ${base_rootfs}.tar] ; then

xz -z -8 -v ${base_rootfs}.tar && sha256sum ${base_rootfs}.tar.xz > $
→˓{base_rootfs}.tar.xz.sha256sum &

fi
}

extract_base_rootfs () {
if [-d ./${base_rootfs}] ; then

rm -rf ${base_rootfs} || true
fi

if [-f ${base_rootfs}.tar.xz] ; then
tar xf ${base_rootfs}.tar.xz

else
tar xf ${base_rootfs}.tar

fi
}

archive_img () {
#prevent xz warning for 'Cannot set the file group: Operation not permitted'
sudo chown ${UID}:${GROUPS} ${wfile}.img
if [-f ${wfile}.img] ; then

if [! -f ${wfile}.bmap] ; then
if [-f /usr/bin/bmaptool] ; then

bmaptool create -o ${wfile}.bmap ${wfile}.img
fi

fi
xz -z -8 -v ${wfile}.img && sha256sum ${wfile}.img.xz > ${wfile}.img.

→˓xz.sha256sum &
fi

}

generate_img () {
cd ${base_rootfs}/
sudo ./setup_sdcard.sh ${options}
mv *.img ../
cd ..

(continues on next page)

46 Chapter 5. Architect Repository

The Architect Documentation, Release 0.2.0

(continued from previous page)

}

./RootStock-NG.sh -c $IMAGENAME

if ["$PLATFORM" = "bbb"] ; then
platform_options="--dtb beaglebone --bbb-old-bootloader-in-emmc --emmc-flasher

→˓"
fi

if ["$PLATFORM" = "bbx15"] ; then
platform_options="--dtb am57xx-beagle-x15"

fi

options="--img ${IMAGENAME} ${platform_options} --hostname ${HOSTNAME}"

cd ./deploy

extract_base_rootfs
generate_img
archive_base_rootfs
archive_img

if [-f ${wfile}.img] ; then
mv ./${wfile}.img ${OUTPUT}

fi

if [-f ${wfile}.bmap] ; then
mv ./${wfile}.bmap ${OUTPUT}

fi

cd ..

5.3 RaspberryPi Images

The Raspberry Pi image builder used is fork of official Beagle image builder. To install this image builder, clone repo
https://github.com/salt-formulas/rpi23-gen-image to the location specified in repository configuration.

repository:
bbb-repo:
engine: rpi23
builder_dir: /path/to/rpi23-gen-image
image_dir: /storage/dir
manager: salt-manager
inventory: reclass-inventory

5.3.1 Build Script

The rpi23-gen-image uses modified generator script.

#!/bin/sh

Usage:

(continues on next page)

5.3. RaspberryPi Images 47

https://github.com/salt-formulas/rpi23-gen-image

The Architect Documentation, Release 0.2.0

(continued from previous page)

#
./gen-image.sh node.domain.com-20180405

set -e
set -x

IMAGENAME="${1:-rpi.domain.com-timestamp}"

rm -rf "./images/jessie/"
rm -rf "./images/stretch/"
rm -rf "./images/buster/"

CONFIG_TEMPLATE="${IMAGENAME}" ./rpi23-gen-image.sh

rm -rf "./images/jessie/"
rm -rf "./images/stretch/"
rm -rf "./images/buster/"

48 Chapter 5. Architect Repository

CHAPTER 6

Architect Document

6.1 Visual Infographics

It is useful to identify three main categories of data visualizations in terms of what their main (intended or unintended)
purpose is.

Inspirational

The main goal here is to inspire people. To wow them! But not just on a superficial level, but to really
engage people into deeper thinking, sense of beauty and awe. Visualization has an incredible power to
attract people’s attention but also to draw them into fantastic artificial worlds that turn abstract concept
into more tangible ones.

Explanatory

The main goal here is to use graphics as a way to explain some complex idea, phenomenon or process.
This is an area where graphical representation shines: we are visual creatures and a picture is sometime
really worth a thousand words.

Analytical

The main goal here is to extract information out of data with the purpose of answering questions and
advancing understanding of some phenomenon of interest. Sure, explanatory visualization is also about
helping people understand something.

But the main difference here is that in explanatory visualization the author knows already what to visualize
(after having performed some analysis), whereas in analysis the main use of visualization is to understand
the data in the first place.

Data analysis is important because it can help people improve their understanding of complex phenomena in our case
service models and can help solve important problems around it. It’s an indirect link, but an important one: If I
understand a problem better, there are higher chances I can find a better solution for it.

49

The Architect Documentation, Release 0.2.0

6.1.1 Core Presentation Libraries

d3.js

D3 (or D3.js) is a JavaScript library for visualizing data using web standards. D3 helps you bring data to life using
SVG, Canvas and HTML. D3 combines powerful visualization and interaction techniques with a data-driven approach
to DOM manipulation, giving you the full capabilities of modern browsers and the freedom to design the right visual
interface for your data.

• https://github.com/d3/d3

• http://bost.ocks.org/mike/chart/ Towards Reusable Charts

• https://bocoup.com/blog/reusability-with-d3 Exploring Reusalibility with D3.js

• https://github.com/springload/react-d3-integration An example on how to integrate D3 into React

• http://bl.ocks.org/biovisualize/8187844 direct svg to canvas to png conversion

• http://bl.ocks.org/vicapow/758fce6aa4c5195d24be An example of creating a PNG from an SVG in D3.

6.1.2 Presentation Helper Libraries

d3 layouts

• http://blog.visual.ly/cartesian-vs-radial-charts/ Battle of the Charts: Why Cartesian Wins Against Radial

• http://bl.ocks.org/giuliano108/7482331 d3.layout.colgrid

• https://bl.ocks.org/feyderm/ba5a80beec95ff39b5267554b590993f A change of perspective. . .

d3-legend

A library to make graph legends.

Fig. 1: d3-legend diagram

• https://github.com/susielu/d3-legend

• http://d3-legend.susielu.com/

50 Chapter 6. Architect Document

https://github.com/d3/d3
http://bost.ocks.org/mike/chart/
https://bocoup.com/blog/reusability-with-d3
https://github.com/springload/react-d3-integration
http://bl.ocks.org/biovisualize/8187844
http://bl.ocks.org/vicapow/758fce6aa4c5195d24be
http://blog.visual.ly/cartesian-vs-radial-charts/
http://bl.ocks.org/giuliano108/7482331
https://bl.ocks.org/feyderm/ba5a80beec95ff39b5267554b590993f
https://github.com/susielu/d3-legend
http://d3-legend.susielu.com/

The Architect Documentation, Release 0.2.0

d3-annotation

Annotations establish context, and direct our users to insights and anomalies.

• https://github.com/susielu/d3-annotation

• http://d3-annotation.susielu.com/

• https://bl.ocks.org/alansmithy/85e2d6e05f1de59167751249fbd1edec

6.2 Relational Data Analysis

You can analyse the resource models in several ways. Either you want to get the subsets of the resources (vertices and
edges) or you want to combine multiple graphs and link the same nodes in each.

6.2.1 Relational Schema

All resources are covered by schema that define basic properties of the nodes and relationships.

Resource Nodes

Sample node definition of the OpenStack hypervisor resource. We declare directional typed relationships at either side
by relationship_to and relationship_from parameters.

os_hypervisor:
resource: OS::Nova::Hypervisor
client: nova
name: Hypervisor
icon: fa:server
model:
aggregate:

type: relationship_to
model: in_os_aggregate
target: os_aggregate

Resource Relations

Along the node definition we define the relations.

on_os_hypervisor:
relation:
os_server: hypervisor
os_port: hypervisor

in_os_aggregate:
relation:
os_hypervisor: aggregate

6.2.2 Relational Operations

We can either break a body of information down into smaller parts or to examine it from different viewpoints that we
can understand it better and we can also combine multiple bodies in one get further insight.

6.2. Relational Data Analysis 51

https://github.com/susielu/d3-annotation
http://d3-annotation.susielu.com/
https://bl.ocks.org/alansmithy/85e2d6e05f1de59167751249fbd1edec

The Architect Documentation, Release 0.2.0

Subgraphs - Slicing and Dicing

To slice and dice is to break a body of information down into smaller parts or to examine it from different viewpoints
that we can understand it better.

In cooking, you can slice a vegetable or other food or you can dice it (which means to break it down into small cubes).
One approach to dicing is to first slice and then cut the slices up into dices.

name: Hive-plot
data_source:

default:
manager: openstack-project
layout: graph
filter_node_types:
- os_server
- os_key_pair
- os_flavor
- os_network
- os_subnet
- os_floating_ip
- os_router
filter_lone_nodes:
- os_key_pair
- os_flavor

In data analysis, the term generally implies a systematic reduction of a body of data into smaller parts or views that
will yield more information. The term is also used to mean the presentation of information in a variety of different and
useful ways. In our case we find useful subgraphs of the infrastructures.

Hiearchical Structures

In some cases it is useful to crate hierarchical structures from graph data. For example in OpenStack infrastructure
we can show the aggregate zone - hypervisor - instance relations and show the quantitative properties
of hypervisors and instances. The properties can be used RAM or CPU, runtime - the age of resources or any other
property of value.

name: Tree Structure (aggregate zone > hypervisor > instance)
height: 1
chart: tree
data_source:

default:
manager: openstack-region
layout: hierarchy
hierarchy_layers:

0:
name: Region1
kind:

1:
kind: os_aggregate_zone

2:
kind: os_hypervisor
target: in_os_aggregate_zone

3:
kind: os_server
target: on_os_hypervisor

52 Chapter 6. Architect Document

The Architect Documentation, Release 0.2.0

Another example would be filtering of resources by tenant or stack attributions. This reduces the number of nodes to
the reasonable amount.

Inter-graphs

On other hand you want to combine several graphs to create one overlaying graph. This is very useful to combine in
other ways undelated resources. For example we can say that OpenStack Server or AWS Instance and Salt
Minion are really the same resources.

name: Hive-plot
data_source:

default:
manager: openstack-project
layout: graph
filter_node_types:
- os_server

6.3 Quantitative Data Analysis

With the relational information we are now able to corellate resources and joined topologies from varius information
sources. This gives you the real power, while having the underlying relational structure, you can gather unstructured
metrics, events, alarms and put them into proper context in you managed resources.

The metrics collected from you infrastrucute by means of local monitorin system can be assigned to various vertices
and edges in your network. This can give you more insight to the utilisation of depicted infrastructures.

6.3.1 Query Options

Time-series Metrics

Parameters that apply only for the range metrics.

start Time range start.

end Time range end.

step Query resolution step width.

Instant Metric

Parameters that apply only for the intant meters.

moment Single moment in time.

6.3.2 Alarm Options

Following lists show allowed values for alarm functions, the alarm arithmetic operators and aggregation function for
range meters.

6.3. Quantitative Data Analysis 53

The Architect Documentation, Release 0.2.0

Supported Time-series Aggregations

avg Arithmetic average of the series values.

min Use the minimal value from series.

max Use the maximal value from series.

sum Sum the values together.

6.3.3 Advanced Usage

You can have the following query to the prometheus server that gives you the rate of error response codes goint through
a HAproxy for example.

sum(irate(haproxy_http_response_5xx{
proxy=~"glance.*",
sv="FRONTEND"

}[5m]))

Or you can have the query with the same result to the InfluxDB server:

SELECT sum("count")
FROM "openstack_glance_http_response_times"
WHERE "hostname" =~ /$server/

AND "http_status" = '5xx'
AND $timeFilter

GROUP BY time($interval)
fill(0)

Having these metrics you can assign numerical properties of your relational nodes with these values and use them in
correct context.

6.4 Network Graph Visualizations

Graph drawing or network diagram is a pictorial representation of the vertices and edges of a graph. This drawing
should not be confused with the graph itself, very different layouts can correspond to the same graph. In the abstract,
all that matters is which pairs of vertices are connected by edges. In the concrete, however, the arrangement of these
vertices and edges within a drawing affects its understandability, usability, fabrication cost, and aesthetics.

The problem gets worse, if the graph changes over time by adding and deleting edges (dynamic graph drawing) and
the goal is to preserve the user’s mental map.

6.4.1 Arc Diagram

An arc diagram is a style of graph drawing, in which the vertices of a graph are placed along a line in the Euclidean
plane, with edges being drawn as semicircles in one of the two halfplanes bounded by the line, or as smooth curves
formed by sequences of semicircles. In some cases, line segments of the line itself are also allowed as edges, as long
as they connect only vertices that are consecutive along the line.

The use of the phrase arc diagram for this kind of drawings follows the use of a similar type of diagram by Wattenberg
(2002) to visualize the repetition patterns in strings, by using arcs to connect pairs of equal substrings. However, this
style of graph drawing is much older than its name, dating back to the work of Saaty (1964) and Nicholson (1968),

54 Chapter 6. Architect Document

The Architect Documentation, Release 0.2.0

Fig. 2: OpenStack project resources in Arc diagram (cca 100 resources)

who used arc diagrams to study crossing numbers of graphs. An older but less frequently used name for arc diagrams
is linear embeddings.

Heer, Bostock & Ogievetsky wrote that arc diagrams “may not convey the overall structure of the graph as effectively
as a two-dimensional layout”, but that their layout makes it easy to display multivariate data associated with the
vertices of the graph.

References

• https://en.wikipedia.org/wiki/Arc_diagram

• https://bl.ocks.org/rpgove/53bb49d6ed762139f33bdaea1f3a9e1c Arc diagram

• http://bl.ocks.org/sjengle/5431779 D3 Arc Diagram

6.4.2 Force-Directed Graph

A Force-directed graph drawing algorithms are used for drawing graphs in an aesthetically pleasing way. Their
purpose is to position the nodes of a graph in two-dimensional or three-dimensional space so that all the edges are of
more or less equal length and there are as few crossing edges as possible, by assigning forces among the set of edges
and the set of nodes, based on their relative positions, and then using these forces either to simulate the motion of the
edges and nodes or to minimize their energy.

While graph drawing can be a difficult problem, force-directed algorithms, being physical simulations, usually require
no special knowledge about graph theory such as planarity.

Good-quality results can be achieved for graphs of medium size (up to 50–500 vertices), the results obtained have
usually very good results based on the following criteria: uniform edge length, uniform vertex distribution and showing
symmetry. This last criterion is among the most important ones and is hard to achieve with any other type of algorithm.

References

• https://en.wikipedia.org/wiki/Force-directed_graph_drawing

• https://bl.ocks.org/shimizu/e6209de87cdddde38dadbb746feaf3a3 shimizu’s D3 v4 - force layout

• https://bl.ocks.org/mbostock/3750558 Mike Bostock’s Sticky Force Layout

• https://bl.ocks.org/emeeks/302096884d5fbc1817062492605b50dd D3v4 Constraint-Based Layout

6.4. Network Graph Visualizations 55

https://en.wikipedia.org/wiki/Arc_diagram
https://bl.ocks.org/rpgove/53bb49d6ed762139f33bdaea1f3a9e1c
http://bl.ocks.org/sjengle/5431779
https://en.wikipedia.org/wiki/Force-directed_graph_drawing
https://bl.ocks.org/shimizu/e6209de87cdddde38dadbb746feaf3a3
https://bl.ocks.org/mbostock/3750558
https://bl.ocks.org/emeeks/302096884d5fbc1817062492605b50dd

The Architect Documentation, Release 0.2.0

Fig. 3: Kubernetes cluster in Force-directed graph

Fig. 4: Whole OpenStack cloud in Force-directed graph (cca 3000 resources)

56 Chapter 6. Architect Document

The Architect Documentation, Release 0.2.0

• http://bl.ocks.org/biovisualize/5801758 dag layout

• http://bl.ocks.org/bobbydavid/5841683 DAG visualization

• https://bl.ocks.org/emeeks/302096884d5fbc1817062492605b50dd D3v4 Constraint-Based Layout

• https://bl.ocks.org/denisemauldin/cdd667cbaf7b45d600a634c8ae32fae5 Filtering Nodes on Force-Directed
Graphs (D3 V4)

6.4.3 Hierarchical Edge Bundling

A hierarchical edge bundling is a new method for visualizing such compound graphs. Our approach is based on
visually bundling the adjacency edges, i.e., non-hierarchical edges, together. We realize this as follows. We assume
that the hierarchy is shown via a standard tree visualization method. Next, we bend each adjacency edge, modeled as
a B-spline curve, toward the polyline defined by the path via the inclusion edges from one node to another.

Fig. 5: Hierarchical edge bundling of SaltStack services and their relations (cca 100 nodes)

This hierarchical bundling reduces visual clutter and also visualizes implicit adjacency edges between parent nodes
that are the result of explicit adjacency edges between their respective child nodes. Furthermore, hierarchical edge
bundling is a generic method which can be used in conjunction with existing tree visualization techniques.

References

• http://www.win.tue.nl/vis1/home/dholten/papers/bundles_infovis.pdf

• https://www.win.tue.nl/vis1/home/dholten/papers/forcebundles_eurovis.pdf

• https://bl.ocks.org/mbostock/7607999 Hierarchical Edge Bundling

6.4.4 Hive Plot

The hive plot is a visualization method for drawing networks. Nodes are mapped to and positioned on radially dis-
tributed linear axes — this mapping is based on network structural properties. Edges are drawn as curved links. Simple

6.4. Network Graph Visualizations 57

http://bl.ocks.org/biovisualize/5801758
http://bl.ocks.org/bobbydavid/5841683
https://bl.ocks.org/emeeks/302096884d5fbc1817062492605b50dd
https://bl.ocks.org/denisemauldin/cdd667cbaf7b45d600a634c8ae32fae5
http://www.win.tue.nl/vis1/home/dholten/papers/bundles_infovis.pdf
https://www.win.tue.nl/vis1/home/dholten/papers/forcebundles_eurovis.pdf
https://bl.ocks.org/mbostock/7607999

The Architect Documentation, Release 0.2.0

and interpretable.

Fig. 6: Kubernetes cluster in Hive plot

The purpose of the hive plot is to establish a new baseline for visualization of large networks — a method that is both
general and tunable and useful as a starting point in visually exploring network structure.

References

• http://mkweb.bcgsc.ca/linnet/

• https://bost.ocks.org/mike/hive/

6.4.5 Adjacency Matrix

An adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether
pairs of vertices are adjacent or not in the graph.

In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the
graph is undirected, the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and
eigenvectors of its adjacency matrix is studied in spectral graph theory.

The adjacency matrix should be distinguished from the incidence matrix for a graph, a different matrix representation
whose elements indicate whether vertex–edge pairs are incident or not, and degree matrix which contains information
about the degree of each vertex.

References

• https://en.wikipedia.org/wiki/Adjacency_matrix

• https://github.com/micahstubbs/d3-adjacency-matrix-layout

• https://bl.ocks.org/micahstubbs/7f360cc66abfa28b400b96bc75b8984e Micah Stubbs’s adjacency matrix layout

58 Chapter 6. Architect Document

http://mkweb.bcgsc.ca/linnet/
https://bost.ocks.org/mike/hive/
https://en.wikipedia.org/wiki/Adjacency_matrix
https://github.com/micahstubbs/d3-adjacency-matrix-layout
https://bl.ocks.org/micahstubbs/7f360cc66abfa28b400b96bc75b8984e

The Architect Documentation, Release 0.2.0

Fig. 7: Whole OpenStack cloud in Hive plot (cca 10 000 resources)

Fig. 8: Adjacency matrix of OpenStack project’s resources (cca 100 nodes)

6.4. Network Graph Visualizations 59

The Architect Documentation, Release 0.2.0

6.4.6 Sankey Diagram

Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is shown proportionally to
the flow quantity. Sankey diagrams put a visual emphasis on the major transfers or flows within a system. They
are helpful in locating dominant contributions to an overall flow. Often, Sankey diagrams show conserved quantities
within defined system boundaries.

Sankey diagrams are named after Irish Captain Matthew Henry Phineas Riall Sankey, who used this type of diagram
in 1898 in a classic figure (see panel on the right) showing the energy efficiency of a steam engine. While the first
charts in black and white were merely used to display one type of flow (e.g. steam), using colors for different types of
flows has added more degrees of freedom to Sankey diagrams.

One of the most famous Sankey diagrams is Charles Minard’s Map of Napoleon’s Russian Campaign of 1812. It is
a flow map, overlaying a Sankey diagram onto a geographical map. It was created in 1869, so it actually predates
Sankey’s ‘first’ Sankey diagram of 1898.

References

• https://en.wikipedia.org/wiki/Sankey_diagram

• https://github.com/FabricioRHS/skd3

• https://bl.ocks.org/emeeks/e9d64d27f286e61493c9 Sankey Particles IV

6.4.7 Alluvial Diagram

Alluvial diagrams are a type of flow diagram originally developed to represent changes in network structure over time.
In allusion to both their visual appearance and their emphasis on flow, alluvial diagrams are named after alluvial fans
that are naturally formed by the soil deposited from streaming water.

References

• https://en.wikipedia.org/wiki/Alluvial_diagram

• http://bl.ocks.org/igorzilla/3086583 Alluvial Diagram

6.5 Hierarchical Visualizations

Tree graphs are frequently drawn as node-link diagrams in which the vertices are represented as disks, boxes, or textual
labels and the edges are represented as line segments, polylines, or curves in the Euclidean plane.

Node-link diagrams can be traced back to the 13th century work of Ramon Llull, who drew diagrams of this type for
complete graphs in order to analyze all pairwise combinations among sets of metaphysical concepts.

6.5.1 Dendrogram, Reingold–Tilford Tree

The dendrograms are node-link diagrams that place leaf nodes of the tree at the same depth. Dendograms are typically
less compact than tidy trees, but are useful when all the leaves should be at the same level, such as for hierarchical
clustering or phylogenetic tree diagrams.

60 Chapter 6. Architect Document

https://en.wikipedia.org/wiki/Sankey_diagram
https://github.com/FabricioRHS/skd3
https://bl.ocks.org/emeeks/e9d64d27f286e61493c9
https://en.wikipedia.org/wiki/Alluvial_diagram
http://bl.ocks.org/igorzilla/3086583

The Architect Documentation, Release 0.2.0

Fig. 9: SaltStack services in Hierarchical edge bundle

References

• https://en.wikipedia.org/wiki/Dendrogram

• https://en.wikipedia.org/wiki/Radial_tree

• http://ncss.wpengine.netdna-cdn.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Hierarchical_
Clustering-Dendrograms.pdf

• http://www.meccanismocomplesso.org/en/dendrogramma-d3-parte1/

• https://bl.ocks.org/mbostock/4063570 Cluster Dendrogram

• http://bl.ocks.org/mbostock/4063550 Radial Reingold–Tilford Tree

• http://bl.ocks.org/mbostock/4339184 Reingold–Tilford Tree

6.5.2 Sunburst Chart

A ring chart, also known as a sunburst chart or a multilevel pie chart, is used to visualize hierarchical data, depicted
by concentric circles. The circle in the centre represents the root node, with the hierarchy moving outward from the
center. A segment of the inner circle bears a hierarchical relationship to those segments of the outer circle which lie
within the angular sweep of the parent segment.

The partition layout produces adjacency diagrams: a space-filling variant of a node-link tree diagram. Rather than
drawing a link between parent and child in the hierarchy, nodes are drawn as solid areas (either arcs or rectangles),
and their placement relative to other nodes reveals their position in the hierarchy. The size of the nodes encodes a
quantitative dimension that would be difficult to show in a node-link diagram.

6.5. Hierarchical Visualizations 61

https://en.wikipedia.org/wiki/Dendrogram
https://en.wikipedia.org/wiki/Radial_tree
http://ncss.wpengine.netdna-cdn.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Hierarchical_Clustering-Dendrograms.pdf
http://ncss.wpengine.netdna-cdn.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Hierarchical_Clustering-Dendrograms.pdf
http://www.meccanismocomplesso.org/en/dendrogramma-d3-parte1/
https://bl.ocks.org/mbostock/4063570
http://bl.ocks.org/mbostock/4063550
http://bl.ocks.org/mbostock/4339184

The Architect Documentation, Release 0.2.0

Fig. 10: SaltStack services in Sunburst Diagram

References

• https://en.wikipedia.org/wiki/Pie_chart

• https://bl.ocks.org/mbostock/4063423 Sunburst Partition

6.5.3 Circle Packing

Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the
smallest possible larger circle. Resources lower in hierarchy are diaplayed as circles with lower-level resources as
inner circles.

References

• https://en.wikipedia.org/wiki/Circle_packing_in_a_circle

• https://bl.ocks.org/mbostock/7607535 Zoomable Circle Packing

• http://bl.ocks.org/vicapow/3d24f96c240eeb8d14e3 circle packing with depth dependent padding

6.5.4 Treemap

Treemap is a space-constrained visualization of hierarchical structures. It is very effective in showing attributes of leaf
nodes using size and color coding. Treemap enables users to compare nodes and sub-trees even at varying depth in the
tree, and help them spot patterns and exceptions. Treemap was first designed by Ben Shneiderman during the 1990s.

62 Chapter 6. Architect Document

https://en.wikipedia.org/wiki/Pie_chart
https://bl.ocks.org/mbostock/4063423
https://en.wikipedia.org/wiki/Circle_packing_in_a_circle
https://bl.ocks.org/mbostock/7607535
http://bl.ocks.org/vicapow/3d24f96c240eeb8d14e3

The Architect Documentation, Release 0.2.0

Fig. 11: SaltStack services in Circle Packing

For more information, read the historical summary of treemaps, their growing set of applications, and the many other
implementations. Treemaps are a continuing topic of research and application at the HCIL.

When the color and size dimensions are correlated in some way with the tree structure, one can often easily see patterns
that would be difficult to spot in other ways, such as if a certain color is particularly relevant. A second advantage of
treemaps is that, by construction, they make efficient use of space. As a result, they can legibly display thousands of
items on the screen simultaneously.

References

• https://en.wikipedia.org/wiki/Treemapping

• https://bl.ocks.org/shimizu/6d60e554dcbba406721e73ed5afdf713 D3 v4 - Treemap

• http://www.cs.umd.edu/hcil/treemap/

• http://www.cs.umd.edu/hcil/treemap-history/

• http://www.billdwhite.com/wordpress/2012/12/16/d3-treemap-with-title-headers/

6.5.5 Voronoi Treemap

Voronoi treemaps are an alternative to traditional rectangular treemaps for visualizing hierarchical data. Like rectan-
gular treemaps, Voronoi treemaps represent hierarchical data by dividing the canvas region into cells for each node
at the top of the hierarchy, and then further dividing each of these cells for the children of those nodes. The organic
shapes created by the Voronoi treemap can be easier to distinguish sibling nodes from nodes in other branches of the
hierarchy. Voronoi treemaps can also be fit to non-rectangular canvases, and are often more aesthetically pleasing.

6.5. Hierarchical Visualizations 63

https://en.wikipedia.org/wiki/Treemapping
https://bl.ocks.org/shimizu/6d60e554dcbba406721e73ed5afdf713
http://www.cs.umd.edu/hcil/treemap/
http://www.cs.umd.edu/hcil/treemap-history/
http://www.billdwhite.com/wordpress/2012/12/16/d3-treemap-with-title-headers/

The Architect Documentation, Release 0.2.0

References

• http://cse512-14w.github.io/fp-plvines-djpeter/

• http://cse512-14w.github.io/fp-plvines-djpeter/demo.html

• http://cse512-14w.github.io/fp-plvines-djpeter/final/paper-plvines-djpeter.pdf

6.5.6 Orbital Layout

An animated hierarchical layout that creates orbits from nested data.

• https://github.com/emeeks/d3.layout.orbit

• http://bl.ocks.org/emeeks/068ef3e4106e155467a3 Orbital Layout of D3.js API

6.6 DAG Visualizations

A directed acyclic graph (DAG), is a finite directed graph with no directed cycles. That is, it consists of finitely many
vertices and edges, with each edge directed from one vertex to another, such that there is no way to start at any vertex
v and follow a consistently-directed sequence of edges that eventually loops back to v again. Equivalently, a DAG is a
directed graph that has a topological ordering, a sequence of the vertices such that every edge is directed from earlier
to later in the sequence.

6.6.1 Layered Graph

Layered graph drawing or hierarchical graph drawing is a type of graph drawing in which the vertices of a directed
graph are drawn in horizontal rows or layers with the edges generally directed downwards. It is also known as
Sugiyama-style graph drawing after Kozo Sugiyama, who first developed this drawing style.

References

• https://en.wikipedia.org/wiki/Layered_graph_drawing

• https://github.com/dagrejs/dagre-d3

• https://github.com/jdk137/dag

• https://bl.ocks.org/jebeck/89fd1b6083a19d7f644a A dagre dependency graph

• http://www.samsarin.com/project/dagre-d3/latest/demo/hover.html

6.7 Numerical Visualizations

6.7.1 Progress Bar

A progress bar is a graphical control element used to visualize the progression of an extended computer operation,
such as a download, file transfer, or installation. Sometimes, the graphic is accompanied by a textual representation of
the progress in a percent format.

The concept of a progress bar was invented before digital computing. In 1896 Karol Adamiecki developed a chart
which he called a harmonogram, which is better known today as a Gantt chart. Adamiecki did not publish his chart

64 Chapter 6. Architect Document

http://cse512-14w.github.io/fp-plvines-djpeter/
http://cse512-14w.github.io/fp-plvines-djpeter/demo.html
http://cse512-14w.github.io/fp-plvines-djpeter/final/paper-plvines-djpeter.pdf
https://github.com/emeeks/d3.layout.orbit
http://bl.ocks.org/emeeks/068ef3e4106e155467a3
https://en.wikipedia.org/wiki/Layered_graph_drawing
https://github.com/dagrejs/dagre-d3
https://github.com/jdk137/dag
https://bl.ocks.org/jebeck/89fd1b6083a19d7f644a
http://www.samsarin.com/project/dagre-d3/latest/demo/hover.html

The Architect Documentation, Release 0.2.0

until 1931, however, and then only in Polish. The chart thus now bears the name of Henry Gantt (1861–1919), who
designed his chart around the years 1910-1915 and popularized it in the west.

References

• https://en.wikipedia.org/wiki/Progress_bar

• http://bl.ocks.org/brattonc/d54d1c9d33aa13491279 D3 Bar Stacker Gauge

• http://pablomolnar.github.io/radial-progress-chart/

6.7.2 Gauge

A gauge or gage, in science and engineering, is a device used to make measurements or in order to display certain
dimensional information. A wide variety of tools exist which serve such functions, ranging from simple pieces of
material against which sizes can be measured to complex pieces of machinery. Depending on usage, a gauge can be
described as “a device for measuring and displaying a physical quantity”,

References

• http://bl.ocks.org/brattonc/5e5ce9beee483220e2f6 D3 Liquid Fill Gauge

• http://bl.ocks.org/bill-kidwell/dc7062e045a11b44fdc80e4c1e47e20f google style gauges using javascript d3.js
v4

6.7.3 Pie Chart, Doughnut Chart

A pie chart (or a circle chart) is a circular statistical graphic which is divided into slices to illustrate numerical
proportion. In a pie chart, the arc length of each slice (and consequently its central angle and area), is proportional to
the quantity it represents. While it is named for its resemblance to a pie which has been sliced, there are variations
on the way it can be presented. The earliest known pie chart is generally credited to William Playfair’s Statistical
Breviary of 1801.

A 3d pie cake, or perspective pie cake, is used to give the chart a 3D look. Often used for aesthetic reasons, the third
dimension does not improve the reading of the data; on the contrary, these plots are difficult to interpret because of
the distorted effect of perspective associated with the third dimension. The use of superfluous dimensions not used to
display the data of interest is discouraged for charts in general, not only for pie charts.

A doughnut chart (also spelled donut) is a variant of the pie chart, with a blank center allowing for additional informa-
tion about the data as a whole to be included. Doughnut charts are similar to pie charts in that their aim is to illustrate
proportions. This type of circular graph can support multiple statistics at once and it provides a better data intensity
ratio to standard pie charts.

The polar area diagram is similar to a usual pie chart, except sectors have equal angles and differ rather in how far
each sector extends from the center of the circle. The polar area diagram is used to plot cyclic phenomena (e.g., counts
of deaths by month). For example, if the counts of deaths in each month for a year are to be plotted then there will be
12 sectors (one per month) all with the same angle of 30 degrees each. The radius of each sector would be proportional
to the square root of the death count for the month, so the area of a sector represents the number of deaths in a month.
If the death count in each month is subdivided by cause of death, it is possible to make multiple comparisons on one
diagram, as is seen in the polar area diagram famously developed by Florence Nightingale.

A ring chart, also known as a sunburst chart or a multilevel pie chart, is used to visualize hierarchical data, depicted
by concentric circles. The circle in the centre represents the root node, with the hierarchy moving outward from the

6.7. Numerical Visualizations 65

https://en.wikipedia.org/wiki/Progress_bar
http://bl.ocks.org/brattonc/d54d1c9d33aa13491279
http://pablomolnar.github.io/radial-progress-chart/
http://bl.ocks.org/brattonc/5e5ce9beee483220e2f6
http://bl.ocks.org/bill-kidwell/dc7062e045a11b44fdc80e4c1e47e20f

The Architect Documentation, Release 0.2.0

center. A segment of the inner circle bears a hierarchical relationship to those segments of the outer circle which lie
within the angular sweep of the parent segment.

A spie chart comparing number of students with student costs across four different schools A variant of the polar area
chart is the spie chart designed by Dror Feitelson. This superimposes a normal pie chart with a modified polar area
chart to permit the comparison of two sets of related data. The base pie chart represents the first data set in the usual
way, with different slice sizes. The second set is represented by the superimposed polar area chart, using the same
angles as the base, and adjusting the radii to fit the data. For example, the base pie chart could show the distribution
of age and gender groups in a population, and the overlay their representation among road casualties. Age and gender
groups that are especially susceptible to being involved in accidents then stand out as slices that extend beyond the
original pie chart.

The square charts are a rare form of pie charts that use squares instead of circles to represent percentages. Similar to
basic circular pie charts, square pie charts take each percentage out of a total 100%.

References

• https://en.wikipedia.org/wiki/Pie_chart

• https://bl.ocks.org/bill-kidwell/2d09c9892747495592a7eb009d4d238d 3D Donut (d3.js v4)

• https://naver.github.io/billboard.js/demo/#Chart.PieChart

• https://naver.github.io/billboard.js/demo/#Chart.DonutChart

• http://d3pie.org/

6.7.4 Bullet Graph

A bullet graph is a variation of a bar graph developed by Stephen Few. Seemingly inspired by the traditional ther-
mometer charts and progress bars found in many dashboards, the bullet graph serves as a replacement for dashboard
gauges and meters. Bullet graphs were developed to overcome the fundamental issues of gauges and meters: they
typically display too little information, require too much space, and are cluttered with useless and distracting decora-
tion. The bullet graph features a single, primary measure (for example, current year-to-date revenue), compares that
measure to one or more other measures to enrich its meaning (for example, compared to a target), and displays it in the
context of qualitative ranges of performance, such as poor, satisfactory, and good. The qualitative ranges are displayed
as varying intensities of a single hue to make them discernible by those who are color blind and to restrict the use of
colors on the dashboard to a minimum.

References

• https://en.wikipedia.org/wiki/Bullet_graph

• https://github.com/GordonSmith/d3-bullet

6.7.5 Isotype

Isotype (International System Of Typographic Picture Education) is a method of showing social, technological, bi-
ological and historical connections in pictorial form. It consisted of a set of standardized and abstracted pictorial
symbols to represent social-scientific data with specific guidelines on how to combine the identical figures using serial
repetition.

66 Chapter 6. Architect Document

https://en.wikipedia.org/wiki/Pie_chart
https://bl.ocks.org/bill-kidwell/2d09c9892747495592a7eb009d4d238d
https://naver.github.io/billboard.js/demo/#Chart.PieChart
https://naver.github.io/billboard.js/demo/#Chart.DonutChart
http://d3pie.org/
https://en.wikipedia.org/wiki/Bullet_graph
https://github.com/GordonSmith/d3-bullet

The Architect Documentation, Release 0.2.0

References

• https://en.wikipedia.org/wiki/Isotype_(picture_language)

• http://bl.ocks.org/alansmithy/d832fc03f6e6a91e99f4 Pictogram grid in d3js

• https://bl.ocks.org/lelandlee/da2312cfbfcb5a311e68 Isotype - Squared

• https://bl.ocks.org/lelandlee/e50859751f3b096e3b27 Isotype Donut Art?

• http://bl.ocks.org/alandunning/51c76ec99c3ffee2fde6923ac14a4dd4 Bubble Matrix Chart V4

6.8 Time-series Visualizations

6.8.1 Line Chart

A line chart or line graph is a type of chart which displays information as a series of data points called ‘markers’
connected by straight line segments. It is a basic type of chart common in many fields. It is similar to a scatter plot
except that the measurement points are ordered (typically by their x-axis value) and joined with straight line segments.
A line chart is often used to visualize a trend in data over intervals of time – a time series – thus the line is often drawn
chronologically. In these cases they are known as run charts.

References

• https://en.wikipedia.org/wiki/Line_chart

• https://naver.github.io/billboard.js/demo/#Chart.TimeseriesChart

• https://naver.github.io/billboard.js/demo/#Chart.SplineChart

• https://bl.ocks.org/d3noob/ced1b9b18bd8192d2c898884033b5529 v4 curve interpolation comparison

• http://bl.ocks.org/emmasaunders/c25a147970def2b02d8c7c2719dc7502 Interpolation (v4)

6.8.2 Area Chart

An area chart or area graph displays graphically quantitative data. It is based on the line chart. The area between axis
and line are commonly emphasized with colors, textures and hatchings. Commonly one compares with an area chart
two or more quantities.

Area charts which use vertical and horizontal lines to connect the data points in a series forming a step-like progression
are called step-area charts.

Area charts in which data points are connected by smooth curves instead of straight lines are called spline-area charts.

References

• https://en.wikipedia.org/wiki/Area_chart

• https://naver.github.io/billboard.js/demo/#Chart.AreaChart

• https://naver.github.io/billboard.js/demo/#Chart.StackedAreaChart

6.8. Time-series Visualizations 67

https://en.wikipedia.org/wiki/Isotype_(picture_language
http://bl.ocks.org/alansmithy/d832fc03f6e6a91e99f4
https://bl.ocks.org/lelandlee/da2312cfbfcb5a311e68
https://bl.ocks.org/lelandlee/e50859751f3b096e3b27
http://bl.ocks.org/alandunning/51c76ec99c3ffee2fde6923ac14a4dd4
https://en.wikipedia.org/wiki/Line_chart
https://naver.github.io/billboard.js/demo/#Chart.TimeseriesChart
https://naver.github.io/billboard.js/demo/#Chart.SplineChart
https://bl.ocks.org/d3noob/ced1b9b18bd8192d2c898884033b5529
http://bl.ocks.org/emmasaunders/c25a147970def2b02d8c7c2719dc7502
https://en.wikipedia.org/wiki/Area_chart
https://naver.github.io/billboard.js/demo/#Chart.AreaChart
https://naver.github.io/billboard.js/demo/#Chart.StackedAreaChart

The Architect Documentation, Release 0.2.0

6.8.3 Radar Chart

A radar chart is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or
more quantitative variables represented on axes starting from the same point. The relative position and angle of the
axes is typically uninformative.

The radar chart is also known as web chart, spider chart, star chart, star plot, cobweb chart, irregular polygon, polar
chart, or Kiviat diagram. It is equivalent to a parallel coordinates plot in polar coordinates.

References

• https://en.wikipedia.org/wiki/Radar_chart

• http://bl.ocks.org/nbremer/6506614 D3.js - Radar Chart or Spider Chart

6.8.4 Bar Chart

A bar chart or bar graph is a chart or graph that presents categorical data with rectangular bars with heights or lengths
proportional to the values that they represent. The bars can be plotted vertically or horizontally.

A bar graph shows comparisons among discrete categories. One axis of the chart shows the specific categories being
compared, and the other axis represents a measured value. Some bar graphs present bars clustered in groups of more
than one, showing the values of more than one measured variable.

Bar graphs can also be used for more complex comparisons of data with grouped bar charts and stacked bar charts. In
a grouped bar chart, for each categorical group there are two or more bars. These bars are color-coded to represent
a particular grouping. For example, a business owner with two stores might make a grouped bar chart with different
colored bars to represent each store: the horizontal axis would show the months of the year and the vertical axis
would show the revenue. Alternatively, a stacked bar chart could be used. The stacked bar chart stacks bars that
represent different groups on top of each other. The height of the resulting bar shows the combined result of the
groups. However, stacked bar charts are not suited to datasets where some groups have negative values. In such cases,
grouped bar chart are preferable.

References

• https://en.wikipedia.org/wiki/Bar_chart

• https://naver.github.io/billboard.js/demo/#Chart.BarChart

• https://naver.github.io/billboard.js/demo/#Chart.StackedBarChart

6.8.5 Radial Bar Chart

References

• http://bl.ocks.org/kgryte/5926740 Nightingale’s Rose + D3.js

6.8.6 Calendar Heat Map

A heat map (or heatmap) is a graphical representation of data where the individual values contained in a matrix are
represented as colors. The term ‘heat map’ was originally coined and trademarked by software designer Cormac
Kinney in 1991, to describe a 2D display depicting financial market information, though similar plots such as shading
matrices have existed for over a century.

68 Chapter 6. Architect Document

https://en.wikipedia.org/wiki/Radar_chart
http://bl.ocks.org/nbremer/6506614
https://en.wikipedia.org/wiki/Bar_chart
https://naver.github.io/billboard.js/demo/#Chart.BarChart
https://naver.github.io/billboard.js/demo/#Chart.StackedBarChart
http://bl.ocks.org/kgryte/5926740

The Architect Documentation, Release 0.2.0

References

• https://bl.ocks.org/alansmithy/6fd2625d3ba2b6c9ad48 Heatmap Calendar in d3js

• https://github.com/wa0x6e/cal-heatmap

• http://prcweb.co.uk/lab/energy/ Visualisation of domestic energy consumption

6.9 Temporal Visualizations

6.9.1 Timeline

• http://bl.ocks.org/denisemauldin/e6da337734f855c2a89666afb11dc329 d3.layout.timeline categorized time-
lines

6.9. Temporal Visualizations 69

https://bl.ocks.org/alansmithy/6fd2625d3ba2b6c9ad48
https://github.com/wa0x6e/cal-heatmap
http://prcweb.co.uk/lab/energy/
http://bl.ocks.org/denisemauldin/e6da337734f855c2a89666afb11dc329

	The Architect System
	Architect Introduction
	The Project History
	PhD Thesis Abstract

	Architect Components
	Inventory Component
	Manager Component
	Monitor Component
	Document Component

	Architect Services Installation
	Service architect-api Installation
	Service architect-worker Installation
	Service architect-client Installation
	Complete Installation Scripts

	Architect Inventory
	Architect Inventory Backends
	Reclass Inventory
	Hierarchical Inventory

	Architect Inventory Consumers
	SaltStack Consumer
	Ansible Consumer
	Puppet Consumer
	Chef Consumer

	Architect Manager
	Configuration Management
	SaltStack Infrastructures

	Cloud Resource Management
	Amazon Web Services
	OpenStack Cloud Resources

	Container Resource Management
	Kubernetes Clusters

	Template Based Orchestration
	Heat Templates
	TerraForm Templates

	Architect Monitor
	Time-series Monitoring
	Graphite Time-series Database
	InfluxDB Time-series Database
	Prometheus Server

	Architect Repository
	Image Building Overview
	BeagleBone/BeagleBoard Images
	Build Script

	RaspberryPi Images
	Build Script

	Architect Document
	Visual Infographics
	Core Presentation Libraries
	Presentation Helper Libraries

	Relational Data Analysis
	Relational Schema
	Relational Operations

	Quantitative Data Analysis
	Query Options
	Alarm Options
	Advanced Usage

	Network Graph Visualizations
	Arc Diagram
	Force-Directed Graph
	Hierarchical Edge Bundling
	Hive Plot
	Adjacency Matrix
	Sankey Diagram
	Alluvial Diagram

	Hierarchical Visualizations
	Dendrogram, Reingold–Tilford Tree
	Sunburst Chart
	Circle Packing
	Treemap
	Voronoi Treemap
	Orbital Layout

	DAG Visualizations
	Layered Graph

	Numerical Visualizations
	Progress Bar
	Gauge
	Pie Chart, Doughnut Chart
	Bullet Graph
	Isotype

	Time-series Visualizations
	Line Chart
	Area Chart
	Radar Chart
	Bar Chart
	Radial Bar Chart
	Calendar Heat Map

	Temporal Visualizations
	Timeline

