1 Univariate Volatility Models 3
 1.1 Introduction to ARCH Models 3
 1.2 ARCH Modeling 6
 1.3 Forecasting 19
 1.4 Volatility Forecasting 23
 1.5 Value-at-Risk Forecasting 30
 1.6 Volatility Scenarios 33
 1.7 Mean Models 40
 1.8 Volatility Processes 74
 1.9 Using the Fixed Variance process 121
 1.10 Distributions 128
 1.11 Model Results 140
 1.12 Utilities 153
 1.13 Theoretical Background 153

2 Bootstrapping 155
 2.1 Bootstrap Examples 155
 2.2 Confidence Intervals 160
 2.3 Covariance Estimation 165
 2.4 Low-level Interfaces 166
 2.5 Semiparametric Bootstraps 168
 2.6 Parametric Bootstraps 169
 2.7 Independent, Identical Distributed Data (i.i.d.) 170
 2.8 Independent Samples 178
 2.9 Time-series Bootstraps 187
 2.10 References 210

3 Multiple Comparison Procedures 213
 3.1 Multiple Comparisons 213
 3.2 Module Reference 221
 3.3 References 228

4 Unit Root Testing 229
 4.1 Introduction 229
 4.2 Unit Root Testing 230
 4.3 The Unit Root Tests 240
The ARCH toolbox contains routines for:

- Univariate volatility models;
- Bootstrapping;
- Multiple comparison procedures; and
- Unit root tests.

Future plans are to continue to expand this toolbox to include additional routines relevant for the analysis of financial data.
arch.univariate provides both high-level (arch.arch_model()) and low-level methods (see Mean Models) to specify models. All models can be used to produce forecasts either analytically (when tractable) or using simulation-based methods (Monte Carlo or residual Bootstrap).

1.1 Introduction to ARCH Models

ARCH models are a popular class of volatility models that use observed values of returns or residuals as volatility shocks. A basic GARCH model is specified as

\[
\begin{align*}
 r_t &= \mu + \epsilon_t \\
 \epsilon_t &= \sigma_t \epsilon_t \\
 \sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2
\end{align*}
\]

A complete ARCH model is divided into three components:

- a **mean model**, e.g., a constant mean or an ARX;
- a **volatility process**, e.g., a GARCH or an EGARCH process; and
- a **distribution** for the standardized residuals.

In most applications, the simplest method to construct this model is to use the constructor function arch_model().

```python
import pandas_datareader.data as web
from arch import arch_model

start = dt.datetime(2000, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
returns = 100 * sp500['Adj Close'].pct_change().dropna()
am = arch_model(returns)
```
Alternatively, the same model can be manually assembled from the building blocks of an ARCH model

```python
from arch import ConstantMean, GARCH, Normal

am = ConstantMean(returns)
am.volatility = GARCH(1, 0, 1)
am.distribution = Normal()
```

In either case, model parameters are estimated using

```python
res = am.fit()
```

with the following fit output

```
Iteration: 1, Func. Count: 6, Neg. LLF: 5159.58323938
Iteration: 2, Func. Count: 16, Neg. LLF: 5156.09760149
Iteration: 3, Func. Count: 24, Neg. LLF: 5152.29989336
Iteration: 5, Func. Count: 38, Neg. LLF: 5143.86337547
Iteration: 6, Func. Count: 45, Neg. LLF: 5143.0206168
Iteration: 8, Func. Count: 60, Neg. LLF: 5142.07138907
Iteration: 9, Func. Count: 67, Neg. LLF: 5141.416653
Iteration: 10, Func. Count: 73, Neg. LLF: 5141.39212288
Iteration: 12, Func. Count: 85, Neg. LLF: 5141.39023359
Optimization terminated successfully. (Exit mode 0)
Current function value: 5141.39023359
Iterations: 12
Function evaluations: 85
Gradient evaluations: 12
```

```python
print(res.summary())
```

yields

```
Constant Mean - GARCH Model Results
==============================================================================
Dep. Variable: Adj Close R-squared: -0.001
Mean Model: Constant Mean Adj. R-squared: -0.001
Vol Model: GARCH Log-Likelihood: -5141.39
Distribution: Normal AIC: 10290.8
Method: Maximum Likelihood BIC: 10315.4
No. Observations: 3520
Date: Fri, Dec 02 2016 Df Residuals: 3516
Mean Model
==============================================================================
 coef std err t P>|t| 95.0% Conf. Int.
------------------------------------------------------------------------------
mu 0.0531 1.487e-02 3.569 3.581e-04 [2.392e-02, 8.220e-02]
Volatility Model
==============================================================================
 coef std err t P>|t| 95.0% Conf. Int.
------------------------------------------------------------------------------
omega 0.0156 4.932e-03 3.155 1.606e-03 [5.892e-03, 2.523e-02]
alpha[1] 0.0879 1.140e-02 7.710 1.260e-14 [6.554e-02, 0.110]
beta[1] 0.9014 1.183e-02 76.163 0.000 [0.878, 0.925]
```

(continues on next page)
1.1.1 Model Constructor

While models can be carefully specified using the individual components, most common specifications can be specified using a simple model constructor.

```
arch.arch_model(y, x=None, mean='Constant', lags=0, vol='Garch', p=1, o=0, q=1, power=2.0, dist='Normal', hold_back=None, rescale=None)
```

Convenience function to simplify initialization of ARCH models

Parameters

- **y** *(ndarray, Series, None)* – The dependent variable
- **x** *(np.array, DataFrame, optional)* – Exogenous regressors. Ignored if model does not permit exogenous regressors.
- **mean** *(str, optional)* – Name of the mean model. Currently supported options are: ‘Constant’, ‘Zero’, ‘ARX’ and ‘HARX’
- **lags** *(int or list (int), optional)* – Either a scalar integer value indicating lag length or a list of integers specifying lag locations.
- **vol** *(str, optional)* – Name of the volatility model. Currently supported options are: ‘GARCH’ (default), ‘ARCH’, ‘EGARCH’, ‘FIARCH’ and ‘HARCH’
- **p** *(int, optional)* – Lag order of the symmetric innovation
- **o** *(int, optional)* – Lag order of the asymmetric innovation
- **q** *(int, optional)* – Lag order of lagged volatility or equivalent
- **power** *(float, optional)* – Power to use with GARCH and related models
- **dist** *(int, optional)* – Name of the error distribution. Currently supported options are:
 - Normal: ‘normal’, ‘gaussian’ (default)
 - Students’s t: ‘t’, ‘studentst’
 - Skewed Student’s t: ‘skewstudent’, ‘skewt’
 - Generalized Error Distribution: ‘ged’, ‘generalized error”
- **hold_back** *(int)* – Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.

Returns

- **model** – Configured ARCH model

Return type `ARCHModel`

Examples
A basic GARCH(1,1) with a constant mean can be constructed using only the return data

```
>>> from arch.univariate import arch_model
>>> am = arch_model(returns)
```

Alternative mean and volatility processes can be directly specified

```
>>> am = arch_model(returns, mean='AR', lags=2, vol='harch', p=[1, 5, 22])
```

This example demonstrates the construction of a zero mean process with a TARCH volatility process and Student t error distribution

```
>>> am = arch_model(returns, mean='zero', p=1, o=1, q=1,
...     power=1.0, dist='StudentsT')
```

Notes

Input that are not relevant for a particular specification, such as lags when mean='zero', are silently ignored.

1.2 ARCH Modeling

This setup code is required to run in an IPython notebook

[1]: `import warnings
warnings.simplefilter('ignore')`

%matplotlib inline
`import seaborn
seaborn.set_style('darkgrid')`

[2]: `seaborn.mpl.rcParams['figure.figsize'] = (10.0, 6.0)
seaborn.mpl.rcParams['savefig.dpi'] = 90
seaborn.mpl.rcParams['font.family'] = 'sans-serif'
seaborn.mpl.rcParams['font.size'] = 14`

1.2.1 Setup

These examples will all make use of financial data from Yahoo! Finance. This data set can be loaded from `arch.data.sp500`.

[3]: `import datetime as dt
import arch.data.sp500
st = dt.datetime(1988, 1, 1)`
en = dt.datetime(2018, 1, 1)
data = arch.data.sp500.load()
market = data['Adj Close']
returns = 100 * market.pct_change().dropna()
figure = returns.plot()

1.2.2 Specifying Common Models

The simplest way to specify a model is to use the model constructor `arch.arch_model` which can specify most common models. The simplest invocation of `arch` will return a model with a constant mean, GARCH(1,1) volatility process and normally distributed errors.

\[
\begin{align*}
 r_t &= \mu + \epsilon_t \\
 \sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \\
 \epsilon_t &= \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1)
\end{align*}
\]

The model is estimated by calling `fit`. The optional inputs `iter` controls the frequency of output from the optimizer, and `disp` controls whether convergence information is returned. The results class returned offers direct access to the estimated parameters and related quantities, as well as a summary of the estimation results.

GARCH (with a Constant Mean)

The default set of options produces a model with a constant mean, GARCH(1,1) conditional variance and normal errors.
from arch import arch_model

am = arch_model(returns)
res = am.fit(update_freq=5)
print(res.summary())

Iteration: 10, Func. Count: 72, Neg. LLF: 6936.718529994181
Optimization terminated successfully. (Exit mode 0)
Current function value: 6936.718476989043
Iterations: 11
Function evaluations: 79
Gradient evaluations: 11

Constant Mean - GARCH Model Results

<table>
<thead>
<tr>
<th>Dep. Variable:</th>
<th>Adj Close</th>
<th>R-squared:</th>
<th>-0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Model:</td>
<td>Constant Mean</td>
<td>Adj. R-squared:</td>
<td>-0.001</td>
</tr>
<tr>
<td>Vol Model:</td>
<td>GARCH</td>
<td>Log-Likelihood:</td>
<td>-6936.72</td>
</tr>
<tr>
<td>Distribution:</td>
<td>Normal</td>
<td>AIC:</td>
<td>13881.4</td>
</tr>
<tr>
<td>Method:</td>
<td>Maximum Likelihood</td>
<td>BIC:</td>
<td>13907.5</td>
</tr>
<tr>
<td></td>
<td>No. Observations:</td>
<td>5030</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td>Wed, Aug 28 2019</td>
<td>Df Residuals:</td>
<td>5026</td>
</tr>
<tr>
<td>Time:</td>
<td>12:21:54</td>
<td>Df Model:</td>
<td>4</td>
</tr>
</tbody>
</table>

Mean Model

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|------|---------|------|-----|-----------------|
| mu | 0.0564 | 1.149e-02 | 4.906 | 9.302e-07 [3.384e-02,7.887e-02] |

Volatility Model

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|--------------|---------|------|-----|-----------------|
| omega | 0.0175 | 4.683e-03 | 3.738 | 1.854e-04 [8.328e-03,2.669e-02] |
| alpha[1] | 0.1022 | 1.301e-02 | 7.852 | 4.105e-15 [7.665e-02, 0.128] |
| beta[1] | 0.8852 | 1.380e-02 | 64.125 | 0.000 [0.858, 0.912] |

Covariance estimator: robust

plot() can be used to quickly visualize the standardized residuals and conditional volatility.

fig = res.plot(annualize='D')
GJR-GARCH

Additional inputs can be used to construct other models. This example sets \(o \) to 1, which includes one lag of an asymmetric shock which transforms a GARCH model into a GJR-GARCH model with variance dynamics given by

\[
\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \gamma \epsilon_{t-1}^2 I_{[\epsilon_{t-1} < 0]} + \beta \sigma_{t-1}^2
\]

where \(I \) is an indicator function that takes the value 1 when its argument is true.

The log likelihood improves substantially with the introduction of an asymmetric term, and the parameter estimate is highly significant.

```
[6]: am = arch_model(returns, p=1, o=1, q=1)
res = am.fit(update_freq=5, disp='off')
print(res.summary())
```

(continues on next page)
mu 0.0175 1.145e-02 1.529 0.126 [-4.936e-03,3.995e-02]

Volatility Model

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|--------|---------|-------|------|-----------------|
| omega | 0.0196 | 4.051e-03 | 4.830 | 1.362e-06 | [1.163e-02,2.751e-02] |
| alpha[1]| 3.3117e-10 | 1.026e-02 | 3.227e-08 | 1.000 | [-2.011e-02,2.011e-02] |
| gamma[1]| 0.1831 | 2.266e-02 | 8.079 | 6.543e-16 | [0.139, 0.227] |
| beta[1] | 0.8922 | 1.458e-02 | 61.200 | 0.000 | [0.864, 0.921] |

Covariance estimator: robust

TARCH/ZARCH

TARCH (also known as ZARCH) model the volatility using absolute values. This model is specified using `power=1` since the default power, 2, corresponds to variance processes that evolve in squares.

The volatility process in a TARCH model is given by

$$\sigma_t = \omega + \alpha |\epsilon_{t-1}| + \gamma |\epsilon_{t-1} I_{\epsilon_{t-1}<0}| + \beta \sigma_{t-1}$$

More general models with other powers (κ) have volatility dynamics given by

$$\sigma_t^\kappa = \omega + \alpha |\epsilon_{t-1}|^\kappa + \gamma |\epsilon_{t-1} I_{\epsilon_{t-1}<0}|^\kappa + \beta \sigma_{t-1}^\kappa$$

where the conditional variance is $(\sigma_t^\kappa)^{2/\kappa}$.

The TARCH model also improves the fit, although the change in the log likelihood is less dramatic.

```python
[7]: am = arch_model(returns, p=1, o=1, q=1, power=1.0)
res = am.fit(update_freq=5)
print(res.summary())
```

<table>
<thead>
<tr>
<th>Dep. Variable:</th>
<th>Adj Close</th>
<th>R-squared:</th>
<th>-0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Model:</td>
<td>Constant Mean</td>
<td>Adj. R-squared:</td>
<td>-0.000</td>
</tr>
<tr>
<td>Vol Model:</td>
<td>TARCH/ZARCH</td>
<td>Log-Likelihood:</td>
<td>-6799.18</td>
</tr>
<tr>
<td>Distribution:</td>
<td>Normal</td>
<td>AIC:</td>
<td>13608.4</td>
</tr>
<tr>
<td>Method:</td>
<td>Maximum Likelihood</td>
<td>BIC:</td>
<td>13641.0</td>
</tr>
<tr>
<td></td>
<td>No. Observations:</td>
<td>5030</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td>Wed, Aug 28 2019</td>
<td>DF Residuals:</td>
<td>5025</td>
</tr>
<tr>
<td>Time:</td>
<td>12:21:55</td>
<td>DF Model:</td>
<td>5</td>
</tr>
</tbody>
</table>

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|------|---------|-------|------|-----------------|

(continues on next page)
Volatility Model

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|--------|----------|------|------|------------------|
| omega | 0.0258 | 4.100e-03 | 6.299 | 2.986e-10 [1.779e-02,3.386e-02] |
| alpha[1]| 3.0844e-09 | 9.156e-03 | 3.369e-07 | 1.000 [-1.794e-02,1.794e-02] |
| gamma[1]| 0.1707 | 1.601e-02 | 10.664 | 1.499e-26 [0.139, 0.202] |
| beta[1] | 0.9098 | 9.672e-03 | 94.066 | 0.000 [0.891, 0.929] |

Covariance estimator: robust

Student’s T Errors

Financial returns are often heavy tailed, and a Student’s T distribution is a simple method to capture this feature. The call to arch changes the distribution from a Normal to a Students’s T.

The standardized residuals appear to be heavy tailed with an estimated degree of freedom near 10. The log-likelihood also shows a large increase.

```python
[8]: am = arch_model(returns, p=1, o=1, q=1, power=1.0, dist='StudentsT')
res = am.fit(update_freq=5)
print(res.summary())
```

Iteration: 5, Func. Count: 54, Neg. LLF: 6726.104807616888
Optimization terminated successfully. (Exit mode 0)
Current function value: 6722.151184378068
Iterations: 13
Function evaluations: 121
Gradient evaluations: 12

Constant Mean - TARCH/ZARCH Model Results

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|--------|----------|------|------|------------------|
| mu | 0.0143 | 1.091e-02 | 1.311 | 0.190 [-7.080e-03,3.570e-02] |

Distribution

(continues on next page)
1.2.3 Fixing Parameters

In some circumstances, fixed rather than estimated parameters might be of interest. A model-result-like class can be generated using the `fix()` method. The class returned is identical to the usual model result class except that information about inference (standard errors, t-stats, etc) is not available.

In the example, I fix the parameters to a symmetric version of the previously estimated model.

```python
fixed_res = am.fix([0.0235, 0.01, 0.06, 0.0, 0.9382, 8.0])
print(fixed_res.summary())
```

```
Constant Mean - TARCH/ZARCH Model Results
=====================================================================================  
Dep. Variable: Adj Close R-squared: --  
Mean Model: Constant Mean Adj. R-squared: --  
Vol Model: TARCH/ZARCH Log-Likelihood: -6908.93  
Distribution: Standardized Student's t AIC: 13829.9  
Method: User-specified Parameters BIC: 13869.0  
Date: Wed, Aug 28 2019  
Time: 12:21:55  
Mean Model
=====================  
coef  
mu 0.0235  
Volatility Model
=====================  
coef  
omega 0.0100  
alpha[1] 0.0600  
gamma[1] 0.0000  
beta[1] 0.9382  
Distribution
=====================  
coef  
nu 8.0000  

Results generated with user-specified parameters.  
Std. errors not available when the model is not estimated,
```

```python
import pandas as pd
df = pd.concat([res.conditional_volatility, fixed_res.conditional_volatility],  
1)
```

(continues on next page)
1.2.4 Building a Model From Components

Models can also be systematically assembled from the three model components:

- A mean model (`arch.mean`)
 - Zero mean (`ZeroMean`) - useful if using residuals from a model estimated separately
 - Constant mean (`ConstantMean`) - common for most liquid financial assets
 - Autoregressive (`ARX`) with optional exogenous regressors
 - Heterogeneous (`HARX`) autoregression with optional exogenous regressors
 - Exogenous regressors only (`LS`)

- A volatility process (`arch.volatility`)
 - ARCH (`ARCH`)
 - GARCH (`GARCH`)
 - GJR-GARCH (`GARCH` using `o` argument)
 - TARCH/ZARCH (`GARCH` using `power` argument set to 1)
 - Power GARCH and Asymmetric Power GARCH (`GARCH` using `power`)
 - Exponentially Weighted Moving Average Variance with estimated coefficient (`EWMAVariance`)
 - Heterogeneous ARCH (`HARCH`)
 - Parameterless Models
* Exponentially Weighted Moving Average Variance, known as RiskMetrics (EWMAVariance)
* Weighted averages of EWMAs, known as the RiskMetrics 2006 methodology (RiskMetrics2006)
 * A distribution (arch.distribution)
 - Normal (Normal)
 - Standardized Students’s T (StudentsT)

Mean Models

The first choice is the mean model. For many liquid financial assets, a constant mean (or even zero) is adequate. For other series, such as inflation, a more complicated model may be required. These examples make use of Core CPI downloaded from the Federal Reserve Economic Data site.

```python
import arch.data.core_cpi
core_cpi = arch.data.core_cpi.load()
ann_inflation = 100 * core_cpi.CPILFESL.pct_change(12).dropna()
fig = ann_inflation.plot()
```

All mean models are initialized with constant variance and normal errors. For ARX models, the `lags` argument specifies the lags to include in the model.

```python
from arch.univariate import ARX
ar = ARX(ann_inflation, lags=[1, 3, 12])
print(ar.fit().summary())
```

(continues on next page)
Volatility Processes

Volatility processes can be added a a mean model using the \texttt{volatility} property. This example adds an ARCH(5) process to model volatility. The arguments \texttt{iter} and \texttt{disp} are used in \texttt{fit()} to suppress estimation output.

[13]: from arch.univariate import ARCH, GARCH

ar.volatility = ARCH(p=5)
res = ar.fit(update_freq=0, disp='off')
print(res.summary())
Covariance estimator: robust

Plotting the standardized residuals and the conditional volatility shows some large (in magnitude) errors, even when standardized.

```python
[14]: fig = res.plot()
```

![Standardized Residuals](image)

![Conditional Volatility](image)

Distributions

Finally the distribution can be changed from the default normal to a standardized Student’s T using the `distribution` property of a mean model.

The Student’s t distribution improves the model, and the degree of freedom is estimated to be near 8.

```python
[15]: from arch.univariate import StudentsT
    ar.distribution = StudentsT()
```
```python
res = ar.fit(update_freq=0, disp='off')
print(res.summary())
```

AR - ARCH Model Results
==
Dep. Variable:	CPILFESL	R-squared:	0.991
Mean Model:	AR	Adj. R-squared:	0.991
Vol Model:	ARCH	Log-Likelihood:	142.863
Distribution:	Standardized Student's t	AIC:	-263.727
Method:	Maximum Likelihood	BIC:	-213.370
Date:	Wed, Aug 28 2019	Df Residuals:	708
Time:	12:21:57	Df Model:	11
Mean Model		No. Observations:	719

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|----------|---------|-------|-------|------------------|
| Const | 0.0312 | 1.861e-02 | 1.678 | 9.342e-02 | [-5.254e-03, 6.769e-02] |
| CPILFESL[3] | -0.0730 | 3.873e-02 | -1.885 | 5.945e-02 | [-0.149, 2.910e-03] |
| CPILFESL[12] | -0.0236 | 1.316e-02 | -1.791 | 7.330e-02 | [-4.935e-02, 2.224e-03] |

Volatility Model
==
| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|----------|---------|-------|-------|------------------|
| omega | 8.7359e-03 | 2.063e-03 | 4.235 | 2.283e-05 | [4.693e-03, 1.278e-02] |
| alpha[1] | 0.1715 | 5.064e-02 | 3.386 | 7.086e-04 | [7.222e-02, 0.271] |
| alpha[2] | 0.2202 | 6.394e-02 | 3.444 | 5.742e-04 | [9.486e-02, 0.345] |
| alpha[3] | 0.1547 | 6.327e-02 | 2.445 | 1.447e-02 | [3.071e-02, 0.279] |
| alpha[4] | 0.2117 | 7.287e-02 | 2.905 | 3.675e-03 | [6.885e-02, 0.355] |
| alpha[5] | 0.1959 | 7.852e-02 | 2.494 | 1.262e-02 | [4.197e-02, 0.350] |

Distribution
==
| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|----------|---------|-------|-------|------------------|

Covariance estimator: robust

1.2.5 WTI Crude

The next example uses West Texas Intermediate Crude data from FRED. Three models are fit using alternative distributional assumptions. The results are printed, where we can see that the normal has a much lower log-likelihood than either the Standard Student’s T or the Standardized Skew Student’s T – however, these two are fairly close. The closeness of the T and the Skew T indicate that returns are not heavily skewed.

```python
from collections import OrderedDict
import arch.data.wti

crude = arch.data.wti.load()
crude_ret = 100 * crude.DCOILWTICO.dropna().pct_change().dropna()
res_normal = arch_model(crude_ret).fit(disp='off')
res_t = arch_model(crude_ret, dist='t').fit(disp='off')
```
The standardized residuals can be computed by dividing the residuals by the conditional volatility. These are plotted along with the (unstandardized, but scaled) residuals. The non-standardized residuals are more peaked in the center indicating that the distribution is somewhat more heavy tailed than that of the standardized residuals.

```
[17]: std_resid = res_normal.resid / res_normal.conditional_volatility
unit_var_resid = res_normal.resid / res_normal.resid.std()
df = pd.concat([std_resid, unit_var_resid], 1)
df.columns = ['Std Resids', 'Unit Variance Resids']
subplot = df.plot(kind='kde', xlim=(-4, 4))
```
1.3 Forecasting

Multi-period forecasts can be easily produced for ARCH-type models using forward recursion, with some caveats. In particular, models that are non-linear in the sense that they do not evolve using squares or residuals do not normally have analytically tractable multi-period forecasts available.

All models support three methods of forecasting:

- **Analytical**: analytical forecasts are always available for the 1-step ahead forecast due to the structure of ARCH-type models. Multi-step analytical forecasts are only available for models which are linear in the square of the residual, such as GARCH or HARCH.

- **Simulation**: simulation-based forecasts are always available for any horizon, although they are only useful for horizons larger than 1 since the first out-of-sample forecast from an ARCH-type model is always fixed. Simulation-based forecasts make use of the structure of an ARCH-type model to forward simulate using the assumed distribution of residuals, e.g., a Normal or Student’s t.

- **Bootstrap**: bootstrap-based forecasts are similar to simulation based forecasts except that they make use of the standardized residuals from the actual data used in the estimation rather than assuming a specific distribution. Like simulation-based forecasts, bootstrap-based forecasts are only useful for horizons larger than 1. Additionally, the bootstrap forecasting method requires a minimal amount of in-sample data to use prior to producing the forecasts.

This document will use a standard GARCH(1,1) with a constant mean to explain the choices available for forecasting. The model can be described as

\[
\begin{align*}
 r_t & = \mu + \epsilon_t \\
 \epsilon_t & = \sigma_t \epsilon_t \\
 \sigma^2_t & = \omega + \alpha \epsilon^2_{t-1} + \beta \sigma^2_{t-1} \\
 \epsilon_t & \sim N(0,1)
\end{align*}
\]

In code this model can be constructed using data from the S&P 500 using

```python
from arch import arch_model
import pandas_datareader.data as web
import datetime as dt

start = dt.datetime(2000, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
returns = 100 * sp500['Adj Close'].pct_change().dropna()
am = arch_model(returns, vol='Garch', p=1, o=0, q=1, dist='Normal')
```

The model will be estimated using the first 10 years to estimate parameters and then forecasts will be produced for the final 5.

```python
split_date = dt.datetime(2010, 1, 1)
res = am.fit(last_obs=split_date)
```

1.3.1 Analytical Forecasts

Analytical forecasts are available for most models that evolve in terms of the squares of the model residuals, e.g., GARCH, HARCH, etc. These forecasts exploit the relationship \(E_t[\epsilon^2_{t+1}] = \sigma^2_{t+1} \) to recursively compute forecasts.
Variance forecasts are constructed for the conditional variances as

\[
\sigma^2_{t+1} = \omega + \alpha \epsilon^2_t + \beta \sigma_{t-1}^2
\]

(1.8)

\[
\sigma^2_{t+h} = \omega + \alpha E_t[\epsilon^2_{t+h-1}] + \beta E_t[\sigma^2_{t+h-1}] h \geq 2
\]

(1.9)

\[
\sigma^2_{t+h} = \omega + (\alpha + \beta) E_t[\sigma^2_{t+h-1}] h \geq 2
\]

(1.10)

```python
forecasts = res.forecast(horizon=5, start=split_date)
forecasts.variance[split_date:].plot()
```

1.3.2 Simulation Forecasts

Simulation-based forecasts use the model random number generator to simulate draws of the standardized residuals, \(\epsilon_{t+h}\). These are used to generate a pre-specified number of paths of the variances which are then averaged to produce the forecasts. In models like GARCH which evolve in the squares of the residuals, there are few advantages to simulation-based forecasting. These methods are more valuable when producing multi-step forecasts from models that do not have closed form multi-step forecasts such as EGARCH models.

Assume there are \(B\) simulated paths. A single simulated path is generated using

\[
\sigma^2_{t+h,b} = \omega + \alpha \epsilon^2_{t+h-1,b} + \beta \sigma^2_{t+h-1,b}
\]

(1.11)

\[
\epsilon_{t+h,b} = \epsilon_{t+h,b} \sqrt{\sigma^2_{t+h,b}}
\]

(1.12)

where the simulated shocks are \(\epsilon_{t+1,b}, \epsilon_{t+2,b}, \ldots, \epsilon_{t+h,b}\) where \(b\) is included to indicate that the simulations are independent across paths. Note that the first residual, \(\epsilon_t\), is in-sample and so is not simulated.

The final variance forecasts are then computed using the \(B\) simulations

\[
E_t[\epsilon^2_{t+h}] = \sigma^2_{t+h} = B^{-1} \sum_{b=1}^{B} \sigma^2_{t+h,b}
\]

(1.13)

```python
forecasts = res.forecast(horizon=5, start=split_date, method='simulation')
```

1.3.3 Bootstrap Forecasts

Bootstrap-based forecasts are virtually identical to simulation-based forecasts except that the standardized residuals are generated by the model. These standardized residuals are generated using the observed data and the estimated parameters as

\[
\hat{\epsilon}_t = \frac{r_t - \hat{\mu}}{\hat{\sigma}_t}
\]

(1.14)

The generation scheme is identical to the simulation-based method except that the simulated shocks are drawn (i.i.d., with replacement) from \(\hat{\epsilon}_1, \hat{\epsilon}_2, \ldots, \hat{\epsilon}_t\) so that only data available at time \(t\) are used to simulate the paths.

1.3.4 Forecasting Options

The `forecast()` method is attached to a model fit result.

- **params** - The model parameters used to forecast the mean and variance. If not specified, the parameters estimated during the call to `fit` the produced result are used.
- **horizon** - A positive integer value indicating the maximum horizon to produce forecasts.
• **start** - A positive integer or, if the input to the mode is a DataFrame, a date (string, datetime, datetime64 or Timestamp). Forecasts are produced from `start` until the end of the sample. If not provided, `start` is set to the length of the input data minus 1 so that only 1 forecast is produced.

• **align** - One of ‘origin’ (default) or ‘target’ that describes how the forecasts aligned in the output. Origin aligns forecasts to the last observation used in producing the forecast, while target aligns forecasts to the observation index that is being forecast.

• **method** - One of ‘analytic’ (default), ‘simulation’ or ‘bootstrap’ that describes the method used to produce the forecasts. Not all methods are available for all horizons.

• **simulations** - A non-negative integer indicating the number of simulation to use when `method` is ‘simulation’ or ‘bootstrap’

1.3.5 Understanding Forecast Output

Any call to `forecast()` returns a `ARCHModelForecast` object with has 3 core attributes and 1 which may be useful when using simulation- or bootstrap-based forecasts.

The three core attributes are

- **mean** - The forecast conditional mean.
- **variance** - The forecast conditional variance.
- **residual_variance** - The forecast conditional variance of residuals. This will differ from `variance` whenever the model has dynamics (e.g. an AR model) for horizons larger than 1.

Each attribute contains a DataFrame with a common structure.

```python
print(forecasts.variance.tail())
```

which returns

<table>
<thead>
<tr>
<th></th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
<th>h.4</th>
<th>h.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2013-12-24</td>
<td>2013-12-26</td>
<td>2013-12-27</td>
<td>2013-12-30</td>
<td>2013-12-31</td>
</tr>
<tr>
<td></td>
<td>0.489534</td>
<td>0.474691</td>
<td>0.447054</td>
<td>0.421528</td>
<td>0.407544</td>
</tr>
<tr>
<td></td>
<td>0.495875</td>
<td>0.480416</td>
<td>0.454875</td>
<td>0.430024</td>
<td>0.415616</td>
</tr>
<tr>
<td></td>
<td>0.501122</td>
<td>0.483664</td>
<td>0.462167</td>
<td>0.439856</td>
<td>0.422848</td>
</tr>
<tr>
<td></td>
<td>0.509194</td>
<td>0.491932</td>
<td>0.467515</td>
<td>0.448282</td>
<td>0.430246</td>
</tr>
<tr>
<td></td>
<td>0.518614</td>
<td>0.502419</td>
<td>0.475632</td>
<td>0.457368</td>
<td>0.439451</td>
</tr>
</tbody>
</table>

The values in the columns `h.1` are one-step ahead forecast, while values in `h.2`, ..., `h.5` are 2, ..., 5-observation ahead forecasts. The output is aligned so that the Date column is the final data used to generate the forecast, so that `h.1` in row `2013-12-31` is the one-step ahead forecast made using data **up to and including** December 31, 2013.

By default forecasts are only produced for observations after the final observation used to estimate the model.

```python
day = dt.timedelta(1)
print(forecasts.variance[split_date - 5 * day:split_date + 5 * day])
```

which produces

<table>
<thead>
<tr>
<th></th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
<th>h.4</th>
<th>h.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2009-12-28</td>
<td>2009-12-29</td>
<td>2009-12-30</td>
<td>2009-12-31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td></td>
</tr>
</tbody>
</table>

(continues on next page)
The output will always have as many rows as the data input. Values that are not forecast are nan filled.

1.3.6 Output Classes

class arch.univariate.base.ARCHModelForecast

```
ARCHModelForecast(index, mean, variance, residual_variance, simulated_paths=None, simulated_variances=None, simulated_residual_variances=None, simulated_residuals=None, align='origin')
```

Container for forecasts from an ARCH Model

Parameters

- `index` : `list` or `ndarray`
- `mean` : `ndarray`
- `variance` : `ndarray`
- `residual_variance` : `ndarray`
- `simulated_paths` : `ndarray`, optional
- `simulated_variances` : `ndarray`, optional
- `simulated_residual_variances` : `ndarray`, optional
- `simulated_residuals` : `ndarray`, optional
- `align`: `'origin' | 'target'`

mean

Forecast values for the conditional mean of the process

Type: DataFrame

variance

Forecast values for the conditional variance of the process

Type: DataFrame

residual_variance

Forecast values for the conditional variance of the residuals

Type: DataFrame

class arch.univariate.base.ARCHModelForecastSimulation

```
ARCHModelForecastSimulation(values, residuals, variances, residual_variances)
```

Container for a simulation or bootstrap-based forecasts from an ARCH Model

Parameters

- `values` -
- `residuals` -
- `variances` -
- `residual_variances` -
values
 Simulated values of the process
 Type DataFrame
residuals
 Simulated residuals used to produce the values
 Type DataFrame
variances
 Simulated variances of the values
 Type DataFrame
residual_variances
 Simulated variance of the residuals
 Type DataFrame

1.4 Volatility Forecasting

This setup code is required to run in an IPython notebook

[1]: import warnings
 warnings.simplefilter('ignore')

 %matplotlib inline
 import seaborn
 seaborn.set_style('darkgrid')

[2]: seaborn.mpl.rcParams['figure.figsize'] = (10.0, 6.0)
 seaborn.mpl.rcParams['savefig.dpi'] = 90
 seaborn.mpl.rcParams['font.family'] = 'sans-serif'
 seaborn.mpl.rcParams['font.size'] = 14

1.4.1 Data

These examples make use of S&P 500 data from Yahoo! that is available from arch.data.sp500.

[3]: import datetime as dt
 import sys

 import numpy as np
 import pandas as pd

 from arch import arch_model
 import arch.data.sp500

 data = arch.data.sp500.load()
 market = data['Adj Close']
 returns = 100 * market.pct_change().dropna()
1.4.2 Basic Forecasting

Forecasts can be generated for standard GARCH(p,q) processes using any of the three forecast generation methods:

- Analytical
- Simulation-based
- Bootstrap-based

By default forecasts will only be produced for the final observation in the sample so that they are out-of-sample.

Forecasts start with specifying the model and estimating parameters.

```
[4]: am = arch_model(returns, vol='Garch', p=1, o=0, q=1, dist='Normal')
res = am.fit(update_freq=5)
```

```
Iteration: 10, Func. Count: 72, Neg. LLF: 6936.718529994181
Optimization terminated successfully. (Exit mode 0)
Current function value: 6936.718476989043
Iterations: 11
Function evaluations: 79
Gradient evaluations: 11
```

```
[5]: forecasts = res.forecast()
```

Forecasts are contained in an `ARCHModelForecast` object which has 4 attributes:

- `mean` - The forecast means
- `residual_variance` - The forecast residual variances, that is $E_t[\epsilon^2_{t+h}]$
- `variance` - The forecast variance of the process, $E_t[r^2_{t+h}]$. The variance will differ from the residual variance whenever the model has mean dynamics, e.g., in an AR process.
- `simulations` - An object that contains detailed information about the simulations used to generate forecasts. Only used if the forecast method is set to 'simulation' or 'bootstrap'. If using 'analytical' (the default), this is None.

The three main outputs are all returned in DataFrames with columns of the form \(h.\# \) where \# is the number of steps ahead. That is, \(h.1 \) corresponds to one-step ahead forecasts while \(h.10 \) corresponds to 10-steps ahead.

The default forecast only produces 1-step ahead forecasts.

```
[6]: print(forecasts.mean.iloc[-3:])
print(forecasts.residual_variance.iloc[-3:])
print(forecasts.variance.iloc[-3:])
```

```
<table>
<thead>
<tr>
<th>Date</th>
<th>h.1</th>
<th>h.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-12-27</td>
<td>NaN</td>
<td>0.056353</td>
</tr>
<tr>
<td>2018-12-28</td>
<td>NaN</td>
<td>3.59647</td>
</tr>
<tr>
<td>2018-12-31</td>
<td>0.056353</td>
<td>3.59647</td>
</tr>
</tbody>
</table>
```

(continues on next page)
Longer horizon forecasts can be computed by passing the parameter `horizon`.

```
[7]: forecasts = res.forecast(horizon=5)
print(forecasts.residual_variance.iloc[-3:])
```

<table>
<thead>
<tr>
<th>Date</th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
<th>h.4</th>
<th>h.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-12-27</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2018-12-28</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2018-12-31</td>
<td>3.59647</td>
<td>3.568502</td>
<td>3.540887</td>
<td>3.513621</td>
<td>3.4867</td>
</tr>
</tbody>
</table>

Values that are not computed are `nan`-filled.

1.4.3 Alternative Forecast Generation Schemes

Fixed Window Forecasting

Fixed-windows forecasting uses data up to a specified date to generate all forecasts after that date. This can be implemented by passing the entire data in when initializing the model and then using `last_obs` when calling `fit.forecast()` will, by default, produce forecasts after this final date.

Note: `last_obs` follow Python sequence rules so that the actual date in `last_obs` is not in the sample.

```
[8]: res = am.fit(last_obs='2011-1-1', update_freq=5)
forecasts = res.forecast(horizon=5)
print(forecasts.variance.dropna().head())
```

```
Iteration: 5, Func. Count: 38, Neg. LLF: 4559.84602040562
Iteration: 10, Func. Count: 72, Neg. LLF: 4555.383725179201
Optimization terminated successfully. (Exit mode 0)
Current function value: 4555.285110045353
Iterations: 14
Function evaluations: 97
Gradient evaluations: 14
```

```
<table>
<thead>
<tr>
<th>Date</th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
<th>h.4</th>
<th>h.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-31</td>
<td>0.381757</td>
<td>0.390905</td>
<td>0.399988</td>
<td>0.409008</td>
<td>0.417964</td>
</tr>
<tr>
<td>2011-01-03</td>
<td>0.451724</td>
<td>0.460381</td>
<td>0.468976</td>
<td>0.477512</td>
<td>0.485987</td>
</tr>
<tr>
<td>2011-01-04</td>
<td>0.428416</td>
<td>0.437236</td>
<td>0.445994</td>
<td>0.454691</td>
<td>0.463326</td>
</tr>
<tr>
<td>2011-01-05</td>
<td>0.420554</td>
<td>0.429429</td>
<td>0.438242</td>
<td>0.446993</td>
<td>0.455683</td>
</tr>
<tr>
<td>2011-01-06</td>
<td>0.402483</td>
<td>0.411486</td>
<td>0.420425</td>
<td>0.429301</td>
<td>0.438115</td>
</tr>
</tbody>
</table>
```

Rolling Window Forecasting

Rolling window forecasts use a fixed sample length and then produce one-step from the final observation. These can be implemented using `first_obs` and `last_obs`.

```
[9]: index = returns.index
    start_loc = 0
    end_loc = np.where(index >= '2010-1-1')[0].min()
    forecasts = {}
```

(continues on next page)
for i in range(20):
 sys.stdout.write('.
 sys.stdout.flush()
 res = am.fit(first_obs=i, last_obs=i + end_loc, disp='off')
 temp = res.forecast(horizon=3).variance
 fcast = temp.iloc[i + end_loc - 1]
 forecasts[fcast.name] = fcast
print()
print(pd.DataFrame(forecasts).T)

...
<table>
<thead>
<tr>
<th>Date</th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-12-31</td>
<td>0.615314</td>
<td>0.621743</td>
<td>0.628133</td>
</tr>
<tr>
<td>2010-01-04</td>
<td>0.751747</td>
<td>0.757343</td>
<td>0.762905</td>
</tr>
<tr>
<td>2010-01-05</td>
<td>0.710453</td>
<td>0.716315</td>
<td>0.722142</td>
</tr>
<tr>
<td>2010-01-06</td>
<td>0.666244</td>
<td>0.672346</td>
<td>0.678411</td>
</tr>
<tr>
<td>2010-01-07</td>
<td>0.634424</td>
<td>0.640706</td>
<td>0.646949</td>
</tr>
<tr>
<td>2010-01-08</td>
<td>0.600109</td>
<td>0.606595</td>
<td>0.613040</td>
</tr>
<tr>
<td>2010-01-11</td>
<td>0.565514</td>
<td>0.572212</td>
<td>0.578869</td>
</tr>
<tr>
<td>2010-01-12</td>
<td>0.599561</td>
<td>0.606051</td>
<td>0.612501</td>
</tr>
<tr>
<td>2010-01-13</td>
<td>0.608309</td>
<td>0.614748</td>
<td>0.621148</td>
</tr>
<tr>
<td>2010-01-14</td>
<td>0.575065</td>
<td>0.581756</td>
<td>0.588406</td>
</tr>
<tr>
<td>2010-01-15</td>
<td>0.629890</td>
<td>0.636245</td>
<td>0.642561</td>
</tr>
<tr>
<td>2010-01-19</td>
<td>0.695074</td>
<td>0.701042</td>
<td>0.706974</td>
</tr>
<tr>
<td>2010-01-20</td>
<td>0.737154</td>
<td>0.742908</td>
<td>0.748627</td>
</tr>
<tr>
<td>2010-01-21</td>
<td>0.954167</td>
<td>0.958725</td>
<td>0.963255</td>
</tr>
<tr>
<td>2010-01-22</td>
<td>1.253453</td>
<td>1.256401</td>
<td>1.259332</td>
</tr>
<tr>
<td>2010-01-25</td>
<td>1.178691</td>
<td>1.182043</td>
<td>1.185374</td>
</tr>
<tr>
<td>2010-01-26</td>
<td>1.112205</td>
<td>1.115886</td>
<td>1.119545</td>
</tr>
<tr>
<td>2010-01-27</td>
<td>1.051295</td>
<td>1.055327</td>
<td>1.059335</td>
</tr>
<tr>
<td>2010-01-28</td>
<td>1.085678</td>
<td>1.089512</td>
<td>1.093324</td>
</tr>
<tr>
<td>2010-01-29</td>
<td>1.085786</td>
<td>1.089593</td>
<td>1.093378</td>
</tr>
</tbody>
</table>

Recursive Forecast Generation

Recursive is similar to rolling except that the initial observation does not change. This can be easily implemented by dropping the first_obs input.

[10]:
import numpy as np
import pandas as pd

index = returns.index
start_loc = 0
end_loc = np.where(index >= '2010-1-1')[0].min()
forecasts = {}
for i in range(20):
 sys.stdout.write('.
 sys.stdout.flush()
 res = am.fit(last_obs=i + end_loc, disp='off')
 temp = res.forecast(horizon=3).variance
 fcast = temp.iloc[i + end_loc - 1]
 forecasts[fcast.name] = fcast
print()
print(pd.DataFrame(forecasts).T)
1.4.4 TARCH

Analytical Forecasts

All ARCH-type models have one-step analytical forecasts. Longer horizons only have closed forms for specific models. TARCH models do not have closed-form (analytical) forecasts for horizons larger than 1, and so simulation or bootstrapping is required. Attempting to produce forecasts for horizons larger than 1 using method='analytical' results in a ValueError.

```python
[11]: # TARCH specification
    am = arch_model(returns, vol='GARCH', power=2.0, p=1, o=1, q=1)
    res = am.fit(update_freq=5)
    forecasts = res.forecast()
    print(forecasts.variance.iloc[-1])
```

Iteration: 5, Func. Count: 44, Neg. LLF: 6827.96641441215
Iteration: 10, Func. Count: 84, Neg. LLF: 6822.8830945206155
Optimization terminated successfully. (Exit mode 0)
 Current function value: 6822.882823472137
 Iterations: 13
 Function evaluations: 106
 Gradient evaluations: 13

h.1 3.010188
Name: 2018-12-31 00:00:00, dtype: float64

Simulation Forecasts

When using simulation- or bootstrap-based forecasts, an additional attribute of an ARCHModelForecast object is meaningful – simulation.

1.4. Volatility Forecasting
```python
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)
var_2016 = res.conditional_volatility['2016']**2.0
subplot = var_2016.plot(ax=ax, title='Conditional Variance')
subplot.set_xlim(var_2016.index[0], var_2016.index[-1])
```

```text
(735967.0, 736328.0)
```

```python
forecasts = res.forecast(horizon=5, method='simulation')
sims = forecasts.simulations
x = np.arange(1, 6)
lines = plt.plot(x, sims.residual_variances[-1, ::5].T, color='#9cb2d6', alpha=0.5)
lines[0].set_label('Simulated path')
line = plt.plot(x, forecasts.variance.iloc[-1].values, color='#002868')
line[0].set_label('Expected variance')
plt.gca().set_xticks(x)
plt.gca().set_xlim(1, 5)
legend = plt.legend()
```
import seaborn as sns
sns.boxplot(data=sims.variances[-1])
Bootstrap Forecasts

Bootstrap-based forecasts are nearly identical to simulation-based forecasts except that the values used to simulate the process are computed from historical data rather than using the assumed distribution of the residuals. Forecasts produced using this method also return an `ARCHModelForecastSimulation` containing information about the simulated paths.

```python
[15]: forecasts = res.forecast(horizon=5, method='bootstrap')
sims = forecasts.simulations
lines = plt.plot(x, sims.residual_variances[-1, ::5].T, color='#9cb2d6', alpha=0.5)
lines[0].set_label('Simulated path')
line = plt.plot(x, forecasts.variance.iloc[-1].values, color='#002868')
line[0].set_label('Expected variance')
plt.gca().set_xticks(x)
plt.gca().set_xlim(1, 5)
legend = plt.legend()
```

1.5 Value-at-Risk Forecasting

Value-at-Risk (VaR) forecasts from GARCH models depend on the conditional mean, the conditional volatility and the quantile of the standardized residuals,

\[
VaR_{t+1|t} = -\mu_{t+1|t} - \sigma_{t+1|t} q_{\alpha}
\]

where \(q_{\alpha}\) is the \(\alpha\) quantile of the standardized residuals, e.g., 5%.

The quantile can be either computed from the estimated model density or computed using the empirical distribution of the standardized residuals. The example below shows both methods.
1.5.1 Parametric VaR

First, we use the model to estimate the VaR. The quantiles can be computed using the \texttt{ppf} method of the distribution attached to the model. The quantiles are printed below.

```
[17]: forecasts = res.forecast(start='2018-1-1')
cond_mean = forecasts.mean['2018']
cond_var = forecasts.variance['2018']
q = am.distribution.ppf([0.01, 0.05], res.params[-2:])
print(q)
[-2.64484937 -1.64965928]
```

Next, we plot the two VaRs along with the returns. The returns that violate the VaR forecasts are highlighted.

```
[18]: value_at_risk = -cond_mean.values - np.sqrt(cond_var).values * q[None, :]
value_at_risk = pd.DataFrame(
    value_at_risk, columns=['1%', '5%'], index=cond_var.index)
ax = value_at_risk.plot(legend=False)
xl = ax.set_xlim(value_at_risk.index[0], value_at_risk.index[-1])
rets_2018 = returns['2018'].copy()
rets_2018.name = 'S&P 500 Return'
c = []
for idx in value_at_risk.index:
    if rets_2018[idx] > -value_at_risk.loc[idx, '5%']:
        c.append('#000000')
    elif rets_2018[idx] < -value_at_risk.loc[idx, '1%']:
        c.append('#BB0000')
    else:
        c.append('#BB00BB')
c = np.array(c, dtype='object')
labels = {
    '#BB0000': '1% Exceedence',
    '#BB00BB': '5% Exceedence',
    '#000000': 'No Exceedence'
}
markers = {'#BB0000': 'x', '#BB00BB': 's', '#000000': 'o'}
for color in np.unique(c):
    sel = c == color
    ax.scatter(
        rets_2018.index[sel],
        -rets_2018.loc[sel],
        marker=markers[color],
        c=c[sel],
        label=labels[color])
ax.set_title('Parametric VaR')
leg = ax.legend(frameon=False, ncol=3)
```
1.5.2 Filtered Historical Simulation

Next, we use the empirical distribution of the standardized residuals to estimate the quantiles. These values are very similar to those estimated using the assumed distribution. The plot below is identical except for the slightly different quantiles.

```python
[19]: std_rets = (returns['2017'] - res.params['mu']) / res.conditional_volatility
std_rets = std_rets.dropna()
q = std_rets.quantile([.01, .05])
print(q)
0.01 -2.668272
0.05 -1.723353
dtype: float64
```

```python
[20]: value_at_risk = -cond_mean.values - np.sqrt(cond_var).values * q.values
value_at_risk = pd.DataFrame(
    value_at_risk, columns=['1%', '5%'], index=cond_var.index)
ax = value_at_risk.plot(legend=False)
xl = ax.set_xlim(value_at_risk.index[0], value_at_risk.index[-1])
rets_2018 = returns['2018'].copy()
rets_2018.name = 'S&P 500 Return'
c = []
for idx in value_at_risk.index:
    if rets_2018[idx] > -value_at_risk.loc[idx, '5%']:
        c.append('#000000')
    elif rets_2018[idx] < -value_at_risk.loc[idx, '1%']:
        c.append('#BB0000')
```

(continues on next page)
```python
else:
    c.append('#BB00BB')
c = np.array(c, dtype='object')
for color in np.unique(c):
    sel = c == color
    ax.scatter(
        rets_2018.index[sel],
        -rets_2018.loc[sel],
        marker=markers[color],
        c=c[sel],
        label=labels[color])
ax.set_title('Filtered Historical Simulation VaR')
leg = ax.legend(frameon=False, ncol=3)
```

1.6 Volatility Scenarios

Custom random-number generators can be used to implement scenarios where shock follow a particular pattern. For example, suppose you wanted to find out what would happen if there were 5 days of shocks that were larger than average. In most circumstances, the shocks in a GARCH model have unit variance. This could be changed so that the first 5 shocks have variance 4, or twice the standard deviation.

Another scenario would be to over sample a specific period for the shocks. When using the standard bootstrap method (filtered historical simulation) the shocks are drawn using iid sampling from the history. While this approach is standard and well-grounded, it might be desirable to sample from a specific period. This can be implemented using a custom random number generator. This strategy is precisely how the filtered historical simulation is implemented internally, only where the draws are uniformly sampled from the entire history.
First, some preliminaries

```python
[1]: %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn
    from arch.univariate import GARCH, ConstantMean, Normal
    seaborn.set_style('darkgrid')
```

This example makes use of returns from the NASDAQ index. The scenario bootstrap will make use of returns in the run-up to and during the Financial Crisis of 2008.

```python
[2]: seaborn.mpl.rcParams['figure.figsize'] = (10.0, 6.0)
    seaborn.mpl.rcParams['savefig.dpi'] = 90
    seaborn.mpl.rcParams['font.family'] = 'sans-serif'
    seaborn.mpl.rcParams['font.size'] = 14
```

Next, the returns are computed and the model is constructed. The model is constructed from the building blocks. It is a standard model and could have been (almost) equivalently constructed using

```python
[3]: import arch.data.nasdaq
    data = arch.data.nasdaq.load()
    nasdaq = data['Adj Close']
    print(nasdaq.head())
```

```
1999-01-04  2208.050049  2251.270020  2320.860107  2326.090088  2344.409912
1999-01-05  2251.270020  2302.860107  2320.860107  2326.090088  2344.409912
1999-01-06  2320.860107  2372.450184  2391.040261  2396.270242  2414.580175
1999-01-07  2326.090088  2377.680164  2406.270242  2411.500324  2429.810257
1999-01-08  2344.409912  2396.000000  2414.580175  2429.810257  2448.120188
```

The one advantage of constructing the model using the components is that the NumPy RandomState that is used to simulate from the model can be externally set. This allows the generator seed to be easily set and for the state to reset, if needed.

NOTE: It is always a good idea to scale return by 100 before estimating ARCH-type models. This helps the optimizer converge since the scale of the volatility intercept is much closer to the scale of the other parameters in the model.

```python
[4]: rets = 100 * nasdaq.pct_change().dropna()
    # Build components to set the state for the distribution
    random_state = np.random.RandomState(1)
    dist = Normal(random_state=random_state)
    volatility = GARCH(1, 1, 1)
    mod = ConstantMean(rets, volatility=volatility, distribution=dist)
```

Fitting the model is standard.
res = mod.fit(disp='off')

res

```
```

```
```

```
```

```
```

GJR-GARCH models support analytical forecasts, which is the default. The forecasts are produced for all of 2017 using the estimated model parameters.

```
```

```
```

All GARCH specification are complete models in the sense that they specify a distribution. This allows simulations to be produced using the assumptions in the model. The forecast function can be made to produce simulations using the assumed distribution by setting method='simulation'.

These forecasts are similar to the analytical forecasts above. As the number of simulation increases towards \(\infty \), the simulation-based forecasts will converge to the analytical values above.

1.6. Volatility Scenarios
```python
sim_forecasts = res.forecast(start='1-1-2017', method='simulation', horizon=10)
print(sim_forecasts.residual_variance.dropna().head())
```

<table>
<thead>
<tr>
<th>Date</th>
<th>h.01</th>
<th>h.02</th>
<th>h.03</th>
<th>h.04</th>
<th>h.05</th>
<th>h.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-01-03</td>
<td>0.623295</td>
<td>0.637251</td>
<td>0.647817</td>
<td>0.663746</td>
<td>0.673404</td>
<td>0.687952</td>
</tr>
<tr>
<td>2017-01-04</td>
<td>0.599455</td>
<td>0.617539</td>
<td>0.635838</td>
<td>0.649695</td>
<td>0.659733</td>
<td>0.667267</td>
</tr>
<tr>
<td>2017-01-05</td>
<td>0.567297</td>
<td>0.583415</td>
<td>0.597571</td>
<td>0.613065</td>
<td>0.621790</td>
<td>0.636180</td>
</tr>
<tr>
<td>2017-01-06</td>
<td>0.542506</td>
<td>0.555688</td>
<td>0.570280</td>
<td>0.585426</td>
<td>0.595551</td>
<td>0.608487</td>
</tr>
<tr>
<td>2017-01-09</td>
<td>0.515452</td>
<td>0.528771</td>
<td>0.542658</td>
<td>0.559684</td>
<td>0.580434</td>
<td>0.594855</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>h.07</th>
<th>h.08</th>
<th>h.09</th>
<th>h.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-01-03</td>
<td>0.697221</td>
<td>0.707707</td>
<td>0.717701</td>
<td>0.729465</td>
</tr>
<tr>
<td>2017-01-04</td>
<td>0.686503</td>
<td>0.699708</td>
<td>0.707203</td>
<td>0.718560</td>
</tr>
<tr>
<td>2017-01-05</td>
<td>0.650287</td>
<td>0.663344</td>
<td>0.679835</td>
<td>0.692300</td>
</tr>
<tr>
<td>2017-01-06</td>
<td>0.619195</td>
<td>0.638180</td>
<td>0.653185</td>
<td>0.661366</td>
</tr>
<tr>
<td>2017-01-09</td>
<td>0.605136</td>
<td>0.621835</td>
<td>0.634091</td>
<td>0.653222</td>
</tr>
</tbody>
</table>

1.6.1 Custom Random Generators

`forecast` supports replacing the generator based on the assumed distribution of residuals in the model with any other generator. A shock generator should usually produce unit variance shocks. However, in this example the first 5 shocks generated have variance 2, and the remainder are standard normal. This scenario consists of a period of consistently surprising volatility where the volatility has shifted for some reason.

The forecast variances are much larger and grow faster than those from either method previously illustrated. This reflects the increase in volatility in the first 5 days.

```python
import numpy as np
random_state = np.random.RandomState(1)

def scenario_rng(size):
    shocks = random_state.standard_normal(size)
    shocks[:, :5] *= np.sqrt(2)
    return shocks

scenario_forecasts = res.forecast(
    start='1-1-2017', method='simulation', horizon=10, rng=scenario_rng)
print(scenario_forecasts.residual_variance.dropna().head())
```

<table>
<thead>
<tr>
<th>Date</th>
<th>h.01</th>
<th>h.02</th>
<th>h.03</th>
<th>h.04</th>
<th>h.05</th>
<th>h.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-01-03</td>
<td>0.623295</td>
<td>0.685911</td>
<td>0.745202</td>
<td>0.821112</td>
<td>0.886289</td>
<td>0.966737</td>
</tr>
<tr>
<td>2017-01-04</td>
<td>0.599455</td>
<td>0.668181</td>
<td>0.743119</td>
<td>0.811486</td>
<td>0.877539</td>
<td>0.936587</td>
</tr>
<tr>
<td>2017-01-05</td>
<td>0.567297</td>
<td>0.629195</td>
<td>0.691225</td>
<td>0.758891</td>
<td>0.816663</td>
<td>0.893986</td>
</tr>
<tr>
<td>2017-01-06</td>
<td>0.542506</td>
<td>0.596301</td>
<td>0.656603</td>
<td>0.721505</td>
<td>0.778286</td>
<td>0.849680</td>
</tr>
<tr>
<td>2017-01-09</td>
<td>0.515452</td>
<td>0.567086</td>
<td>0.622224</td>
<td>0.689831</td>
<td>0.775048</td>
<td>0.845656</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>h.07</th>
<th>h.08</th>
<th>h.09</th>
<th>h.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-01-03</td>
<td>0.970796</td>
<td>0.977504</td>
<td>0.982202</td>
<td>0.992547</td>
</tr>
<tr>
<td>2017-01-04</td>
<td>0.955295</td>
<td>0.965540</td>
<td>0.966432</td>
<td>0.974248</td>
</tr>
<tr>
<td>2017-01-05</td>
<td>0.905952</td>
<td>0.915208</td>
<td>0.930777</td>
<td>0.938636</td>
</tr>
</tbody>
</table>
1.6.2 Bootstrap Scenarios

forecast supports Filtered Historical Simulation (FHS) using method='bootstrap'. This is effectively a simulation method where the simulated shocks are generated using iid sampling from the history of the demeaned and standardized return data. Custom bootstraps are another application of rng. Here an object is used to hold the shocks. This object exposes a method (rng) the acts like a random number generator, except that it only returns values that were provided in the shocks parameter.

The internal implementation of the FHS uses a method almost identical to this where shocks contain the entire history.

```python
[9]:
class ScenarioBootstrapRNG(object):
    def __init__(self, shocks, random_state):
        self._shocks = np.asarray(shocks) # 1d
        self._rs = random_state
        self.n = shocks.shape[0]
    def rng(self, size):
        idx = self._rs.randint(0, self.n, size=size)
        return self._shocks[idx]
```

```python
random_state = np.random.RandomState(1)
std_shocks = res.resid / res.conditional_volatility
shocks = std_shocks['2008-08-01':'2008-11-10']
scenario_bootstrap = ScenarioBootstrapRNG(shocks, random_state)
bs_forecasts = res.forecast(
    start='1-1-2017',
    method='simulation',
    horizon=10,
    rng=scenario_bootstrap.rng)
print(bs_forecasts.residual_variance.dropna().head())
```

```
   Date          h.01     h.02     h.03     h.04     h.05     h.06
2017-01-03  0.623295  0.676081  0.734322  0.779325  0.828189  0.898202
2017-01-04  0.599455  0.645237  0.697133  0.750169  0.816280  0.888417
2017-01-05  0.567297  0.610493  0.665995  0.722954  0.777860  0.840369
2017-01-06  0.542506  0.597387  0.644534  0.691387  0.741206  0.783319
2017-01-09  0.515452  0.561312  0.611026  0.647824  0.700559  0.757398
```

```python
    Date          h.07     h.08     h.09     h.10
2017-01-03  0.895215  1.043704  1.124684  1.203893
2017-01-04  0.945120  1.013400  1.084043  1.158148
2017-01-05  0.889032  0.961424  1.022413  1.097192
2017-01-06  0.840667  0.895559  0.957266  1.019497
2017-01-09  0.820788  0.887791  0.938708  1.028614
```
```
1.6.3 Visualizing the differences

The final forecast values are used to illustrate how these are different. The analytical and standard simulation are virtually identical. The simulated scenario grows rapidly for the first 5 periods and then more slowly. The bootstrap scenario grows quickly and consistently due to the magnitude of the shocks in the financial crisis.

```python
[10]: import pandas as pd
def = pd.concat([
 forecasts.residual_variance.iloc[-1],
 sim_forecasts.residual_variance.iloc[-1],
 scenario_forecasts.residual_variance.iloc[-1],
 bs_forecasts.residual_variance.iloc[-1]
], 1)
df.columns = ['Analytic', 'Simulation', 'Scenario Sim', 'Bootstrap Scenario']
Plot annualized vol
subplot = np.sqrt(252 * df).plot(legend=False)
legend = subplot.legend(frameon=False)
```

1.6.4 Comparing the paths

The paths are available on the attribute `simulations`. Plotting the paths shows important differences between the two scenarios beyond the average differences plotted above. Both start at the same point.

```python
[11]: fig, axes = plt.subplots(1, 2)
 colors = seaborn.color_palette('dark')
The paths for the final observation
sim_paths = sim_forecasts.simulations.residual_variances[-1].T
bs_paths = bs_forecasts.simulations.residual_variances[-1].T
```
1.6.5 Comparing across the year

A hedgehog plot is useful for showing the differences between the two forecasting methods across the year, instead of a single day.
```python
analytic = forecasts.residual_variance.dropna()
bis = bs_forecasts.residual_variance.dropna()
fig, ax = plt.subplots(1, 1)
vol = res.conditional_volatility['2017-1-1':'2019-1-1']
idx = vol.index
ax.plot(np.sqrt(252) * vol, alpha=0.5)
for i in range(0, len(vol), 22):
 a = analytic.iloc[i]
 b = bs.iloc[i]
 loc = idx.get_loc(a.name)
 new_idx = idx[loc + 1:loc + 11]
 a.index = new_idx
 b.index = new_idx
 ax.plot(np.sqrt(252) * a, color=colors[1])
 ax.plot(np.sqrt(252) * b, color=colors[2])
labels = ['Annualized Vol.', 'Analytic Forecast', 'Bootstrap Scenario Forecast']
legend = ax.legend(labels, frameon=False)
xlim = ax.set_xlim(vol.index[0], vol.index[-1])
```

### 1.7 Mean Models

All ARCH models start by specifying a mean model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ZeroMean([y, hold_back, volatility, ...])</code></td>
<td>Model with zero conditional mean estimation and simulation</td>
</tr>
<tr>
<td><code>ConstantMean([y, hold_back, volatility, ...])</code></td>
<td>Constant mean model estimation and simulation</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{ARX}([y, x, lags, constant, hold_back, ...])</td>
<td>Autoregressive model with optional exogenous regressors estimation and simulation</td>
</tr>
<tr>
<td>\textit{HARX}([y, x, lags, constant, use_rotated, ...])</td>
<td>Heterogeneous Autoregression (HAR), with optional exogenous regressors, model estimation and simulation</td>
</tr>
<tr>
<td>\textit{LS}([y, x, constant, hold_back, rescale])</td>
<td>Least squares model estimation and simulation</td>
</tr>
</tbody>
</table>

1.7.1 \texttt{arch.univariate.ZeroMean}

\texttt{class arch.univariate.ZeroMean(y=None, hold_back=None, volatility=None, distribution=None, rescale=None)}

Model with zero conditional mean estimation and simulation

**Parameters**

- \(y\) ([ndarray, Series]) – nobs element vector containing the dependent variable
- \texttt{hold_back} (int) – Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
- \texttt{volatility} (VolatilityProcess, optional) – Volatility process to use in the model
- \texttt{distribution} (Distribution, optional) – Error distribution to use in the model
- \texttt{rescale} (bool, optional) – Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, then \(y\) is rescaled and the new scale is reported in the estimation results.

**Examples**

```python
>>> import numpy as np
>>> from arch.univariate import ZeroMean
>>> y = np.random.randn(100)
>>> zm = ZeroMean(y)
>>> res = zm.fit()
```

**Notes**

The zero mean model is described by

\[ y_t = \epsilon_t \]

**Methods**

- \texttt{bounds()} – Construct bounds for parameters to use in non-linear optimization
- \texttt{compute_param_cov(params[, backcast, robust])} – Computes parameter covariances using numerical derivatives.
Table 2 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraints()</td>
<td>Construct linear constraint arrays for use in non-linear optimization</td>
</tr>
<tr>
<td>fit([update_freq, disp, starting_values, ...])</td>
<td>Fits the model given a nobs by 1 vector of sigma2 values</td>
</tr>
<tr>
<td>fix(params[, first_obs, last_obs])</td>
<td>Allows an ARCHModelFixedResult to be constructed from fixed parameters.</td>
</tr>
<tr>
<td>forecast(params[, horizon, start, align, ...])</td>
<td>Construct forecasts from estimated model</td>
</tr>
<tr>
<td>parameter_names()</td>
<td>List of parameters names</td>
</tr>
<tr>
<td>resids(params[, y, regressors])</td>
<td>Compute model residuals</td>
</tr>
<tr>
<td>simulate(params, nobs[, burn, ...])</td>
<td>Simulated data from a zero mean model</td>
</tr>
<tr>
<td>starting_values()</td>
<td>Returns starting values for the mean model, often the same as the values returned from fit</td>
</tr>
</tbody>
</table>

**arch.univariate.ZeroMean.bounds**

```python
def bounds():
 # Construct bounds for parameters to use in non-linear optimization
 Returns bounds – Bounds for parameters to use in estimation.
 Return type list (2-tuple of float)
```

**arch.univariate.ZeroMean.compute_param_cov**

```python
def compute_param_cov(params, backcast=None, robust=True):
 # Computes parameter covariances using numerical derivatives.
 Parameters
 • params (ndarray) – Model parameters
 • backcast (float) – Value to use for pre-sample observations
 • robust (bool, optional) – Flag indicating whether to use robust standard errors (True) or classic MLE (False)
```

**arch.univariate.ZeroMean.constraints**

```python
def constraints():
 # Construct linear constraint arrays for use in non-linear optimization
 Returns
 • a (ndarray) – Number of constraints by number of parameters loading array
 • b (ndarray) – Number of constraints array of lower bounds
```

**Notes**

Parameters satisfy a.dot(parameters) - b >= 0
arch.univariate.ZeroMean.fit

ZeroMean.fit(update_freq=1, disp='final', starting_values=None, cov_type='robust', show_warning=True, first_obs=None, last_obs=None, tol=None, options=None, backcast=None)

Fits the model given a nobs by 1 vector of sigma2 values

Parameters

- **update_freq** (int, optional) – Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
- **disp** (str) – Either ‘final’ to print optimization result or ‘off’ to display nothing
- **starting_values** (ndarray, optional) – Array of starting values to use. If not provided, starting values are constructed by the model components.
- **cov_type** (str, optional) – Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.
- **show_warning** (bool, optional) – Flag indicating whether convergence warnings should be shown.
- **first_obs** (int, str, datetime, Timestamp) – First observation to use when estimating model
- **last_obs** (int, str, datetime, Timestamp) – Last observation to use when estimating model
- **tol** (float, optional) – Tolerance for termination.
- **options** (dict, optional) – Options to pass to scipy.optimize.minimize. Valid entries include ‘ftol’, ‘eps’, ‘disp’, and ‘maxiter’.
- **backcast** (float, optional) – Value to use as backcast. Should be measure \( \sigma^2_0 \) since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns **results** – Object containing model results

Return type **ARCHModelResult**

Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

arch.univariate.ZeroMean.fix

ZeroMean.fix(params, first_obs=None, last_obs=None)

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

- **params** (ndarray, Series) – User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.
- **first_obs**({int, str, datetime, Timestamp}) – First observation to use when fixing model
- **last_obs**({int, str, datetime, Timestamp}) – Last observation to use when fixing model

**Returns** results – Object containing model results

**Return type** ARCHModelFixedResult

**Notes**

Parameters are not checked against model-specific constraints.

**arch.univariate.ZeroMean.forecast**

ZeroMean.forecast(params, horizon=1, start=None, method='analytic', simulations=1000, rng=None, random_state=None)

Construct forecasts from estimated model

**Parameters**

- **params**({ndarray, Series}, optional) – Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.
- **horizon**(int, optional) – Number of steps to forecast
- **start**({int, datetime, Timestamp, str}, optional) – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.
- **align**(str, optional) – Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, . . . , t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, . . . , and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.
- **method**({'analytic', 'simulation', 'bootstrap'}) – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.
- **simulations**(int) – Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng**(callable, optional) – Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax rng(size) where size the 2-element tuple (simulations, horizon).
- **random_state**(RandomState, optional) – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** forecasts – t by h data frame containing the forecasts. The alignment of the forecasts is controlled by align.

**Return type** ARCHModelForecast
Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```

Notes

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

**arch.univariate.ZeroMean.parameter_names**

ZeroMean parameter_names ()

List of parameters names

Returns names – List of variable names for the mean model

Return type list (str)

**arch.univariate.ZeroMean.resids**

ZeroMean.resids (params, y=None, regressors=None)

Compute model residuals

Parameters

- `params` (ndarray) – Model parameters
- `y` (ndarray, optional) – Alternative values to use when computing model residuals
- `regressors` (ndarray, optional) – Alternative regressor values to use when computing model residuals

Returns resid – Model residuals

Return type ndarray
**arch.univariate.ZeroMean.simulate**

```python
ZeroMean.simulate(params, nobs, burn=500, initial_value=None, x=None, initial_value_vol=None)
```

Simulated data from a zero mean model

**Parameters**

- `params (ndarray, DataFrame)` – Parameters to use when simulating the model. Parameter order is \([\text{volatility distribution}]\). There are no mean parameters.
- `nobs (int)` – Length of series to simulate
- `burn (int, optional)` – Number of values to simulate to initialize the model and remove dependence on initial values.
- `initial_value (None)` – This value is not used.
- `x (None)` – This value is not used.
- `initial_value_vol (ndarray, float, optional)` – An array or scalar to use when initializing the volatility process.

**Returns**

- `simulated_data` – DataFrame with columns `data` containing the simulated values, `volatility` containing the conditional volatility and `errors` containing the errors used in the simulation

**Return type** DataFrame

### Examples

Basic data simulation with no mean and constant volatility

```python
>>> from arch.univariate import ZeroMean
>>> zm = ZeroMean()
>>> sim_data = zm.simulate([1.0], 1000)
```

Simulating data with a non-trivial volatility process

```python
>>> from arch.univariate import GARCH
>>> zm.volatility = GARCH(p=1, o=1, q=1)
>>> sim_data = zm.simulate([0.05, 0.1, 0.1, 0.8], 300)
```

---

**arch.univariate.ZeroMean.starting_values**

```python
ZeroMean.starting_values()
```

Returns starting values for the mean model, often the same as the values returned from fit

**Returns**

- `sv` – Starting values

**Return type** ndarray

### Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution</td>
<td>Set or gets the error distribution</td>
</tr>
<tr>
<td>num_params</td>
<td>Returns the number of parameters</td>
</tr>
</tbody>
</table>

Continued on next page
Table 3 – continued from previous page

<table>
<thead>
<tr>
<th>volatility</th>
<th>Set or gets the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td>Gets the value of the exogenous regressors in the model</td>
</tr>
<tr>
<td>( y )</td>
<td>Returns the dependent variable</td>
</tr>
</tbody>
</table>

\textbf{arch.univariate.ZeroMean.distribution}

\texttt{ZeroMean.distribution}

Set or gets the error distribution

Distributions must be a subclass of \texttt{Distribution}

\textbf{arch.univariate.ZeroMean.num_params}

\texttt{ZeroMean.num_params}

Returns the number of parameters

\textbf{arch.univariate.ZeroMean.volatility}

\texttt{ZeroMean.volatility}

Set or gets the volatility process

Volatility processes must be a subclass of \texttt{VolatilityProcess}

\textbf{arch.univariate.ZeroMean.x}

\texttt{ZeroMean.x}

Gets the value of the exogenous regressors in the model

\textbf{arch.univariate.ZeroMean.y}

\texttt{ZeroMean.y}

Returns the dependent variable

\texttt{arch.univariate.ConstantMean}

\texttt{class arch.univariate.ConstantMean(y=None, hold_back=None, volatility=None, distribution=None, rescale=None)}

Constant mean model estimation and simulation.

\textbf{Parameters}

- \( y \) (\texttt{ndarray, Series}) – nobs element vector containing the dependent variable
- \texttt{hold_back} (\texttt{int}) – Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
- \texttt{volatility} (\texttt{VolatilityProcess, optional}) – Volatility process to use in the model
- \texttt{distribution} (\texttt{Distribution, optional}) – Error distribution to use in the model
• **rescale** (bool, optional) – Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.

### Examples

```python
>>> import numpy as np
>>> from arch.univariate import ConstantMean
>>> y = np.random.randn(100)
>>> cm = ConstantMean(y)
>>> res = cm.fit()
```

### Notes

The constant mean model is described by

\[ y_t = \mu + \epsilon_t \]

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bounds()</code></td>
<td>Construct bounds for parameters to use in non-linear optimization</td>
</tr>
<tr>
<td><code>compute_param_cov()</code></td>
<td>Computes parameter covariances using numerical derivatives.</td>
</tr>
<tr>
<td><code>constraints()</code></td>
<td>Construct linear constraint arrays for use in non-linear optimization</td>
</tr>
<tr>
<td><code>fit()</code></td>
<td>Fits the model given a nobs by 1 vector of sigma2 values</td>
</tr>
<tr>
<td><code>fix()</code></td>
<td>Allows an ARCHModelFixedResult to be constructed from fixed parameters.</td>
</tr>
<tr>
<td><code>forecast()</code></td>
<td>Construct forecasts from estimated model</td>
</tr>
<tr>
<td><code>parameter_names()</code></td>
<td>List of parameters names</td>
</tr>
<tr>
<td><code>resids()</code></td>
<td>Compute model residuals</td>
</tr>
<tr>
<td><code>simulate()</code></td>
<td>Simulated data from a constant mean model</td>
</tr>
<tr>
<td><code>starting_values()</code></td>
<td>Returns starting values for the mean model, often the same as the values returned from fit</td>
</tr>
</tbody>
</table>

#### `arch.univariate.ConstantMean.bounds`

`ConstantMean.bounds()`

Construct bounds for parameters to use in non-linear optimization

- **Returns** `bounds` – Bounds for parameters to use in estimation.
- **Return type** list (2-tuple of float)
arch.univariate.ConstantMean.compute_param_cov

ConstantMean.compute_param_cov(params, backcast=None, robust=True)
Computes parameter covariances using numerical derivatives.

Parameters

- **params** (*ndarray*) – Model parameters
- **backcast** (*float*) – Value to use for pre-sample observations
- **robust** (*bool, optional*) – Flag indicating whether to use robust standard errors (True) or classic MLE (False)

arch.univariate.ConstantMean.constraints

ConstantMean.constraints()
Construct linear constraint arrays for use in non-linear optimization

Returns

- **a** (*ndarray*) – Number of constraints by number of parameters loading array
- **b** (*ndarray*) – Number of constraints array of lower bounds

Notes

Parameters satisfy a.dot(parameters) - b >= 0

arch.univariate.ConstantMean.fit

ConstantMean.fit(update_freq=1, disp='final', starting_values=None, cov_type='robust', show_warning=True, first_obs=None, last_obs=None, tol=None, options=None, backcast=None)
Fits the model given a nobs by 1 vector of sigma2 values

Parameters

- **update_freq** (*int, optional*) – Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
- **disp** (*str*) – Either ‘final’ to print optimization result or ‘off’ to display nothing
- **starting_values** (*ndarray, optional*) – Array of starting values to use. If not provided, starting values are constructed by the model components.
- **cov_type** (*str, optional*) – Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.
- **show_warning** (*bool, optional*) – Flag indicating whether convergence warnings should be shown.
- **first_obs** (**int, str, datetime, Timestamp**) – First observation to use when estimating model
- **last_obs** (**int, str, datetime, Timestamp**) – Last observation to use when estimating model
• **tol (float, optional)** – Tolerance for termination.
• **options (dict, optional)** – Options to pass to scipy.optimize.minimize. Valid entries include 'ftol', 'eps', 'disp', and 'maxiter'.
• **backcast (float, optional)** – Value to use as backcast. Should be measure $\sigma_0^2$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

**Returns results** – Object containing model results

**Return type** `ARCHModelResult`

**Notes**

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum. Parameters are optimized using SLSQP.

### arch.univariate.ConstantMean.fix

**ConstantMean.fix** *(params, first_obs=None, last_obs=None)*

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

**Parameters**

• **params** *(ndarray, Series)* – User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.

• **first_obs** *(int, str, datetime, Timestamp)* – First observation to use when fixing model

• **last_obs** *(int, str, datetime, Timestamp)* – Last observation to use when fixing model

**Returns results** – Object containing model results

**Return type** `ARCHModelFixedResult`

**Notes**

Parameters are not checked against model-specific constraints.

### arch.univariate.ConstantMean.forecast

**ConstantMean.forecast** *(params, horizon=1, start=None, align='origin', method='analytic', simulations=1000, rng=None, random_state=None)*

Construct forecasts from estimated model

**Parameters**

• **params** *(ndarray, Series, optional)* – Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

• **horizon** *(int, optional)* – Number of steps to forecast
• **start** ((int, datetime, Timestamp, str), optional) – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as ‘1945-01-01’.

• **align** (str, optional) – Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, …, t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, …, and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

• **method** (‘analytic’, ‘simulation’, ‘bootstrap’) – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

• **simulations** (int) – Number of simulations to run when computing the forecast using either simulation or bootstrap.

• **rng** (callable, optional) – Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size the 2-element tuple (simulations, horizon).

• **random_state** (RandomState, optional) – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** forecasts – t by h data frame containing the forecasts. The alignment of the forecasts is controlled by `align`.

**Return type** ARCHModelForecast

---

**Examples**

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```

---

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is ‘origin’, forecast[t,h] contains the forecast made using y[t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.
arch.univariate.ConstantMean.parameter_names

ConstantMean.parameter_names()

List of parameters names

Returns names – List of variable names for the mean model

Return type list (str)

arch.univariate.ConstantMean.resids

ConstantMean.resids(params, y=None, regressors=None)

Compute model residuals

Parameters

  • params (ndarray) – Model parameters
  • y (ndarray, optional) – Alternative values to use when computing model residuals
  • regressors (ndarray, optional) – Alternative regressor values to use when computing model residuals

Returns resids – Model residuals

Return type ndarray

arch.univariate.ConstantMean.simulate

ConstantMean.simulate(params, nobs, burn=500, initial_value=None, x=None, initial_value_vol=None)

Simulated data from a constant mean model

Parameters

  • params (ndarray) – Parameters to use when simulating the model. Parameter order is [mean volatility distribution]. There is one parameter in the mean model, mu.
  • nobs (int) – Length of series to simulate
  • burn (int, optional) – Number of values to simulate to initialize the model and remove dependence on initial values.
  • initial_value (None) – This value is not used.
  • x (None) – This value is not used.
  • initial_value_vol ((ndarray, float), optional) – An array or scalar to use when initializing the volatility process.

Returns simulated_data – DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation

Return type DataFrame

Examples

Basic data simulation with a constant mean and volatility
```python
>>> import numpy as np
>>> from arch.univariate import ConstantMean, GARCH

>>> cm = ConstantMean()
>>> cm.volatility = GARCH()
>>> cm_params = np.array([1])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((cm_params, garch_params))
>>> sim_data = cm.simulate(params, 1000)
```

### arch.univariate.ConstantMean.starting_values

#### ConstantMean.starting_values()

Returns starting values for the mean model, often the same as the values returned from fit

- **Returns**: `sv` – Starting values
- **Return type**: `ndarray`

### Properties

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>distribution</code></td>
<td>Set or gets the error distribution</td>
</tr>
<tr>
<td><code>num_params</code></td>
<td>Returns the number of parameters</td>
</tr>
<tr>
<td><code>volatility</code></td>
<td>Set or gets the volatility process</td>
</tr>
<tr>
<td><code>x</code></td>
<td>Gets the value of the exogenous regressors in the model</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the dependent variable</td>
</tr>
</tbody>
</table>

### arch.univariate.ConstantMean.distribution

#### ConstantMean.distribution

Set or gets the error distribution

- Distributions must be a subclass of Distribution

### arch.univariate.ConstantMean.num_params

#### ConstantMean.num_params

Returns the number of parameters

### arch.univariate.ConstantMean.volatility

#### ConstantMean.volatility

Set or gets the volatility process

- Volatility processes must be a subclass of VolatilityProcess

### arch.univariate.ConstantMean.x

#### ConstantMean.x

Gets the value of the exogenous regressors in the model

---

1.7. Mean Models
arch.univariate.ConstantMean.y

ConstantMean.y
Returns the dependent variable

1.7.3 arch.univariate.ARX

class arch.univariate.ARX(y=None, x=None, lags=None, constant=True, hold_back=None, volatility=None, distribution=None, rescale=None)

Autoregressive model with optional exogenous regressors estimation and simulation

Parameters

• **y** *(ndarray, Series)* – nobs element vector containing the dependent variable

• **x** *(ndarray, DataFrame, optional)* – nobs by k element array containing exogenous regressors

• **lags** *(scalar, 1-d array, optional)* – Description of lag structure of the HAR. Scalar included all lags between 1 and the value. A 1-d array includes the AR lags lags[0], lags[1],....

• **constant** *(bool, optional)* – Flag whether the model should include a constant

• **hold_back** *(int)* – Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.

• **rescale** *(bool, optional)* – Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.

Examples

```python
>>> import numpy as np
>>> from arch.univariate import ARX
>>> y = np.random.randn(100)
>>> arx = ARX(y, lags=[1, 5, 22])
>>> res = arx.fit()
```

Estimating an AR with GARCH(1,1) errors

```python
>>> from arch.univariate import GARCH
>>> arx.volatility = GARCH()
>>> res = arx.fit(update_freq=0, disp='off')
```

Notes

The AR-X model is described by

\[ y_t = \mu + \sum_{i=1}^{p} \phi_i y_{t-L_i} + \gamma' x_t + \epsilon_t \]

Methods
### 1.7. Mean Models

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bounds()</code></td>
<td>Construct bounds for parameters to use in non-linear optimization</td>
</tr>
<tr>
<td><code>compute_param_cov()</code></td>
<td>Computes parameter covariances using numerical derivatives.</td>
</tr>
<tr>
<td><code>constraints()</code></td>
<td>Construct linear constraint arrays for use in non-linear optimization</td>
</tr>
<tr>
<td><code>fit()</code></td>
<td>Fits the model given a nobs by 1 vector of sigma2 values</td>
</tr>
<tr>
<td><code>fix()</code></td>
<td>Allows an ARCHModelFixedResult to be constructed from fixed parameters.</td>
</tr>
<tr>
<td><code>forecast()</code></td>
<td>Construct forecasts from estimated model</td>
</tr>
<tr>
<td><code>parameter_names()</code></td>
<td>List of parameters names</td>
</tr>
<tr>
<td><code>resids()</code></td>
<td>Compute model residuals</td>
</tr>
<tr>
<td><code>simulate()</code></td>
<td>Simulates data from a linear regression, AR or HAR models</td>
</tr>
<tr>
<td><code>starting_values()</code></td>
<td>Returns starting values for the mean model, often the same as the values returned from fit</td>
</tr>
</tbody>
</table>

#### arch.univariate.ARX.bounds

**ARX.bounds()**

Construct bounds for parameters to use in non-linear optimization

- **Returns** `bounds` – Bounds for parameters to use in estimation.
- **Return type** list (2-tuple of float)

#### arch.univariate.ARX.compute_param_cov

**ARX.compute_param_cov(params, backcast=None, robust=True)**

Computes parameter covariances using numerical derivatives.

- **Parameters**
  - `params` (ndarray) – Model parameters
  - `backcast` (float) – Value to use for pre-sample observations
  - `robust` (bool, optional) – Flag indicating whether to use robust standard errors (True) or classic MLE (False)

#### arch.univariate.ARX.constraints

**ARX.constraints()**

Construct linear constraint arrays for use in non-linear optimization

- **Returns**
  - `a` (ndarray) – Number of constraints by number of parameters loading array
  - `b` (ndarray) – Number of constraints array of lower bounds

- **Notes**

Parameters satisfy `a.dot(parameters) - b >= 0`
arch.univariate.ARX.fit

```
ARCH.fit(update_freq=1, disp='final', starting_values=None, cov_type='robust',
show_warning=True, first_obs=None, last_obs=None, tol=None, options=None, backcast=None)
```

Fits the model given a nobs by 1 vector of sigma2 values

**Parameters**

- `update_freq (int, optional)` – Frequency of iteration updates. Output is generated every `update_freq` iterations. Set to 0 to disable iterative output.

- `disp (str)` – Either ‘final’ to print optimization result or ‘off’ to display nothing

- `starting_values (ndarray, optional)` – Array of starting values to use. If not provided, starting values are constructed by the model components.

- `cov_type (str, optional)` – Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.

- `show_warning (bool, optional)` – Flag indicating whether convergence warnings should be shown.

- `first_obs ((int, str, datetime, Timestamp))` – First observation to use when estimating model

- `last_obs ((int, str, datetime, Timestamp))` – Last observation to use when estimating model

- `tol (float, optional)` – Tolerance for termination.

- `options (dict, optional)` – Options to pass to scipy.optimize.minimize. Valid entries include ‘ftol’, ‘eps’, ‘disp’, and ‘maxiter’.

- `backcast (float, optional)` – Value to use as backcast. Should be measure $\sigma^2_0$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

**Returns**

- `results` – Object containing model results

**Return type** 
`ARCHModelResult`

**Notes**

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

arch.univariate.ARX.fix

```
ARCH.fix(params, first_obs=None, last_obs=None)
```

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

**Parameters**

- `params ((ndarray, Series))` – User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.
• **first_obs** ((int, str, datetime, Timestamp)) – First observation to use when fixing model

• **last_obs** ((int, str, datetime, Timestamp)) – Last observation to use when fixing model

**Returns results** – Object containing model results

**Return type** ARCHModelFixedResult

**Notes**

Parameters are not checked against model-specific constraints.

**arch.univariate.ARX.forecast**

**ARX.forecast** (params, horizon=1, start=None, align='origin', method='analytic', simulations=1000, rng=None, random_state=None)

Construct forecasts from estimated model

**Parameters**

• **params** ([ndarray, Series], optional) – Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

• **horizon** (int, optional) – Number of steps to forecast

• **start** ((int, datetime, Timestamp, str), optional) – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

• **align** (str, optional) – Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, …, t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, …, and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

• **method** ('analytic', 'simulation', 'bootstrap') – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

• **simulations** (int) – Number of simulations to run when computing the forecast using either simulation or bootstrap.

• **rng** (callable, optional) – Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax rng(size) where size the 2-element tuple (simulations, horizon).

• **random_state** (RandomState, optional) – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns forecasts** – t by h data frame containing the forecasts. The alignment of the forecasts is controlled by align.

**Return type** ARCHModelForecast
Examples

```python
>>> import pandas as pd
>>> from arch import arch_model

>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')

>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)

>>> sim_data.index = pd.date_range('2000-01-01', periods=250)

>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')

>>> res = am.fit()

>>> fig = res.hedgehog_plot()
```

Notes

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for align, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If align is ‘origin’, forecast[t,h] contains the forecast made using y[t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If align is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

**arch.univariate.ARX.parameter_names**

ARX.parameter_names()

List of parameters names

Returns names – List of variable names for the mean model

Return type list (str)

**arch.univariate.ARX.resids**

ARX.resids(params, y=None, regressors=None)

Compute model residuals

Parameters

- **params (ndarray)** – Model parameters
- **y (ndarray, optional)** – Alternative values to use when computing model residuals
- **regressors (ndarray, optional)** – Alternative regressor values to use when computing model residuals

Returns resid – Model residuals

Return type ndarray
**arch.univariate.ARX.simulate**

ARX.simulate(params, nobs, burn=500, initial_value=None, x=None, initial_value_vol=None)

Simulates data from a linear regression, AR or HAR models

**Parameters**

- **params** (ndarray) – Parameters to use when simulating the model. Parameter order is
  [mean volatility distribution] where the parameters of the mean model are ordered
  [constant lag[0] lag[1] ... lag[p] ex[0] ... ex[k-1]] where lag[j] indicates the coefficient on
  the jth lag in the model and ex[j] is the coefficient on the jth exogenous variable.
- **nobs** (int) – Length of series to simulate
- **burn** (int, optional) – Number of values to simulate to initialize the model and
  remove dependence on initial values.
- **initial_value** ((ndarray, float), optional) – Either a scalar value or
  max(lags) array set of initial values to use when initializing the model. If omitted, 0.0
  is used.
- **x** (ndarray, DataFrame), optional) – nobs + burn by k array of exogenous
  variables to include in the simulation.
- **initial_value_vol** ((ndarray, float), optional) – An array or scalar to
  use when initializing the volatility process.

**Returns** simulated_data – DataFrame with columns data containing the simulated values,
volatility, containing the conditional volatility and errors containing the errors used in the
simulation

**Return type** DataFrame

**Examples**

```python
>>> import numpy as np
>>> from arch.univariate import HARX, GARCH
>>> harx = HARX(lags=[1, 5, 22])
>>> harx.volatility = GARCH()
>>> harx_params = np.array([1, 0.2, 0.3, 0.4])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((harx_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=1000)
```

Simulating models with exogenous regressors requires the regressors to have nobs plus burn data points

```python
>>> nobs = 100
>>> burn = 200
>>> x = np.random.randn(nobs + burn, 2)
>>> x_params = np.array([1.0, 2.0])
>>> params = np.concatenate((harx_params, x_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=nobs, burn=burn, x=x)
```

**arch.univariate.ARX.starting_values**

ARX.starting_values()

Returns starting values for the mean model, often the same as the values returned from fit
Returns sv – Starting values

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>distribution</code></td>
<td>Set or gets the error distribution</td>
</tr>
<tr>
<td><code>num_params</code></td>
<td>Returns the number of parameters</td>
</tr>
<tr>
<td><code>volatility</code></td>
<td>Set or gets the volatility process</td>
</tr>
<tr>
<td><code>x</code></td>
<td>Gets the value of the exogenous regressors in the model</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the dependent variable</td>
</tr>
</tbody>
</table>

`arch.univariate.ARX.distribution`

`ARX.distribution`

Set or gets the error distribution

Distributions must be a subclass of Distribution

`arch.univariate.ARX.num_params`

`ARX.num_params`

Returns the number of parameters

`arch.univariate.ARX.volatility`

`ARX.volatility`

Set or gets the volatility process

Volatility processes must be a subclass of VolatilityProcess

`arch.univariate.ARX.x`

`ARX.x`

Gets the value of the exogenous regressors in the model

`arch.univariate.ARX.y`

`ARX.y`

Returns the dependent variable

1.7.4 arch.univariate.HARX

class arch.univariate.HARX (y=None, x=None, lags=None, constant=True, use_rotated=False, hold_back=None, volatility=None, distribution=None, rescale=None)  
Heterogeneous Autoregression (HAR), with optional exogenous regressors, model estimation and simulation

Parameters
• $y$ ((ndarray, Series)) – nobs element vector containing the dependent variable
• $x$ ((ndarray, DataFrame), optional) – nobs by k element array containing exogenous regressors
• $lags$ ((scalar, ndarray), optional) – Description of lag structure of the HAR. Scalar included all lags between 1 and the value. A 1-d array includes the HAR lags $1:lags[0]$, $1:lags[1]$, . . . A 2-d array includes the HAR lags of the form $lags[0,j]:lags[1,j]$ for all columns of lags.
• $constant$ (bool, optional) – Flag whether the model should include a constant
• $use_rotated$ (bool, optional) – Flag indicating to use the alternative rotated form of the HAR where HAR lags do not overlap
• $hold_back$ (int) – Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
• $volatility$ (VolatilityProcess, optional) – Volatility process to use in the model
• $distribution$ (Distribution, optional) – Error distribution to use in the model
• $rescale$ (bool, optional) – Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than $y$ is rescaled and the new scale is reported in the estimation results.

Examples

```python
>>> import numpy as np
>>> from arch.univariate import HARX
>>> y = np.random.randn(100)
>>> harx = HARX(y, lags=[1, 5, 22])
>>> res = harx.fit()
```

```python
>>> from pandas import Series, date_range
>>> index = date_range('2000-01-01', freq='M', periods=y.shape[0])
>>> y = Series(y, name='y', index=index)
>>> har = HARX(y, lags=[1, 6], hold_back=10)
```

Notes

The HAR-X model is described by

$$ y_t = \mu + \sum_{i=1}^{p} \phi_i \bar{y}_{t-L_{i,0}:L_{i,1}} + \gamma' x_t + \epsilon_t $$

where $\bar{y}_{t-L_{i,0}:L_{i,1}}$ is the average value of $y_t$ between $t - L_{i,0}$ and $t - L_{i,1}$.

Methods
**bounds()**
Construct bounds for parameters to use in non-linear optimization

**compute_param_cov(params[, backcast, robust])**
Computes parameter covariances using numerical derivatives.

**constraints()**
Construct linear constraint arrays for use in non-linear optimization

**fit([update_freq, disp, starting_values, ...])**
Fits the model given a nobs by 1 vector of sigma2 values

**fix(params[, first_obs, last_obs])**
Allows an ARCHModelFixedResult to be constructed from fixed parameters.

**forecast(params[, horizon, start, align, ...])**
Construct forecasts from estimated model

**parameter_names()**
List of parameters names

**resids(params[, y, regressors])**
Compute model residuals

**simulate(params, nobs[, burn, ...])**
Simulates data from a linear regression, AR or HAR models

**starting_values()**
Returns starting values for the mean model, often the same as the values returned from fit

---

**arch.univariate.HARX.bounds**

HARX.bounds()  
Construct bounds for parameters to use in non-linear optimization

Returns **bounds** – Bounds for parameters to use in estimation.  
Return type list (2-tuple of float)

**arch.univariate.HARX.compute_param_cov**

HARX.compute_param_cov(params, backcast=None, robust=True)
Computes parameter covariances using numerical derivatives.

Parameters
- **params** (ndarray) – Model parameters
- **backcast** (float) – Value to use for pre-sample observations
- **robust** (bool, optional) – Flag indicating whether to use robust standard errors (True) or classic MLE (False)

**arch.univariate.HARX.constraints**

HARX.constraints()
Construct linear constraint arrays for use in non-linear optimization

Returns
- **a** (ndarray) – Number of constraints by number of parameters loading array
- **b** (ndarray) – Number of constraints array of lower bounds

Notes
Parameters satisfy a.dot(parameters) - b >= 0
arch.univariate.HARX.fit

HARX.fit(update_freq=1, disp='final', starting_values=None, cov_type='robust', show_warning=True, first_obs=None, last_obs=None, tol=None, options=None, backcast=None)

Fits the model given a nobs by 1 vector of sigma2 values

Parameters

• **update_freq** *(int, optional)* – Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.

• **disp** *(str)* – Either ‘final’ to print optimization result or ‘off’ to display nothing

• **starting_values** *(ndarray, optional)* – Array of starting values to use. If not provided, starting values are constructed by the model components.

• **cov_type** *(str, optional)* – Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.

• **show_warning** *(bool, optional)* – Flag indicating whether convergence warnings should be shown.

• **first_obs** *(int, str, datetime, Timestamp)* – First observation to use when estimating model

• **last_obs** *(int, str, datetime, Timestamp)* – Last observation to use when estimating model

• **tol** *(float, optional)* – Tolerance for termination.

• **options** *(dict, optional)* – Options to pass to scipy.optimize.minimize. Valid entries include ‘ftol’, ‘eps’, ‘disp’, and ‘maxiter’.

• **backcast** *(float, optional)* – Value to use as backcast. Should be measure $\sigma_0^2$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns **results** – Object containing model results

Return type **ARCHModelResult**

Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

arch.univariate.HARX.fix

HARX.fix(params, first_obs=None, last_obs=None)

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

• **params** *(ndarray, Series)* – User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.
- **first_obs**({int, str, datetime, Timestamp}) – First observation to use when fixing model
- **last_obs**({int, str, datetime, Timestamp}) – Last observation to use when fixing model

Returns **results** – Object containing model results

Return type **ARCHModelFixedResult**

**Notes**

Parameters are not checked against model-specific constraints.

**arch.univariate.HARX.forecast**

HARX.forecast(params, horizon=1, start=None, align='origin', method='analytic', simulations=1000, rng=None, random_state=None)

Construct forecasts from estimated model

**Parameters**

- **params**({ndarray, Series}, optional) – Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.
- **horizon**(int, optional) – Number of steps to forecast
- **start**({int, datetime, Timestamp, str}, optional) – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.
- **align**(str, optional) – Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, ..., t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, ..., and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.
- **method**({'analytic', 'simulation', 'bootstrap'}) – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.
- **simulations**(int) – Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng**(callable, optional) – Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax rng(size) where size the 2-element tuple (simulations, horizon).
- **random_state**(RandomState, optional) – NumPy RandomState instance to use when method is ‘bootstrap’

Returns **forecasts** – t by h data frame containing the forecasts. The alignment of the forecasts is controlled by align.

Return type **ARCHModelForecast**
Examples

```python
>>> import pandas as pd
>>> from arch import arch_model

>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> res = am.fit()

>>> fig = res.hedgehog_plot()
```

Notes

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

`arch.univariate.HARX.parameter_names`

`HARX.parameter_names()`

List of parameters names

- Returns names – List of variable names for the mean model

- Return type list (str)

`arch.univariate.HARX.resids`

`HARX.resids(params, y=None, regressors=None)`

Compute model residuals

- Parameters
  - `params (ndarray)` – Model parameters
  - `y (ndarray, optional)` – Alternative values to use when computing model residuals
  - `regressors (ndarray, optional)` – Alternative regressor values to use when computing model residuals

- Returns resid – Model residuals

- Return type ndarray
arch.univariate.HARX.simulate

**HARX.simulate** *(params, nobs, burn=500, initial_value=None, x=None, initial_value_vol=None)*

Simulates data from a linear regression, AR or HAR models

**Parameters**

- **params** *(ndarray)* – Parameters to use when simulating the model. Parameter order is [mean volatility distribution] where the parameters of the mean model are ordered [constant lag[0] lag[1] ... lag[p] ex[0] ... ex[k-1]] where lag[j] indicates the coefficient on the jth lag in the model and ex[j] is the coefficient on the jth exogenous variable.

- **nobs** *(int)* – Length of series to simulate

- **burn** *(int, optional)* – Number of values to simulate to initialize the model and remove dependence on initial values.

- **initial_value** *(ndarray, float, optional)* – Either a scalar value or max(lags) array set of initial values to use when initializing the model. If omitted, 0.0 is used.

- **x** *(ndarray, DataFrame, optional)* – nobs + burn by k array of exogenous variables to include in the simulation.

- **initial_value_vol** *(ndarray, float, optional)* – An array or scalar to use when initializing the volatility process.

**Returns**simulated_data – DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation

**Return type** DataFrame

**Examples**

```python
>>> import numpy as np
>>> from arch.univariate import HARX, GARCH
>>> harx = HARX(lags=[1, 5, 22])
>>> harx.volatility = GARCH()
>>> harx_params = np.array([1.0, 0.2, 0.3, 0.4])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((harx_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=1000)
```

Simulating models with exogenous regressors requires the regressors to have nobs plus burn data points

```python
>>> nobs = 100
>>> burn = 200
>>> x = np.random.randn(nobs + burn, 2)
>>> x_params = np.array([1.0, 2.0])
>>> params = np.concatenate((harx_params, x_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=nobs, burn=burn, x=x)
```

arch.univariate.HARX.starting_values

**HARX.starting_values** ()

Returns starting values for the mean model, often the same as the values returned from fit
Returns sv – Starting values
Return type ndarray

Properties

<table>
<thead>
<tr>
<th>attribute</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution</td>
<td>Set or gets the error distribution</td>
</tr>
<tr>
<td>num_params</td>
<td>Returns the number of parameters</td>
</tr>
<tr>
<td>volatility</td>
<td>Set or gets the volatility process</td>
</tr>
<tr>
<td>x</td>
<td>Gets the value of the exogenous regressors in the model</td>
</tr>
<tr>
<td>y</td>
<td>Returns the dependent variable</td>
</tr>
</tbody>
</table>

arch.univariate.HARX.distribution

HARX.distribution
Set or gets the error distribution
Distributions must be a subclass of Distribution

arch.univariate.HARX.num_params

HARX.num_params
Returns the number of parameters

arch.univariate.HARX.volatility

HARX.volatility
Set or gets the volatility process
Volatility processes must be a subclass of VolatilityProcess

arch.univariate.HARX.x

HARX.x
Gets the value of the exogenous regressors in the model

arch.univariate.HARX.y

HARX.y
Returns the dependent variable

1.7.5 arch.univariate.LS

class arch.univariate.LS(y=None, x=None, constant=True, hold_back=None, rescale=None)

Least squares model estimation and simulation

Parameters

- y (ndarray, DataFrame, optional) – nobs element vector containing the dependent variable

1.7. Mean Models
• **y** – nobs by k element array containing exogenous regressors
• **constant** *(bool, optional)* – Flag whether the model should include a constant
• **hold_back** *(int)* – Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
• **rescale** *(bool, optional)* – Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, then y is rescaled and the new scale is reported in the estimation results.

**Examples**

```python
>>> import numpy as np
>>> from arch.univariate import LS
>>> y = np.random.randn(100)
>>> x = np.random.randn(100, 2)
>>> ls = LS(y, x)
>>> res = ls.fit()
```

**Notes**

The LS model is described by

\[
y_t = \mu + \gamma' x_t + \epsilon_t
\]

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>bounds()</strong></td>
<td>Construct bounds for parameters to use in non-linear optimization</td>
</tr>
<tr>
<td><strong>compute_param_cov()</strong></td>
<td>Computes parameter covariances using numerical derivatives.</td>
</tr>
<tr>
<td><strong>constraints()</strong></td>
<td>Construct linear constraint arrays for use in non-linear optimization</td>
</tr>
<tr>
<td><strong>fit()</strong></td>
<td>Fits the model given a nobs by 1 vector of sigma2 values</td>
</tr>
<tr>
<td><strong>fix()</strong></td>
<td>Allows an ARCHModelFixedResult to be constructed from fixed parameters.</td>
</tr>
<tr>
<td><strong>forecast()</strong></td>
<td>Construct forecasts from estimated model</td>
</tr>
<tr>
<td><strong>parameter_names()</strong></td>
<td>List of parameters names</td>
</tr>
<tr>
<td><strong>resids()</strong></td>
<td>Compute model residuals</td>
</tr>
<tr>
<td><strong>simulate()</strong></td>
<td>Simulates data from a linear regression, AR or HAR models</td>
</tr>
<tr>
<td><strong>starting_values()</strong></td>
<td>Returns starting values for the mean model, often the same as the values returned from fit</td>
</tr>
</tbody>
</table>
arch.univariate.LS.bounds

LS.bounds()
Construct bounds for parameters to use in non-linear optimization

Returns bounds – Bounds for parameters to use in estimation.

Return type list (2-tuple of float)

arch.univariate.LS.compute_param_cov

LS.compute_param_cov(params, backcast=None, robust=True)
Computes parameter covariances using numerical derivatives.

Parameters

• params (ndarray) – Model parameters
• backcast (float) – Value to use for pre-sample observations
• robust (bool, optional) – Flag indicating whether to use robust standard errors (True) or classic MLE (False)

arch.univariate.LS.constraints

LS.constraints()
Construct linear constraint arrays for use in non-linear optimization

Returns

• a (ndarray) – Number of constraints by number of parameters loading array
• b (ndarray) – Number of constraints array of lower bounds

Notes
Parameters satisfy a.dot(parameters) - b >= 0

arch.univariate.LS.fit

LS.fit(update_freq=1, disp='final', starting_values=None, cov_type='robust', show_warning=True, first_obs=None, last_obs=None, tol=None, options=None, backcast=None)
Fits the model given a nobs by 1 vector of sigma2 values

Parameters

• update_freq (int, optional) – Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
• disp (str) – Either ‘final’ to print optimization result or ‘off’ to display nothing
• starting_values (ndarray, optional) – Array of starting values to use. If not provided, starting values are constructed by the model components.
• cov_type (str, optional) – Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.

1.7. Mean Models 69
• **show_warning** *(bool, optional)* – Flag indicating whether convergence warnings should be shown.

• **first_obs** *(int, str, datetime, Timestamp)* – First observation to use when estimating model.

• **last_obs** *(int, str, datetime, Timestamp)* – Last observation to use when estimating model.

• **tol** *(float, optional)* – Tolerance for termination.

• **options** *(dict, optional)* – Options to pass to *scipy.optimize.minimize*. Valid entries include ‘ftol’, ‘eps’, ‘disp’, and ‘maxiter’.

• **backcast** *(float, optional)* – Value to use as backcast. Should be measure $\sigma_0^2$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

**Returns**  
results – Object containing model results

**Return type**  
ARCHModelResult

**Notes**

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

---

**arch.univariate.LS.fix**

**LS.fix** *(params, first_obs=None, last_obs=None)*

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

**Parameters**

• **params** *(ndarray, Series)* – User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.

• **first_obs** *(int, str, datetime, Timestamp)* – First observation to use when fixing model.

• **last_obs** *(int, str, datetime, Timestamp)* – Last observation to use when fixing model.

**Returns**  
results – Object containing model results

**Return type**  
ARCHModelFixedResult

**Notes**

Parameters are not checked against model-specific constraints.

---

**arch.univariate.LS.forecast**

**LS.forecast** *(params, horizon=1, start=None, align='origin', method='analytic', simulations=1000, rng=None, random_state=None)*

Construct forecasts from estimated model.
Parameters

- **params** ({ndarray, Series}, optional) – Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

- **horizon** (int, optional) – Number of steps to forecast

- **start** ((int, datetime, Timestamp, str), optional) – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

- **align** (str, optional) – Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, ..., t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, ..., and the h-step from time t-h. ‘target’ simplifies computing forecast errors since the realization and h-step forecast are aligned.

- **method** ({'analytic', 'simulation', 'bootstrap'}) – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

- **simulations** (int) – Number of simulations to run when computing the forecast using either simulation or bootstrap.

- **rng** (callable, optional) – Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax rng(size) where size the 2-element tuple (simulations, horizon).

- **random_state** (RandomState, optional) – NumPy RandomState instance to use when method is ‘bootstrap’

Returns forecasts – t by h data frame containing the forecasts. The alignment of the forecasts is controlled by align.

Return type ARCHModelForecast

Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```

Notes

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for align, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.
If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If align is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If align is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

**arch.univariate.LS.parameter_names**

**LS.parameter_names()**

List of parameters names

**Parameters**

**Returns** names – List of variable names for the mean model

**Return type** list (str)

**arch.univariate.LS.resids**

**LS.resids (params, y=None, regressors=None)**

Compute model residuals

**Parameters**

• **params (ndarray)** – Model parameters

• **y (ndarray, optional)** – Alternative values to use when computing model residuals

• **regressors (ndarray, optional)** – Alternative regressor values to use when computing model residuals

**Returns** resids – Model residuals

**Return type** ndarray

**arch.univariate.LS.simulate**

**LS.simulate (params, nobs=500, initial_value=None, x=None, initial_value_vol=None)**

Simulates data from a linear regression, AR or HAR models

**Parameters**

• **params (ndarray)** – Parameters to use when simulating the model. Parameter order is [mean volatility distribution] where the parameters of the mean model are ordered [constant lag[0] lag[1] ... lag[p] ex[0] ... ex[k-1]] where lag[j] indicates the coefficient on the jth lag in the model and ex[j] is the coefficient on the jth exogenous variable.

• **nobs (int)** – Length of series to simulate

• **burn (int, optional)** – Number of values to simulate to initialize the model and remove dependence on initial values.

• **initial_value ((ndarray, float), optional)** – Either a scalar value or max(lags) array set of initial values to use when initializing the model. If omitted, 0.0 is used.

• **x ((ndarray, DataFrame), optional)** – nobs + burn by k array of exogenous variables to include in the simulation.
• **initial_value_vol**({ndarray, float}, optional) – An array or scalar to use when initializing the volatility process.

Returns **simulated_data** – DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation

Return type DataFrame

Examples

```python
>>> import numpy as np
>>> from arch.univariate import HARX, GARCH

>>> harx = HARX(lags=[1, 5, 22])
>>> harx.volatility = GARCH()
>>> harx_params = np.array([1, 0.2, 0.3, 0.4])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((harx_params, garch_params))

>>> sim_data = harx.simulate(params, 1000)
```
**arch Documentation, Release 4.11**

---

**arch.univariate.LS.num_params**

```
LS.num_params
```

Returns the number of parameters

**arch.univariate.LS.volatility**

```
LS.volatility
```

Set or gets the volatility process

Volatility processes must be a subclass of VolatilityProcess

**arch.univariate.LS.x**

```
LS.x
```

Gets the value of the exogenous regressors in the model

**arch.univariate.LS.y**

```
LS.y
```

Returns the dependent variable

---

### 1.7.6 Writing New Mean Models

All mean models must inherit from :class:`ARCHModel` and provide all public methods. There are two optional private methods that should be provided if applicable.

```python
class arch.univariate.base.ARCHModel(y=None, volatility=None, distribution=None, hold_back=None, rescale=None)
```

Abstract base class for mean models in ARCH processes. Specifies the conditional mean process.

All public methods that raise `NotImplementedError` should be overridden by any subclass. Private methods that raise `NotImplementedError` are optional to override but recommended where applicable.

---

### 1.8 Volatility Processes

A volatility process is added to a mean model to capture time-varying volatility.

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstantVariance()</td>
<td>Constant volatility process</td>
</tr>
<tr>
<td>GARCH([p, o, q, power])</td>
<td>GARCH and related model estimation</td>
</tr>
<tr>
<td>FIGARCH([p, q, truncation])</td>
<td>FIGARCH model</td>
</tr>
<tr>
<td>EGARCH([p, o, q])</td>
<td>EGARCH model estimation</td>
</tr>
<tr>
<td>HARCH([lags])</td>
<td>Heterogeneous ARCH process</td>
</tr>
<tr>
<td>MIDASHyperbolic([m, asym])</td>
<td>MIDAS Hyperbolic ARCH process</td>
</tr>
<tr>
<td>ARCH([p])</td>
<td>ARCH process</td>
</tr>
</tbody>
</table>
1.8.1 arch.univariate.ConstantVariance

class arch.univariate.ConstantVariance
    Constant volatility process

    Notes
    Model has the same variance in all periods

    Methods

    backcast(resids)                  Construct values for backcasting to start the recursion
    backcast_transform(backcast)      Transformation to apply to user-provided backcast values
    bounds(resids)                    Returns bounds for parameters
    compute_variance(parameters, resids, sigma2, ...)  Compute the variance for the ARCH model
    constraints()                     Construct parameter constraints arrays for parameter estimation
    forecast(parameters, resids, backcast, ...)  Forecast volatility from the model
    parameter_names()                Names of model parameters
    simulate(parameters, nobs, rng[, burn, ...])  Simulate data from the model
    starting_values(resids)           Returns starting values for the ARCH model
    variance_bounds(resids[, power])  param resids  Approximate residuals to use to compute the lower and upper bounds

arch.univariate.ConstantVariance.backcast

ConstantVariance.backcast(resids)
    Construct values for backcasting to start the recursion
    Parameters resids (ndarray) – Vector of (approximate) residuals
    Returns backcast – Value to use in backcasting in the volatility recursion
    Return type float

arch.univariate.ConstantVariance.backcast_transform

ConstantVariance.backcast_transform(backcast)
    Transformation to apply to user-provided backcast values
    Parameters backcast ((float, ndarray)) – User-provided backcast that approximates sigma2[0].
    Returns backcast – Backcast transformed to the model-appropriate scale
    Return type {float, ndarray}
arch.univariate.ConstantVariance.bounds

ConstantVariance.bounds(resids)
Returns bounds for parameters

Parameters resids (ndarray) – Vector of (approximate) residuals

Returns bounds – List of bounds where each element is (lower, upper).

Return type list[tuple[float, float]]

arch.univariate.ConstantVariance.compute_variance

ConstantVariance.compute_variance(parameters, resids, sigma2, backcast, var_bounds)
Compute the variance for the ARCH model

Parameters

• parameters (ndarray) – Model parameters
• resids (ndarray) – Vector of mean zero residuals
• sigma2 (ndarray) – Array with same size as resids to store the conditional variance
• backcast ((float, ndarray)) – Value to use when initializing ARCH recursion.
  Can be an ndarray when the model contains multiple components.
• var_bounds (ndarray) – Array containing columns of lower and upper bounds

arch.univariate.ConstantVariance.constraints

ConstantVariance.constraints()
Construct parameter constraints arrays for parameter estimation

Returns

• A (ndarray) – Parameters loadings in constraint. Shape is number of constraints by num-
  ber of parameters
• b (ndarray) – Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

arch.univariate.ConstantVariance.forecast

ConstantVariance.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)
Forecast volatility from the model

Parameters

• parameters ((ndarray, Series)) – Parameters required to forecast the volatility model
• resids (ndarray) – Residuals to use in the recursion
• **backcast** *(float)* – Value to use when initializing the recursion

• **var_bounds** *(ndarray, 2-d)* – Array containing columns of lower and upper bounds

• **start** *(None, int)* – Index of the first observation to use as the starting point for the forecast. Default is len(resids).

• **horizon** *(int)* – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].

• **method** *({'analytic', 'simulation', 'bootstrap'})* – Method to use when producing the forecast. The default is analytic.

• **simulations** *(int)* – Number of simulations to run when computing the forecast using either simulation or bootstrap.

• **rng** *(callable)* – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

• **random_state** *(RandomState, optional)* – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Return type** VarianceForecast

**Raises**

• **NotImplementedError** – * If method is not supported

• **ValueError** – * If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

arch.univariate.ConstantVariance.parameter_names

ConstantVariance.parameter_names()

Names of model parameters

**Returns** names – Variables names

**Return type** list (str)

arch.univariate.ConstantVariance.simulate

ConstantVariance.simulate(*parameters, nobs, rng, burn=500, initial_value=None*)

Simulate data from the model

**Parameters**

• **parameters** *(ndarray, Series)* – Parameters required to simulate the volatility model

• **nobs** *(int)* – Number of data points to simulate
• **rng** (*callable*) – Callable function that takes a single integer input and returns a vector of random numbers

• **burn** (*int, optional*) – Number of additional observations to generate when initializing the simulation

• **initial_value** (*{float, ndarray}, optional*) – Scalar or array of initial values to use when initializing the simulation

**Returns**

• **resids** (*ndarray*) – The simulated residuals

• **variance** (*ndarray*) – The simulated variance

**arch.univariate.ConstantVariance.starting_values**

`ConstantVariance.starting_values(resids)`

Returns starting values for the ARCH model.

**Parameters**

- **resids** (*ndarray*) – Array of (approximate) residuals to use when computing starting values.

**Returns**

- **sv** – Array of starting values

**Return type** ndarray

**arch.univariate.ConstantVariance.variance_bounds**

`ConstantVariance.variance_bounds(resids, power=2.0)`

**Parameters**

- **resids** (*ndarray*) – Approximate residuals to use to compute the lower and upper bounds on the conditional variance

- **power** (*float, optional*) – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns**

- **var_bounds** – Array containing columns of lower and upper bounds with the same number of elements as resids

**Return type** ndarray

**Properties**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>start</code></td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td><code>stop</code></td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

**arch.univariate.ConstantVariance.start**

`ConstantVariance.start`

Index to use to start variance subarray selection
arch.univariate.ConstantVariance.stop

ConstantVariance.stop
Index to use to stop variance subarray selection

1.8.2 arch.univariate.GARCH

class arch.univariate.GARCH (p=1, o=0, q=1, power=2.0)
GARCH and related model estimation

The following models can be specified using GARCH:

- ARCH(p)
- GARCH(p,q)
- GJR-GARCH(p,o,q)
- AVARCH(p)
- AVGARCH(p,q)
- TARCH(p,o,q)
- Models with arbitrary, pre-specified powers

Parameters

- p (int) – Order of the symmetric innovation
- o (int) – Order of the asymmetric innovation
- q (int) – Order of the lagged (transformed) conditional variance
- power (float, optional) – Power to use with the innovations, abs(e) ** power. Default is 2.0, which produces ARCH and related models. Using 1.0 produces AVARCH and related models. Other powers can be specified, although these should be strictly positive, and usually larger than 0.25.

num_params
The number of parameters in the model
Type int

Examples

```python
>>> from arch.univariate import GARCH

Standard GARCH(1,1)
```

```python
>>> garch = GARCH(p=1, q=1)
```

Asymmetric GJR-GARCH process

```python
>>> gjr = GARCH(p=1, o=1, q=1)
```

Asymmetric TARCH process

```python
>>> tarch = GARCH(p=1, o=1, q=1, power=1.0)
```
Notes

In this class of processes, the variance dynamics are

\[ \sigma_t^\lambda = \omega + \sum_{i=1}^{p} \alpha_i |\epsilon_{t-i}|^\lambda + \sum_{j=1}^{\alpha} \gamma_j |\epsilon_{t-j}|^\lambda I[\epsilon_{t-j} < 0] + \sum_{k=1}^{q} \beta_k \sigma_{t-k}^\lambda \]

Methods

- `backcast(resids)` Construct values for backcasting to start the recursion
- `backcast_transform(backcast)` Transformation to apply to user-provided backcast values
- `bounds(resids)` Returns bounds for parameters
- `compute_variance(parameters, resids, sigma2, ...)` Compute the variance for the ARCH model
- `constraints()` Construct parameter constraints arrays for parameter estimation
- `forecast(parameters, resids, backcast, ...)` Forecast volatility from the model
- `parameter_names()` Names of model parameters
- `simulate(parameters, nobs, rng[, burn, ...])` Simulate data from the model
- `starting_values(resids)` Returns starting values for the ARCH model
- `variance_bounds(resids[, power])`

  **param resids** Approximate residuals to use to compute the lower and upper bounds

**arch.univariate.GARCH.backcast**

GARCH.**backcast**(resids)

Construct values for backcasting to start the recursion

  **Parameters** resids *(ndarray)* – Vector of (approximate) residuals

  **Returns** backcast – Value to use in backcasting in the volatility recursion

  **Return type** float

**arch.univariate.GARCH.backcast_transform**

GARCH.**backcast_transform**(backcast)

Transformation to apply to user-provided backcast values

  **Parameters** backcast *(float, ndarray)* – User-provided backcast that approximates sigma2[0].

  **Returns** backcast – Backcast transformed to the model-appropriate scale

  **Return type** {float, ndarray}
arch.univariate.GARCH.bounds

GARCH.bounds(resids)
Returns bounds for parameters

Parameters resids (ndarray) – Vector of (approximate) residuals
Returns bounds – List of bounds where each element is (lower, upper).
Return type list[tuple[float, float]]

arch.univariate.GARCH.compute_variance

GARCH.compute_variance(parameters, resids, sigma2, backcast, var_bounds)
Compute the variance for the ARCH model

Parameters
- parameters (ndarray) – Model parameters
- resids (ndarray) – Vector of mean zero residuals
- sigma2 (ndarray) – Array with same size as resids to store the conditional variance
- backcast (tuple) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
- var_bounds (ndarray) – Array containing columns of lower and upper bounds

arch.univariate.GARCH.constraints

GARCH.constraints()
Construct parameter constraints arrays for parameter estimation

Returns
- A (ndarray) – Parameters loadings in constraint. Shape is number of constraints by number of parameters
- b (ndarray) – Constraint values, one for each constraint

Notes
Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

arch.univariate.GARCH.forecast

GARCH.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)
Forecast volatility from the model

Parameters
- parameters (tuple) – Parameters required to forecast the volatility model
- resids (ndarray) – Residuals to use in the recursion

1.8. Volatility Processes
• **backcast** (*float*) – Value to use when initializing the recursion

• **var_bounds** (*ndarray, 2-d*) – Array containing columns of lower and upper bounds

• **start** (*{None, int}* ) – Index of the first observation to use as the starting point for the forecast. Default is len(resids).

• **horizon** (*int*) – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].

• **method** (*{'analytic', 'simulation', 'bootstrap'}*) – Method to use when producing the forecast. The default is analytic.

• **simulations** (*int*) – Number of simulations to run when computing the forecast using either simulation or bootstrap.

• **rng** (*callable*) – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

• **random_state** (*RandomState, optional*) – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Return type** VarianceForecast

**Raises**

• **NotImplementedError** – * If method is not supported

• **ValueError** – * If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

---

**arch.univariate.GARCH.parameter_names**

GARCH.parameter_names()

Names of model parameters

**Returns** names – Variables names

**Return type** list (str)

---

**arch.univariate.GARCH.simulate**

GARCH.simulate(parameters, nobs, rng, burn=500, initial_value=None)

Simulate data from the model

**Parameters**

• **parameters** (*ndarray, Series*) – Parameters required to simulate the volatility model

• **nobs** (*int*) – Number of data points to simulate
• **rng** (*callable*) – Callable function that takes a single integer input and returns a vector of random numbers

• **burn** (*int, optional*) – Number of additional observations to generate when initial- izing the simulation

• **initial_value** (*{float, ndarray}, optional*) – Scalar or array of initial values to use when initializing the simulation

Returns

• **resids** (*ndarray*) – The simulated residuals

• **variance** (*ndarray*) – The simulated variance

### arch.univariate.GARCH.starting_values

GARCH.starting_values(*resids*)

Returns starting values for the ARCH model

Parameters

- **resids** (*ndarray*) – Array of (approximate) residuals to use when computing starting values

Returns **sv** – Array of starting values

Return type **ndarray**

### arch.univariate.GARCH.variance_bounds

GARCH.variance_bounds(*resids, power=2.0*)

Parameters

- **resids** (*ndarray*) – Approximate residuals to use to compute the lower and upper bounds on the conditional variance

- **power** (*float, optional*) – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns **var_bounds** – Array containing columns of lower and upper bounds with the same number of elements as resids

Return type **ndarray**

### Properties

<table>
<thead>
<tr>
<th><strong>start</strong></th>
<th>Index to use to start variance subarray selection</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>stop</strong></td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

### arch.univariate.GARCH.start

GARCH.start

Index to use to start variance subarray selection
1.8.3 arch.univariate.FIGARCH

class arch.univariate.FIGARCH(p=1, q=1, power=2.0, truncation=1000)
FIGARCH model

Parameters

- p (0, 1) – Order of the symmetric innovation
- q (0, 1) – Order of the lagged (transformed) conditional variance
- **power** (float, optional) – Power to use with the innovations, \( \text{abs}(e)^{** \text{power}} \). Default is 2.0, which produces FIGARCH and related models. Using 1.0 produces FIAVARCH and related models. Other powers can be specified, although these should be strictly positive, and usually larger than 0.25.
- **truncation** (int, optional) – Truncation point to use in ARCH(\( \infty \)) representation. Default is 1000.

num_params
The number of parameters in the model

Type int

Examples

```python
>>> from arch.univariate import FIGARCH

Standard FIGARCH
```  
```python
>>> figarch = FIGARCH()
```

FIARCH

```python
>>> fiarch = FIGARCH(p=0)
```

FIAVARCH process

```python
>>> fiavarch = FIGARCH(power=1.0)
```

Notes

In this class of processes, the variance dynamics are

\[
h_t = \omega + (1 - \beta) + \phi L(1 - L) \epsilon_t^2 + \beta h_{t-1}
\]

where \( L \) is the lag operator and \( \epsilon \) is the fractional differencing parameter. The model is estimated using the ARCH(\( \infty \)) representation,

\[
h_t = (1 - \beta)^{-1} \omega + \sum_{i=1}^{\infty} \lambda_i \epsilon_{t-i}^2
\]
The weights are constructed using

$$
\delta_1 = d \\
\lambda_1 = d - \beta + \phi
$$

and the recursive equations

$$
\delta_j = \frac{j - 1 - d}{j} \delta_{j-1} \\
\lambda_j = \beta \lambda_{j-1} + \delta_j - \phi \delta_{j-1}.
$$

When \textit{power} is not 2, the ARCH(\infty) representation is still used where \(\epsilon_t^2\) is replaced by \(|\epsilon_t|^p\) and \(p\) is the power.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{backcast(resids)}</td>
<td>Construct values for backcasting to start the recursion</td>
</tr>
<tr>
<td>\texttt{backcast_transform(backcast)}</td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td>\texttt{bounds(resids)}</td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td>\texttt{compute_variance(parameters, resids, sigma2, ...)}</td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td>\texttt{constraints()}</td>
<td>Construct parameter constraints arrays for parameter estimation</td>
</tr>
<tr>
<td>\texttt{forecast(parameters, resids, backcast, ...)}</td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td>\texttt{parameter_names()}</td>
<td>Names of model parameters</td>
</tr>
<tr>
<td>\texttt{simulate(parameters, nobs, rng[, burn, ...])}</td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td>\texttt{starting_values(resids)}</td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td>\texttt{variance_bounds(resids[, power])}</td>
<td></td>
</tr>
</tbody>
</table>

**arch.univariate.FIGARCH.backcast**

\texttt{FIGARCH.backcast(resids)}

Construct values for backcasting to start the recursion

**Parameters**

- \texttt{resids (ndarray)} – Vector of (approximate) residuals

**Returns**

- \texttt{backcast} – Value to use in backcasting in the volatility recursion

**Return type**

- \texttt{float}

**arch.univariate.FIGARCH.backcast_transform**

\texttt{FIGARCH.backcast_transform(backcast)}

Transformation to apply to user-provided backcast values

**Parameters**

- \texttt{backcast (\{float, ndarray\})} – User-provided backcast that approximates sigma2[0].

**Returns**

- \texttt{backcast} – Backcast transformed to the model-appropriate scale
Return type {float, ndarray}

arch.univariate.FIGARCH.bounds

FIGARCH.bounds(resids)
Returns bounds for parameters

Parameters resids (ndarray) – Vector of (approximate) residuals

Returns bounds – List of bounds where each element is (lower, upper).

Return type list[tuple[float, float]]

arch.univariate.FIGARCH.compute_variance

FIGARCH.compute_variance(parameters, resids, sigma2, backcast, var_bounds)
Compute the variance for the ARCH model

Parameters

• parameters (ndarray) – Model parameters
• resids (ndarray) – Vector of mean zero residuals
• sigma2 (ndarray) – Array with same size as resids to store the conditional variance
• backcast ((float, ndarray)) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
• var_bounds (ndarray) – Array containing columns of lower and upper bounds

arch.univariate.FIGARCH.constraints

FIGARCH.constraints()
Construct parameter constraints arrays for parameter estimation

Returns

• A (ndarray) – Parameters loadings in constraint. Shape is number of constraints by number of parameters
• b (ndarray) – Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

arch.univariate.FIGARCH.forecast

FIGARCH.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)
Forecast volatility from the model

Parameters

• parameters (ndarray, Series) – Parameters required to forecast the volatility model
- **resids** (*ndarray*) – Residuals to use in the recursion
- **backcast** (*float*) – Value to use when initializing the recursion
- **var_bounds** (*ndarray, 2-d*) – Array containing columns of lower and upper bounds
- **start** (*{None, int}*). – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
- **horizon** (*int*) – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
- **method** (*{'analytic', 'simulation', 'bootstrap'}*) – Method to use when producing the forecast. The default is analytic.
- **simulations** (*int*) – Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng** (*callable*) – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
- **random_state** (*RandomState, optional*) – NumPy RandomState instance to use when method is ‘bootstrap’

Returns **forecasts** – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Return type **VarianceForecast**

Raises
- **NotImplementedError** – * If method is not supported
- **ValueError** – * If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

**arch.univariate.FIGARCH.parameter_names**

FIGARCH.parameter_names()

Names of model parameters

Returns **names** – Variables names

Return type **list (str)**

**arch.univariate.FIGARCH.simulate**

FIGARCH.simulate(*parameters, nobs, rng, burn=500, initial_value=None*)

Simulate data from the model

Parameters

- **parameters** (*{ndarray, Series}*) – Parameters required to simulate the volatility model
- **nobs** (*int*) – Number of data points to simulate
• **rng (callable)** – Callable function that takes a single integer input and returns a vector of random numbers
• **burn (int, optional)** – Number of additional observations to generate when initializing the simulation
• **initial_value (float, ndarray, optional)** – Scalar or array of initial values to use when initializing the simulation

**Returns**

- **resids (ndarray)** – The simulated residuals
- **variance (ndarray)** – The simulated variance

**arch.univariate.FIGARCH.starting_values**

**FIGARCH.starting_values (resids)**

Returns starting values for the ARCH model

**Parameters**  
**resids (ndarray)** – Array of (approximate) residuals to use when computing starting values

**Returns**  
**sv** – Array of starting values

**Return type**  
ndarray

**arch.univariate.FIGARCH.variance_bounds**

**FIGARCH.variance_bounds (resids, power=2.0)**

**Parameters**

- **resids (ndarray)** – Approximate residuals to use to compute the lower and upper bounds on the conditional variance
- **power (float, optional)** – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns**  
**var_bounds** – Array containing columns of lower and upper bounds with the same number of elements as resids

**Return type**  
ndarray

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
<tr>
<td>truncation</td>
<td>Truncation lag for the ARCH-infinity approximation</td>
</tr>
</tbody>
</table>

**arch.univariate.FIGARCH.start**

**FIGARCH.start**

Index to use to start variance subarray selection
arch.univariate.FIGARCH.stop

FIGARCH.stop
Index to use to stop variance subarray selection

arch.univariate.FIGARCH.truncation

FIGARCH.truncation
Truncation lag for the ARCH-infinity approximation

1.8.4 arch.univariate.EGARCH

class arch.univariate.EGARCH(p=1, o=0, q=1)
EGARCH model estimation

Parameters

• p (int) – Order of the symmetric innovation
• o (int) – Order of the asymmetric innovation
• q (int) – Order of the lagged (transformed) conditional variance

num_params
The number of parameters in the model

Type int

Examples

>>> from arch.univariate import EGARCH

Symmetric EGARCH(1,1)

>>> egarch = EGARCH(p=1, q=1)

Standard EGARCH process

>>> egarch = EGARCH(p=1, o=1, q=1)

Exponential ARCH process

>>> earch = EGARCH(p=5)

Notes

In this class of processes, the variance dynamics are

\[
\ln \sigma_t^2 = \omega + \sum_{i=1}^{p} \alpha_i \left( |e_{t-i}| - \sqrt{2/\pi} \right) + \sum_{j=1}^{o} \gamma_j e_{t-j} + \sum_{k=1}^{q} \beta_k \ln \sigma_{t-k}^2
\]

where \( e_t = \epsilon_t / \sigma_t \).
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>backcast(resids)</code></td>
<td>Construct values for backcasting to start the recursion</td>
</tr>
<tr>
<td><code>backcast_transform(backcast)</code></td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td><code>bounds(resids)</code></td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td><code>compute_variance(parameters, resids, sigma2, ...)</code></td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td><code>constraints()</code></td>
<td>Construct parameter constraints arrays for parameter estimation</td>
</tr>
<tr>
<td><code>forecast(parameters, resids, backcast, ...)</code></td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td><code>parameter_names()</code></td>
<td>Names of model parameters</td>
</tr>
<tr>
<td><code>simulate(parameters, noobs, rng[, burn, ...])</code></td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td><code>starting_values(resids)</code></td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td><code>variance_bounds(resids[, power])</code></td>
<td>param resids Approximate residuals to use to compute the lower and upper bounds</td>
</tr>
</tbody>
</table>

arch.univariate.EGARCH.backcast

EGARCH.backcast (resids)
Construct values for backcasting to start the recursion

Parameters resids (ndarray) – Vector of (approximate) residuals

Returns backcast – Value to use in backcasting in the volatility recursion

Return type float

arch.univariate.EGARCH.backcast_transform

EGARCH.backcast_transform (backcast)
Transformation to apply to user-provided backcast values

Parameters backcast ((float, ndarray)) – User-provided backcast that approximates sigma2[0].

Returns backcast – Backcast transformed to the model-appropriate scale

Return type {float, ndarray}

arch.univariate.EGARCH.bounds

EGARCH.bounds (resids)
Returns bounds for parameters

Parameters resids (ndarray) – Vector of (approximate) residuals

Returns bounds – List of bounds where each element is (lower, upper).

Return type list[tuple[float, float]]
arch.univariate.EGARCH.compute_variance

EGARCH.compute_variance(parameters, resids, sigma2, backcast, var_bounds)
Compute the variance for the ARCH model

Parameters

• parameters (ndarray) – Model parameters
• resids (ndarray) – Vector of mean zero residuals
• sigma2 (ndarray) – Array with same size as resids to store the conditional variance
• backcast ({float, ndarray}) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
• var_bounds (ndarray) – Array containing columns of lower and upper bounds

arch.univariate.EGARCH.constraints

EGARCH.constraints()
Construct parameter constraints arrays for parameter estimation

Returns

• A (ndarray) – Parameters loadings in constraint. Shape is number of constraints by number of parameters
• b (ndarray) – Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

arch.univariate.EGARCH.forecast

EGARCH.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)
Forecast volatility from the model

Parameters

• parameters ({ndarray, Series}) – Parameters required to forecast the volatility model
• resids (ndarray) – Residuals to use in the recursion
• backcast (float) – Value to use when initializing the recursion
• var_bounds (ndarray, 2-d) – Array containing columns of lower and upper bounds
• start ({None, int}) – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
• horizon (int) – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
• method ({'analytic', 'simulation', 'bootstrap'}) – Method to use when producing the forecast. The default is analytic.

1.8. Volatility Processes 91
• **simulations** (*int*) – Number of simulations to run when computing the forecast using either simulation or bootstrap.

• **rng** (*callable*) – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

• **random_state** (*RandomState, optional*) – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Return type** VarianceForecast

**Raises**

- **NotImplementedError** – * If method is not supported
- **ValueError** – * If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

**arch.univariate.EGARCH.parameter_names**

EGARCH.parameter_names()

Names of model parameters

**Returns**

names – Variables names

**Return type** list (str)

**arch.univariate.EGARCH.simulate**

EGARCH.simulate (parameters, nobs, rng, burn=500, initial_value=None)

Simulate data from the model

**Parameters**

- **parameters** (*ndarray, Series*) – Parameters required to simulate the volatility model
- **nobs** (*int*) – Number of data points to simulate
- **rng** (*callable*) – Callable function that takes a single integer input and returns a vector of random numbers
- **burn** (*int, optional*) – Number of additional observations to generate when initializing the simulation
- **initial_value** (*float, ndarray, optional*) – Scalar or array of initial values to use when initializing the simulation

**Returns**

- **resids** (*ndarray*) – The simulated residuals
- **variance** (*ndarray*) – The simulated variance
arch.univariate.EGARCH.starting_values

**EGARCH.starting_values(resids)**
Returns starting values for the ARCH model

**Parameters**
- **resids (ndarray)** – Array of (approximate) residuals to use when computing starting values

**Returns**
- **sv** – Array of starting values

**Return type**
- ndarray

arch.univariate.EGARCH.variance_bounds

**EGARCH.variance_bounds(resids, power=2.0)**

**Parameters**
- **resids (ndarray)** – Approximate residuals to use to compute the lower and upper bounds on the conditional variance
- **power (float, optional)** – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns**
- **var_bounds** – Array containing columns of lower and upper bounds with the same number of elements as resids

**Return type**
- ndarray

**Properties**

<table>
<thead>
<tr>
<th>property</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.EGARCH.start

**EGARCH.start**

Index to use to start variance subarray selection

arch.univariate.EGARCH.stop

**EGARCH.stop**

Index to use to stop variance subarray selection

1.8.5 arch.univariate.HARCH

class arch.univariate.HARCH(lags=1)

Heterogeneous ARCH process

**Parameters**
- **lags (list, array, int)** – List of lags to include in the model, or if scalar, includes all lags up the value

**num_params**
The number of parameters in the model
Type  int

Examples

```python
>>> from arch.univariate import HARCH

Lag-1 HARCH, which is identical to an ARCH(1)

```  
```python
>>> harch = HARCH()

More useful and realistic lag lengths

```  
```python
>>> harch = HARCH(lags=[1, 5, 22])
```

Notes

In a Heterogeneous ARCH process, variance dynamics are

$$
\sigma_t^2 = \omega + \sum_{i=1}^{m} \alpha_i \left( l_t^{-1} \sum_{j=1}^{l_t} \epsilon_{t-j}^2 \right) 
$$

In the common case where lags=[1,5,22], the model is

$$
\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \alpha_5 \left( \frac{1}{5} \sum_{j=1}^{5} \epsilon_{t-j}^2 \right) + \alpha_{22} \left( \frac{1}{22} \sum_{j=1}^{22} \epsilon_{t-j}^2 \right) 
$$

A HARCH process is a special case of an ARCH process where parameters in the more general ARCH process have been restricted.

Methods

- `backcast(resids)`  
  Construct values for backcasting to start the recursion

- `backcast_transform(backcast)`  
  Transformation to apply to user-provided backcast values

- `bounds(resids)`  
  Returns bounds for parameters

- `compute_variance(parameters, resids, sigma2, ...)`  
  Compute the variance for the ARCH model

- `constraints()`  
  Construct parameter constraints arrays for parameter estimation

- `forecast(parameters, resids, backcast, ...)`  
  Forecast volatility from the model

- `parameter_names()`  
  Names of model parameters

- `simulate(parameters, nobs, rng[, burn, ...])`  
  Simulate data from the model

- `starting_values(resids)`  
  Returns starting values for the ARCH model

- `variance_bounds(resids[, power])`  
  `param resids` Approximate residuals to use to compute the lower and upper bounds
arch.univariate.HARCH.backcast

HARCH.backcast(resids)
Construct values for backcasting to start the recursion

Parameters resids (ndarray) – Vector of (approximate) residuals
Returns backcast – Value to use in backcasting in the volatility recursion
Return type float

arch.univariate.HARCH.backcast_transform

HARCH.backcast_transform(backcast)
Transformation to apply to user-provided backcast values

Parameters backcast ({float, ndarray}) – User-provided backcast that approxi-
mates sigma2[0].
Returns backcast – Backcast transformed to the model-appropriate scale
Return type {float, ndarray}

arch.univariate.HARCH.bounds

HARCH.bounds(resids)
Returns bounds for parameters

Parameters resids (ndarray) – Vector of (approximate) residuals
Returns bounds – List of bounds where each element is (lower, upper).
Return type list[tuple[float,float]]

arch.univariate.HARCH.compute_variance

HARCH.compute_variance(parameters, resids, sigma2, backcast, var_bounds)
Compute the variance for the ARCH model

Parameters
• parameters (ndarray) – Model parameters
• resids (ndarray) – Vector of mean zero residuals
• sigma2 (ndarray) – Array with same size as resids to store the conditional variance
• backcast ({float, ndarray}) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
• var_bounds (ndarray) – Array containing columns of lower and upper bounds

arch.univariate.HARCH.constraints

HARCH.constraints()
Construct parameter constraints arrays for parameter estimation

Returns
• \( A \) (ndarray) – Parameters loadings in constraint. Shape is number of constraints by number of parameters
• \( b \) (ndarray) – Constraint values, one for each constraint

Notes
Values returned are used in constructing linear inequality constraints of the form \( A \cdot \text{parameters} - b \geq 0 \)

arch.univariate.HARCH.forecast

HARCH.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)
Forecast volatility from the model

Parameters
• parameters ((ndarray, Series)) – Parameters required to forecast the volatility model
• resids (ndarray) – Residuals to use in the recursion
• backcast (float) – Value to use when initializing the recursion
• var_bounds (ndarray, 2-d) – Array containing columns of lower and upper bounds
• start ((None, int)) – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
• horizon (int) – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
• method ({'analytic', 'simulation', 'bootstrap'}) – Method to use when producing the forecast. The default is analytic.
• simulations (int) – Number of simulations to run when computing the forecast using either simulation or bootstrap.
• rng (callable) – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
• random_state (RandomState, optional) – NumPy RandomState instance to use when method is ‘bootstrap’

Returns forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Return type VarianceForecast

Raises
• NotImplementedError – * If method is not supported
• ValueError – * If the method is not known

Notes
The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.
arch.univariate.HARCH.parameter_names

HARCH.parameter_names()
Names of model parameters

Returns names – Variables names
Return type list (str)

arch.univariate.HARCH.simulate

HARCH.simulate(parameters, nobs, rng, burn=500, initial_value=None)
Simulate data from the model

Parameters
  • parameters((ndarray, Series)) – Parameters required to simulate the volatility model
  • nobs(int) – Number of data points to simulate
  • rng(callable) – Callable function that takes a single integer input and returns a vector of random numbers
  • burn(int, optional) – Number of additional observations to generate when initializing the simulation
  • initial_value((float, ndarray), optional) – Scalar or array of initial values to use when initializing the simulation

Returns
  • resids(ndarray) – The simulated residuals
  • variance(ndarray) – The simulated variance

arch.univariate.HARCH.starting_values

HARCH.starting_values(resids)
Returns starting values for the ARCH model

Parameters resids(ndarray) – Array of (approximate) residuals to use when computing starting values

Returns sv – Array of starting values
Return type ndarray

arch.univariate.HARCH.variance_bounds

HARCH.variance_bounds(resids, power=2.0)

Parameters
  • resids(ndarray) – Approximate residuals to use to compute the lower and upper bounds on the conditional variance
  • power(float, optional) – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

1.8. Volatility Processes
Returns `var_bounds` – Array containing columns of lower and upper bounds with the same number of elements as `resids` 

Return type `ndarray` 

Properties

<table>
<thead>
<tr>
<th>start</th>
<th>Index to use to start variance subarray selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

`arch.univariate.HARCH.start`

HARCH.start

Index to use to start variance subarray selection

`arch.univariate.HARCH.stop`

HARCH.stop

Index to use to stop variance subarray selection

1.8.6 `arch.univariate.MIDASHyperbolic`

class `arch.univariate.MIDASHyperbolic`(m=22, asym=False)

MIDAS Hyperbolic ARCH process

Parameters

• m (int) – Length of maximum lag to include in the model

• asym (bool) – Flag indicating whether to include an asymmetric term

`num_params`

The number of parameters in the model

Type `int`

Examples

```python
>>> from arch.univariate import MIDASHyperbolic

22-lag MIDAS Hyperbolic process

>>> harch = MIDASHyperbolic()

Longer 66-period lag

>>> harch = MIDASHyperbolic(m=66)

Asymmetric MIDAS Hyperbolic process

>>> harch = MIDASHyperbolic(asym=True)
```
Notes

In a MIDAS Hyperbolic process, the variance evolves according to

\[ \sigma_t^2 = \omega + \sum_{i=1}^{m} (\alpha + \gamma I[\epsilon_{t-j} < 0]) \phi_i(\theta) \epsilon_{t-i}^2 \]

where

\[ \phi_i(\theta) \propto \Gamma(i + \theta)/\Gamma(i + 1)\Gamma(\theta) \]

where \( \Gamma \) is the gamma function. \( \{\phi_i(\theta)\} \) is normalized so that \( \sum \phi_i(\theta) = 1 \)

References

Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backcast(resids)</td>
<td>Construct values for backcasting to start the recursion</td>
</tr>
<tr>
<td>backcast_transform(backcast)</td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td>bounds(resids)</td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td>compute_variance(parameters, resids, sigma2, ...)</td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td>constraints()</td>
<td>Constraints</td>
</tr>
<tr>
<td>forecast(parameters, resids, backcast, ...)</td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td>parameter_names()</td>
<td>Names of model parameters</td>
</tr>
<tr>
<td>simulate(parameters, nobs, rng[, burn, ...])</td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td>starting_values(resids)</td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td>variance_bounds(resids[, power])</td>
<td>Param resids Approximate residuals to use to compute the lower and upper bounds</td>
</tr>
</tbody>
</table>

arch.univariate.MIDASHyperbolic.backcast

MIDASHyperbolic.backcast (resids)

Construct values for backcasting to start the recursion

Parameters **resids** (ndarray) – Vector of (approximate) residuals

Returns **backcast** – Value to use in backcasting in the volatility recursion

Return type **float**

arch.univariate.MIDASHyperbolic.backcast_transform

MIDASHyperbolic.backcast_transform (backcast)

Transformation to apply to user-provided backcast values
Parameters **backcast** ([float, ndarray]) – User-provided backcast that approximates sigma2[0].

Returns **backcast** – Backcast transformed to the model-appropriate scale

Return type {float, ndarray}

---

**arch.univariate.MIDASHyperbolic.bounds**

MIDASHyperbolic.bounds(resids)

Returns bounds for parameters

Parameters **resids** (ndarray) – Vector of (approximate) residuals

Returns **bounds** – List of bounds where each element is (lower, upper).

Return type list[tuple[float,float]]

---

**arch.univariate.MIDASHyperbolic.compute_variance**

MIDASHyperbolic.compute_variance(parameters, resids, sigma2, backcast, var_bounds)

Compute the variance for the ARCH model

Parameters

- **parameters** (ndarray) – Model parameters
- **resids** (ndarray) – Vector of mean zero residuals
- **sigma2** (ndarray) – Array with same size as resids to store the conditional variance
- **backcast** ([float, ndarray]) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
- **var_bounds** (ndarray) – Array containing columns of lower and upper bounds

---

**arch.univariate.MIDASHyperbolic.constraints**

MIDASHyperbolic.constraints()

Constraints

**Notes**

Parameters are (omega, alpha, gamma, theta)

A.dot(parameters) - b >= 0

1. omega > 0
2. alpha>0 or alpha + gamma > 0
3. alpha<1 or alpha+0.5*gamma<1
4. theta > 0
5. theta < 1

---

Chapter 1. Univariate Volatility Models
arch.univariate.MIDASHyperbolic.forecast

**MIDASHyperbolic.forecast** *(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)*

Forecast volatility from the model

**Parameters**

- **parameters** *(ndarray, Series)* – Parameters required to forecast the volatility model
- **resids** *(ndarray)* – Residuals to use in the recursion
- **backcast** *(float)* – Value to use when initializing the recursion
- **var_bounds** *(ndarray, 2-d)* – Array containing columns of lower and upper bounds
- **start** *(None, int)* – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
- **horizon** *(int)* – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
- **method** *({'analytic', 'simulation', 'bootstrap'})* – Method to use when producing the forecast. The default is analytic.
- **simulations** *(int)* – Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng** *(callable)* – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
- **random_state** *(RandomState, optional)* – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Return type** VarianceForecast

**Raises**

- **NotImplementedError** – * If method is not supported
- **ValueError** – * If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

arch.univariate.MIDASHyperbolic.parameter_names

**MIDASHyperbolic.parameter_names** ()

Names of model parameters

**Returns** names – Variables names

**Return type** list (str)
**arch.univariate.MIDASHyperbolic.simulate**

MIDASHyperbolic.simulate(parameters, nos, rng, burn=500, initial_value=None)

Simulate data from the model

**Parameters**

- **parameters** *(ndarray, Series)* – Parameters required to simulate the volatility model
- **nobs** *(int)* – Number of data points to simulate
- **rng** *(callable)* – Callable function that takes a single integer input and returns a vector of random numbers
- **burn** *(int, optional)* – Number of additional observations to generate when initializing the simulation
- **initial_value** *(float, ndarray, optional)* – Scalar or array of initial values to use when initializing the simulation

**Returns**

- **resids** *(ndarray)* – The simulated residuals
- **variance** *(ndarray)* – The simulated variance

**arch.univariate.MIDASHyperbolic.starting_values**

MIDASHyperbolic.starting_values(resids)

Returns starting values for the ARCH model

**Parameters** **resids** *(ndarray)* – Array of (approximate) residuals to use when computing starting values

**Returns** **sv** – Array of starting values

**Return type** *ndarray*

**arch.univariate.MIDASHyperbolic.variance_bounds**

MIDASHyperbolic.variance_bounds(resids, power=2.0)

**Parameters**

- **resids** *(ndarray)* – Approximate residuals to use to compute the lower and upper bounds on the conditional variance
- **power** *(float, optional)* – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns** **var_bounds** – Array containing columns of lower and upper bounds with the same number of elements as resids

**Return type** *ndarray*

**Properties**
### arch.univariate.MIDASHyperbolic.start

**MIDASHyperbolic.start**

Index to use to start variance subarray selection

### arch.univariate.MIDASHyperbolic.stop

**MIDASHyperbolic.stop**

Index to use to stop variance subarray selection

#### 1.8.7 arch.univariate.ARCH

**class** arch.univariate.ARCH(p=1)

ARCH process

**Parameters**

- `p (int)` – Order of the symmetric innovation

**num_params**

The number of parameters in the model

**Type** `int`

**Examples**

ARCH(1) process

```python
>>> from arch.univariate import ARCH
>>> arch = ARCH(p=1)
```

ARCH(5) process

```python
>>> arch = ARCH(p=5)
```

**Notes**

The variance dynamics of the model estimated

\[
\sigma_t^2 = \omega + \sum_{i=1}^{p} \alpha_i \epsilon_{t-i}^2
\]

**Methods**

- `backcast(resids)`

  Construct values for backcasting to start the recursion

- `backcast_transform(backcast)`

  Transformation to apply to user-provided backcast values

Continued on next page
Table 25 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bounds(resids)</code></td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td><code>compute_variance(parameters, resids, sigma2, ...)</code></td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td><code>constraints()</code></td>
<td>Construct parameter constraints arrays for parameter estimation</td>
</tr>
<tr>
<td><code>forecast(parameters, resids, backcast, ...)</code></td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td><code>parameter_names()</code></td>
<td>Names of model parameters</td>
</tr>
<tr>
<td><code>simulate(parameters, nobs, rng[, burn, ...])</code></td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td><code>starting_values(resids)</code></td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td><code>variance_bounds(resids[, power])</code></td>
<td>param resids  Approximate residuals to use to compute the lower and upper bounds</td>
</tr>
</tbody>
</table>

---

**arch.univariate.ARCH.backcast**

`ARCH.backcast(resids)`

Construct values for backcasting to start the recursion

- **Parameters** `resids (ndarray)` – Vector of (approximate) residuals
- **Returns** `backcast` – Value to use in backcasting in the volatility recursion
- **Return type** float

**arch.univariate.ARCH.backcast_transform**

`ARCH.backcast_transform(backcast)`

Transformation to apply to user-provided backcast values

- **Parameters** `backcast (float, ndarray)` – User-provided `backcast` that approximates sigma2[0].
- **Returns** `backcast` – Backcast transformed to the model-appropriate scale
- **Return type** {float, ndarray}

**arch.univariate.ARCH.bounds**

`ARCH.bounds(resids)`

Returns bounds for parameters

- **Parameters** `resids (ndarray)` – Vector of (approximate) residuals
- **Returns** `bounds` – List of bounds where each element is (lower, upper).
- **Return type** list[tuple[float,float]]

**arch.univariate.ARCH.compute_variance**

`ARCH.compute_variance(parameters, resids, sigma2, backcast, var_bounds)`

Compute the variance for the ARCH model

- **Parameters**
• **parameters** (*ndarray*) – Model parameters
• **resids** (*ndarray*) – Vector of mean zero residuals
• **sigma2** (*ndarray*) – Array with same size as resids to store the conditional variance
• **backcast** ({*float*, *ndarray*) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
• **var_bounds** (*ndarray*) – Array containing columns of lower and upper bounds

**arch.univariate.ARCH.constraints**

ARCH.constraints()

Construct parameter constraints arrays for parameter estimation

Returns

• **A** (*ndarray*) – Parameters loadings in constraint. Shape is number of constraints by number of parameters
• **b** (*ndarray*) – Constraint values, one for each constraint

**Notes**

Values returned are used in constructing linear inequality constraints of the form \( A \cdot \text{parameters} - b \geq 0 \)

**arch.univariate.ARCH.forecast**

ARCH.forecast(*parameters*, *resids*, *backcast*, *var_bounds*, *start=None*, *horizon=1*, *method='analytic'* , *simulations=1000*, *rng=None*, *random_state=None*)

Forecast volatility from the model

Parameters

• **parameters** ({*ndarray*, Series}) – Parameters required to forecast the volatility model
• **resids** (*ndarray*) – Residuals to use in the recursion
• **backcast** (*float*) – Value to use when initializing the recursion
• **var_bounds** (*ndarray*, 2-d) – Array containing columns of lower and upper bounds
• **start** ({*None*, *int*) – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
• **horizon** (*int*) – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
• **method** ({*‘analytic’, ‘simulation’, ‘bootstrap’}) – Method to use when producing the forecast. The default is analytic.
• **simulations** (*int*) – Number of simulations to run when computing the forecast using either simulation or bootstrap.
• **rng** (*callable*) – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

1.8. Volatility Processes 105
• **random_state** *(RandomState, optional)* – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Return type** VarianceForecast

**Raises**

- **NotImplementedError** – * If method is not supported
- **ValueError** – * If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

**arch.univariate.ARCH.parameter_names**

**ARCH.parameter_names()**

Names of model parameters

**Returns** names – Variables names

**Return type** list (str)

**arch.univariate.ARCH.simulate**

**ARCH.simulate(parameters, nobs, rng, burn=500, initial_value=None)**

Simulate data from the model

**Parameters**

- **parameters** *(ndarray, Series)* – Parameters required to simulate the volatility model
- **nobs** *(int)* – Number of data points to simulate
- **rng** *(callable)* – Callable function that takes a single integer input and returns a vector of random numbers
- **burn** *(int, optional)* – Number of additional observations to generate when initializing the simulation
- **initial_value** *(float, ndarray, optional)* – Scalar or array of initial values to use when initializing the simulation

**Returns**

- **resids** *(ndarray)* – The simulated residuals
- **variance** *(ndarray)* – The simulated variance
\texttt{arch.univariate.ARCH.starting_values}

\texttt{ARCH.starting_values(resids)}

Returns starting values for the ARCH model

\begin{itemize}
\item \textbf{Parameters} \texttt{resids (ndarray)} – Array of (approximate) residuals to use when computing starting values
\item \textbf{Returns} \texttt{sv} – Array of starting values
\item \textbf{Return type} \texttt{ndarray}
\end{itemize}

\texttt{arch.univariate.ARCH.variance_bounds}

\texttt{ARCH.variance_bounds(resids, power=2.0)}

\begin{itemize}
\item \textbf{Parameters}
\begin{itemize}
\item \texttt{resids (ndarray)} – Approximate residuals to use to compute the lower and upper bounds on the conditional variance
\item \texttt{power (float, optional)} – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.
\end{itemize}
\item \textbf{Returns} \texttt{var_bounds} – Array containing columns of lower and upper bounds with the same number of elements as \texttt{resids}
\item \textbf{Return type} \texttt{ndarray}
\end{itemize}

\textbf{Properties}

\begin{itemize}
\item \texttt{start} \hspace{1cm} Index to use to start variance subarray selection
\item \texttt{stop} \hspace{1cm} Index to use to stop variance subarray selection
\end{itemize}

\texttt{arch.univariate.ARCH.start}

\texttt{ARCH.start}

Index to use to start variance subarray selection

\texttt{arch.univariate.ARCH.stop}

\texttt{ARCH.stop}

Index to use to stop variance subarray selection

\subsection{1.8.8 Parameterless Variance Processes}

Some volatility processes use fixed parameters and so have no parameters that are estimable.

\begin{itemize}
\item \texttt{EWMAVariance(lam)} \hspace{1cm} Exponentially Weighted Moving-Average (RiskMetrics) Variance process
\item \texttt{RiskMetrics2006([tau0, tau1, kmax, rho])} \hspace{1cm} RiskMetrics 2006 Variance process
\end{itemize}
### arch.univariate.EWMAVariance

**class arch.univariate.EWMAVariance(lam=0.94)**

Exponentially Weighted Moving-Average (RiskMetrics) Variance process

**Parameters**

- **lam** *(float, None)* *(optional)*
  - Smoothing parameter. Default is 0.94. Set to None to estimate lam jointly with other model parameters

**num_params**

- The number of parameters in the model

  **Type** `int`

**Examples**

Daily RiskMetrics EWMA process

```python
>>> from arch.univariate import EWMAVariance
>>> rm = EWMAVariance(0.94)
```

**Notes**

The variance dynamics of the model

\[
\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1 - \lambda) \epsilon_{t-1}^2
\]

When lam is provided, this model has no parameters since the smoothing parameter is treated as fixed. Set lam to `None` to jointly estimate this parameter when fitting the model.

**Methods**

- **backcast(resids)**: Construct values for backcasting to start the recursion
- **backcast_transform(backcast)**: Transformation to apply to user-provided backcast values
- **bounds(resids)**: Returns bounds for parameters
- **compute_variance(parameters, resids, sigma2, ...)**: Compute the variance for the ARCH model
- **constraints()**: Construct parameter constraints arrays for parameter estimation
- **forecast(parameters, resids, backcast, ...)**: Forecast volatility from the model
- **parameter_names()**: Names of model parameters
- **simulate(parameters, nobs, rng[, burn, ...])**: Simulate data from the model
- **starting_values(resids)**: Returns starting values for the ARCH model
- **variance_bounds(resids[, power])**:
  - **param resids**: Approximate residuals to use to compute the lower and upper bounds
arch.univariate.EWMAVariance.backcast

EWMAVariance.backcast(resids)
Construct values for backcasting to start the recursion

Parameters resids (ndarray) – Vector of (approximate) residuals
Returns backcast – Value to use in backcasting in the volatility recursion
Return type float

arch.univariate.EWMAVariance.backcast_transform

EWMAVariance.backcast_transform(backcast)
Transformation to apply to user-provided backcast values

Parameters backcast (float, ndarray) – User-provided backcast that approximates sigma2[0].
Returns backcast – Backcast transformed to the model-appropriate scale
Return type {float, ndarray}

arch.univariate.EWMAVariance.bounds

EWMAVariance.bounds(resids)
Returns bounds for parameters

Parameters resids (ndarray) – Vector of (approximate) residuals
Returns bounds – List of bounds where each element is (lower, upper).
Return type list[tuple[float,float]]

arch.univariate.EWMAVariance.compute_variance

EWMAVariance.compute_variance(parameters, resids, sigma2, backcast, var_bounds)
Compute the variance for the ARCH model

Parameters

- parameters (ndarray) – Model parameters
- resids (ndarray) – Vector of mean zero residuals
- sigma2 (ndarray) – Array with same size as resids to store the conditional variance
- backcast (float, ndarray) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
- var_bounds (ndarray) – Array containing columns of lower and upper bounds

arch.univariate.EWMAVariance.constraints

EWMAVariance.constraints()
Construct parameter constraints arrays for parameter estimation
Returns
• **A (ndarray)** – Parameters loadings in constraint. Shape is number of constraints by number of parameters
• **b (ndarray)** – Constraint values, one for each constraint

**Notes**

Values returned are used in constructing linear inequality constraints of the form $A \cdot \text{parameters} - b \geq 0$

**arch.univariate.EWMAVariance.forecast**

`EWMAVariance.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)`

Forecast volatility from the model

**Parameters**

• **parameters** *(ndarray, Series)* – Parameters required to forecast the volatility model
• **resids** *(ndarray)* – Residuals to use in the recursion
• **backcast** *(float)* – Value to use when initializing the recursion
• **var_bounds** *(ndarray, 2-d)* – Array containing columns of lower and upper bounds
• **start** *(None, int)* – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
• **horizon** *(int)* – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
• **method** *(‘analytic’, ‘simulation’, ‘bootstrap’)* – Method to use when producing the forecast. The default is analytic.
• **simulations** *(int)* – Number of simulations to run when computing the forecast using either simulation or bootstrap.
• **rng** *(callable)* – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
• **random_state** *(RandomState, optional)* – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Return type** VarianceForecast

**Raises**

• **NotImplementedError** – * If method is not supported
• **ValueError** – * If the method is not known
**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

**arch.univariate.EWMAVariance.parameter_names**

EWMAVariance.parameter_names()

Names of model parameters

**Parameters**

- **Returns** names – Variables names

**Return type** list (str)

**arch.univariate.EWMAVariance.simulate**

EWMAVariance.simulate(parameters, nobs, rng, burn=500, initial_value=None)

Simulate data from the model

**Parameters**

- **parameters** (ndarray, Series) – Parameters required to simulate the volatility model
- **nobs** (int) – Number of data points to simulate
- **rng** (callable) – Callable function that takes a single integer input and returns a vector of random numbers
- **burn** (int, optional) – Number of additional observations to generate when initializing the simulation
- **initial_value** (float, ndarray, optional) – Scalar or array of initial values to use when initializing the simulation

**Returns**

- **resids** (ndarray) – The simulated residuals
- **variance** (ndarray) – The simulated variance

**arch.univariate.EWMAVariance.starting_values**

EWMAVariance.starting_values(resids)

Returns starting values for the ARCH model

**Parameters** resids (ndarray) – Array of (approximate) residuals to use when computing starting values

**Returns** sv – Array of starting values

**Return type** ndarray
arch.univariate.EWMAVariance.variance_bounds

EWMAVariance.variance_bounds(resids, power=2.0)

Parameters

- resids (ndarray) – Approximate residuals to use to compute the lower and upper bounds on the conditional variance
- power (float, optional) – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns var_bounds – Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>start</th>
<th>Index to use to start variance subarray selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.EWMAVariance.start

EWMAVariance.start

Index to use to start variance subarray selection

arch.univariate.EWMAVariance.stop

EWMAVariance.stop

Index to use to stop variance subarray selection

arch.univariate.RiskMetrics2006

class arch.univariate.RiskMetrics2006(tau0=1560, tau1=4, kmax=14, rho=1.4142135623730951)

RiskMetrics 2006 Variance process

Parameters

- tau0 (int, optional) – Length of long cycle. Default is 1560.
- tau1 (int, optional) – Length of short cycle. Default is 4.
- kmax (int, optional) – Number of components. Default is 14.
- rho (float, optional) – Relative scale of adjacent cycles. Default is sqrt(2)

num_params

The number of parameters in the model

Type int

Examples

Daily RiskMetrics 2006 process
>>> from arch.univariate import RiskMetrics2006
>>> rm = RiskMetrics2006()

Notes

The variance dynamics of the model are given as a weighted average of kmax EWMA variance processes where
the smoothing parameters and weights are determined by tau0, tau1 and rho.

This model has no parameters since the smoothing parameter is fixed.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>backcast</strong>(<em>resids</em>)</td>
<td>Construct values for backcasting to start the recursion</td>
</tr>
<tr>
<td><strong>backcast_transform</strong>(<em>backcast</em>)</td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td><strong>bounds</strong>(<em>resids</em>)</td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td><strong>compute_variance</strong>(<em>parameters, resids, sigma2, ...</em>)</td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td><strong>constraints</strong>()</td>
<td>Construct parameter constraints arrays for parameter estimation</td>
</tr>
<tr>
<td><strong>forecast</strong>(<em>parameters, resids, backcast, ...</em>)</td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td><strong>parameter_names</strong>()</td>
<td>Names of model parameters</td>
</tr>
<tr>
<td><strong>simulate</strong>(<em>parameters, nobs, rng[, burn, ...]</em>)</td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td><strong>starting_values</strong>(<em>resids</em>)</td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td><strong>variance_bounds</strong>(<em>resids[, power]</em>)</td>
<td>Approximate residuals to use to compute the lower and upper bounds</td>
</tr>
</tbody>
</table>

**arch.univariate.RiskMetrics2006.backcast**

RiskMetrics2006.\texttt{backcast} (\texttt{resids})

Construct values for backcasting to start the recursion

- **Parameters** \texttt{resids} (\texttt{ndarray}) – Vector of (approximate) residuals
- **Returns** \texttt{backcast} – Backcast values for each EWMA component
- **Return type** \texttt{ndarray}

**arch.univariate.RiskMetrics2006.backcast_transform**

RiskMetrics2006.\texttt{backcast_transform} (\texttt{backcast})

Transformation to apply to user-provided backcast values

- **Parameters** \texttt{backcast} (\texttt{float,.ndarray}) – User-provided \texttt{backcast} that approximates \texttt{sigma2[0]}
- **Returns** \texttt{backcast} – Backcast transformed to the model-appropriate scale

1.8. Volatility Processes 113
Return type {float, ndarray}

arch.univariate.RiskMetrics2006.bounds

RiskMetrics2006.bounds(resids)
Returns bounds for parameters
Parameters resids (ndarray) – Vector of (approximate) residuals
Returns bounds – List of bounds where each element is (lower, upper).
Return type list[tuple[float, float]]

arch.univariate.RiskMetrics2006.compute_variance

RiskMetrics2006.compute_variance(parameters, resids, sigma2, backcast, var_bounds)
Compute the variance for the ARCH model
Parameters
• parameters (ndarray) – Model parameters
• resids (ndarray) – Vector of mean zero residuals
• sigma2 (ndarray) – Array with same size as resids to store the conditional variance
• backcast ((float, ndarray)) – Value to use when initializing ARCH recursion.
  Can be an ndarray when the model contains multiple components.
• var_bounds (ndarray) – Array containing columns of lower and upper bounds

arch.univariate.RiskMetrics2006.constraints

RiskMetrics2006.constraints()
Construct parameter constraints arrays for parameter estimation
Returns
• A (ndarray) – Parameters loadings in constraint. Shape is number of constraints by num-
  ber of parameters
• b (ndarray) – Constraint values, one for each constraint

Notes
Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

arch.univariate.RiskMetrics2006.forecast

RiskMetrics2006.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)
Forecast volatility from the model
Parameters
• **parameters**({``ndarray``, `Series``}) – Parameters required to forecast the volatility model
• **resids**(```ndarray``) – Residuals to use in the recursion
• **backcast**(```float``) – Value to use when initializing the recursion
• **var_bounds**(```ndarray``, 2-d) – Array containing columns of lower and upper bounds
• **start**({``None``, `int``}) – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
• **horizon**(```int``) – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
• **method**({`'analytic'`, `'simulation'`, `'bootstrap'``}) – Method to use when producing the forecast. The default is analytic.
• **simulations**(```int``) – Number of simulations to run when computing the forecast using either simulation or bootstrap.
• **rng**(```callable``) – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
• **random_state**(```RandomState``, optional) – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**
forecasts – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Return type**
VarianceForecast

**Raises**
• **NotImplementedError** – * If method is not supported
• **ValueError** – * If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

**arch.univariate.RiskMetrics2006.parameter_names**

RiskMetrics2006.parameter_names()
Names of model parameters

**Returns**
names – Variables names

**Return type**
list (str)

**arch.univariate.RiskMetrics2006.simulate**

RiskMetrics2006.simulate(parameters, nobs, rng, burn=500, initial_value=None)
Simulate data from the model

**Parameters**
• **parameters** ([ndarray, Series]) – Parameters required to simulate the volatility model

• **nobs** (**int**)) – Number of data points to simulate

• **rng** (**callable**) – Callable function that takes a single integer input and returns a vector of random numbers

• **burn** (**int**, **optional**) – Number of additional observations to generate when initializing the simulation

• **initial_value** (**float**, **ndarray**, **optional**) – Scalar or array of initial values to use when initializing the simulation

**Returns**

• **resids** (**ndarray**) – The simulated residuals

• **variance** (**ndarray**) – The simulated variance

---

**arch.univariate.RiskMetrics2006.starting_values**

*RiskMetrics2006.starting_values*(**resids**)

Returns starting values for the ARCH model

**Parameters**

- **resids** (**ndarray**) – Array of (approximate) residuals to use when computing starting values

**Returns**

- **sv** – Array of starting values

**Return type**

**ndarray**

---

**arch.univariate.RiskMetrics2006.variance_bounds**

*RiskMetrics2006.variance_bounds*(**resids**, **power=**2.0)

**Parameters**

- **resids** (**ndarray**) – Approximate residuals to use to compute the lower and upper bounds on the conditional variance

- **power** (**float**, **optional**) – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns**

- **var_bounds** – Array containing columns of lower and upper bounds with the same number of elements as resids

**Return type**

**ndarray**

---

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>start</strong></td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td><strong>stop</strong></td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>
1.8.9 FixedVariance

The FixedVariance class is a special-purpose volatility process that allows the so-called zig-zag algorithm to be used. See the example for usage.

```
FixedVariance(variance[, unit_scale]) Fixed volatility process
```

**Parameters**

- `variance` ([array, Series]) – Array containing the variances to use. Should have the same shape as the data used in the model.
- `unit_scale` (bool, optional) – Flag whether to enforce a unit scale. If False, a scale parameter will be estimated so that the model variance will be proportional to `variance`. If True, the model variance is set of `variance`.

**Notes**

Allows a fixed set of variances to be used when estimating a mean model, allowing GLS estimation.

**Methods**

- `backcast(resids)` Construct values for backcasting to start the recursion
- `backcast_transform(backcast)` Transformation to apply to user-provided backcast values
- `bounds(resids)` Returns bounds for parameters
- `compute_variance(parameters, resids, sigma2, ...)` Compute the variance for the ARCH model
- `constraints()` Construct parameter constraints arrays for parameter estimation
- `forecast(parameters, resids, backcast,...)` Forecast volatility from the model
- `parameter_names()` Names of model parameters
- `simulate(parameters, nobs, rng[, burn,...])` Simulate data from the model

Continued on next page
Table 33 – continued from previous page

<table>
<thead>
<tr>
<th>starting_values(resids)</th>
<th>Returns starting values for the ARCH model</th>
</tr>
</thead>
<tbody>
<tr>
<td>variance_bounds(resids[, power])</td>
<td>param resids Approximate residuals to use to compute the lower and upper bounds</td>
</tr>
</tbody>
</table>

**arch.univariate.FixedVariance.backcast**

FixedVariance.backcast(resids)

Construct values for backcasting to start the recursion

- **Parameters** resids (ndarray) – Vector of (approximate) residuals
- **Returns** backcast – Value to use in backcasting in the volatility recursion
- **Return type** float

**arch.univariate.FixedVariance.backcast_transform**

FixedVariance.backcast_transform(backcast)

Transformation to apply to user-provided backcast values

- **Parameters** backcast ((float, ndarray)) – User-provided backcast that approximates sigma2[0].
- **Returns** backcast – Backcast transformed to the model-appropriate scale
- **Return type** {float, ndarray}

**arch.univariate.FixedVariance.bounds**

FixedVariance.bounds(resids)

Returns bounds for parameters

- **Parameters** resids (ndarray) – Vector of (approximate) residuals
- **Returns** bounds – List of bounds where each element is (lower, upper).
- **Return type** list[tuple[float, float]]

**arch.univariate.FixedVariance.compute_variance**

FixedVariance.compute_variance(parameters, resids, sigma2, backcast, var_bounds)

Compute the variance for the ARCH model

- **Parameters**
  - parameters (ndarray) – Model parameters
  - resids (ndarray) – Vector of mean zero residuals
  - sigma2 (ndarray) – Array with same size as resids to store the conditional variance
  - backcast ((float, ndarray)) – Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
• **var_bounds** *(ndarray)* – Array containing columns of lower and upper bounds

**arch.univariate.FixedVariance.constraints**

`FixedVariance.constraints()`  
Construct parameter constraints arrays for parameter estimation

**Returns**

- **A** *(ndarray)* – Parameters loadings in constraint. Shape is number of constraints by number of parameters
- **b** *(ndarray)* – Constraint values, one for each constraint

**Notes**

Values returned are used in constructing linear inequality constraints of the form $A \cdot \text{parameters} - b \geq 0$

**arch.univariate.FixedVariance.forecast**

`FixedVariance.forecast(parameters, resids, backcast, var_bounds, start=None, horizon=1, method='analytic', simulations=1000, rng=None, random_state=None)`  
Forecast volatility from the model

**Parameters**

- **parameters** *(ndarray, Series)* – Parameters required to forecast the volatility model
- **resids** *(ndarray)* – Residuals to use in the recursion
- **backcast** *(float)* – Value to use when initializing the recursion
- **var_bounds** *(ndarray, 2-d)* – Array containing columns of lower and upper bounds
- **start** *(None, int)* – Index of the first observation to use as the starting point for the forecast. Default is len(resids).
- **horizon** *(int)* – Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
- **method** *({'analytic', 'simulation', 'bootstrap}')* – Method to use when producing the forecast. The default is analytic.
- **simulations** *(int)* – Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng** *(callable)* – Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
- **random_state** *(RandomState, optional)* – NumPy RandomState instance to use when method is ‘bootstrap’

**Returns** **forecasts** – Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

1.8. Volatility Processes 119
Return type  VarianceForecast

Raises

- `NotImplementedError` - If method is not supported
- `ValueError` - If the method is not known

Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a `ValueError`.

**arch.univariate.FixedVariance.parameter_names**

`FixedVariance.parameter_names()`

Names of model parameters

Returns `names` - Variables names

Return type  `list (str)`

**arch.univariate.FixedVariance.simulate**

`FixedVariance.simulate(parameters, nobs, rng, burn=500, initial_value=None)`

Simulate data from the model

Parameters

- `parameters` ({`ndarray`, `Series`}) - Parameters required to simulate the volatility model
- `nobs` (`int`) - Number of data points to simulate
- `rng` (`callable`) - Callable function that takes a single integer input and returns a vector of random numbers
- `burn` (`int`, `optional`) - Number of additional observations to generate when initializing the simulation
- `initial_value` ({`float`, `ndarray`}, `optional`) - Scalar or array of initial values to use when initializing the simulation

Returns

- `resids` (`ndarray`) - The simulated residuals
- `variance` (`ndarray`) - The simulated variance

**arch.univariate.FixedVariance.starting_values**

`FixedVariance.starting_values(resids)`

Returns starting values for the ARCH model

Parameters `resids` (`ndarray`) - Array of (approximate) residuals to use when computing starting values

Returns `sv` - Array of starting values
Return type  ndarray

arch.univariate.FixedVariance.variance_bounds

FixedVariance.variance_bounds (resids, power=2.0)

Parameters

• resids (ndarray) – Approximate residuals to use to compute the lower and upper bounds on the conditional variance

• power (float, optional) – Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns var_bounds – Array containing columns of lower and upper bounds with the same number of elements as resids

Return type  ndarray

Properties

<table>
<thead>
<tr>
<th>start</th>
<th>Index to use to start variance subarray selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.FixedVariance.start

FixedVariance.start

Index to use to start variance subarray selection

arch.univariate.FixedVariance.stop

FixedVariance.stop

Index to use to stop variance subarray selection

1.8.10 Writing New Volatility Processes

All volatility processes must inherit from :class:VolatilityProcess and provide all public methods.

class arch.univariate.volatility.VolatilityProcess

Abstract base class for ARCH models. Allows the conditional mean model to be specified separately from the conditional variance, even though parameters are estimated jointly.

1.9 Using the Fixed Variance process

The FixedVariance volatility process can be used to implement zig-zag model estimation where two steps are repeated until convergence. This can be used to estimate models which may not be easy to estimate as a single process due to numerical issues or a high-dimensional parameter space.

This setup code is required to run in an IPython notebook
1.9.1 Setup

Imports used in this example.

```python
[3]: import datetime as dt
 import numpy as np
```

Data

The VIX index will be used to illustrate the use of the FixedVariance process. The data is from FRED and is provided by the arch package.

```python
[4]: import arch.data.vix

 vix_data = arch.data.vix.load()
 vix = vix_data.vix.dropna()
 vix.name = 'VIX Index'
 ax = vix.plot(title='VIX Index')
```
Initial Mean Model Estimation

The first step is to estimate the mean to filter the residuals using a constant variance.

```python
[5]: from arch.univariate.mean import HARX, ZeroMean
from arch.univariate.volatility import GARCH, FixedVariance

mod = HARX(vix, lags=[1, 5, 22])
res = mod.fit()
print(res.summary())
```

```
HAR - Constant Variance Model Results
==
Dep. Variable: VIX Index R-squared: 0.876
Mean Model: HAR Adj. R-squared: 0.876
Vol Model: Constant Variance Log-Likelihood: -2267.95
Distribution: Normal AIC: 4545.90
Method: Maximum Likelihood BIC: 4571.50
No. Observations: 1237
Date: Wed, Aug 28 2019 Df Residuals: 1232
Time: 09:40:56 Df Model: 5

Mean Model
--
coef std err t P>|t| 95.0% Conf. Int.
--
Const 0.6335 0.189 3.359 7.831e-04 [0.264, 1.003]
VIX Index[0:1] 0.9287 6.589e-02 14.095 4.056e-45 [0.800, 1.058]
VIX Index[0:5] -0.0318 6.449e-02 -0.492 0.622 [-0.158, 9.463e-02]
VIX Index[0:22] 0.0612 3.180e-02 1.926 5.409e-02 [-1.076e-03, 0.124]
```

(continues on next page)

1.9. Using the Fixed Variance process
Volatility Model

| coef | std err | t    | P>|t|   | 95.0% Conf. Int. |
|------|---------|------|-------|-----------------|
| sigma2 | 2.2910  | 0.396| 5.782 | 7.361e-09       |

Covariance estimator: White's Heteroskedasticity Consistent Estimator

Initial Volatility Model Estimation

Using the previously estimated residuals, a volatility model can be estimated using a ZeroMean. In this example, a GJR-GARCH process is used for the variance.

```python
[6]: vol_mod = ZeroMean(res.resid.dropna(), volatility=GARCH(p=1, o=1, q=1))
vol_res = vol_mod.fit(disp='off')
print(vol_res.summary())
```

Volatility Model

| coef | std err | t    | P>|t|   | 95.0% Conf. Int. |
|------|---------|------|-------|-----------------|
| omega | 0.2355  | 9.134e-02| 2.578 | 9.932e-03       |
| alpha[1]| 0.7217  | 0.374| 1.931 | 5.353e-02       |
| gamma[1]| -0.2217 | 0.252| -2.859 | 4.255e-03       |
| beta[1]| 0.5789  | 0.184| 3.140 | 1.692e-03       |

Covariance estimator: robust
Re-estimating the mean with a FixedVariance

The FixedVariance requires that the variance is provided when initializing the object. The variance provided should have the same shape as the original data. Since the variance estimated from the GJR-GARCH model is missing the first 22 observations due to the HAR lags, we simply fill these with 1. These values will not be used to estimate the model, and so the value is not important.

The summary shows that there is a single parameter, scale, which is close to 1. The mean parameters have changed which reflects the GLS-like weighting that this re-estimation imposes.

```python
[7]: variance = np.empty_like(vix)
 variance.fill(1.0)
 variance[22:] = vol_res.conditional_volatility**2.0
 fv = FixedVariance(variance)
 mod = HARX(vix, lags=[1, 5, 22], volatility=fv)
 res = mod.fit()
 print(res.summary())
```

```
Iteration: 2, Func. Count: 20, Neg. LLF: 1936.2884244078432
Iteration: 3, Func. Count: 30, Neg. LLF: 1936.17303940313
Iteration: 8, Func. Count: 72, Neg. LLF: 1935.9470521933054
Optimization terminated successfully. (Exit mode 0)
 Current function value: 1935.947051582333
 Iterations: 8
 Function evaluations: 73
```

(continues on next page)

1.9. Using the Fixed Variance process
Gradient evaluations: 8

HAR - Fixed Variance Model Results
=================================================================================================
Dep. Variable: VIX Index  R-squared:  0.876
Mean Model: HAR  Adj. R-squared:  0.876
Vol Model: Fixed Variance  Log-Likelihood: -1935.95
Distribution: Normal  AIC:  3881.89
Method: Maximum Likelihood  BIC:  3907.50
No. Observations: 1237
Date: Wed, Aug 28 2019  Df Residuals: 1232
Time: 09:40:57  Df Model: 5
Mean Model
==================================================================================
coef  std err  t  P>|t|  95.0% Conf. Int.
----------------------------------------------------------------------------------
Const  0.5584  0.153  3.661  2.507e-04  [ 0.260, 0.857]
VIX Index[0:1]  0.9376  3.625e-02  25.866  1.607e-147  [ 0.867, 1.009]
VIX Index[0:5]  -0.0249  3.782e-02  -0.657  0.511 [-9.899e-02, 4.926e-02]
VIX Index[0:22]  0.0493  2.102e-02  2.344  1.909e-02  [8.064e-03, 9.044e-02]

Volatility Model
========================================================================
coef  std err  t  P>|t|  95.0% Conf. Int.
------------------------------------------------------------------------
scale  0.9986  8.081e-02  12.358  4.420e-35  [ 0.840, 1.157]
========================================================================
Covariance estimator: robust

**Zig-Zag estimation**

A small repetitions of the previous two steps can be used to implement a so-called zig-zag estimation strategy.

```python
[8]: for i in range(5):
 print(i)
 vol_mod = ZeroMean(res.resid.dropna(), volatility=GARCH(p=1, o=1, q=1))
 vol_res = vol_mod.fit(disp='off')
 variance[22:] = vol_res.conditional_volatility**2.0
 fv = FixedVariance(variance, unit_scale=True)
 mod = HARX(vix, lags=[1, 5, 22], volatility=fv)
 res = mod.fit(disp='off')
 print(res.summary())
```

0
1
2
3
4

HAR - Fixed Variance (Unit Scale) Model Results
=================================================================================================
Dep. Variable: VIX Index  R-squared:  0.
Mean Model: HAR  Adj. R-squared:  0.
Distribution: Normal  AIC:  3879.
(continues on next page)
**Direct Estimation**

This model can be directly estimated. The results are provided for comparison to the previous FixedVariance estimates of the mean parameters.

```
[9]: mod = HARX(vix, lags=[1, 5, 22], volatility=GARCH(1, 1, 1))
res = mod.fit(disp='off')
print(res.summary())
```

```
HAR - GJR-GARCH Model Results
==
Dep. Variable: VIX Index R-squared: 0.876
Mean Model: HAR Adj. R-squared: 0.875
Distribution: Normal AIC: 3881.23
Method: Maximum Likelihood BIC: 3922.19
No. Observations: 1237
Date: Wed, Aug 28 2019 Df Residuals: 1229
Time: 09:40:58 Df Model: 8
Mean Model
==
coef std err t P>|t| 95.0% Conf. Int.
--
Const 0.7796 1.190 0.655 0.513 [-1.554, 3.113]
VIX Index[0:1] 0.9180 0.291 3.156 0.001 [0.348, 1.488]
VIX Index[0:5] -0.0393 0.296 -0.133 0.894 [-0.620, 0.541]
VIX Index[0:22] 0.0632 0.209 0.300 0.763 [-0.432, 0.558]
Volatility Model
==
coef std err t P>|t| 95.0% Conf. Int.

omega 0.2357 0.250 0.944 0.345 [-0.254, 0.725]
alpha[1] 0.7091 1.069 0.664 0.507 [-1.386, 2.804]
gamma[1] -0.7091 0.519 -1.367 0.172 [-1.726, 0.308]
beta[1] -0.5579 0.855 -0.637 0.524 [-2.236, 1.120]
```

(continues on next page)
1.10 Distributions

A distribution is the final component of an ARCH Model.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Standard normal distribution for use with ARCH models</td>
</tr>
<tr>
<td>StudentsT</td>
<td>Standardized Student’s distribution for use with ARCH models</td>
</tr>
<tr>
<td>SkewStudent</td>
<td>Standardized Skewed Student’s distribution for use with ARCH models</td>
</tr>
<tr>
<td>GeneralizedError</td>
<td>Generalized Error distribution for use with ARCH models</td>
</tr>
</tbody>
</table>

1.10.1 arch.univariate.Normal

class `arch.univariate.Normal(random_state=None)`

Standard normal distribution for use with ARCH models

Methods

- **bounds(resids)**
  - param `resids` Residuals to use when computing the bounds

- **cdf(resids[, parameters])**
  - Cumulative distribution function

- **constraints()**

- **loglikelihood(parameters, resids, sigma2[, ...])**
  - Computes the log-likelihood of assuming residuals are normally distributed, conditional on the variance

- **parameter_names()**
  - Names of distribution shape parameters

- **ppf(pits[, parameters])**
  - Inverse cumulative density function (ICDF)

- **simulate(parameters)**
  - Simulates i.i.d.

- **starting_values(std_resid)**
  - param `std_resid` Estimated standardized residuals to use in computing starting
arch.univariate.Normal.bounds

Normal.bounds(resids)

Parameters resids (ndarray) – Residuals to use when computing the bounds
Returns bounds – List containing a single tuple with (lower, upper) bounds
Return type list

arch.univariate.Normal.cdf

Normal.cdf(resids, parameters=None)

Cumulative distribution function
Parameters
  • resids (ndarray) – Values at which to evaluate the cdf
  • parameters (ndarray) – Distribution parameters. Use None for parameterless distributions.
Returns f – CDF values
Return type ndarray

arch.univariate.Normal.constraints

Normal.constraints()

Returns
  • A (ndarray) – Constraint loadings
  • b (ndarray) – Constraint values

Notes
Parameters satisfy the constraints A.dot(parameters)-b >= 0

arch.univariate.Normal.loglikelihood

Normal.loglikelihood(parameters, resids, sigma2, individual=False)

Computes the log-likelihood of assuming residuals are normally distributed, conditional on the variance
Parameters
  • parameters (ndarray) – The normal likelihood has no shape parameters. Empty since the standard normal has no shape parameters.
  • resids (ndarray) – The residuals to use in the log-likelihood calculation
  • sigma2 (ndarray) – Conditional variances of resids
  • individual (bool, optional) – Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)
Returns ll – The log-likelihood
Return type float
Notes

The log-likelihood of a single data point $x$ is

$$
\ln f(x) = -\frac{1}{2} \left( \ln 2\pi + \ln \sigma^2 + \frac{x^2}{\sigma^2} \right)
$$

arch.univariate.Normal.parameter_names

Normal.parameter_names()

Names of distribution shape parameters

Returns names – Parameter names

Return type list (str)

arch.univariate.Normal.ppf

Normal.ppf(pits, parameters=None)

Inverse cumulative density function (ICDF)

Parameters

- pits ndarray – Probability-integral-transformed values in the interval (0, 1).
- parameters ndarray, optional – Distribution parameters. Use None for parameterless distributions.

Returns i – Inverse CDF values

Return type ndarray

arch.univariate.Normal.simulate

Normal.simulate(parameters)

Simulates i.i.d. draws from the distribution

Parameters parameters ndarray – Distribution parameters

Returns simulator – Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type callable

arch.univariate.Normal.starting_values

Normal.starting_values(std_resid)

Parameters std_resid ndarray – Estimated standardized residuals to use in computing starting values for the shape parameter

Returns sv – The estimated shape parameters for the distribution

Return type ndarray
Notes

Size of sv depends on the distribution

Properties

```
random_state
```
The NumPy RandomState attached to the distribution

```
arch.univariate.Normal.random_state
```

`Normal.random_state`
The NumPy RandomState attached to the distribution

1.10.2 arch.univariate.StudentsT

```
class arch.univariate.StudentsT(random_state= None)
```

Standardized Student’s distribution for use with ARCH models

Methods

```
bounds(resids)
```

`param resids` Residuals to use when computing the bounds

```
cdf(resids[, parameters])
```
Cumulative distribution function

```
constraints()
```

```
loglikelihood(parameters, resids, sigma2[, . . .])
```
Computes the log-likelihood of assuming residuals are have a standardized (to have unit variance) Student’s t distribution, conditional on the variance.

```
parameter_names()
```
Names of distribution shape parameters

```
ppf(pits[, parameters])
```
Inverse cumulative density function (ICDF)

```
simulate(parameters)
```
Simulates i.i.d.

```
starting_values(std_resid)
```

`param std_resid` Estimated standardized residuals to use in computing starting

arch.univariate.StudentsT.bounds

```
StudentsT.bounds (resids)
```

Parameters `resids` *(ndarray)* – Residuals to use when computing the bounds

Returns `bounds` – List containing a single tuple with (lower, upper) bounds

1.10. Distributions 131
Return type: list

**`arch.univariate.StudentsT.cdf`**

`StudentsT.cdf(resids, parameters=None)`

Cumulative distribution function

**Parameters**

- `resids` (*ndarray*) – Values at which to evaluate the cdf

**Returns**

- `f` – CDF values

Return type: ndarray

**`arch.univariate.StudentsT.constraints`**

`StudentsT.constraints()`

**Returns**

- `A` (*ndarray*) – Constraint loadings
- `b` (*ndarray*) – Constraint values

**Notes**

Parameters satisfy the constraints $A \cdot \text{parameters} - b \geq 0$

**`arch.univariate.StudentsT.loglikelihood`**

`StudentsT.loglikelihood(parameters, resids, sigma2, individual=False)`

Computes the log-likelihood of assuming residuals are have a standardized (to have unit variance) Student’s t distribution, conditional on the variance.

**Parameters**

- `parameters` (*ndarray*) – Shape parameter of the t distribution
- `resids` (*ndarray*) – The residuals to use in the log-likelihood calculation
- `sigma2` (*ndarray*) – Conditional variances of resids
- `individual` (*bool, optional*) – Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)

**Returns**

- `ll` – The log-likelihood

Return type: float
Notes

The log-likelihood of a single data point $x$ is
\[
\ln \Gamma \left(\frac{\nu + 1}{2}\right) - \ln \Gamma \left(\frac{\nu}{2}\right) - \frac{1}{2} \ln(\pi (\nu - 2) \sigma^2) - \frac{\nu + 1}{2} \ln(1 + x^2/(\sigma^2(\nu - 2)))
\]
where $\Gamma$ is the gamma function.

**arch.univariate.StudentsT.parameter_names**

*StudentsT.parameter_names()*

Names of distribution shape parameters

- **Returns** names – Parameter names
- **Return type** list (str)

**arch.univariate.StudentsT.ppf**

*StudentsT.ppf*(pits, parameters=None)

Inverse cumulative density function (ICDF)

- **Parameters**
  - *pits* (ndarray) – Probability-integral-transformed values in the interval (0, 1).
  - *parameters* (ndarray, optional) – Distribution parameters. Use None for parameterless distributions.
- **Returns** i – Inverse CDF values
- **Return type** ndarray

**arch.univariate.StudentsT.simulate**

*StudentsT.simulate*(parameters)

Simulates i.i.d. draws from the distribution

- **Parameters** parameters (ndarray) – Distribution parameters
- **Returns** simulator – Callable that take a single output size argument and returns i.i.d. draws from the distribution
- **Return type** callable

**arch.univariate.StudentsT.starting_values**

*StudentsT.starting_values*(std_resid)

- **Parameters** std_resid (ndarray) – Estimated standardized residuals to use in computing starting values for the shape parameter
- **Returns** sv – Array containing starting valuer for shape parameter
- **Return type** ndarray
Notes

Uses relationship between kurtosis and degree of freedom parameter to produce a moment-based estimator for the starting values.

Properties

<table>
<thead>
<tr>
<th>random_state</th>
<th>The NumPy RandomState attached to the distribution</th>
</tr>
</thead>
</table>

arch.univariate.StudentsT.random_state

StudentsT.random_state

The NumPy RandomState attached to the distribution

1.10.3 arch.univariate.SkewStudent

class arch.univariate.SkewStudent (random_state=None)

Standardized Skewed Student’s distribution for use with ARCH models

Notes

The Standardized Skewed Student’s distribution \(^1\) takes two parameters, \(\eta\) and \(\lambda\). \(\eta\) controls the tail shape and is similar to the shape parameter in a Standardized Student’s t. \(\lambda\) controls the skewness. When \(\lambda = 0\) the distribution is identical to a standardized Student’s t.

References

Methods

bounds(resids)

param resids Residuals to use when computing the bounds

cdf(resids[, parameters])

Cumulative distribution function

constraints()

returns

• A (ndarray) – Constraint loadings

loglikelihood(parameters, resids, sigma2[, ...])

Computes the log-likelihood of assuming residuals are have a standardized (to have unit variance) Skew Student’s t distribution, conditional on the variance.

parameter_names()

Names of distribution shape parameters

Continued on next page

Table 40 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ppf(pits[, parameters])</code></td>
<td>Inverse cumulative density function (ICDF)</td>
</tr>
<tr>
<td><code>simulate(parameters)</code></td>
<td>Simulates i.i.d.</td>
</tr>
<tr>
<td><code>starting_values(std_resid)</code></td>
<td></td>
</tr>
<tr>
<td><code>param std_resid</code></td>
<td>Estimated standardized residuals to use in computing starting</td>
</tr>
</tbody>
</table>

**arch.univariate.SkewStudent.bounds**

SkewStudent.bounds(resids)

Parameters
- **resids** (ndarray) – Residuals to use when computing the bounds

Returns
- **bounds** – List containing a single tuple with (lower, upper) bounds

Return type: list

**arch.univariate.SkewStudent.cdf**

SkewStudent.cdf(resids, parameters=None)

Cumulative distribution function

Parameters
- **resids** (ndarray) – Values at which to evaluate the cdf
- **parameters** (ndarray) – Distribution parameters. Use None for parameterless distributions.

Returns
- **f** – CDF values

Return type: ndarray

**arch.univariate.SkewStudent.constraints**

SkewStudent.constraints()

Returns
- **A** (ndarray) – Constraint loadings
- **b** (ndarray) – Constraint values

Notes
- Parameters satisfy the constraints A.dot(parameters)-b >= 0

**arch.univariate.SkewStudent.loglikelihood**

SkewStudent.loglikelihood(parameters, resids, sigma2, individual=False)

Computes the log-likelihood of assuming residuals are have a standardized (to have unit variance) Skew Student’s t distribution, conditional on the variance.

Parameters
• parameters (ndarray) – Shape parameter of the skew-t distribution

• resids (ndarray) – The residuals to use in the log-likelihood calculation

• sigma2 (ndarray) – Conditional variances of resids

• individual (bool, optional) – Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)

Returns ll – The log-likelihood

Return type float

Notes

The log-likelihood of a single data point x is

\[
\ln \left[ \frac{bc}{\sigma} \left( 1 + \frac{1}{\eta - 2} \left( a + bx/\sigma \right) ^2 \right) ^\frac{-1}{(\eta+1)/2} \right],
\]

where \(2 < \eta < \infty\), and \(-1 < \lambda < 1\). The constants \(a\), \(b\), and \(c\) are given by

\[
a = 4\lambda \frac{\eta - 2}{\eta - 1}, \quad b^2 = 1 + 3\lambda^2 - a^2, \quad c = \frac{\Gamma \left( \frac{\eta + 1}{2} \right)}{\sqrt{\pi} (\eta - 2) \Gamma \left( \frac{\eta}{2} \right)},
\]

and \(\Gamma\) is the gamma function.

arch.univariate.SkewStudent.parameter_names

SkewStudent.\texttt{parameter\_names}()

Names of distribution shape parameters

Returns names – Parameter names

Return type list (str)

arch.univariate.SkewStudent.ppf

SkewStudent.\texttt{ppf}(\texttt{pits}, \texttt{parameters}=None)

Inverse cumulative density function (ICDF)

Parameters

• pits (ndarray) – Probability-integral-transformed values in the interval (0, 1).

• parameters (ndarray, optional) – Distribution parameters. Use None for parameterless distributions.

Returns i – Inverse CDF values

Return type ndarray
arch.univariate.SkewStudent.simulate

SkewStudent.simulate(parameters)
Simulates i.i.d. draws from the distribution

Parameters parameters (ndarray) – Distribution parameters

Returns simulator – Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type callable

arch.univariate.SkewStudent.starting_values

SkewStudent.starting_values(std_resid)

Parameters std_resid (ndarray) – Estimated standardized residuals to use in computing starting values for the shape parameter

Returns sv – Array containing starting value for shape parameter

Return type ndarray

Notes

Uses relationship between kurtosis and degree of freedom parameter to produce a moment-based estimator for the starting values.

Properties

random_state

The NumPy RandomState attached to the distribution

arch.univariate.SkewStudent.random_state

SkewStudent.random_state

The NumPy RandomState attached to the distribution

1.10.4 arch.univariate.GeneralizedError

class arch.univariate.GeneralizedError(random_state=None)

Generalized Error distribution for use with ARCH models

Methods

bounds(resids)

param resids Residuals to use when computing the bounds

cdf(resids[, parameters])

Cumulative distribution function

Continued on next page
Table 42 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>constraints()</strong></td>
<td>Returns</td>
</tr>
<tr>
<td></td>
<td>• A (ndarray) – Constraint loadings</td>
</tr>
<tr>
<td><strong>loglikelihood(parameters, resids, sigma2[, ...])</strong></td>
<td>Computes the log-likelihood of assuming residuals have a Generalized Error Distribution, conditional on the variance.</td>
</tr>
<tr>
<td><strong>parameter_names()</strong></td>
<td>Names of distribution shape parameters</td>
</tr>
<tr>
<td><strong>ppf(pits[, parameters])</strong></td>
<td>Inverse cumulative density function (ICDF)</td>
</tr>
<tr>
<td><strong>simulate(parameters)</strong></td>
<td>Simulates i.i.d.</td>
</tr>
<tr>
<td><strong>starting_values(std_resid)</strong></td>
<td>Estimated standardized residuals to use in computing starting</td>
</tr>
</tbody>
</table>

**arch.univariate.GeneralizedError.bounds**

```python
GeneralizedError.bounds(resids)
```

- **Parameters** `resids` (ndarray) – Residuals to use when computing the bounds
- **Returns** `bounds` – List containing a single tuple with (lower, upper) bounds
- **Return type** list

**arch.univariate.GeneralizedError.cdf**

```python
GeneralizedError.cdf(resids, parameters=None)
```

- **Parameters**
  - `resids` (ndarray) – Values at which to evaluate the cdf
  - `parameters` (ndarray) – Distribution parameters. Use None for parameterless distributions.
- **Returns** `f` – CDF values
- **Return type** ndarray

**arch.univariate.GeneralizedError.constraints**

```python
GeneralizedError.constraints()
```

- **Returns**
  - • A (ndarray) – Constraint loadings
  - • b (ndarray) – Constraint values

**Notes**

Parameters satisfy the constraints A.dot(parameters)-b >= 0
arch.univariate.GeneralizedError.loglikelihood

GeneralizedError.loglikelihood(parameters, resids, sigma2, individual=False)
Computes the log-likelihood of assuming residuals are have a Generalized Error Distribution, conditional on the variance.

Parameters
- **parameters** (ndarray) – Shape parameter of the GED distribution
- **resids** (ndarray) – The residuals to use in the log-likelihood calculation
- **sigma2** (ndarray) – Conditional variances of resids
- **individual** (bool, optional) – Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)

Returns ll – The log-likelihood

Return type float

Notes
The log-likelihood of a single data point $x$ is

$$\ln \nu - \ln c - \ln \Gamma\left(\frac{1}{\nu}\right) + (1 + \frac{1}{\nu}) \ln 2 - \frac{1}{2} \ln \sigma^2 - \frac{1}{2} \frac{|x|}{c \sigma} \nu$$

where $\Gamma$ is the gamma function and $\ln c$ is

$$\ln c = \frac{1}{2} \left( \frac{-2}{\nu} \ln 2 + \ln \Gamma\left(\frac{1}{\nu}\right) - \ln \Gamma\left(\frac{3}{\nu}\right) \right).$$

arch.univariate.GeneralizedError.parameter_names

GeneralizedError.parameter_names()
Names of distribution shape parameters

Returns names – Parameter names

Return type list (str)

arch.univariate.GeneralizedError.ppf

GeneralizedError.ppf(pits, parameters=None)
Inverse cumulative density function (ICDF)

Parameters
- **pits** (ndarray) – Probability-integral-transformed values in the interval (0, 1).
- **parameters** (ndarray, optional) – Distribution parameters. Use None for parameterless distributions.

Returns i – Inverse CDF values

Return type ndarray
arch.univariate.GeneralizedError.simulate

GeneralizedError.simulate(parameters)
Simulates i.i.d. draws from the distribution

Parameters
parameters (ndarray) – Distribution parameters

Returns
simulator – Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type
callable

arch.univariate.GeneralizedError.starting_values

GeneralizedError.starting_values(std_resid)

Parameters
std_resid (ndarray) – Estimated standardized residuals to use in computing starting values for the shape parameter

Returns
sv – Array containing starting valuer for shape parameter

Return type
ndarray

Notes
Defaults to 1.5 which is implies heavier tails than a normal

Properties

<table>
<thead>
<tr>
<th>random_state</th>
<th>The NumPy RandomState attached to the distribution</th>
</tr>
</thead>
</table>

arch.univariate.GeneralizedError.random_state

GeneralizedError.random_state

The NumPy RandomState attached to the distribution

1.10.5 Writing New Distributions

All distributions must inherit from Distribution and provide all public methods.

class arch.univariate.distribution.Distribution (name, random_state=None)
Template for subclassing only

1.11 Model Results

All model return the same object, a results class (ARCHModelResult). When using the fix method, a (ARCHModelFixedResult) is produced that lacks some properties of a (ARCHModelResult) that are not relevant when parameters are not estimated.
1.11.1 arch.univariate.base.ARCHModelResult

class arch.univariate.base.ARCHModelResult

Results from estimation of an ARCHModel model

Parameters

- **params** *(ndarray)* – Estimated parameters
- **param_cov** *(ndarray, None)* – Estimated variance-covariance matrix of params. If none, calls method to compute variance from model when parameter covariance is first used from result
- **r2** *(float)* – Model R-squared
- **resid** *(ndarray)* – Residuals from model. Residuals have same shape as original data and contain nan-values in locations not used in estimation
- **volatility** *(ndarray)* – Conditional volatility from model
- **cov_type** *(str)* – String describing the covariance estimator used
- **dep_var** *(Series)* – Dependent variable
- **names** *(list (str))* – Model parameter names
- **loglikelihood** *(float)* – Loglikelihood at estimated parameters
- **is_pandas** *(bool)* – Whether the original input was pandas
- **optim_output** *(OptimizeResult)* – Result of log-likelihood optimization
- **fit_start** *(int)* – Integer index of the first observation used to fit the model
- **fit_stop** *(int)* – Integer index of the last observation used to fit the model using slice notation `fit_start:fit_stop`
- **model** *(ARCHModel)* – The model object used to estimate the parameters

Methods

- **arch_lm_test** *(lags, standardized)* – ARCH LM test for conditional heteroskedasticity
- **conf_int** *(alpha)* – Parameter confidence intervals
- **forecast** *(params, horizon, start, align, ...)* – Construct forecasts from estimated model
- **hedgehog_plot** *(params, horizon, step, ...)* – Plot forecasts from estimated model
- **plot** *(annualize, scale)* – Plot standardized residuals and conditional volatility
- **summary** *()* – Constructs a summary of the results from a fit model.

```
ARCHModelResult.arch_lm_test(lags=None, standardized=False)
ARCH LM test for conditional heteroskedasticity
```
Parameters

- **lags** *(int, optional)* – Number of lags to include in the model. If not specified,
- **standardized** *(bool, optional)* – Flag indicating to test the model residuals divided by their conditional standard deviations. If False, directly tests the estimated residuals.

Returns **result** – Result of ARCH-LM test

Return type `WaldTestStatistic`

```python
arch.univariate.base.ARCHModelResult.conf_int
```

**ARCHModelResult.conf_int**(alpha=0.05)

Parameter confidence intervals

Parameters **alpha** *(float, optional)* – Size (prob.) to use when constructing the confidence interval.

Returns **ci** – Array where the ith row contains the confidence interval for the ith parameter

Return type `ndarray`

```python
arch.univariate.base.ARCHModelResult.forecast
```

**ARCHModelResult.forecast**(params=None, horizon=1, start=None, align='origin', method='analytic', simulations=1000, rng=None, random_state=None)

Construct forecasts from estimated model

Parameters

- **params** *(ndarray, optional)* – Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.
- **horizon** *(int, optional)* – Number of steps to forecast
- **start** *(int, datetime, Timestamp, str), optional)* – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.
- **align** *(str, optional)* – Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, … , t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, … , and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.
- **method** *({'analytic', 'simulation', 'bootstrap'}, optional)* – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.
- **simulations** *(int, optional)* – Number of simulations to run when computing the forecast using either simulation or bootstrap.
• **rng** *(callable, optional)* – Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size is a 2-element tuple (simulations, horizon).

• **random_state** *(RandomState, optional)* – NumPy RandomState instance to use when method is ‘bootstrap’

Returns **forecasts** – A t by h data frame containing the forecasts. The alignment of the forecasts is controlled by `align`.

Return type **ARCHModelForecast**

---

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t+1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (*model.x is not None*), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

---

**arch.univariate.base.ARCHModelResult.hedgehog_plot**

ARCHModelResult.abs(hedgehog_plot) *(params=None, horizon=10, step=10, start=None, type='volatility', method='analytic', simulations=1000)*

Plot forecasts from estimated model

**Parameters**

• **params** *(ndarray, Series) – Alternative parameters to use. If not provided, the parameters computed by fitting the model are used. Must be 1-d and identical in shape to the parameters computed by fitting the model.*

• **horizon** *(int, optional)* – Number of steps to forecast

• **step** *(int, optional)* – Non-negative number of forecasts to skip between spines

• **start** *(int, datetime or str, optional) – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’. If not provided, the start is set to the earliest forecastable date.*

• **type** *({'volatility', 'mean'}) – Quantity to plot, the forecast volatility or the forecast mean*

• **method** *({'analytic', 'simulation', 'bootstrap}) – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.*

• **simulations** *(int) – Number of simulations to run when computing the forecast using either simulation or bootstrap.*

Returns **fig** – Handle to the figure
Return type  figure

Examples

```python
global var = pd
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot(type='mean')
```

arch.univariate.base.ARCHModelResult.plot

ARCHModelResult.plot(annualize=None, scale=None)
Plot standardized residuals and conditional volatility

Parameters

- **annualize** (*str*, *optional*) – String containing frequency of data that indicates plot should contain annualized volatility. Supported values are ‘D’ (daily), ‘W’ (weekly) and ‘M’ (monthly), which scale variance by 252, 52, and 12, respectively.

- **scale** (*float*, *optional*) – Value to use when scaling returns to annualize. If scale is provided, annualize is ignored and the value in scale is used.

Returns  fig – Handle to the figure

Return type  figure

Examples

```python
global var = pd
>>> from arch import arch_model
>>> am = arch_model(None)
>>> sim_data = am.simulate([0.0, 0.01, 0.07, 0.92], 2520)
>>> am = arch_model(sim_data['data'])
>>> res = am.fit(update_freq=0, disp='off')
>>> fig = res.plot()

Produce a plot with annualized volatility

>>> fig = res.plot(annualize='D')

Override the usual scale of 252 to use 360 for an asset that trades most days of the year

>>> fig = res.plot(scale=360)
```

arch.univariate.base.ARCHModelResult.summary

ARCHModelResult.summary()
Constructs a summary of the results from a fit model.
Returns summary – Object that contains tables and facilitated export to text, html or latex

Return type Summary instance

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aic</td>
<td>Akaike Information Criteria</td>
</tr>
<tr>
<td>bic</td>
<td>Schwarz/Bayesian Information Criteria</td>
</tr>
<tr>
<td>conditional_volatility</td>
<td>Estimated conditional volatility</td>
</tr>
<tr>
<td>convergence_flag</td>
<td>scipy.optimize.minimize result flag</td>
</tr>
<tr>
<td>fit_start</td>
<td>Start of sample used to estimate parameters</td>
</tr>
<tr>
<td>fit_stop</td>
<td>End of sample used to estimate parameters</td>
</tr>
<tr>
<td>loglikelihood</td>
<td>Model loglikelihood</td>
</tr>
<tr>
<td>model</td>
<td>Model instance used to produce the fit</td>
</tr>
<tr>
<td>nobs</td>
<td>Number of data points used to estimate model</td>
</tr>
<tr>
<td>num_params</td>
<td>Number of parameters in model</td>
</tr>
<tr>
<td>optimization_result</td>
<td>Information about the convergence of the loglikelihood optimization</td>
</tr>
<tr>
<td>param_cov</td>
<td>Parameter covariance</td>
</tr>
<tr>
<td>params</td>
<td>Model Parameters</td>
</tr>
<tr>
<td>pvalues</td>
<td>Array of p-values for the t-statistics</td>
</tr>
<tr>
<td>resid</td>
<td>Model residuals</td>
</tr>
<tr>
<td>rsquared</td>
<td>R-squared</td>
</tr>
<tr>
<td>rsquared_adj</td>
<td>Degree of freedom adjusted R-squared</td>
</tr>
<tr>
<td>scale</td>
<td>The scale applied to the original data before estimating the model.</td>
</tr>
<tr>
<td>std_err</td>
<td>Array of parameter standard errors</td>
</tr>
<tr>
<td>std_resid</td>
<td>Residuals standardized by conditional volatility</td>
</tr>
<tr>
<td>tvalues</td>
<td>Array of t-statistics testing the null that the coefficient are 0</td>
</tr>
</tbody>
</table>

**arch.univariate.base.ARCHModelResult.aic**

ARCHModelResult.aic

Akaike Information Criteria

\[-2 \times \text{loglikelihood} + 2 \times \text{num_params}\]

**arch.univariate.base.ARCHModelResult.bic**

ARCHModelResult.bic

Schwarz/Bayesian Information Criteria

\[-2 \times \text{loglikelihood} + \log(\text{nobs}) \times \text{num_params}\]

**arch.univariate.base.ARCHModelResult.conditional_volatility**

ARCHModelResult.conditional_volatility

Estimated conditional volatility

Returns conditional_volatility – nobs element array containing the conditional volatility (square root of conditional variance). The values are aligned with the input data so that
the value in the t-th position is the variance of t-th error, which is computed using time-(t-1) information.

**Return type** \{ndarray, Series\}

```python
arch.univariate.base.ARCHModelResult.convergence_flag
ARCHModelResult.convergence_flag
scipy.optimize.minimize result flag
```

```python
arch.univariate.base.ARCHModelResult.fit_start
ARCHModelResult.fit_start
Start of sample used to estimate parameters
```

```python
arch.univariate.base.ARCHModelResult.fit_stop
ARCHModelResult.fit_stop
End of sample used to estimate parameters
```

```python
arch.univariate.base.ARCHModelResult.loglikelihood
ARCHModelResult.loglikelihood
Model loglikelihood
```

```python
arch.univariate.base.ARCHModelResult.model
ARCHModelResult.model
Model instance used to produce the fit
```

```python
arch.univariate.base.ARCHModelResult.nobs
ARCHModelResult.nobs
Number of data points used to estimate model
```

```python
arch.univariate.base.ARCHModelResult.num_params
ARCHModelResult.num_params
Number of parameters in model
```

```python
arch.univariate.base.ARCHModelResult.optimization_result
ARCHModelResult.optimization_result
Information about the convergence of the loglikelihood optimization

Returns optim_result – Result from numerical optimization of the log-likelihood.

Return type OptimizeResult
ARCHModelResult.param_cov

Parameter covariance

ARCHModelResult.params

Model Parameters

ARCHModelResult.pvalues

Array of p-values for the t-statistics

ARCHModelResult.resid

Model residuals

ARCHModelResult.rsquared

R-squared

ARCHModelResult.rsquared_adj

Degree of freedom adjusted R-squared

ARCHModelResult.scale

The scale applied to the original data before estimating the model.

If scale=1.0, the data have not been rescaled. Otherwise, the model parameters have been estimated on scale * y.

ARCHModelResult.std_err

Array of parameter standard errors

ARCHModelResult.std_resid

Residuals standardized by conditional volatility
1.11.2 arch.univariate.base.ARCHModelFixedResult

class arch.univariate.base.ARCHModelFixedResult (params, resid, volatility, dep_var, names, loglikelihood, is_pandas, model)

Results for fixed parameters for an ARCHModel model

Parameters

- **params (ndarray)** – Estimated parameters
- **resid (ndarray)** – Residuals from model. Residuals have same shape as original data and contain nan-values in locations not used in estimation
- **volatility (ndarray)** – Conditional volatility from model
- **dep_var (Series)** – Dependent variable
- **names (list (str))** – Model parameter names
- **loglikelihood (float)** – Loglikelihood at specified parameters
- **is_pandas (bool)** – Whether the original input was pandas
- **model (ARCHModel)** – The model object used to estimate the parameters

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arch_lm_test ([lags, standardized])</td>
<td>ARCH LM test for conditional heteroskedasticity</td>
</tr>
<tr>
<td>forecast ([params, horizon, start, align, ...])</td>
<td>Construct forecasts from estimated model</td>
</tr>
<tr>
<td>hedgehog_plot ([params, horizon, step, ...])</td>
<td>Plot forecasts from estimated model</td>
</tr>
<tr>
<td>plot ([annualize, scale])</td>
<td>Plot standardized residuals and conditional volatility</td>
</tr>
<tr>
<td>summary ()</td>
<td>Constructs a summary of the results from a fit model.</td>
</tr>
</tbody>
</table>

ARCHModelFixedResult.arch_lm_test

ARCHModelFixedResult.arch_lm_test (lags=None, standardized=False)
ARCH LM test for conditional heteroskedasticity

Parameters

- **lags (int, optional)** – Number of lags to include in the model. If not specified,
- **standardized (bool, optional)** – Flag indicating to test the model residuals divided by their conditional standard deviations. If False, directly tests the estimated residuals.

Returns **result** – Result of ARCH-LM test

Return type **WaldTestStatistic**
arch.univariate.base.ARCHModelFixedResult.forecast

ARCHModelFixedResult.forecast(params=None, horizon=1, start=None, align='origin', method='analytic', simulations=1000, rng=None, random_state=None)

Construct forecasts from estimated model

Parameters

- **params** *(ndarray, optional)*: Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

- **horizon** *(int, optional)*: Number of steps to forecast

- **start** *((int, datetime, Timestamp, str), optional)*: An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in '1945-01-01'.

- **align** *(str, optional)*: Either 'origin' or 'target'. When set of 'origin', the t-th row of forecasts contains the forecasts for t+1, t+2, ..., t+h. When set to 'target', the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, ..., and the h-step from time t-h. 'target' simplified computing forecast errors since the realization and h-step forecast are aligned.

- **method** *(('analytic', 'simulation', 'bootstrap'), optional)*: Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the 'analytic' method for horizons > 1.

- **simulations** *(int, optional)*: Number of simulations to run when computing the forecast using either simulation or bootstrap.

- **rng** *(callable, optional)*: Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size the 2-element tuple (simulations, horizon).

- **random_state** *(RandomState, optional)*: NumPy RandomState instance to use when method is 'bootstrap'

Returns forecasts — t by h data frame containing the forecasts. The alignment of the forecasts is controlled by `align`.

Return type *ARCHModelForecast*

Notes

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (`model.x` is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is 'origin', forecast[0,h] contains the forecast made using y[t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is 'target', then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.
arch.univariate.base.ARCHModelFixedResult.hedgehog_plot

ARCHModelFixedResult.hedgehog_plot (params=None, horizon=10, step=10, start=None, type='volatility', method='analytic', simulations=1000)

Plot forecasts from estimated model

Parameters

- **params** *(ndarray, Series)* – Alternative parameters to use. If not provided, the parameters computed by fitting the model are used. Must be 1-d and identical in shape to the parameters computed by fitting the model.
- **horizon** *(int, optional)* – Number of steps to forecast
- **step** *(int, optional)* – Non-negative number of forecasts to skip between spines
- **start** *(int, datetime or str, optional)* – An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’. If not provided, the start is set to the earliest forecastable date.
- **type** *({'volatility', 'mean'})* – Quantity to plot, the forecast volatility or the forecast mean
- **method** *({'analytic', 'simulation', 'bootstrap'})* – Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.
- **simulations** *(int)* – Number of simulations to run when computing the forecast using either simulation or bootstrap.

Returns **fig** – Handle to the figure

Return type **figure**

Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot(type='mean')
```

arch.univariate.base.ARCHModelFixedResult.plot

ARCHModelFixedResult.plot (annualize=None, scale=None)

Plot standardized residuals and conditional volatility

Parameters
• `annualize` *(str, optional)* — String containing frequency of data that indicates plot should contain annualized volatility. Supported values are ‘D’ (daily), ‘W’ (weekly) and ‘M’ (monthly), which scale variance by 252, 52, and 12, respectively.

• `scale` *(float, optional)* — Value to use when scaling returns to annualize. If scale is provided, `annualize` is ignored and the value in `scale` is used.

Returns `fig` — Handle to the figure

Return type `figure`

Examples

```python
>>> from arch import arch_model
>>> am = arch_model(0)
>>> sim_data = am.simulate([0.0, 0.01, 0.07, 0.92], 252)
>>> am = arch_model(sim_data[\'data\'])
>>> res = am.fit(update_freq=0, disp=\'off\')
>>> fig = res.plot()

Produce a plot with annualized volatility

```python
>>> fig = res.plot(annualize='D')

Override the usual scale of 252 to use 360 for an asset that trades most days of the year

```python
>>> fig = res.plot(scale=360)
```

arch.univariate.base.ARCHModelFixedResult.summary

`ARCHModelFixedResult.summary()`

Constructs a summary of the results from a fit model.

Returns `summary` — Object that contains tables and facilitated export to text, html or latex

Return type `Summary instance`

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aic</code></td>
<td>Akaike Information Criteria</td>
</tr>
<tr>
<td><code>bic</code></td>
<td>Schwarz/Bayesian Information Criteria</td>
</tr>
<tr>
<td><code>conditional_volatility</code></td>
<td>Estimated conditional volatility</td>
</tr>
<tr>
<td><code>loglikelihood</code></td>
<td>Model loglikelihood</td>
</tr>
<tr>
<td><code>model</code></td>
<td>Model instance used to produce the fit</td>
</tr>
<tr>
<td><code>nobs</code></td>
<td>Number of data points used to estimate model</td>
</tr>
<tr>
<td><code>num_params</code></td>
<td>Number of parameters in model</td>
</tr>
<tr>
<td><code>params</code></td>
<td>Model Parameters</td>
</tr>
<tr>
<td><code>resid</code></td>
<td>Model residuals</td>
</tr>
<tr>
<td><code>std_resid</code></td>
<td>Residuals standardized by conditional volatility</td>
</tr>
</tbody>
</table>
arch.univariate.base.ARCHModelFixedResult.aic

ARCHModelFixedResult.aic
Akaike Information Criteria
-2 * loglikelihood + 2 * num_params

arch.univariate.base.ARCHModelFixedResult.bic

ARCHModelFixedResult.bic
Schwarz/Bayesian Information Criteria
-2 * loglikelihood + log(nobs) * num_params

arch.univariate.base.ARCHModelFixedResult.conditional_volatility

ARCHModelFixedResult.conditional_volatility
Estimated conditional volatility

Returns conditional_volatility – nobs element array containing the conditional volatility
(square root of conditional variance). The values are aligned with the input data so that
the value in the t-th position is the variance of t-th error, which is computed using time-(t-1)
information.

Return type {ndarray, Series}

arch.univariate.base.ARCHModelFixedResult.loglikelihood

ARCHModelFixedResult.loglikelihood
Model loglikelihood

arch.univariate.base.ARCHModelFixedResult.model

ARCHModelFixedResult.model
Model instance used to produce the fit

arch.univariate.base.ARCHModelFixedResult.nobs

ARCHModelFixedResult.nobs
Number of data points used to estimate model

arch.univariate.base.ARCHModelFixedResult.num_params

ARCHModelFixedResult.num_params
Number of parameters in model

arch.univariate.base.ARCHModelFixedResult.params

ARCHModelFixedResult.params
Model Parameters
arch.univariate.base.ARCHModelFixedResult.resid

ARCHModelFixedResult.resid
Model residuals

arch.univariate.base.ARCHModelFixedResult.std_resid

ARCHModelFixedResult.std_resid
Residuals standardized by conditional volatility

1.12 Utilities

Utilities that do not fit well on other pages.

1.12.1 Test Results

class arch.utility.testing.WaldTestStatistic(stat, df, null, alternative, name=None)
Test statistic holder for Wald-type tests

Parameters

• stat (float) – The test statistic
• df (int) – Degree of freedom.
• null (str) – A statement of the test’s null hypothesis
• alternative (str) – A statement of the test’s alternative hypothesis
• name (str, optional) – Name of test

critical_values
Critical values test for common test sizes

null
Null hypothesis

pval
P-value of test statistic

stat
Test statistic

1.13 Theoretical Background

To be completed
The bootstrap module provides both high- and low-level interfaces for bootstrapping data contained in NumPy arrays or pandas Series or DataFrames.

All bootstraps have the same interfaces and only differ in their name, setup parameters and the (internally generated) sampling scheme.

2.1 Bootstrap Examples

This setup code is required to run in an IPython notebook

```python
[1]:  import warnings
    warnings.simplefilter('ignore')

    %matplotlib inline
    import seaborn

[2]:  seaborn.mpl.rcParams['figure.figsize'] = (10.0, 6.0)
    seaborn.mpl.rcParams['savefig.dpi'] = 90
```

2.1.1 Sharpe Ratio

The Sharpe Ratio is an important measure of return per unit of risk. The example shows how to estimate the variance of the Sharpe Ratio and how to construct confidence intervals for the Sharpe Ratio using a long series of U.S. equity data.

```python
[3]:  import numpy as np
    import pandas as pd

    import arch.data.frenchdata

    ff = arch.data.frenchdata.load()
```
The data set contains the Fama-French factors, including the excess market return.

```python
excess_market = ff.iloc[:, 0]
print(ff.describe())
```

<table>
<thead>
<tr>
<th></th>
<th>Mkt-RF</th>
<th>SMB</th>
<th>HML</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
</tr>
<tr>
<td>mean</td>
<td>0.659946</td>
<td>0.206555</td>
<td>0.368864</td>
<td>0.274220</td>
</tr>
<tr>
<td>std</td>
<td>5.327524</td>
<td>3.191132</td>
<td>3.482352</td>
<td>0.253377</td>
</tr>
<tr>
<td>min</td>
<td>-29.130000</td>
<td>-16.870000</td>
<td>-13.280000</td>
<td>-0.060000</td>
</tr>
<tr>
<td>25%</td>
<td>-1.970000</td>
<td>-1.560000</td>
<td>-1.320000</td>
<td>0.030000</td>
</tr>
<tr>
<td>50%</td>
<td>1.020000</td>
<td>0.070000</td>
<td>0.140000</td>
<td>0.230000</td>
</tr>
<tr>
<td>75%</td>
<td>3.610000</td>
<td>1.730000</td>
<td>1.740000</td>
<td>0.430000</td>
</tr>
<tr>
<td>max</td>
<td>38.850000</td>
<td>36.700000</td>
<td>35.460000</td>
<td>1.350000</td>
</tr>
</tbody>
</table>

The next step is to construct a function that computes the Sharpe Ratio. This function also return the annualized mean and annualized standard deviation which will allow the covariance matrix of these parameters to be estimated using the bootstrap.

```python
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    values = np.array([mu, sigma, mu / sigma]).squeeze()
    index = ['mu', 'sigma', 'SR']
    return pd.Series(values, index=index)
```

The function can be called directly on the data to show full sample estimates.

```python
params = sharpe_ratio(excess_market)
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>7.919351</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sigma</td>
<td>18.455084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>0.429115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtype</td>
<td>float64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning

The bootstrap chosen must be appropriate for the data. Squared returns are serially correlated, and so a time-series bootstrap is required.

Bootstraps are initialized with any bootstrap specific parameters and the data to be used in the bootstrap. Here the 12 is the average window length in the Stationary Bootstrap, and the next input is the data to be bootstrapped.

```python
from arch.bootstrap import StationaryBootstrap
bs = StationaryBootstrap(12, excess_market)
results = bs.apply(sharpe_ratio, 2500)
SR = pd.DataFrame(results[:, -1:], columns=['SR'])
fig = SR.hist(bins=40)
```
Alternative confidence intervals can be computed using a variety of methods. Setting `reuse=True` allows the previous bootstrap results to be used when constructing confidence intervals using alternative methods.
2.1.2 Probit (Statsmodels)

The second example makes use of a Probit model from Statsmodels. The demo data is university admissions data which contains a binary variable for being admitted, GRE score, GPA score and quartile rank. This data is downloaded from the internet and imported using pandas.

```python
import arch.data.binary

binary = arch.data.binary.load()
binary = binary.dropna()
print(binary.describe())
```

<table>
<thead>
<tr>
<th>admit</th>
<th>count</th>
<th>gre</th>
<th>gpa</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400.000000</td>
<td>587.700000</td>
<td>3.389900</td>
<td>2.48500</td>
</tr>
<tr>
<td>mean</td>
<td>0.317500</td>
<td>115.516536</td>
<td>0.380567</td>
<td>0.94446</td>
</tr>
<tr>
<td>std</td>
<td>0.466087</td>
<td>220.000000</td>
<td>2.260000</td>
<td>1.00000</td>
</tr>
<tr>
<td>min</td>
<td>0.000000</td>
<td>520.000000</td>
<td>3.130000</td>
<td>2.00000</td>
</tr>
<tr>
<td>25%</td>
<td>0.000000</td>
<td>580.000000</td>
<td>3.395000</td>
<td>2.00000</td>
</tr>
<tr>
<td>50%</td>
<td>1.000000</td>
<td>800.000000</td>
<td>3.670000</td>
<td>3.00000</td>
</tr>
<tr>
<td>max</td>
<td>1.000000</td>
<td>4.000000</td>
<td>4.000000</td>
<td>4.00000</td>
</tr>
</tbody>
</table>

Fitting the model directly

The first steps are to build the regressor and the dependent variable arrays. Then, using these arrays, the model can be estimated by calling *fit*:

```python
import statsmodels.api as sm

endog = binary[['admit']].
exog = binary[['gre', 'gpa']].
const = pd.Series(np.ones(exog.shape[0]), index=endog.index)
const.name = 'Const'
exog = pd.DataFrame([const, exog.gre, exog.gpa]).T

# Estimate the model
mod = sm.Probit(endog, exog)
fit = mod.fit(disp=0)
params = fit.params
print(params)
```

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-3.003536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gre</td>
<td>0.001643</td>
<td>0.454575</td>
<td></td>
</tr>
<tr>
<td>gpa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The wrapper function

Most models in Statsmodels are implemented as classes, require an explicit call to `fit` and return a class containing parameter estimates and other quantities. These classes cannot be directly used with the bootstrap methods. However, a simple wrapper can be written that takes the data as the only inputs and returns parameters estimated using a Statsmodel model.

```
def probit_wrap(endog, exog):
    return sm.Probit(endog, exog).fit(disp=0).params
```

A call to this function should return the same parameter values.

```
probit_wrap(endog, exog)
```

```
Const   -3.003536
gre     0.001643
gpa     0.454575
dtype: float64
```

The wrapper can be directly used to estimate the parameter covariance or to construct confidence intervals.

```
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(endog=endog, exog=exog)
cov = bs.cov(probit_wrap, 1000)
cov = pd.DataFrame(cov, index=exog.columns, columns=exog.columns)
print(cov)
```

```
          Const    gre     gpa
Const  0.435172 -8.601967e-05 -0.110662
gre  -0.000086  4.124129e-07 -0.000047
gpa  -0.110662 -4.692308e-05  0.040495
```

```
se = pd.Series(np.sqrt(np.diag(cov)), index=exog.columns)
print(se)
print('T-stats')
print(params / se)
```

```
          Const    gre     gpa
Const   0.659675   0.000642   0.201234
gre     0.201234
```

```
T-stats
          Const    gre     gpa
Const  -4.553051   2.557696   2.258936
```

```
se = bs.conf_int(probit_wrap, 1000, method='basic')
se = pd.DataFrame(ci, index=['Lower', 'Upper'], columns=exog.columns)
print(ci)
```

```
          Const    gre     gpa
Lower  -4.183013  0.000413   0.064824
Upper  -1.671674  0.002832   0.840495
```
Speeding things up

Starting values can be provided to `fit` which can save time finding starting values. Since the bootstrap parameter estimates should be close to the original sample estimates, the full sample estimated parameters are reasonable starting values. These can be passed using the `extra_kwargs` dictionary to a modified wrapper that will accept a keyword argument containing starting values.

```python
def probit_wrap_start_params(endog, exog, start_params=None):
    return sm.Probit(endog, exog).fit(start_params=start_params, disp=0).params
```

```python
def probit_wrap_start_params(endog, exog, start_params=None):
    return sm.Probit(endog, exog).fit(start_params=start_params, disp=0).params
```

```python
bs.reset()  # Reset to original state for comparability
cov = bs.cov
    probit_wrap_start_params,
    1000,  
    extra_kwargs={'start_params': params.values})
cov = pd.DataFrame(cov, index=exog.columns, columns=exog.columns)
print(cov)
```

```python
cov = bs.cov
    probit_wrap_start_params,
    1000,  
    extra_kwargs={'start_params': params.values})
cov = pd.DataFrame(cov, index=exog.columns, columns=exog.columns)
print(cov)
```

<table>
<thead>
<tr>
<th></th>
<th>Const</th>
<th>gre</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>0.435172</td>
<td>-8.601967e-05</td>
<td>-0.110662</td>
</tr>
<tr>
<td>gre</td>
<td>-0.000086</td>
<td>4.124129e-07</td>
<td>-0.000047</td>
</tr>
<tr>
<td>gpa</td>
<td>-0.110662</td>
<td>-4.692308e-05</td>
<td>0.040495</td>
</tr>
</tbody>
</table>

2.1.3 Bootstrapping Uneven Length Samples

Independent samples of uneven length are common in experiment settings, e.g., A/B testing of a website. The `IIDBootstrap` allows for arbitrary dependence within an observation index and so cannot be naturally applied to these data sets. The `IndependentSamplesBootstrap` allows datasets with variables of different lengths to be sampled by exploiting the independence of the values to separately bootstrap each component. Below is an example showing how a confidence interval can be constructed for the difference in means of two groups.

```python
from arch.bootstrap import IndependentSamplesBootstrap
def mean_diff(x, y):
    return x.mean() - y.mean()
```

```python
def mean_diff(x, y):
    return x.mean() - y.mean()
```

```python
rs = np.random.RandomState(0)
treatment = 0.2 + rs.standard_normal(200)
control = rs.standard_normal(800)
bs = IndependentSamplesBootstrap(treatment, control, random_state=rs)
print(bs.conf_int(mean_diff, method='studentized'))
```

```python
bs = IndependentSamplesBootstrap(treatment, control, random_state=rs)
print(bs.conf_int(mean_diff, method='studentized'))
```

```
[[0.1991302 ]
[0.51317728]]
```

2.2 Confidence Intervals

The confidence interval function allows three types of confidence intervals to be constructed:

- Nonparametric, which only resamples the data
- Semi-parametric, which use resampled residuals
• Parametric, which simulate residuals

Confidence intervals can then be computed using one of 6 methods:
• Basic (basic)
• Percentile (percentile)
• Studentized (studentized)
• Asymptotic using parameter covariance (norm, var or cov)
• Bias-corrected (bc, bias-corrected or debiased)
• Bias-corrected and accelerated (bca)

2.2.1 Setup

All examples will construct confidence intervals for the Sharpe ratio of the S&P 500, which is the ratio of the annualized mean to the annualized standard deviation. The parameters will be the annualized mean, the annualized standard deviation and the Sharpe ratio.

The setup makes use of return data downloaded from Yahoo!

```python
import datetime as dt
import pandas as pd
import pandas_datareader.data as web

start = dt.datetime(1951, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
low = sp500.index.min()
high = sp500.index.max()
monthly_dates = pd.date_range(low, high, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()
```
The main function used will return a 3-element array containing the parameters.

```python
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])
```

Note: Functions must return 1-d NumPy arrays or Pandas Series.

2.2.2 Confidence Interval Types

Three types of confidence intervals can be computed. The simplest are non-parametric; these only make use of parameter estimates from both the original data as well as the resampled data. Semi-parametric mix the original data with a limited form of resampling, usually for residuals. Finally, parametric bootstrap confidence intervals make use of a parametric distribution to construct “as-if” exact confidence intervals.

Nonparametric Confidence Intervals

Non-parametric sampling is the simplest method to construct confidence intervals.

This example makes use of the percentile bootstrap which is conceptually the simplest method - it constructs many bootstrap replications and returns order statistics from these empirical distributions.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')
```

Note: While returns have little serial correlation, squared returns are highly persistent. The IID bootstrap is not a good choice here. Instead a time-series bootstrap with an appropriately chosen block size should be used.

Semi-parametric Confidence Intervals

See [Semiparametric Bootstraps](#).

Parametric Confidence Intervals

See [Parametric Bootstraps](#).

2.2.3 Confidence Interval Methods

Note: `conf_int` can construct two-sided, upper or lower (one-sided) confidence intervals. All examples use two-sided, 95% confidence intervals (the default). This can be modified using the keyword inputs `type` ('upper', 'lower' or 'two-sided') and `size`.
Basic (basic)

Basic confidence intervals construct many bootstrap replications $\hat{\theta}_b^*$ and then constructs the confidence interval as

$$\left[\hat{\theta} + \left(\hat{\theta} - \hat{\theta}_b^* \right), \hat{\theta} + \left(\hat{\theta} - \hat{\theta}_b^* \right) \right]$$

where $\hat{\theta}_l^*$ and $\hat{\theta}_u^*$ are the $\alpha/2$ and $1 - \alpha/2$ empirical quantiles of the bootstrap distribution. When θ is a vector, the empirical quantiles are computed element-by-element.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='basic')
```

Percentile (percentile)

The percentile method directly constructs confidence intervals from the empirical CDF of the bootstrap parameter estimates, $\hat{\theta}_b^*$. The confidence interval is then defined.

$$\left[\hat{\theta}_l^*, \hat{\theta}_u^* \right]$$

where $\hat{\theta}_l^*$ and $\hat{\theta}_u^*$ are the $\alpha/2$ and $1 - \alpha/2$ empirical quantiles of the bootstrap distribution.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')
```

Asymptotic Normal Approximation (norm, cov or var)

The asymptotic normal approximation method estimates the covariance of the parameters and then combines this with the usual quantiles from a normal distribution. The confidence interval is then

$$\left[\hat{\theta} + \hat{\sigma} \Phi^{-1} \left(\alpha/2 \right), \hat{\theta} - \hat{\sigma} \Phi^{-1} \left(\alpha/2 \right) \right]$$

where $\hat{\sigma}$ is the bootstrap estimate of the parameter standard error.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='norm')
```

Studentized (studentized)

The studentized bootstrap may be more accurate than some of the other methods. The studentized bootstrap makes use of either a standard error function, when parameter standard errors can be analytically computed, or a nested bootstrap, to bootstrap studentized versions of the original statistic. This can produce higher-order refinements in some circumstances.

The confidence interval is then

$$\left[\hat{\theta} + \hat{\sigma} \hat{G}^{-1} \left(\alpha/2 \right), \hat{\theta} + \hat{\sigma} \hat{G}^{-1} \left(1 - \alpha/2 \right) \right]$$

2.2. Confidence Intervals
where \hat{G} is the estimated quantile function for the studentized data and where $\hat{\sigma}$ is a bootstrap estimate of the parameter standard error.

The version that uses a nested bootstrap is simple to implement although it can be slow since it requires B inner bootstraps of each of the B outer bootstraps.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='studentized')
```

In order to use the standard error function, it is necessary to estimate the standard error of the parameters. In this example, this can be done using a method-of-moments argument and the delta-method. A detailed description of the mathematical formula is beyond the intent of this document.

```python
def sharpe_ratio_se(params, x):
    mu, sigma, sr = params
    y = 12 * x
    e1 = y - mu
    e2 = y ** 2.0 - sigma ** 2.0
    errors = np.vstack((e1, e2)).T
    t = errors.shape[0]
    vcv = errors.T.dot(errors) / t
    D = np.array([[1, 0], [0, 0.5 * 1 / sigma], [1.0 / sigma, - mu / (2.0 * sigma ** 3)]])
    avar = D.dot(vcv / t).dot(D.T)
    return np.sqrt(np.diag(avar))
```

The studentized bootstrap can then be implemented using the standard error function.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='studentized',
                 std_err_func=sharpe_ratio_se)
```

Note: Standard error functions must return a 1-d array with the same number of element as params.

Note: Standard error functions must match the patterns `std_err_func(params, *args, **kwargs)` where params is an array of estimated parameters constructed using *args and **kwargs.

Bias-corrected (bc, bias-corrected or debiased)

The bias corrected bootstrap makes use of a bootstrap estimate of the bias to improve confidence intervals.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='bc')
```

The bias-corrected confidence interval is identical to the bias-corrected and accelerated where $a = 0$.

164 Chapter 2. Bootstrapping
Bias-corrected and accelerated (bca)

Bias-corrected and accelerated confidence intervals make use of both a bootstrap bias estimate and a jackknife acceleration term. BCa intervals may offer higher-order accuracy if some conditions are satisfied. Bias-corrected confidence intervals are a special case of BCa intervals where the acceleration parameter is set to 0.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='bca')
```

The confidence interval is based on the empirical distribution of the bootstrap parameter estimates, \(\hat{\theta}_b^* \), where the percentiles used are

\[
\Phi \left(\Phi^{-1} \left(\hat{b} \right) + \frac{z_\alpha}{1 - \frac{1}{B} \left(\Phi^{-1} \left(\hat{b} \right) + z_\alpha \right)} \right)
\]

where \(z_\alpha \) is the usual quantile from the normal distribution and \(\hat{b} \) is the empirical bias estimate,

\[
\hat{b} = \# \{ \hat{\theta}_b^* < \hat{\theta} \} / B
\]

\(\alpha \) is a skewness-like estimator using a leave-one-out jackknife.

2.3 Covariance Estimation

The bootstrap can be used to estimate parameter covariances in applications where analytical computation is challenging, or simply as an alternative to traditional estimators.

This example estimates the covariance of the mean, standard deviation and Sharpe ratio of the S&P 500 using Yahoo! Finance data.

```python
import pandas as pd
import pandas_datareader.data as web
start = dt.datetime(1951, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
low = sp500.index.min()
high = sp500.index.max()
monthly_dates = pd.date_range(low, high, freq='M')
returns = 100 * monthly['Adj Close'].pct_change().dropna()
```

The function that returns the parameters.

```python
def sharpe_ratio(r):
    mu = 12 * r.mean(0)
sigma = np.sqrt(12 * r.var(0))
sr = mu / sigma
    return np.array([mu, sigma, sr])
```

Like all applications of the bootstrap, it is important to choose a bootstrap that captures the dependence in the data. This example uses the stationary bootstrap with an average block size of 12.
import pandas as pd
from arch.bootstrap import StationaryBootstrap

bs = StationaryBootstrap(12, returns)
param_cov = bs.cov(sharpe_ratio)
index = ['mu', 'sigma', 'SR']
params = sharpe_ratio(returns)
params = pd.Series(params, index=index)
param_cov = pd.DataFrame(param_cov, index=index, columns=index)

The output is

```python
>>> params
mu  8.148534
sigma 14.508540
SR  0.561637
dtype: float64

>>> param_cov
          mu   sigma   SR
    mu  3.729435 -0.442891 0.273945
sigma -0.442891  0.495087 -0.049454
    SR  0.273945 -0.049454  0.020830
```

Note: The covariance estimator is centered using the average of the bootstrapped estimators. The original sample estimator can be used to center using the keyword argument recenter=False.

2.4 Low-level Interfaces

2.4.1 Constructing Parameter Estimates

The bootstrap method apply can be use to directly compute parameter estimates from a function and the bootstrapped data.

This example makes use of monthly S&P 500 data.

```python
import datetime as dt
import pandas as pd
import pandas_datareader.data as web

start = dt.datetime(1951, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
low = sp500.index.min()
high = sp500.index.max()
monthly_dates = pd.date_range(low, high, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()
```

The function will compute the Sharpe ratio – the (annualized) mean divided by the (annualized) standard deviation.
import numpy as np
def sharpe_ratio(x):
 return np.array([12 * x.mean() / np.sqrt(12 * x.var())])

The bootstrapped Sharpe ratios can be directly computed using `apply`.

```python
import seaborn
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
sharpe_ratios = bs.apply(sr, 1000)
sharpe_ratios = pd.DataFrame(sharp_ratios, columns=['Sharpe Ratio'])
sharpe_ratios.hist(bins=20)
```

2.4.2 The Bootstrap Iterator

The lowest-level method to use a bootstrap is the iterator. This is used internally in all higher-level methods that estimate a function using multiple bootstrap replications. The iterator returns a two-element tuple where the first element contains all positional arguments (in the order input) passed when constructing the bootstrap instance, and the

2.4. Low-level Interfaces
second contains the all keyword arguments passed when constructing the instance.

This example makes use of simulated data to demonstrate how to use the bootstrap iterator.

```python
import pandas as pd
import numpy as np

from arch.bootstrap import IIDBootstrap

x = np.random.randn(1000, 2)
y = pd.DataFrame(np.random.randn(1000, 3))
z = np.random.rand(1000, 10)
bs = IIDBootstrap(x, y=y, z=z)

for pos, kw in bs.bootstrap(1000):
    xstar = pos[0]  # pos is always a tuple, even when a singleton
    ystar = kw['y']  # A dictionary
    zstar = kw['z']  # A dictionary
```

2.5 Semiparametric Bootstraps

Functions for semi-parametric bootstraps differ from those used in nonparametric bootstraps. At a minimum they must accept the keyword argument `params` which will contain the parameters estimated on the original (non-bootstrap) data. This keyword argument must be optional so that the function can be called without the keyword argument to estimate parameters. In most applications other inputs will also be needed to perform the semi-parametric step - these can be input using the `extra_kwargs` keyword input.

For simplicity, consider a semiparametric bootstrap of an OLS regression. The bootstrap step will combine the original parameter estimates and original regressors with bootstrapped residuals to construct a bootstrapped regressand. The bootstrap regressand and regressors can then be used to produce a bootstrapped parameter estimate.

The user-provided function must:

- Estimate the parameters when `params` is not provided
- Estimate residuals from bootstrapped data when `params` is provided to construct bootstrapped residuals, simulate the regressand, and then estimate the bootstrapped parameters

```python
import numpy as np
def ols(y, x, params=None, x_orig=None):
    if params is None:
        return np.linalg.pinv(x).dot(y).ravel()

    # When params is not None
    # Bootstrap residuals
    resids = y - x.dot(params)
    # Simulated data
    y_star = x_orig.dot(params) + resids
    # Parameter estimates
    return np.linalg.pinv(x_orig).dot(y_star).ravel()
```

Note: The function should return a 1-dimensional array. `ravel` is used above to ensure that the parameters estimated are 1d.

This function can then be used to perform a semiparametric bootstrap.
from arch.bootstrap import IIDBootstrap
x = np.random.randn(100, 3)
e = np.random.randn(100, 1)
b = np.arange(1, 4)[::, None]
y = x.dot(b) + e
bs = IIDBootstrap(y, x)
ci = bs.conf_int(ols, 1000, method='percentile',
 sampling='semi', extra_kwargs={'x_orig': x})

2.5.1 Using partial instead of extra_kwargs

functools.partial can be used instead to provide a wrapper function which can then be used in the bootstrap. This example fixed the value of x_orig so that it is not necessary to use extra_kwargs.

from functools import partial
ols_partial = partial(ols, x_orig=x)
ci = bs.conf_int(ols_partial, 1000, sampling='semi')

2.5.2 Semiparametric Bootstrap (Alternative Method)

Since semiparametric bootstraps are effectively bootstrapping residuals, an alternative method can be used to conduct a semiparametric bootstrap. This requires passing both the data and the estimated residuals when initializing the bootstrap.

First, the function used must be account for this structure.

def ols_semi_v2(y, x, resids=None, params=None, x_orig=None):
 if params is None:
 return np.linalg.pinv(x).dot(y).ravel()
 # Simulated data if params provided
 y_star = x_orig.dot(params) + resids
 # Parameter estimates
 return np.linalg.pinv(x_orig).dot(y_star).ravel()

This version can then be used to directly implement a semiparametric bootstrap, although ultimately it is not meaningfully simpler than the previous method.

resids = y - x.dot(ols_semi_v2(y, x))
bs = IIDBootstrap(y, x, resids=resids)
bs.conf_int(ols_semi_v2, 1000, sampling='semi', extra_kwars={'x_orig': x})

Note: This alternative method is more useful when computing residuals is relatively expensive when compared to simulating data or estimating parameters. These circumstances are rarely encountered in actual problems.

2.6 Parametric Bootstraps

Parametric bootstraps are meaningfully different from their nonparametric or semiparametric cousins. Instead of sampling the data to simulate the data (or residuals, in the case of a semiparametric bootstrap), a parametric bootstrap makes use of a fully parametric model to simulate data using a pseudo-random number generator.
Warning: Parametric bootstraps are model-based methods to construct exact confidence intervals through integration. Since these confidence intervals should be exact, bootstrap methods which make use of asymptotic normality are required (and may not be desirable).

Implementing a parametric bootstrap, like implementing a semi-parametric bootstrap, requires specific keyword arguments. The first is params, which, when present, will contain the parameters estimated on the original data. The second is rng which will contain the numpy.random.RandomState instance that is used by the bootstrap. This is provided to facilitate simulation in a reproducible manner.

A parametric bootstrap function must:

- Estimate the parameters when params is not provided
- Simulate data when params is provided and then estimate the bootstrapped parameters on the simulated data

This example continues the OLS example from the semiparametric example, only assuming that residuals are normally distributed. The variance estimator is the MLE.

```python
def ols_para(y, x, params=None, state=None, x_orig=None):
    if params is None:
        beta = np.linalg.pinv(x).dot(y)
        e = y - x.dot(beta)
        sigma2 = e.T.dot(e) / e.shape[0]
        return np.r_[beta.ravel(), sigma2.ravel()]
    beta = params[:-1]
    sigma2 = params[-1]
    e = state.standard_normal(x_orig.shape[0])
    ystar = x_orig.dot(beta) + np.sqrt(sigma2) * e
    # Use the plain function to compute parameters
    return ols_para(ystar, x_orig)
```

This function can then be used to form parametric bootstrap confidence intervals.

```python
bs = IIDBootstrap(y,x)
CI = bs.conf_int(ols_para, 1000, method='percentile',
                sampling='parametric', extra_kwargs={'x_orig': x})
```

Note: The parameter vector in this example includes the variance since this is required when specifying a complete model.

2.7 Independent, Identical Distributed Data (i.i.d.)

IIDBootstrap is the standard bootstrap that is appropriate for data that is either i.i.d. or at least not serially dependant.

```
IIDBootstrap(*args, **kwargs)

Bootstrap using uniform resampling
```
2.7.1 arch.bootstrap.IIDBootstrap

class arch.bootstrap.IIDBootstrap(*args, **kwargs)
Bootstrap using uniform resampling

Parameters
- **args** – Positional arguments to bootstrap
- **kwargs** – Keyword arguments to bootstrap

index
The current index of the bootstrap
- **Type** ndarray

data
Two-element tuple with the pos_data in the first position and kw_data in the second (pos_data, kw_data)
- **Type** tuple

pos_data
Tuple containing the positional arguments (in the order entered)
- **Type** tuple

kw_data
Dictionary containing the keyword arguments
- **Type** dict

random_state
RandomState instance used by bootstrap
- **Type** RandomState

Notes
Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input data.
Data entered using keyword arguments is directly accessibly as an attribute.
To ensure a reproducible bootstrap, you must set the random_state attribute after the bootstrap has been created. See the example below. Note that random_state is a reserved keyword and any variable passed using this keyword must be an instance of RandomState.

Examples
Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on kw_data.

```python
>>> from arch.bootstrap import IIDBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal((500, 1))
>>> x = standard_normal((500, 2))
>>> z = standard_normal(500)
>>> bs = IIDBootstrap(x, y=y, z=z)
>>> for data in bs.bootstrap(100):
...    bs_x = data[0][0]
```

(continues on next page)
... bs_y = data[1]['y']
... bs_z = bs.z

Set the random_state if reproducibility is required

```python
>>> from numpy.random import RandomState
>>> rs = RandomState(1234)
>>> bs = IIDBootstrap(x, y=y, z=z, random_state=rs)
```

See also:

`arch.bootstrap.IndependentSamplesBootstrap`

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apply(func[, reps, extra_kwargs])</code></td>
<td>Applies a function to bootstrap replicated data</td>
</tr>
<tr>
<td><code>bootstrap(reps)</code></td>
<td>Iterator for use when bootstrapping</td>
</tr>
<tr>
<td><code>clone(*args, **kwargs)</code></td>
<td>Clones the bootstrap using different data.</td>
</tr>
<tr>
<td><code>conf_int(func[, reps, method, size, tail, ...])</code></td>
<td>Compute parameter values. See Notes for requirements</td>
</tr>
<tr>
<td><code>cov(func[, reps, recenter, extra_kwargs])</code></td>
<td>Compute parameter covariance using bootstrap</td>
</tr>
<tr>
<td><code>get_state()</code></td>
<td>Gets the state of the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>reset([use_seed])</code></td>
<td>Resets the bootstrap to either its initial state or the last seed.</td>
</tr>
<tr>
<td><code>seed(value)</code></td>
<td>Seeds the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>set_state(state)</code></td>
<td>Sets the state of the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>update_indices()</code></td>
<td>Update indices for the next iteration of the bootstrap.</td>
</tr>
<tr>
<td><code>var(func[, reps, recenter, extra_kwargs])</code></td>
<td>Compute parameter variance using bootstrap</td>
</tr>
</tbody>
</table>

arch.bootstrap.IIDBootstrap.apply

IIDBootstrap. **apply**(func, reps=1000, extra_kwargs=None)

Applies a function to bootstrap replicated data

Parameters

- **func** (`callable`) – Function the computes parameter values. See Notes for requirements
- **reps** (`int`, `optional`) – Number of bootstrap replications
- **extra_kwargs** (`dict`, `optional`) – Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

Returns

- **results** – reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

Return type

`ndarray`
Notes

When there are no extra keyword arguments, the function is called

```python
func(params, *args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

Examples

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
...     return y.mean(0)
>>> results = bs.apply(func, 100)
```

arch.bootstrap.IIDBootstrap.bootstrap

IIDBootstrap.bootstrap(reps)

Iterator for use when bootstrapping

- **Parameters**
 - `reps (int)` – Number of bootstrap replications
- **Returns**
 - `gen` – Generator to iterate over in bootstrap calculations
- **Return type**
 - generator

Example

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))
>>> for posdata, kwdata in bs.bootstrap(1000):
...     # Do something with the positional data and/or keyword data
...     pass
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap.

Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary.
arch.bootstrap.IIDBootstrap.clone

IIDBootstrap.clone(*args, **kwargs)
Clones the bootstrap using different data.

Parameters

• `args` – Positional arguments to bootstrap
• `kwargs` – Keyword arguments to bootstrap

Returns Bootstrap instance

Return type bs

arch.bootstrap.IIDBootstrap.conf_int

IIDBootstrap.conf_int(func, reps=1000, method='basic', size=0.95, tail='two', extra_kwargs=None, reuse=False, sampling='nonparametric', std_err_func=None, studentize_reps=1000)

Parameters

• `func` (callable) – Function the computes parameter values. See Notes for requirements
• `reps` (int, optional) – Number of bootstrap replications
• `method` (string, optional) – One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
• `size` (float, optional) – Coverage of confidence interval
• `tail` (string, optional) – One of ‘two’, ‘upper’ or ‘lower’.
• `reuse` (bool, optional) – Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
• `sampling` (string, optional) – Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
• `extra_kwargs` (dict, optional) – Extra keyword arguments to use when calling func and std_err_func, when appropriate
• `std_err_func` (callable, optional) – Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
• `studentize_reps` (int, optional) – Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided

Returns intervals – Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Return type 2-d array

Examples
```python
>>> import numpy as np
>>> def func(x):
...     return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Notes

When there are no extra keyword arguments, the function is called

```python
func(*args, **kwargs)
```

where `args` and `kwargs` are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to `kwargs` before calling `func`.

The standard error function, if provided, must return a vector of parameter standard errors and is called

```python
std_err_func(params, *args, **kwargs)
```

where `params` is the vector of estimated parameters using the same bootstrap data as in `args` and `kwargs`.

The bootstraps are:

- `basic` - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- `percentile` - Direct use of bootstrap percentiles
- `norm` - Makes use of normal approximation and bootstrap covariance estimator
- `studentized` - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- `bc` - Bias corrected using estimate bootstrap bias correction
- `bca` - Bias corrected and accelerated, adding acceleration parameter to `bc` method

`arch.bootstrap.IIDBootstrap.cov`

`IIDBootstrap.cov(func, reps=1000, recenter=True, extra_kwargs=None)`

Compute parameter covariance using bootstrap

Parameters

- **func** (*callable*) – Callable function that returns the statistic of interest as a 1-d array
- **reps** (*int*, *optional*) – Number of bootstrap replications
- **recenter** (*bool*, *optional*) – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- **extra_kwargs** (*dict*, *optional*) – Dictionary of extra keyword arguments to pass to `func`

Returns

`cov` – Bootstrap covariance estimator
Return type np.ndarray

Notes

func must have the signature

```python
func(params, *args, **kwargs)
```

where `params` are a 1-dimensional array, and `*args` and `**kwargs` are data used in the the bootstrap. The first argument, `params`, will be `None` when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Example

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
...     return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
...     if stat=='mean':
...         return x.mean(axis=0)
...     elif stat=='var':
...         return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

arch.bootstrap.IIDBootstrap.get_state

IIDBootstrap.get_state()

Gets the state of the bootstrap’s random number generator

Returns state – Array containing the state

Return type RandomState state vector

arch.bootstrap.IIDBootstrap.reset

IIDBootstrap.reset(use_seed=True)

Resets the bootstrap to either its initial state or the last seed.
Parameters `use_seed` *(bool, optional)* – Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

`arch.bootstrap.IIDBootstrap.seed`

IIDBootstrap.seed *(value)*

Seeds the bootstrap’s random number generator

Parameters `value` *(int)* – Integer to use as the seed

`arch.bootstrap.IIDBootstrap.set_state`

IIDBootstrap.set_state *(state)*

Sets the state of the bootstrap’s random number generator

Parameters `state` *(RandomState state vector)* – Array containing the state

`arch.bootstrap.IIDBootstrap.update_indices`

IIDBootstrap.update_indices *

Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

`arch.bootstrap.IIDBootstrap.var`

IIDBootstrap.var *(func, reps=1000, recenter=True, extra_kwargs=None)*

Compute parameter variance using bootstrap

Parameters

- `func` *(callable)* – Callable function that returns the statistic of interest as a 1-d array
- `reps` *(int, optional)* – Number of bootstrap replications
- `recenter` *(bool, optional)* – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- `extra_kwargs` *(dict, optional)* – Dictionary of extra keyword arguments to pass to `func`

Returns `var` – Bootstrap variance estimator

Return type `ndarray`

Notes

func must have the signature

```python
func(params, *args, **kwargs)
```
where params are a 1-dimensional array, and *args and **kwargs are data used in the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Example

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
...     return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
...     if stat=='mean':
...         return x.mean(axis=0)
...     elif stat=='var':
...         return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arch.bootstrap.IIDBootstrap.index</code></td>
<td>Returns the current index of the bootstrap</td>
</tr>
<tr>
<td><code>arch.bootstrap.IIDBootstrap.random_state</code></td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

2.8 Independent Samples

`IndependentSamplesBootstrap` is a bootstrap that is appropriate for data is totally independent, and where each variable may have a different sample size. This type of data arises naturally in experimental settings, e.g., website A/B testing.
IndependentSamplesBootstrap(args, **kwargs)**

Bootstrap the independently resamples each input

Parameters

- **args** – Positional arguments to bootstrap
- **kwargs** – Keyword arguments to bootstrap

Index

The current index of the bootstrap

Type ndarray

Data

Two-element tuple with the pos_data in the first position and kw_data in the second (pos_data, kw_data)

Type tuple

Pos_data

Tuple containing the positional arguments (in the order entered)

Type tuple

Kw_data

Dictionary containing the keyword arguments

Type dict

Random_state

RandomState instance used by bootstrap

Type RandomState

Notes

This bootstrap independently resamples each input and so is only appropriate when the inputs are independent. This structure allows bootstrapping statistics that depend on samples with unequal length, as is common in some experiments. If data have cross-sectional dependence, so that observation i is related across all inputs, this bootstrap is inappropriate.

Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input data.

Data entered using keyword arguments is directly accessible as an attribute.

To ensure a reproducible bootstrap, you must set the `random_state` attribute after the bootstrap has been created. See the example below. Note that `random_state` is a reserved keyword and any variable passed using this keyword must be an instance of `RandomState`.

Examples

Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on kw_data.
```python
>>> from arch.bootstrap import IndependentSamplesBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal(500)
>>> x = standard_normal(200)
>>> z = standard_normal(2000)
>>> bs = IndependentSamplesBootstrap(x, y=y, z=z)
>>> for data in bs.bootstrap(100):
...     bs_x = data[0][0]
...     bs_y = data[1]['y']
...     bs_z = bs.z

Set the random_state if reproducibility is required
```
• **extra_kwargs** *(dict, optional)* – Extra keyword arguments to use when calling `func`. Must not conflict with keyword arguments used to initialize bootstrap

Returns

results – reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

Return type `ndarray`

Notes

When there are no extra keyword arguments, the function is called

```
func(params, *args, **kwargs)
```

where `args` and `kwargs` are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to `kwargs` before calling `func`.

Examples

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
...     return y.mean(0)
>>> results = bs.apply(func, 100)
```

arch.bootstrap.IndependentSamplesBootstrap.bootstrap

IndependentSamplesBootstrap.bootstrap(reps)*

Iterator for use when bootstrapping

Parameters

reps(int) – Number of bootstrap replications

Returns

gen – Generator to iterate over in bootstrap calculations

Return type `generator`

Example

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))
>>> for posdata, kwdata in bs.bootstrap(1000):
...     # Do something with the positional data and/or keyword data
...     pass
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap.
Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary

arch.bootstrap.IndependentSamplesBootstrap.clone

IndependentSamplesBootstrap.clone (*args, **kwargs*)

Clones the bootstrap using different data.

Parameters

- **args** – Positional arguments to bootstrap
- **kwargs** – Keyword arguments to bootstrap

Returns Bootstrap instance

Return type bs

arch.bootstrap.IndependentSamplesBootstrap.conf_int

IndependentSamplesBootstrap.conf_int (func, reps=1000, method='basic', size=0.95, tail='two', extra_kwargs=None, reuse=False, sampling='nonparametric', std_err_func=None, studentize_reps=1000)

Parameters

- **func** (*callable*) – Function that computes parameter values. See Notes for requirements
- **reps** (*int, optional*) – Number of bootstrap replications
- **method** (*string, optional*) – One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
- **size** (*float, optional*) – Coverage of confidence interval
- **tail** (*string, optional*) – One of ‘two’, ‘upper’ or ‘lower’.
- **reuse** (*bool, optional*) – Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
- **sampling** (*string, optional*) – Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
- **extra_kwargs** (*dict, optional*) – Extra keyword arguments to use when calling func and std_err_func, when appropriate
- **std_err_func** (*callable, optional*) – Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
- **studentize_reps** (*int, optional*) – Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided
Returns intervals – Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Return type 2-d array

Examples

```python
>>> import numpy as np
>>> def func(x):
...     return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Notes

When there are no extra keyword arguments, the function is called

```
func(*args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

The standard error function, if provided, must return a vector of parameter standard errors and is called

```
std_err_func(params, *args, **kwargs)
```

where `params` is the vector of estimated parameters using the same bootstrap data as in args and kwargs.

The bootstrap are:

- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

arch.bootstrap.IndependentSamplesBootstrap.cov

```
IndependentSamplesBootstrap.cov(func, reps=1000, recenter=True, extra_kwarg=None)
```

Compute parameter covariance using bootstrap

Parameters

- `func` *(callable)* – Callable function that returns the statistic of interest as a 1-d array
- `reps` *(int, optional)* – Number of bootstrap replications
• **recenter** *(bool, optional)* – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.

• **extra_kwargs** *(dict, optional)* – Dictionary of extra keyword arguments to pass to func

Returns **cov** – Bootstrap covariance estimator

Return type ndarray

Notes

func must have the signature

```
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Example

Bootstrap covariance of the mean

```
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
...     return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```
>>> def func(x, stat='mean'):
...     if stat=='mean':
...         return x.mean(axis=0)
...     elif stat=='var':
...         return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

```
arch.bootstrap.IndependentSamplesBootstrap.get_state
```

`IndependentSamplesBootstrap.get_state()`

Gets the state of the bootstrap’s random number generator

Returns **state** – Array containing the state

Return type RandomState state vector
arch.bootstrap.IndependentSamplesBootstrap.reset

IndependentSamplesBootstrap.reset(use_seed=True)
Resets the bootstrap to either its initial state or the last seed.

Parameters
use_seed (bool, optional) – Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

arch.bootstrap.IndependentSamplesBootstrap.seed

IndependentSamplesBootstrap.seed(value)
Seeds the bootstrap’s random number generator

Parameters
value (int) – Integer to use as the seed

arch.bootstrap.IndependentSamplesBootstrap.set_state

IndependentSamplesBootstrap.set_state(state)
Sets the state of the bootstrap’s random number generator

Parameters
state (RandomState state vector) – Array containing the state

arch.bootstrap.IndependentSamplesBootstrap.update_indices

IndependentSamplesBootstrap.update_indices()
Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

arch.bootstrap.IndependentSamplesBootstrap.var

IndependentSamplesBootstrap.var(func, reps=1000, recenter=True, extra_kwargs=None)
Compute parameter variance using bootstrap

Parameters
func (callable) – Callable function that returns the statistic of interest as a 1-d array
reps (int, optional) – Number of bootstrap replications
recenter (bool, optional) – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
extra_kwargs (dict, optional) – Dictionary of extra keyword arguments to pass to func

Returns
var – Bootstrap variance estimator

Return type
ndarray
Notes

func must have the signature

```python
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Example

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
...    return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
...    if stat=="mean":
...        return x.mean(axis=0)
...    elif stat=="var":
...        return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>Returns the current index of the bootstrap</td>
</tr>
<tr>
<td><code>random_state</code></td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

arch.bootstrap.IndependentSamplesBootstrap.index

Returns the current index of the bootstrap

- **Returns index** – 2-element tuple containing a list and a dictionary. The list contains indices for each of the positional arguments. The dictionary contains the indices of keyword arguments.

- **Return type** `tuple[list[ndarray], dict[str, ndarray]]`
2.9 Time-series Bootstraps

Bootstraps for time-series data come in a variety of forms. The three contained in this package are the stationary bootstrap (StationaryBootstrap), which uses blocks with an exponentially distributed lengths, the circular block bootstrap (CircularBlockBootstrap), which uses fixed length blocks, and the moving block bootstrap which also uses fixed length blocks (MovingBlockBootstrap). The moving block bootstrap does not wrap around and so observations near the start or end of the series will be systematically under-sampled. It is not recommended for this reason.

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameters</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>StationaryBootstrap</code></td>
<td><code>(block_size, *args, **kwargs)</code></td>
<td>Politis and Romano (1994) bootstrap with expon. distributed block sizes</td>
</tr>
<tr>
<td><code>CircularBlockBootstrap</code></td>
<td><code>(block_size, *args, ...)</code></td>
<td>Bootstrap based on blocks of the same length with end-to-start wrap around</td>
</tr>
<tr>
<td><code>MovingBlockBootstrap</code></td>
<td><code>(block_size, *args, **kwargs)</code></td>
<td>Bootstrap based on blocks of the same length without wrap around</td>
</tr>
</tbody>
</table>

2.9.1 arch.bootstrap.StationaryBootstrap

```python
class arch.bootstrap.StationaryBootstrap(block_size, *args, **kwargs)
```

Politis and Romano (1994) bootstrap with expon. distributed block sizes

Parameters

- `block_size` *(int)* – Average size of block to use
- `args` – Positional arguments to bootstrap
- `kwargs` – Keyword arguments to bootstrap

Attributes

- `index` The current index of the bootstrap

 Type: `ndarray`

- `data` Two-element tuple with the `pos_data` in the first position and `kw_data` in the second (pos_data, kw_data)

 Type: `tuple`

- `pos_data` Tuple containing the positional arguments (in the order entered)

 Type: `tuple`

- `kw_data` Dictionary containing the keyword arguments

 Type: `dict`

- `random_state` RandomState instance used by bootstrap

 Type: `RandomState`
Notes

Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input date.

Data entered using keyword arguments is directly accessibly as an attribute.

To ensure a reproducible bootstrap, you must set the `random_state` attribute after the bootstrap has been created. See the example below. Note that `random_state` is a reserved keyword and any variable passed using this keyword must be an instance of `RandomState`.

Examples

Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on `kw_data`.

```python
>>> from arch.bootstrap import StationaryBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal((500, 1))
>>> x = standard_normal((500, 2))
>>> z = standard_normal(500)
>>> bs = StationaryBootstrap(12, x, y=y, z=z)
>>> for data in bs.bootstrap(100):
...     bs_x = data[0][0]
...     bs_y = data[1]['y']
...     bs_z = bs.z
```

Set the `random_state` if reproducibility is required

```python
>>> from numpy.random import RandomState

>>> rs = RandomState(1234)
>>> bs = StationaryBootstrap(12, x, y=y, z=z, random_state=rs)
```

Methods

- `apply(func[, reps, extra_kwargs])`: Applies a function to bootstrap replicated data.
- `bootstrap(reps)`: Iterator for use when bootstrapping.
- `clone(*args, **kwargs)`: Clones the bootstrap using different data.
- `conf_int(func[, reps, method, size, tail, ...])`

 param func Function that computes parameter values. See Notes for requirements.

- `cov(func[, reps, recenter, extra_kwargs])`: Compute parameter covariance using bootstrap.
- `get_state()`: Gets the state of the bootstrap’s random number generator.
- `reset([use_seed])`: Resets the bootstrap to either its initial state or the last seed.
- `seed(value)`: Seeds the bootstrap’s random number generator.
- `set_state(state)`: Sets the state of the bootstrap’s random number generator.
- `update_indices()`: Update indices for the next iteration of the bootstrap.

Continued on next page
Table 8 – continued from previous page

| var(func[, reps, recenter, extra_kwargs]) | Compute parameter variance using bootstrap |

arch.bootstrap.StationaryBootstrap.apply

StationaryBootstrap .apply \((func, reps=1000, extra_kwargs=None) \)

Applies a function to bootstrap replicated data

Parameters

- **func** (*callable*) – Function the computes parameter values. See Notes for requirements
- **reps** (*int, optional*) – Number of bootstrap replications
- **extra_kwargs** (*dict, optional*) – Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

Returns results – reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

Return type ndarray

Notes

When there are no extra keyword arguments, the function is called

\[
\text{func}(\text{params}, *\text{args}, **\text{kwargs})
\]

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func

Examples

```python
>>> import numpy as np
>>> x = np.random.randn(1000,2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
...     return y.mean(0)
>>> results = bs.apply(func, 100)
```

arch.bootstrap.StationaryBootstrap.bootstrap

StationaryBootstrap .bootstrap \((reps) \)

Iterator for use when bootstrapping

Parameters reps (*int*) – Number of bootstrap replications

Returns gen – Generator to iterate over in bootstrap calculations

Return type generator

Example
The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))
>>> for posdata, kwdata in bs.bootstrap(1000):
...    # Do something with the positional data and/or keyword data
...    pass
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary

`arch.bootstrap.StationaryBootstrap.clone`

StationaryBootstrap.clone(*args, **kwargs)

Clones the bootstrap using different data.

Parameters

- **args** – Positional arguments to bootstrap
- **kwargs** – Keyword arguments to bootstrap

Returns Bootstrap instance

Return type `bs`

`arch.bootstrap.StationaryBootstrap.conf_int`

StationaryBootstrap.conf_int(func, reps=1000, method='basic', size=0.95, tail='two', extra_kwargs=None, reuse=False, sampling='nonparametric', std_err_func=None, studentize_reps=1000)

Parameters

- **func** *(callable)* – Function the computes parameter values. See Notes for requirements
- **reps** *(int, optional)* – Number of bootstrap replications
- **method** *(string, optional)* – One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
- **size** *(float, optional)* – Coverage of confidence interval
- **tail** *(string, optional)* – One of ‘two’, ‘upper’ or ‘lower’.
- **reuse** *(bool, optional)* – Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
• **sampling** *(string, optional)* – Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to `func` required when using ‘semi’ or ‘parametric’.

• **extra_kwargs** *(dict, optional)* – Extra keyword arguments to use when calling `func` and `std_err_func`, when appropriate

• **std_err_func** *(callable, optional)* – Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap

• **studentize_reps** *(int, optional)* – Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when `std_err_func` is provided

Returns intervals – Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Return type 2-d array

Examples

```python
>>> import numpy as np
>>> def func(x):
...     return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Notes

When there are no extra keyword arguments, the function is called

```python
func(*args, **kwargs)
```

where `args` and `kwargs` are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to `kwargs` before calling `func`.

The standard error function, if provided, must return a vector of parameter standard errors and is called

```python
std_err_func(params, *args, **kwargs)
```

where `params` is the vector of estimated parameters using the same bootstrap data as in `args` and `kwargs`.

The bootstraps are:

- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
• ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

```
arch.bootstrap.StationaryBootstrap.cov
```

```stationarybootstrap.cov (func, reps=1000, recenter=True, extra_kwargs=None)
Compute parameter covariance using bootstrap

Parameters

• **func** (*callable*) – Callable function that returns the statistic of interest as a 1-d array
• **reps** (*int, optional*) – Number of bootstrap replications
• **recenter** (*bool, optional*) – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
• **extra_kwargs** (*dict, optional*) – Dictionary of extra keyword arguments to pass to func

Returns **cov** – Bootstrap covariance estimator

Return type **ndarray**

Notes

func must have the signature

```
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Example

Bootstrap covariance of the mean

```from arch.bootstrap import IIDBootstrap
import numpy as np
def func(x):
 return x.mean(axis=0)
y = np.random.randn(1000, 3)
bs = IIDBootstrap(y)
cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```def func(x, stat='mean'):
 if stat=='mean':
 return x.mean(axis=0)
 elif stat=='var':
 return x.var(axis=0)
cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```
arch.bootstrap.StationaryBootstrap.get_state

StationaryBootstrap.get_state()

Gets the state of the bootstrap’s random number generator

Returns state – Array containing the state

Return type RandomState state vector

arch.bootstrap.StationaryBootstrap.reset

StationaryBootstrap.reset(use_seed=True)

Resets the bootstrap to either its initial state or the last seed.

Parameters use_seed (bool, optional) – Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state.

Default is True

arch.bootstrap.StationaryBootstrap.seed

StationaryBootstrap.seed(value)

Seeds the bootstrap’s random number generator

Parameters value (int) – Integer to use as the seed

arch.bootstrap.StationaryBootstrap.set_state

StationaryBootstrap.set_state(state)

Sets the state of the bootstrap’s random number generator

Parameters state (RandomState state vector) – Array containing the state

arch.bootstrap.StationaryBootstrap.update_indices

StationaryBootstrap.update_indices()

Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

arch.bootstrap.StationaryBootstrap.var

StationaryBootstrap.var(func, reps=1000, recenter=True, extra_kwargs=None)

Compute parameter variance using bootstrap

Parameters

• func (callable) – Callable function that returns the statistic of interest as a 1-d array
• reps (int, optional) – Number of bootstrap replications
• **recenter** *(bool, optional)* – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.

• **extra_kwargs** *(dict, optional)* – Dictionary of extra keyword arguments to pass to `func`

**Returns** `var` – Bootstrap variance estimator

**Return type** ndarray

**Notes**

func must have the signature

```
func(params, *args, **kwargs)
```

where `params` are a 1-dimensional array, and `*args` and `**kwargs` are data used in the bootstrap. The first argument, `params`, will be `None` when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

**Example**

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

**Properties**

<table>
<thead>
<tr>
<th><strong>index</strong></th>
<th>Returns the current index of the bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>random_state</strong></td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>
arch.bootstrap.StationaryBootstrap.index

StationaryBootstrap.index
Returns the current index of the bootstrap

arch.bootstrap.StationaryBootstrap.random_state

StationaryBootstrap.random_state
Set or get the instance random state

2.9.2 arch.bootstrap.CircularBlockBootstrap

class arch.bootstrap.CircularBlockBootstrap(block_size, *args, **kwargs)
Bootstrap based on blocks of the same length with end-to-start wrap around

Parameters

• block_size (int) – Size of block to use
• args – Positional arguments to bootstrap
• kwargs – Keyword arguments to bootstrap

index
The current index of the bootstrap
    Type ndarray

data
Two-element tuple with the pos_data in the first position and kw_data in the second (pos_data, kw_data)
    Type tuple

pos_data
Tuple containing the positional arguments (in the order entered)
    Type tuple

kw_data
Dictionary containing the keyword arguments
    Type dict

random_state
RandomState instance used by bootstrap
    Type RandomState

Notes

Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input data. Data entered using keyword arguments is directly accessibly as an attribute.

To ensure a reproducible bootstrap, you must set the random_state attribute after the bootstrap has been created. See the example below. Note that random_state is a reserved keyword and any variable passed using this keyword must be an instance of RandomState.

Examples
Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on kw_data.

```python
from arch.bootstrap import CircularBlockBootstrap
from numpy.random import standard_normal

y = standard_normal((500, 1))
x = standard_normal((500, 2))
z = standard_normal(500)
bs = CircularBlockBootstrap(17, x, y=y, z=z)
for data in bs.bootstrap(100):
 bs_x = data[0][0]
 bs_y = data[1]['y']
 bs_z = bs.z
```

Set the random_state if reproducibility is required

```python
from numpy.random import RandomState
rs = RandomState(1234)
bs = CircularBlockBootstrap(17, x, y=y, z=z, random_state=rs)
```

---

**Methods**

- `apply(func[, reps, extra_kwargs])`: Applies a function to bootstrap replicated data
- `bootstrap(reps)`: Iterator for use when bootstrapping
- `clone(*args, **kwargs)`: Clones the bootstrap using different data.
- `conf_int(func[, reps, method, size, tail, ...])`
  
  **param func** Function the computes parameter values. See Notes for requirements

- `cov(func[, reps, recenter, extra_kwargs])`: Compute parameter covariance using bootstrap
- `get_state()`: Gets the state of the bootstrap’s random number generator
- `reset([use_seed])`: Resets the bootstrap to either its initial state or the last seed.
- `seed(value)`: Seeds the bootstrap’s random number generator
- `set_state(state)`: Sets the state of the bootstrap’s random number generator
- `update_indices()`: Update indices for the next iteration of the bootstrap.
- `var(func[, reps, recenter, extra_kwargs])`: Compute parameter variance using bootstrap

---

**arch.bootstrap.CircularBlockBootstrap.apply**

CircularBlockBootstrap.apply (func, reps=1000, extra_kwargs=None)
Applies a function to bootstrap replicated data

**Parameters**

- **func (callable)** – Function the computes parameter values. See Notes for requirements
- **reps (int, optional)** – Number of bootstrap replications
• **extra_kwargs** (*dict, optional*) – Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

**Returns**

**results** – reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

**Return type** `ndarray`

**Notes**

When there are no extra keyword arguments, the function is called

```python
func(params, *args, **kwargs)
```

where `args` and `kwargs` are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to `kwargs` before calling `func`

**Examples**

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
... return y.mean(0)
>>> results = bs.apply(func, 100)
```

---

**arch.bootstrap.CircularBlockBootstrap.bootstrap**

CircularBlockBootstrap.bootstrap(*reps*)

Iterator for use when bootstrapping

**Parameters**

**reps** (*int*) – Number of bootstrap replications

**Returns**

**gen** – Generator to iterate over in bootstrap calculations

**Return type** `generator`

**Example**

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))
>>> for posdata, kwdata in bs.bootstrap(1000):
... # Do something with the positional data and/or keyword data
... pass
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

---

2.9. Time-series Bootstraps
Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary.

\texttt{arch.bootstrap.CircularBlockBootstrap.clone}

\texttt{CircularBlockBootstrap.clone(*args, **kwargs)}

Clones the bootstrap using different data.

Parameters

- \texttt{args} – Positional arguments to bootstrap
- \texttt{kwargs} – Keyword arguments to bootstrap

Returns Bootstrap instance

Return type bs

\texttt{arch.bootstrap.CircularBlockBootstrap.conf_int}

\texttt{CircularBlockBootstrap.conf_int(func, reps=1000, method=’basic’, size=0.95, tail=’two’, extra_kwargs=None, reuse=False, sampling=’nonparametric’, std_err_func=None, studentize_reps=1000)}

Parameters

- \texttt{func (callable)} – Function the computes parameter values. See Notes for requirements
- \texttt{reps (int, optional)} – Number of bootstrap replications
- \texttt{method (string, optional)} – One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
- \texttt{size (float, optional)} – Coverage of confidence interval
- \texttt{tail (string, optional)} – One of ‘two’, ‘upper’ or ‘lower’.
- \texttt{reuse (bool, optional)} – Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
- \texttt{sampling (string, optional)} – Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
- \texttt{extra_kwargs (dict, optional)} – Extra keyword arguments to use when calling func and std_err_func, when appropriate
- \texttt{std_err_func (callable, optional)} – Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
- \texttt{studentize_reps (int, optional)} – Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided
Returns intervals – Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Return type 2-d array

Examples

```python
>>> import numpy as np
>>> def func(x):
... return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Notes

When there are no extra keyword arguments, the function is called

```python
func(*args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

The standard error function, if provided, must return a vector of parameter standard errors and is called

```python
std_err_func(params, *args, **kwargs)
```

where `params` is the vector of estimated parameters using the same bootstrap data as in `args` and `kwargs`.

The bootstraps are:

- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

`arch.bootstrap.CircularBlockBootstrap.cov`

`CircularBlockBootstrap.cov(func, reps=1000, recenter=True, extra_kwars=None)`

Compute parameter covariance using bootstrap

Parameters

- `func` (*callable*) – Callable function that returns the statistic of interest as a 1-d array
- `reps` (*int*, *optional*) – Number of bootstrap replications
• **recenter** *(bool, optional)* – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.

• **extra_kwargs** *(dict, optional)* – Dictionary of extra keyword arguments to pass to func

**Returns**  
**cov** – Bootstrap covariance estimator

**Return type**  
ndarray

**Notes**

func must have the signature

```python
func(params, *args, **kwargs)
```

where params is a 1-dimensional array, and *args and **kwargs are data used in the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

**Example**

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

---

**arch.bootstrap.CircularBlockBootstrap.get_state**

**CircularBlockBootstrap.get_state()**

Gets the state of the bootstrap’s random number generator

**Returns**  
**state** – Array containing the state

**Return type**  
RandomState state vector
arch.bootstrap.CircularBlockBootstrap.reset

CircularBlockBootstrap.reset(use_seed=True)
Resets the bootstrap to either its initial state or the last seed.

**Parameters**

- **use_seed** (bool, optional) – Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

arch.bootstrap.CircularBlockBootstrap.seed

CircularBlockBootstrap.seed(value)
Seeds the bootstrap’s random number generator

**Parameters**

- **value** (int) – Integer to use as the seed

arch.bootstrap.CircularBlockBootstrap.set_state

CircularBlockBootstrap.set_state(state)
Sets the state of the bootstrap’s random number generator

**Parameters**

- **state** (RandomState state vector) – Array containing the state

arch.bootstrap.CircularBlockBootstrap.update_indices

CircularBlockBootstrap.update_indices()
Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

arch.bootstrap.CircularBlockBootstrap.var

CircularBlockBootstrap.var(func, reps=1000, recenter=True, extra_kwargs=None)
Compute parameter variance using bootstrap

**Parameters**

- **func** (callable) – Callable function that returns the statistic of interest as a 1-d array
- **reps** (int, optional) – Number of bootstrap replications
- **recenter** (bool, optional) – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- **extra_kwargs** (dict, optional) – Dictionary of extra keyword arguments to pass to func

**Returns**

- **var** – Bootstrap variance estimator

**Return type**

ndarray

2.9. Time-series Bootstraps
Notes

func must have the signature

```python
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Example

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Properties

<table>
<thead>
<tr>
<th>index</th>
<th>Returns the current index of the bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

```python
arch.bootstrap.CircularBlockBootstrap.index
```

CircularBlockBootstrap.index

- Returns the current index of the bootstrap

```python
arch.bootstrap.CircularBlockBootstrap.random_state
```

CircularBlockBootstrap.random_state

- Set or get the instance random state
2.9.3 arch.bootstrap.MovingBlockBootstrap

class arch.bootstrap.MovingBlockBootstrap(block_size, *args, **kwargs)
Bootstrap based on blocks of the same length without wrap around

Parameters

• block_size (int) – Size of block to use
• args – Positional arguments to bootstrap
• kwargs – Keyword arguments to bootstrap

index
The current index of the bootstrap
Type ndarray

data
Two-element tuple with the pos_data in the first position and kw_data in the second (pos_data, kw_data)
Type tuple

pos_data
Tuple containing the positional arguments (in the order entered)
Type tuple

kw_data
Dictionary containing the keyword arguments
Type dict

random_state
RandomState instance used by bootstrap
Type RandomState

Notes
Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input date. Data entered using keyword arguments is directly accessible as an attribute.

To ensure a reproducible bootstrap, you must set the random_state attribute after the bootstrap has been created. See the example below. Note that random_state is a reserved keyword and any variable passed using this keyword must be an instance of RandomState.

Examples
Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on kw_data.

```python
>>> from arch.bootstrap import MovingBlockBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal((500, 1))
>>> x = standard_normal((500, 2))
>>> z = standard_normal(500)
>>> bs = MovingBlockBootstrap(7, x, y=y, z=z)
>>> for data in bs.bootstrap(100):
```

(continues on next page)
... bs_x = data[0][0]
... bs_y = data[1]['y']
... bs_z = bs.z

Set the random_state if reproducibility is required

```python
>>> from numpy.random import RandomState
>>> rs = RandomState(1234)
>>> bs = MovingBlockBootstrap(7, x, y=y, z=z, random_state=rs)
```

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apply(func[, reps, extra_kwargs])</code></td>
<td>Applies a function to bootstrap replicated data</td>
</tr>
<tr>
<td><code>bootstrap(reps)</code></td>
<td>Iterator for use when bootstrapping</td>
</tr>
<tr>
<td><code>clone(*args, **kwargs)</code></td>
<td>Clones the bootstrap using different data.</td>
</tr>
<tr>
<td><code>conf_int(func[, reps, method, size, tail, ...])</code></td>
<td>Compute parameter values. See Notes for requirements</td>
</tr>
<tr>
<td><code>cov(func[, reps, recenter, extra_kwargs])</code></td>
<td>Compute parameter covariance using bootstrap</td>
</tr>
<tr>
<td><code>get_state()</code></td>
<td>Gets the state of the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>reset([use_seed])</code></td>
<td>Resets the bootstrap to either its initial state or the last seed.</td>
</tr>
<tr>
<td><code>seed(value)</code></td>
<td>Seeds the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>set_state(state)</code></td>
<td>Sets the state of the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>update_indices()</code></td>
<td>Update indices for the next iteration of the bootstrap.</td>
</tr>
<tr>
<td><code>var(func[, reps, recenter, extra_kwargs])</code></td>
<td>Compute parameter variance using bootstrap</td>
</tr>
</tbody>
</table>

### arch.bootstrap.MovingBlockBootstrap.apply

MovingBlockBootstrap.apply(func, reps=1000, extra_kwargs=None)

Applies a function to bootstrap replicated data

**Parameters**

- `func` *(callable)* – Function the computes parameter values. See Notes for requirements
- `reps` *(int, optional)* – Number of bootstrap replications
- `extra_kwargs` *(dict, optional)* – Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

**Returns**

- `results` – reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

**Return type**

`ndarray`
Notes

When there are no extra keyword arguments, the function is called

```python
func(params, *args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

Examples

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
... return y.mean(0)
>>> results = bs.apply(func, 100)
```

arch.bootstrap.MovingBlockBootstrap.bootstrap

MovingBlockBootstrap.bootstrap(reps)

Iterator for use when bootstrapping

- **Parameters**
  - `reps` (*int*) – Number of bootstrap replications

- **Returns**
  - `gen` – Generator to iterate over in bootstrap calculations

- **Return type**
  - `generator`

**Example**

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))
>>> for posdata, kwdata in bs.bootstrap(1000):
... # Do something with the positional data and/or keyword data
... pass
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary.
arch.bootstrap.MovingBlockBootstrap.clone

MovingBlockBootstrap.clone(*args, **kwargs)
Clones the bootstrap using different data.

Parameters

- **args** – Positional arguments to bootstrap
- **kwargs** – Keyword arguments to bootstrap

Returns Bootstrap instance
Return type bs

arch.bootstrap.MovingBlockBootstrap.conf_int

MovingBlockBootstrap.conf_int(func, reps=1000, method='basic', size=0.95, tail='two', extra_kwargs=None, reuse=False, sampling='nonparametric', std_err_func=None, studentize_reps=1000)

Parameters

- **func** (callable) – Function the computes parameter values. See Notes for requirements
- **reps** (int, optional) – Number of bootstrap replications
- **method** (string, optional) – One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
- **size** (float, optional) – Coverage of confidence interval
- **tail** (string, optional) – One of ‘two’, ‘upper’ or ‘lower’.
- **reuse** (bool, optional) – Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
- **sampling** (string, optional) – Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
- **extra_kwargs** (dict, optional) – Extra keyword arguments to use when calling func and std_err_func, when appropriate
- **std_err_func** (callable, optional) – Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
- **studentize_reps** (int, optional) – Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided

Returns intervals – Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Return type 2-d array
Examples

```python
>>> import numpy as np
>>> def func(x):
... return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Notes

When there are no extra keyword arguments, the function is called

```python
func(*args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

The standard error function, if provided, must return a vector of parameter standard errors and is called

```python
std_err_func(params, *args, **kwargs)
```

where params is the vector of estimated parameters using the same bootstrap data as in args and kwargs.

The bootstraps are:

- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

`arch.bootstrap.MovingBlockBootstrap.cov`

`MovingBlockBootstrap.cov(func, reps=1000, recenter=True, extra_kwargs=None)`

Compute parameter covariance using bootstrap

Parameters

- `func (callable)` – Callable function that returns the statistic of interest as a 1-d array
- `reps (int, optional)` – Number of bootstrap replications
- `recenter (bool, optional)` – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- `extra_kwargs (dict, optional)` – Dictionary of extra keyword arguments to pass to func

2.9. Time-series Bootstraps 207
**Returns**

| cov | Bootstrap covariance estimator |

**Return type**

| ndarray |

**Notes**

func must have the signature

```python
func(params, *args, **kwargs)
```

where params is a 1-dimensional array, and *args and **kwargs are data used in the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

**Example**

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

---

**arch.bootstrap.MovingBlockBootstrap.get_state**

MovingBlockBootstrap.get_state()  
Gets the state of the bootstrap’s random number generator  

**Returns**

| state | Array containing the state |

**Return type**

| RandomState state vector |

**arch.bootstrap.MovingBlockBootstrap.reset**

MovingBlockBootstrap.reset(use_seed=True)  
Resets the bootstrap to either its initial state or the last seed.
Parameters `use_seed(bool, optional)` – Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

`arch.bootstrap.MovingBlockBootstrap.seed`

Seeds the bootstrap’s random number generator

Parameters `value(int)` – Integer to use as the seed

`arch.bootstrap.MovingBlockBootstrap.set_state`

Sets the state of the bootstrap’s random number generator

Parameters `state(RandomState state vector)` – Array containing the state

`arch.bootstrap.MovingBlockBootstrap.update_indices`

Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

`arch.bootstrap.MovingBlockBootstrap.var`

Compute parameter variance using bootstrap

Parameters

- `func(callable)` – Callable function that returns the statistic of interest as a 1-d array
- `reps(int, optional)` – Number of bootstrap replications
- `recenter(bool, optional)` – Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- `extra_kwargs(dict, optional)` – Dictionary of extra keyword arguments to pass to func

Returns `var` – Bootstrap variance estimator

Return type `ndarray`

Notes

func must have the signature

```
def func(params, *args, **kwargs)
```
where params are a 1-dimensional array, and *args and **kwargs are data used in the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

**Example**

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np

>>> def func(x):
... return x.mean(axis=0)

>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)

>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>Returns the current index of the bootstrap</td>
</tr>
<tr>
<td>random_state</td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

**arch.bootstrap.MovingBlockBootstrap.index**

MovingBlockBootstrap.index

Returns the current index of the bootstrap

**arch.bootstrap.MovingBlockBootstrap.random_state**

MovingBlockBootstrap.random_state

Set or get the instance random state

**2.10 References**

The bootstrap is a large area with a number of high-quality books. Leading references include
References

Articles used in the creation of this module include
CHAPTER 3

Multiple Comparison Procedures

This module contains a set of bootstrap-based multiple comparison procedures. These are designed to allow multiple models to be compared while controlling a the Familywise Error Rate, which is similar to the size of a test.

3.1 Multiple Comparisons

This setup code is required to run in an IPython notebook

```
[1]: %matplotlib inline
import warnings
Reproducability
import numpy as np
import seaborn
warnings.simplefilter('ignore')
```

```
[2]: seaborn.mpl.rcParams['figure.figsize'] = (10.0, 6.0)
seaborn.mpl.rcParams['savefig.dpi'] = 90
seaborn.mpl.rcParams['font.family'] = 'sans-serif'
seaborn.mpl.rcParams['font.size'] = 14

np.random.seed(23456)
Common seed used throughout
seed = np.random.randint(0, 2**31 - 1)
```

The multiple comparison procedures all allow for examining aspects of superior predictive ability. There are three available:

- **SPA** - The test of Superior Predictive Ability, also known as the Reality Check (and accessible as RealityCheck) or the bootstrap data snooper, examines whether any model in a set of models can outperform a benchmark.
• StepM - The stepwise multiple testing procedure uses sequential testing to determine which models are superior to a benchmark.

• MCS - The model confidence set which computes the set of models which with performance indistinguishable from others in the set.

All procedures take losses as inputs. That is, smaller values are preferred to larger values. This is common when evaluating forecasting models where the loss function is usually defined as a positive function of the forecast error that is increasing in the absolute error. Leading examples are Mean Square Error (MSE) and Mean Absolute Deviation (MAD).

### 3.1.1 The test of Superior Predictive Ability (SPA)

This procedure requires a $t$-element array of benchmark losses and a $t$ by $k$-element array of model losses. The null hypothesis is that no model is better than the benchmark, or

$$H_0 : \max_i E[L_i] \geq E[L_{bm}]$$

where $L_i$ is the loss from model $i$ and $L_{bm}$ is the loss from the benchmark model.

This procedure is normally used when there are many competing forecasting models such as in the study of technical trading rules. The example below will make use of a set of models which are all equivalently good to a benchmark model and will serve as a size study.

#### Study Design

The study will make use of a measurement error in predictors to produce a large set of correlated variables that all have equal expected MSE. The benchmark will have identical measurement error and so all models have the same expected loss, although will have different forecasts.

The first block computed the series to be forecast.

```python
from numpy.random import randn
import statsmodels.api as sm

t observations
factor predictors
with measurement error
$E[L_{bm}] = \frac{1}{t} \sum_{i=1}^{t} L_i$

t = 1000
factors = randn(t, 3)
beta = np.array([1, 0.5, 0.1])
e = randn(t)
y = factors.dot(beta)
```

The next block computes the benchmark factors and the model factors by contaminating the original factors with noise. The models are estimated on the first 500 observations and predictions are made for the second 500. Finally, losses are constructed from these predictions.

```python
Measurement noise
bm_factors = factors + randn(t, 3)
Fit using first half, predict second half
bm_beta = sm.OLS(y[:500], bm_factors[:500]).fit().params
MSE loss
bm_losses = (y[500:] - bm_factors[500:]).dot(bm_beta)**2.0
Number of models
k = 500
model_factors = np.zeros((k, t, 3))
model_losses = np.zeros((500, k))
for i in range(k):
```

(continues on next page)
# Add measurement noise

```python
model_factors[i] = factors + randn(1000, 3)
```

# Compute regression parameters

```python
model_beta = sm.OLS(y[:, :500], model_factors[:, :500]).fit().params
```

# Prediction and losses

```python
model_losses[:, i] = (y[500:] - model_factors[:, 500:].dot(model_beta))**2.0
```

Finally the SPA can be used. The SPA requires the losses from the benchmark and the models as inputs. Other inputs allow the bootstrap sued to be changed or for various options regarding studentization of the losses. compute does the real work, and then pvalues contains the probability that the null is true given the realizations.

In this case, one would not reject. The three p-values correspond to different re-centerings of the losses. In general, the consistent p-value should be used. It should always be the case that

\[ \text{lower} \leq \text{consistent} \leq \text{upper}. \]

See the original papers for more details.

```python
from arch.bootstrap import SPA

spa = SPA(bm_losses, model_losses)
spa.seed(seed)
spa.compute()
spa.pvalues
```

The same blocks can be repeated to perform a simulation study. Here I only use 100 replications since this should complete in a reasonable amount of time. Also I set reps=250 to limit the number of bootstrap replications in each application of the SPA (the default is a more reasonable 1000).

```python
Save the pvalues
pvalues = []
b = 100
seeds = np.random.randint(0, 2**31 - 1, b)
Repeat 100 times
for j in range(b):
 if j % 10 == 0:
 print(j)
 factors = randn(t, 3)
 beta = np.array([1, 0.5, 0.1])
 e = randn(t)
 y = factors.dot(beta)
 # Measurement noise
 bm_factors = factors + randn(t, 3)
 # Fit using first half, predict second half
 bm_beta = sm.OLS(y[:, :500], bm_factors[:, :500]).fit().params
 # MSE loss
 bm_losses = (y[500:] - bm_factors[500:].dot(bm_beta))**2.0
 # Number of models
 k = 500
 model_factors = np.zeros((k, t, 3))
```

(continues on next page)
model_losses = np.zeros((500, k))
for i in range(k):
    model_factors[i] = factors + randn(1000, 3)
    model_beta = sm.OLS(y[:, 500], model_factors[i, :500]).fit().params
    # MSE loss
    model_losses[:, i] = (y[500:] - model_factors[i, 500:].dot(model_beta)) ** 2.0
# Lower the bootstrap replications to 250
spa = SPA(bm_losses, model_losses, reps=250)
spa.seed(seeds[j])
spa.compute()
pvalues.append(spa.pvalues)

Finally the pvalues can be plotted. Ideally they should form a 45° line indicating the size is correct. Both the consistent and upper perform well. The lower has too many small p-values.

[7]:
import pandas as pd

pvalues = pd.DataFrame(pvalues)
for col in pvalues:
    values = pvalues[col].values
    values.sort()
    pvalues[col] = values
# Change the index so that the x-values are between 0 and 1
pvalues.index = np.linspace(0.005, .995, 100)
fig = pvalues.plot()
The SPA also has power to reject then the null is violated. The simulation will be modified so that the amount of measurement error differs across models, and so that some models are actually better than the benchmark. The p-values should be small indicating rejection of the null.

```python
Number of models
k = 500
model_factors = np.zeros((k, t, 3))
model_losses = np.zeros((500, k))
for i in range(k):
 scale = ((2500.0 - i) / 2500.0)
 model_factors[i] = factors + scale * randn(1000, 3)
 model_beta = sm.OLS(y[:500], model_factors[i, :500]).fit().params
 # MSE loss
 model_losses[:, i] = (y[500:] - model_factors[i, 500:].dot(model_beta))**2.0
spa = SPA(bm_losses, model_losses)
spa.seed(seed)
spa.compute()
spa.pvalues
```

Here the average losses are plotted. The higher index models are clearly better than the lower index models – and the benchmark model (which is identical to model.0).

3.1. Multiple Comparisons
3.1.2 Stepwise Multiple Testing (StepM)

Stepwise Multiple Testing is similar to the SPA and has the same null. The primary difference is that it identifies the set of models which are better than the benchmark, rather than just asking the basic question if any model is better.

```python
from arch.bootstrap import StepM
stepm = StepM(bm_losses, model_losses)
stepm.compute()
print('Model indices: ')
print([model.split('.') for model in stepm.superior_models])
```

Model indices:

```
 '214', '215', '219', '228', '235', '237', '238', '244', '246', '248', '252', '253',
 '254', '257', '261', '262', '263', '266', '272', '275', '279', '280', '281', '282',
 '286', '291', '294', '298', '299', '300', '305', '306', '310', '312', '315', '316',
 '388', '389', '390', '391', '392', '393', '394', '395', '398', '399', '400', '401',
 '402', '403', '404', '405', '406', '407', '408', '410', '411', '412', '413', '414',
 '443', '444', '445', '447', '448', '449', '450', '451', '453', '454', '455', '456',
```

(continues on next page)
3.1.3 The Model Confidence Set

The model confidence set takes a set of losses as its input and finds the set which are not statistically different from each other while controlling the familywise error rate. The primary output is a set of p-values, where models with a p-value above the size are in the MCS. Small p-values indicate that the model is easily rejected from the set that includes the best.

```
[12]: from arch.bootstrap import MCS
 losses = model_losses.iloc[:, ::20]
 mcs = MCS(losses, size=0.10)
 mcs.compute()
 print('MCS P-values')
 print(mcs.pvalues)
```

(continues on next page)
print('Included')
included = mcs.included
print([model.split('.')[1] for model in included])
print('Excluded')
excluded = mcs.excluded
print([model.split('.')[1] for model in excluded])

MCS P-values

<table>
<thead>
<tr>
<th>Model name</th>
<th>Pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>model.60</td>
<td>0.000</td>
</tr>
<tr>
<td>model.80</td>
<td>0.000</td>
</tr>
<tr>
<td>model.140</td>
<td>0.000</td>
</tr>
<tr>
<td>model.40</td>
<td>0.001</td>
</tr>
<tr>
<td>model.20</td>
<td>0.005</td>
</tr>
<tr>
<td>model.100</td>
<td>0.008</td>
</tr>
<tr>
<td>model.120</td>
<td>0.021</td>
</tr>
<tr>
<td>model.0</td>
<td>0.021</td>
</tr>
<tr>
<td>model.220</td>
<td>0.031</td>
</tr>
<tr>
<td>model.260</td>
<td>0.116</td>
</tr>
<tr>
<td>model.240</td>
<td>0.116</td>
</tr>
<tr>
<td>model.160</td>
<td>0.136</td>
</tr>
<tr>
<td>model.200</td>
<td>0.136</td>
</tr>
<tr>
<td>model.320</td>
<td>0.446</td>
</tr>
<tr>
<td>model.180</td>
<td>0.446</td>
</tr>
<tr>
<td>model.420</td>
<td>0.478</td>
</tr>
<tr>
<td>model.400</td>
<td>0.693</td>
</tr>
<tr>
<td>model.360</td>
<td>0.889</td>
</tr>
<tr>
<td>model.340</td>
<td>0.889</td>
</tr>
<tr>
<td>model.280</td>
<td>0.889</td>
</tr>
<tr>
<td>model.460</td>
<td>0.889</td>
</tr>
<tr>
<td>model.380</td>
<td>0.889</td>
</tr>
<tr>
<td>model.300</td>
<td>0.889</td>
</tr>
<tr>
<td>model.480</td>
<td>0.889</td>
</tr>
<tr>
<td>model.440</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Included

Excluded
['0', '100', '120', '140', '20', '220', '40', '60', '80']

[13]: status = pd.DataFrame([losses.mean(0), losses.mean(0)],
                        index=['Excluded', 'Included']).T
status.loc[status.index.isin(included), 'Excluded'] = np.nan
status.loc[status.index.isin(excluded), 'Included'] = np.nan
fig = status.plot(style=['o', 's'])
3.2 Module Reference

3.2.1 Test of Superior Predictive Ability (SPA), Reality Check

The test of Superior Predictive Ability (Hansen 2005), or SPA, is an improved version of the Reality Check (White 2000). It tests whether the best forecasting performance from a set of models is better than that of the forecasts from a benchmark model. A model is “better” if its losses are smaller than those from the benchmark. Formally, it tests the null

\[ H_0 : \max_i E[L_i] \geq E[L_{bm}] \]

where \( L_i \) is the loss from model \( i \) and \( L_{bm} \) is the loss from the benchmark model. The alternative is

\[ H_1 : \min_i E[L_i] < E[L_{bm}] \]

This procedure accounts for dependence between the losses and the fact that there are potentially alternative models being considered.

Note: Also callable using `RealityCheck`

\( \text{SPA}(\text{benchmark}, \text{models}[\text{, block\_size, reps, ...}]) \) Implementation of the Test of Superior Predictive Ability (SPA), which is also known as the Reality Check or Bootstrap Data Snooper.
arch Documentation, Release 4.11

arch.bootstrap.SPA

class arch.bootstrap.SPA(benchmark, models, block_size=None, reps=1000, bootstrap='stationary', studentize=True, nested=False)

Implementation of the Test of Superior Predictive Ability (SPA), which is also known as the Reality Check or Bootstrap Data Snooper.

Parameters

- **benchmark** (ndarray, Series) – T element array of benchmark model losses
- **models** (ndarray, DataFrame) – T by k element array of alternative model losses
- **block_size** (int, optional) – Length of window to use in the bootstrap. If not provided, sqrt(T) is used. In general, this should be provided and chosen to be appropriate for the data.
- **reps** (int, optional) – Number of bootstrap replications to uses. Default is 1000.
- **bootstrap** (str, optional) – Bootstrap to use. Options are ‘stationary’ or ‘sb’: Stationary bootstrap (Default) ‘circular’ or ‘cbb’: Circular block bootstrap ‘moving block’ or ‘mbb’: Moving block bootstrap
- **studentize** (bool) – Flag indicating to studentize loss differentials. Default is True
- **nested=False** – Flag indicating to use a nested bootstrap to compute variances for studentization. Default is False. Note that this can be slow since the procedure requires k extra bootstraps.

**compute()**

Compute the bootstrap pvalue. Must be called before accessing the pvalue

**seed()**

Pass seed to bootstrap implementation

**reset()**

Reset the bootstrap to its initial state

**better_models()**

Produce a list of column indices or names (if models is a DataFrame) that are rejected given a test size

References


Notes

The three p-value correspond to different re-centering decisions.

- **Upper** : Never recenter to all models are relevant to distribution
- **Consistent** : Only recenter if closer than a log(log(t)) bound
- **Lower** : Never recenter a model if worse than benchmark

See also:

StepM
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>better_models</strong>([pvalue, pvalue_type])</td>
<td>Returns set of models rejected as being equal-or-worse than the benchmark</td>
</tr>
<tr>
<td><strong>compute()</strong></td>
<td>Compute the bootstrap p-value</td>
</tr>
<tr>
<td><strong>critical_values</strong>([pvalue])</td>
<td>Returns data-dependent critical values</td>
</tr>
<tr>
<td><strong>reset()</strong></td>
<td>Reset the bootstrap to it’s initial state.</td>
</tr>
<tr>
<td><strong>seed</strong>(value)</td>
<td>Seeds the bootstrap’s random number generator</td>
</tr>
<tr>
<td><strong>subset</strong>(selector)</td>
<td>Sets a list of active models to run the SPA on.</td>
</tr>
</tbody>
</table>

**arch.bootstrap.SPA.better_models**

SPA.better_models (**pvalue=0.05, pvalue_type=’consistent’**)  
Returns set of models rejected as being equal-or-worse than the benchmark

**Parameters**

- **pvalue** (**float, optional**) – P-value in (0,1) to use when computing superior models
- **pvalue_type** (**str, optional**) – String in ‘lower’, ‘consistent’, or ‘upper’ indicating which critical value to use.

**Returns indices** – List of column names or indices of the superior models. Column names are returned if models is a DataFrame.

**Return type** list

**Notes**

List of superior models returned is always with respect to the initial set of models, even when using subset().

**arch.bootstrap.SPA.compute**

SPA.compute()  
Compute the bootstrap p-value

**arch.bootstrap.SPA.critical_values**

SPA.critical_values (**pvalue=0.05**)  
Returns data-dependent critical values

**Parameters** **pvalue** (**float, optional**) – P-value in (0,1) to use when computing the critical values.

**Returns crit_vals** – Series containing critical values for the lower, consistent and upper methodologies

**Return type** Series
arch.bootstrap.SPA.reset

SPAs.reset()
Reset the bootstrap to it’s initial state.

arch.bootstrap.SPA.seed

SPAs.seed(value)
Seeds the bootstrap’s random number generator

Parameters value (int) – Integer to use as the seed

arch.bootstrap.SPA.subset

SPAs.subset(selector)
Sets a list of active models to run the SPA on. Primarily for internal use.

Parameters selector (ndarray) – Boolean array indicating which columns to use when computing the p-values. This is primarily for use by StepM.

Properties

pvalues
P-values corresponding to the lower, consistent and upper p-values.

arch.bootstrap.SPA.pvalues

SPAs.pvalues
P-values corresponding to the lower, consistent and upper p-values.

Returns pvals – Three p-values corresponding to the lower bound, the consistent estimator, and the upper bound.

Return type Series

3.2.2 Stepwise Multiple Testing (StepM)

The Stepwise Multiple Testing procedure (Romano & Wolf (2005)) is closely related to the SPA, except that it returns a set of models that are superior to the benchmark model, rather than the p-value from the null. They are so closely related that StepM is essentially a wrapper around SPA with some small modifications to allow multiple calls.

StepM(benchmark, models[, size, block_size, ...])
Implementation of Romano and Wolf’s StepM multiple comparison procedure

arch.bootstrap.StepM

class arch.bootstrap.StepM(benchmark, models, size=0.05, block_size=None, reps=1000, bootstrap=’stationary’, studentize=True, nested=False)
Implementation of Romano and Wolf’s StepM multiple comparison procedure
Parameters

- **benchmark** *(ndarray, Series)* – T element array of benchmark model losses
- **models** *(ndarray, DataFrame)* – T by k element array of alternative model losses
- **size** *(float, optional)* – Value in (0, 1) to use as the test size when implementing the comparison. Default value is 0.05.
- **block_size** *(int, optional)* – Length of window to use in the bootstrap. If not provided, sqrt(T) is used. In general, this should be provided and chosen to be appropriate for the data.
- **reps** *(int, optional)* – Number of bootstrap replications to uses. Default is 1000.
- **bootstrap** *(str, optional)* – Bootstrap to use. Options are ‘stationary’ or ‘sb’: Stationary bootstrap (Default) ‘circular’ or ‘cbb’: Circular block bootstrap ‘moving block’ or ‘mbb’: Moving block bootstrap
- **studentize** *(bool, optional)* – Flag indicating to studentize loss differentials. Default is True
- **nested** *(bool, optional)* – Flag indicating to use a nested bootstrap to compute variances for studentization. Default is False. Note that this can be slow since the procedure requires k extra bootstraps.

**compute**

Compute the set of superior models.

References


Notes

The size controls the Family Wise Error Rate (FWER) since this is a multiple comparison procedure. Uses SPA and the consistent selection procedure.

See also:

SPA

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>compute</strong></td>
<td>Computes the set of superior models</td>
</tr>
<tr>
<td><strong>reset</strong></td>
<td>Reset the bootstrap to it’s initial state.</td>
</tr>
<tr>
<td><strong>seed</strong></td>
<td>Seeds the bootstrap’s random number generator</td>
</tr>
</tbody>
</table>

**arch.bootstrap.StepM.compute**

StepM.**compute**

Computes the set of superior models
arch.bootstrap.StepM.reset

StepM.reset()
Reset the bootstrap to its initial state.

arch.bootstrap.StepM.seed

StepM.seed(value)
Seeds the bootstrap’s random number generator

Parameters value (int) – Integer to use as the seed

Properties

superior_models
List of the indices or column names of the superior models

arch.bootstrap.StepM.superior_models

StepM.superior_models
List of the indices or column names of the superior models

Returns superior_models – List of superior models. Contains column indices if models is an array or contains column names if models is a DataFrame.

Return type list

3.2.3 Model Confidence Set (MCS)

The Model Confidence Set (Hansen, Lunde & Nason (2011)) differs from other multiple comparison procedures in that there is no benchmark. The MCS attempts to identify the set of models which produce the same expected loss, while controlling the probability that a model that is worse than the best model is in the model confidence set. Like the other MCPs, it controls the Familywise Error Rate rather than the usual test size.

MCS(losses, size[, reps, block_size, ...]) Implementation of the Model Confidence Set (MCS)

arch.bootstrap.MCS

class arch.bootstrap.MCS(losses, size, reps=1000, block_size=None, method='R', bootstrap='stationary')
Implementation of the Model Confidence Set (MCS)

Parameters

losses (ndarray, DataFrame) – T by k array containing losses from a set of models

size (float, optional) – Value in (0,1) to use as the test size when implementing the mcs. Default value is 0.05.

block_size (int, optional) – Length of window to use in the bootstrap. If not provided, sqrt(T) is used. In general, this should be provided and chosen to be appropriate
for the data.

- **method** ([`'max'`, `'R'`], *optional*) – MCS test and elimination implementation method, either ‘max’ or ‘R’. Default is ‘R’.

- **reps** (*int*, *optional*) – Number of bootstrap replications to use. Default is 1000.

- **bootstrap** (*str*, *optional*) – Bootstrap to use. Options are ‘stationary’ or ‘sb’: Stationary bootstrap (Default) ‘circular’ or ‘cbb’: Circular block bootstrap ‘moving block’ or ‘mbb’: Moving block bootstrap

```python
compute()
Compute the set of models in the confidence set.
```

**References**


**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arch.bootstrap.MCS.compute()</code></td>
<td>Computes the model confidence set</td>
</tr>
<tr>
<td><code>arch.bootstrap.MCS.reset()</code></td>
<td>Reset the bootstrap to its initial state.</td>
</tr>
<tr>
<td><code>arch.bootstrap.MCS.seed(value)</code></td>
<td>Seeds the bootstrap’s random number generator</td>
</tr>
</tbody>
</table>

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>excluded</code></td>
<td>List of model indices that are excluded from the MCS</td>
</tr>
<tr>
<td><code>included</code></td>
<td>List of model indices that are included in the MCS</td>
</tr>
<tr>
<td><code>pvalues</code></td>
<td>Model p-values for inclusion in the MCS</td>
</tr>
</tbody>
</table>
arch.bootstrap.MCS.excluded

MCS.excluded
List of model indices that are excluded from the MCS

Returns excluded – List of column indices or names of the excluded models

Return type list

arch.bootstrap.MCS.included

MCS.included
List of model indices that are included in the MCS

Returns included – List of column indices or names of the included models

Return type list

arch.bootstrap.MCS.pvalues

MCS.pvalues
Model p-values for inclusion in the MCS

Returns pvalues – DataFrame where the index is the model index (column or name) containing the smallest size where the model is in the MCS.

Return type DataFrame

3.3 References

Articles used in the creation of this module include
Many time series are highly persistent, and determining whether the data appear to be stationary or contains a unit root is the first step in many analyses. This module contains a number of routines:

- Augmented Dickey-Fuller (ADF)
- Dickey-Fuller GLS (DFGLS)
- Phillips-Perron (PhillipsPerron)
- KPSS (KPSS)
- Zivot-Andrews (ZivotAndrews)
- Variance Ratio (VarianceRatio)
- Automatic Bandwidth Selection (*arch.unitroot.auto_bandwidth()*)

The first four all start with the null of a unit root and have an alternative of a stationary process. The final test, KPSS, has a null of a stationary process with an alternative of a unit root.

### 4.1 Introduction

All tests expect a 1-d series as the first input. The input can be any array that can squeeze into a 1-d array, a pandas Series or a pandas DataFrame that contains a single variable.

All tests share a common structure. The key elements are:

- *stat* - Returns the test statistic
- *pvalue* - Returns the p-value of the test statistic
- *lags* - Sets or gets the number of lags used in the model. In most test, can be None to trigger automatic selection.
- *trend* - Sets or gets the trend used in the model. Supported trends vary by model, but include:
  - *’nc’* - No constant
  - *’c’* - Constant
– ‘ct’: Constant and time trend
– ‘ctt’: Constant, time trend and quadratic time trend

• summary() - Returns a summary object that can be printed to get a formatted table

### 4.1.1 Basic Example

This basic example show the use of the Augmented-Dickey fuller to test whether the default premium, defined as the difference between the yields of large portfolios of BAA and AAA bonds. This example uses a constant and time trend.

```python
import datetime as dt
import pandas_datareader.data as web
from arch.unitroot import ADF

start = dt.datetime(1919, 1, 1)
end = dt.datetime(2014, 1, 1)

df = web.DataReader(['AAA', 'BAA'], 'fred', start, end)
df['diff'] = df['BAA'] - df['AAA']
adf = ADF(df['diff'])
adf.trend = 'ct'
print(adf.summary())
```

which yields

```
Augmented Dickey-Fuller Results
=====================================
Test Statistic -3.448
P-value 0.045
Lags 21

Trend: Constant and Linear Time Trend
Critical Values: -3.97 (1%), -3.41 (5%), -3.13 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
```

### 4.2 Unit Root Testing

This setup code is required to run in an IPython notebook

[1]:
```python
import warnings
warnings.simplefilter('ignore')
%matplotlib inline
import seaborn
```

[2]:
```python
seaborn.mpl.rcParams['figure.figsize'] = (10.0, 6.0)
seaborn.mpl.rcParams['savefig.dpi'] = 90
seaborn.mpl.rcParams['font.family'] = 'sans-serif'
seaborn.mpl.rcParams['font.size'] = 14
```
4.2.1 Setup

Most examples will make use of the Default premium, which is the difference between the yields of BAA and AAA rated corporate bonds. The data is downloaded from FRED using pandas.

```python
import pandas as pd
import statsmodels.api as sm
import arch.data.default

default_data = arch.data.default.load()
default = default_data.BAA.copy()
default.name = 'default'
default = default - default_data.AAA.values
fig = default.plot()
```

The Default premium is clearly highly persistent. A simple check of the autocorrelations confirms this.

```python
acf = pd.DataFrame(sm.tsa.stattools.acf(default), columns=['ACF'])
fig = acf[1:].plot(kind='bar', title='Autocorrelations')
```
4.2.2 Augmented Dickey-Fuller Testing

The Augmented Dickey-Fuller test is the most common unit root test used. It is a regression of the first difference of the variable on its lagged level as well as additional lags of the first difference. The null is that the series contains a unit root, and the (one-sided) alternative is that the series is stationary.

By default, the number of lags is selected by minimizing the AIC across a range of lag lengths (which can be set using `max_lag` when initializing the model). Additionally, the basic test includes a constant in the ADF regression.

These results indicate that the Default premium is stationary.

```
[5]: from arch.unitroot import ADF

adf = ADF(default)
print(adf.summary().as_text())
```

Augmented Dickey-Fuller Results
=======================================
Test Statistic -3.356
P-value 0.013
Lags 21
Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

The number of lags can be directly set using `lags`. Changing the number of lags makes no difference to the conclusion.
Note: The ADF assumes residuals are white noise, and that the number of lags is sufficient to pick up any dependence in the data.

Setting the number of lags

```python
[6]:
 adf.lags = 5
 print(adf.summary().as_text())
```

Augmented Dickey-Fuller Results
=====================================
Test Statistic -3.582
P-value 0.006
Lags 5  
-------------------------------------
Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

Deterministic terms

The deterministic terms can be altered using `trend`. The options are:

- `'nc'`: No deterministic terms
- `'c'`: Constant only
- `'ct'`: Constant and time trend
- `'ctt'`: Constant, time trend and time-trend squared

Changing the type of constant also makes no difference for this data.

```python
[7]:
 adf.trend = 'ct'
 print(adf.summary().as_text())
```

Augmented Dickey-Fuller Results
=====================================
Test Statistic -3.786
P-value 0.017
Lags 5  
-------------------------------------
Trend: Constant and Linear Time Trend
Critical Values: -3.97 (1%), -3.41 (5%), -3.13 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

Regression output

The ADF uses a standard regression when computing results. These can be accesses using `regression`.

```python
[8]:
 reg_res = adf.regression
 print(reg_res.summary().as_text())
```
## OLS Regression Results

```
Dep. Variable: y R-squared: 0.095
Model: OLS Adj. R-squared: 0.090
Method: Least Squares F-statistic: 17.83
Date: Wed, 28 Aug 2019 Prob (F-statistic): 1.30e-22
Time: 09:40:35 Log-Likelihood: 630.15
Df Model: 7
Covariance Type: nonrobust
```

|                | coef  | std err | t     | P>|t|  | [0.025 | 0.975 |
|----------------|-------|---------|-------|-----|--------|-------|
| Level.L1       | -0.0248 | 0.007  | -3.786 | 0.000 | -0.038 | -0.012 |
| Diff.L1        | 0.2229  | 0.029  | 7.669  | 0.000 | 0.166  | 0.280  |
| Diff.L2        | -0.0525 | 0.030  | -1.769 | 0.077 | -0.111 | 0.006  |
| Diff.L3        | -0.1363 | 0.029  | -4.642 | 0.000 | -0.194 | -0.079 |
| Diff.L4        | -0.0510 | 0.030  | -1.727 | 0.084 | -0.109 | 0.007  |
| Diff.L5        | 0.0440  | 0.029  | 1.516  | 0.130 | -0.013 | 0.101  |
| const          | 0.0383  | 0.013  | 2.858  | 0.004 | 0.012  | 0.065  |
| trend          | -1.586e-05 | 1.29e-05 | -1.230 | 0.219 | -4.11e-05 | 9.43e-06 |

```
Omnibus: 665.553 Durbin-Watson: 2.000
Prob(Omnibus): 0.000 Jarque-Bera (JB): 146083.295
Skew: -1.425 Prob(JB): 0.00
Kurtosis: 57.113 Cond. No. 5.70e+03
```

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 5.7e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```python
import matplotlib.pyplot as plt
import pandas as pd
resids = pd.DataFrame(reg_res.resid)
resids.index = default.index[6:]
resids.columns = ['resids']
fig = resids.plot()
```
Since the number lags was directly set, it is good to check whether the residuals appear to be white noise.

```python
[10]: acf = pd.DataFrame(sm.tsa.stattools.acf(reg_res.resid), columns=['ACF'])
fig = acf[1:].plot(kind='bar', title='Residual Autocorrelations')
```
4.2.3 Dickey-Fuller GLS Testing

The Dickey-Fuller GLS test is an improved version of the ADF which uses a GLS-detrending regression before running an ADF regression with no additional deterministic terms. This test is only available with a constant or constant and time trend (trend='c' or trend='ct').

The results of this test agree with the ADF results.

```python
[11]: from arch.unitroot import DFGLS
dfgls = DFGLS(default)
print(dfgls.summary().as_text())
```

Dickey-Fuller GLS Results
-------------------------------
Test Statistic -2.322
P-value 0.020
Lags 21

-------------------------------
Trend: Constant
Critical Values: -2.59 (1%), -1.96 (5%), -1.64 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

The trend can be altered using trend. The conclusion is the same.

```python
[12]: dfgls.trend = 'ct'
print(dfgls.summary().as_text())
```
Dickey-Fuller GLS Results
===================================== 
Test Statistic -3.464
P-value 0.009
Lags 21
------------------------------------- 
Trend: Constant and Linear Time Trend
Critical Values: -3.43 (1%), -2.86 (5%), -2.58 (10%) 
Null Hypothesis: The process contains a unit root. 
Alternative Hypothesis: The process is weakly stationary.

4.2.4 Phillips-Perron Testing

The Phillips-Perron test is similar to the ADF except that the regression run does not include lagged values of the first differences. Instead, the PP test fixed the t-statistic using a long run variance estimation, implemented using a Newey-West covariance estimator.

By default, the number of lags is automatically set, although this can be overridden using lags.

[13]: from arch.unitroot import PhillipsPerron
pp = PhillipsPerron(default) 
print (pp.summary().as_text())
Phillips-Perron Test (Z-tau)
===================================== 
Test Statistic -3.898
P-value 0.002
Lags 23
------------------------------------- 
Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%) 
Null Hypothesis: The process contains a unit root. 
Alternative Hypothesis: The process is weakly stationary.

It is important that the number of lags is sufficient to pick up any dependence in the data.

[14]: pp.lags = 12 
print (pp.summary().as_text())
Phillips-Perron Test (Z-tau)
===================================== 
Test Statistic -4.024
P-value 0.001
Lags 12
------------------------------------- 
Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%) 
Null Hypothesis: The process contains a unit root. 
Alternative Hypothesis: The process is weakly stationary.

The trend can be changed as well.

4.2. Unit Root Testing
Finally, the PP testing framework includes two types of tests. One which uses an ADF-type regression of the first difference on the level, the other which regresses the level on the level. The default is the $\tau$ test, which is similar to an ADF regression, although this can be changed using test_type='rho'.

```python
[15]: pp.trend = 'ct'
 print(pp.summary().as_text())

Phillips-Perron Test (Z-tau)
=====================================
Test Statistic -4.262
P-value 0.004
Lags 12

Trend: Constant and Linear Time Trend
Critical Values: -3.97 (1%), -3.41 (5%), -3.13 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
```

4.2.5 KPSS Testing

The KPSS test differs from the three previous in that the null is a stationary process and the alternative is a unit root. Note that here the null is rejected which indicates that the series might be a unit root.

```python
[16]: pp.test_type = 'rho'
 print(pp.summary().as_text())

Phillips-Perron Test (Z-rho)
=====================================
Test Statistic -36.114
P-value 0.000
Lags 12

Trend: Constant and Linear Time Trend
Critical Values: -29.16 (1%), -21.60 (5%), -18.17 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
```

```python
[17]: from arch.unitroot import KPSS
 kpss = KPSS(default)
 print(kpss.summary().as_text())

KPSS Stationarity Test Results
=====================================
Test Statistic 1.088
P-value 0.002
Lags 20

Trend: Constant
Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%)
Null Hypothesis: The process is weakly stationary.
Alternative Hypothesis: The process contains a unit root.
```

Changing the trend does not alter the conclusion.
4.2.6 Zivot-Andrews Test

The Zivot-Andrews test allows the possibility of a single structural break in the series. Here we test the default using the test.

```python
[19]: from arch.unitroot import ZivotAndrews
za = ZivotAndrews(default)
print(za.summary().as_text())
```

<table>
<thead>
<tr>
<th>Zivot-Andrews Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Statistic</td>
</tr>
<tr>
<td>P-value</td>
</tr>
<tr>
<td>Lags</td>
</tr>
</tbody>
</table>

Trend: Constant
Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)
Null Hypothesis: The process contains a unit root with a single structural break.
Alternative Hypothesis: The process is trend and break stationary.

4.2.7 Variance Ratio Testing

Variance ratio tests are not usually used as unit root tests, and are instead used for testing whether a financial return series is a pure random walk versus having some predictability. This example uses the excess return on the market from Ken French’s data.

```python
[20]: import numpy as np
import pandas as pd
import arch.data.frenchdata
ff = arch.data.frenchdata.load()
excess_market = ff.iloc[:, 0] # Excess Market
print(ff.describe())
```

<table>
<thead>
<tr>
<th></th>
<th>Mkt-RF</th>
<th>SMB</th>
<th>HML</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
</tr>
<tr>
<td>mean</td>
<td>0.659946</td>
<td>0.206555</td>
<td>0.368864</td>
<td>0.274220</td>
</tr>
<tr>
<td>std</td>
<td>5.327524</td>
<td>3.191132</td>
<td>3.482352</td>
<td>0.253377</td>
</tr>
<tr>
<td>min</td>
<td>-29.130000</td>
<td>-16.870000</td>
<td>-13.280000</td>
<td>-0.060000</td>
</tr>
</tbody>
</table>
The variance ratio compares the variance of a 1-period return to that of a multi-period return. The comparison length has to be set when initializing the test.

This example compares 1-month to 12-month returns, and the null that the series is a pure random walk is rejected. Negative values indicate some positive autocorrelation in the returns (momentum).

```python
[21]: from arch.unitroot import VarianceRatio
 vr = VarianceRatio(excess_market, 12)
 print(vr.summary().as_text())
```

```
Variance-Ratio Test Results
====================================
Test Statistic -5.029
P-value 0.000
Lags 12

Computed with overlapping blocks (de-biased)
```

By default the VR test uses all overlapping blocks to estimate the variance of the long period’s return. This can be changed by setting `overlap=False`. This lowers the power but does not change the conclusion.

```python
[22]: warnings.simplefilter('always') # Restore warnings
 vr.overlap = False
 print(vr.summary().as_text())
```

```
Variance-Ratio Test Results
====================================
Test Statistic -6.206
P-value 0.000
Lags 12

Computed with non-overlapping blocks
```

The warning is intentional. It appears here since when it is not possible to use all data since the data length is not an integer multiple of the long period when using non-overlapping blocks. There is little reason to use `overlap=False`.

**Note:** The warning is intentional. It appears here since when it is not possible to use all data since the data length is not an integer multiple of the long period when using non-overlapping blocks. There is little reason to use `overlap=False`.

### 4.3 The Unit Root Tests
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF(y[, lags, trend, max_lags, method, ...])</td>
<td>Augmented Dickey-Fuller unit root test</td>
</tr>
<tr>
<td>DFGLS(y[, lags, trend, max_lags, method, ...])</td>
<td>Elliott, Rothenberg and Stock’s GLS version of the Dickey-Fuller test</td>
</tr>
<tr>
<td>PhillipsPerron(y[, lags, trend, test_type])</td>
<td>Phillips-Perron unit root test</td>
</tr>
<tr>
<td>ZivotAndrews(y[, lags, trend, trim, ...])</td>
<td>Zivot-Andrews structural-break unit-root test</td>
</tr>
<tr>
<td>VarianceRatio(y[, lags, trend, debiased, ...])</td>
<td>Variance Ratio test of a random walk.</td>
</tr>
<tr>
<td>KPSS(y[, lags, trend])</td>
<td>Kwiatkowski, Phillips, Schmidt and Shin (KPSS) stationarity test</td>
</tr>
</tbody>
</table>

### 4.3.1 arch.unitroot.ADF

**class arch.unitroot.ADF(y, lags=None, trend='c', max_lags=None, method='AIC', low_memory=None)**

Augmented Dickey-Fuller unit root test

**Parameters**

- **y** *(ndarray, Series)* – The data to test for a unit root
- **lags** *(int, optional)* – The number of lags to use in the ADF regression. If omitted or None, method is used to automatically select the lag length with no more than max_lags are included.
- **trend** *({'nc', 'c', 'ct', 'ctt'}, optional)* – The trend component to include in the ADF test ‘nc’ - No trend components ‘c’ - Include a constant (Default) ‘ct’ - Include a constant and linear time trend 'ctt' - Include a constant and linear and quadratic time trends
- **max_lags** *(int, optional)* – The maximum number of lags to use when selecting lag length
- **method** *({'AIC', 'BIC', 't-stat'}, optional)* – The method to use when selecting the lag length ‘AIC’ - Select the minimum of the Akaike IC ‘BIC’ - Select the minimum of the Schwarz/Bayesian IC ‘t-stat’ - Select the minimum of the Schwarz/Bayesian IC
- **low_memory** *(bool)* – Flag indicating whether to use a low memory implementation of the lag selection algorithm. The low memory algorithm is slower than the standard algorithm but will use 2-4% of the memory required for the standard algorithm. This option allows automatic lag selection to be used in very long time series. If None, use automatic selection of algorithm.

- **stat**
- **pvalue**
- **critical_values**
- **null_hypothesis**
- **alternative_hypothesis**
- **summary**
- **regression**
- **valid_trends**
- **y**
- **trend**

4.3. The Unit Root Tests
lags

Notes

The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the p-value is above a critical size, then the null cannot be rejected that there and the series appears to be a unit root.

The p-values are obtained through regression surface approximation from MacKinnon (1994) using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null.

The autolag option and maxlag for it are described in Greene.

Examples

```python
>>> from arch.unitroot import ADF
>>> import numpy as np
>>> import statsmodels.api as sm

>>> data = sm.datasets.macrodata.load().data
>>> inflation = np.diff(np.log(data['cpi']))
>>> adf = ADF(inflation)
>>> print('{0:0.4f}'.format(adf.stat))
-3.0931
>>> print('{0:0.4f}'.format(adf.pvalue))
0.0271
>>> adf.lags
2
>>> adf.trend='ct'
>>> print('{0:0.4f}'.format(adf.stat))
-3.2111
>>> print('{0:0.4f}'.format(adf.pvalue))
0.0822
```

References

Methods

<table>
<thead>
<tr>
<th>summary()</th>
<th>Summary of test, containing statistic, p-value and critical values</th>
</tr>
</thead>
</table>

`arch.unitroot.ADF.summary`

ADF.summary()

Summary of test, containing statistic, p-value and critical values

Properties
<table>
<thead>
<tr>
<th>attribute</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>alternative_hypothesis</code></td>
<td>The alternative hypothesis</td>
</tr>
<tr>
<td><code>critical_values</code></td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td><code>lags</code></td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td><code>max_lags</code></td>
<td>Sets or gets the maximum lags used when automatically selecting lag length.</td>
</tr>
<tr>
<td><code>nobs</code></td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td><code>null_hypothesis</code></td>
<td>The null hypothesis</td>
</tr>
<tr>
<td><code>pvalue</code></td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td><code>regression</code></td>
<td>Returns the OLS regression results from the ADF model estimated</td>
</tr>
<tr>
<td><code>stat</code></td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td><code>trend</code></td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td><code>valid_trends</code></td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

**arch.unitroot.ADF.alternative_hypothesis**

ADF. **`alternative_hypothesis`**

The alternative hypothesis

**arch.unitroot.ADF.critical_values**

ADF. **`critical_values`**

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

**arch.unitroot.ADF.lags**

ADF. **`lags`**

Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

**arch.unitroot.ADF.max_lags**

ADF. **`max_lags`**

Sets or gets the maximum lags used when automatically selecting lag length.

**arch.unitroot.ADF.nobs**

ADF. **`nobs`**

The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.
arch Documentation, Release 4.11

arch.unitroot.ADF.null_hypothesis

ADF.\texttt{null\_hypothesis}

The null hypothesis

arch.unitroot.ADF.pvalue

ADF.\texttt{pvalue}

Returns the p-value for the test statistic

arch.unitroot.ADF.regression

ADF.\texttt{regression}

Returns the OLS regression results from the ADF model estimated

arch.unitroot.ADF.stat

ADF.\texttt{stat}

The test statistic for a unit root

arch.unitroot.ADF.trend

ADF.\texttt{trend}

Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

arch.unitroot.ADF.valid_trends

ADF.\texttt{valid\_trends}

List of valid trend terms.

arch.unitroot.ADF.y

ADF.\texttt{y}

Returns the data used in the test statistic

4.3.2 arch.unitroot.DFGLS

class arch.unitroot.DFGLS(y, lags=None, trend='c', max_lags=None, method='AIC', low_memory=None)

Elliot, Rothenberg and Stock’s GLS version of the Dickey-Fuller test

Parameters

- \texttt{y} (\texttt{ndarray, Series}) – The data to test for a unit root
- \texttt{lags} (\texttt{int, optional}) – The number of lags to use in the ADF regression. If omitted or None, \texttt{method} is used to automatically select the lag length with no more than \texttt{max\_lags} are included.
- \texttt{trend} (\texttt{\{'c', 'ct'\}, optional}) – The trend component to include in the ADF test
  - ‘c’ - Include a constant (Default)
  - ‘ct’ - Include a constant and linear time trend
4.3. The Unit Root Tests

- **max_lags**: The maximum number of lags to use when selecting lag length
- **method**: The method to use when selecting the lag length. ‘AIC’ - Select the minimum of the Akaike IC, ‘BIC’ - Select the minimum of the Schwarz/Bayesian IC, ‘t-stat’ - Select the minimum of the Schwarz/Bayesian IC

```
stat
pvalue
critical_values
null_hypothesis
alternative_hypothesis
summary
regression
valid_trends
y
trend
lags
```

**Notes**

The null hypothesis of the Dickey-Fuller GLS is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then the null cannot be rejected and the series appears to be a unit root.

DFGLS differs from the ADF test in that an initial GLS detrending step is used before a trend-less ADF regression is run.

Critical values and p-values when trend is ‘c’ are identical to the ADF. When trend is set to ‘ct’, they are from ...

**Examples**

```python
>>> from arch.unitroot import DFGLS
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.macrodata.load().data
>>> inflation = np.diff(np.log(data['cpi']))
>>> dfgls = DFGLS(inflation)
>>> print('{0:0.4f}'.format(dfgls.stat))
-2.7611
>>> print('{0:0.4f}'.format(dfgls.pvalue))
0.0059
>>> dfgls.lags
2
>>> dfgls.trend = 'ct'
>>> print('{0:0.4f}'.format(dfgls.stat))
-2.9036
>>> print('{0:0.4f}'.format(dfgls.pvalue))
0.0447
```
References

Methods

`summary()` Summary of test, containing statistic, p-value and critical values

`arch.unitroot.DFGLS.summary`

DFGLS.**summary**() Summary of test, containing statistic, p-value and critical values

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>alternative_hypothesis</code></td>
<td>The alternative hypothesis</td>
</tr>
<tr>
<td><code>critical_values</code></td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td><code>lags</code></td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td><code>max_lags</code></td>
<td>Sets or gets the maximum lags used when automatically selecting lag length</td>
</tr>
<tr>
<td><code>nobs</code></td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td><code>null_hypothesis</code></td>
<td>The null hypothesis</td>
</tr>
<tr>
<td><code>pvalue</code></td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td><code>regression</code></td>
<td>Returns the OLS regression results from the ADF model estimated</td>
</tr>
<tr>
<td><code>stat</code></td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td><code>trend</code></td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td><code>valid_trends</code></td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

`arch.unitroot.DFGLS.alternative_hypothesis`

DFGLS.**alternative_hypothesis** The alternative hypothesis

`arch.unitroot.DFGLS.critical_values`

DFGLS.**critical_values** Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.
**arch.unitroot.DFGLS.lags**

DFGLS.\texttt{lags}
Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

**arch.unitroot.DFGLS.max_lags**

DFGLS.\texttt{max\_lags}
Sets or gets the maximum lags used when automatically selecting lag length

**arch.unitroot.DFGLS.nobs**

DFGLS.\texttt{nobs}
The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

**arch.unitroot.DFGLS.null_hypothesis**

DFGLS.\texttt{null\_hypothesis}
The null hypothesis

**arch.unitroot.DFGLS.pvalue**

DFGLS.\texttt{pvalue}
Returns the p-value for the test statistic

**arch.unitroot.DFGLS.regression**

DFGLS.\texttt{regression}
Returns the OLS regression results from the ADF model estimated

**arch.unitroot.DFGLS.stat**

DFGLS.\texttt{stat}
The test statistic for a unit root

**arch.unitroot.DFGLS.trend**

DFGLS.\texttt{trend}
Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

**arch.unitroot.DFGLS.valid_trends**

DFGLS.\texttt{valid\_trends}
List of valid trend terms.
arch Documentation, Release 4.11

arch.unitroot.DFGLS.y

DFGLS.y
Returns the data used in the test statistic

4.3.3 arch.unitroot.PhilipsPerron

class arch.unitroot.PhilipsPerron(y, lags=None, trend='c', test_type='tau')
Phills-Perron unit root test

Parameters
• y (ndarray, Series) – The data to test for a unit root
• lags (int, optional) – The number of lags to use in the Newey-West estimator of the long-run covariance. If omitted or None, the lag length is set automatically to 12 * (nobs/100) ** (1/4)
• trend ({'nc', 'c', 'ct'}, optional) – The trend component to include in the ADF test
  'nc' - No trend components
  'c' - Include a constant (Default)
  'ct' - Include a constant and linear time trend
• test_type ({'tau', 'rho'}) – The test to use when computing the test statistic.
  'tau' is based on the t-stat and 'rho' uses a test based on nobs times the re-centered regression coefficient

Notes
The null hypothesis of the Phillips-Perron (PP) test is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then the null cannot be rejected that there and the series appears to be a unit root.

Unlike the ADF test, the regression estimated includes only one lag of the dependant variable, in addition to trend terms. Any serial correlation in the regression errors is accounted for using a long-run variance estimator (currently Newey-West).

The p-values are obtained through regression surface approximation from MacKinnon (1994) using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null.
Examples

```python
>>> from arch.unitroot import PhillipsPerron
>>> import numpy as np
>>> import statsmodels.api as sm

>>> data = sm.datasets.macrodata.load().data
>>> inflation = np.diff(np.log(data['cpi']))
>>> pp = PhillipsPerron(inflation)
>>> print('{0:0.4f}'.format(pp.stat))
-8.1356
>>> print('{0:0.4f}'.format(pp.pvalue))
0.0000
>>> pp.lags
15
>>> pp.trend = 'ct'
>>> print('{0:0.4f}'.format(pp.stat))
-8.2022
>>> print('{0:0.4f}'.format(pp.pvalue))
0.0000
>>> pp.test_type = 'rho'
>>> print('{0:0.4f}'.format(pp.stat))
-120.3271
>>> print('{0:0.4f}'.format(pp.pvalue))
0.0000
```

References

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary()</td>
<td>Summary of test, containing statistic, p-value and critical values</td>
</tr>
</tbody>
</table>

**arch.unitroot.PhillipsPerron.summary**

PhillipsPerron.summary()

Summary of test, containing p-value and critical values

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternative_hypothesis</td>
<td>The alternative hypothesis</td>
</tr>
<tr>
<td>critical_values</td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td>lags</td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td>nobs</td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td>null_hypothesis</td>
<td>The null hypothesis</td>
</tr>
<tr>
<td>pvalue</td>
<td>Returns the p-value for the test statistic</td>
</tr>
</tbody>
</table>

Continued on next page
Table 7 – continued from previous page

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stat</code></td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td><code>test_type</code></td>
<td>Gets or sets the test type returned by <code>stat</code>.</td>
</tr>
<tr>
<td><code>trend</code></td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td><code>valid_trends</code></td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

`arch.unitroot.PhillipsPerron.alternative_hypothesis`

`PhillipsPerron.alternative_hypothesis`

The alternative hypothesis

`arch.unitroot.PhillipsPerron.critical_values`

`PhillipsPerron.critical_values`

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

`arch.unitroot.PhillipsPerron.lags`

`PhillipsPerron.lags`

Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

`arch.unitroot.PhillipsPerron.nobs`

`PhillipsPerron.nobs`

The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

`arch.unitroot.PhillipsPerron.null_hypothesis`

`PhillipsPerron.null_hypothesis`

The null hypothesis

`arch.unitroot.PhillipsPerron.pvalue`

`PhillipsPerron.pvalue`

Returns the p-value for the test statistic

`arch.unitroot.PhillipsPerron.stat`

`PhillipsPerron.stat`

The test statistic for a unit root
arch.unitroot.PhillipsPerron.test_type

PhillipsPerron.test_type

Gets or sets the test type returned by stat. Valid values are ‘tau’ or ‘rho’

arch.unitroot.PhillipsPerron.trend

PhillipsPerron.trend

Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

arch.unitroot.PhillipsPerron.valid_trends

PhillipsPerron.valid_trends

List of valid trend terms.

arch.unitroot.PhillipsPerron.y

PhillipsPerron.y

Returns the data used in the test statistic

4.3.4 arch.unitroot.ZivotAndrews

class arch.unitroot.ZivotAndrews(y, lags=None, trend='c', trim=0.15, max_lags=None, method='AIC')

Zivot-Andrews structural-break unit-root test

The Zivot-Andrews test can be used to test for a unit root in a univariate process in the presence of serial correlation and a single structural break.

Parameters

- y (array_like) – data series
- lags (int, optional) – The number of lags to use in the ADF regression. If omitted or None, method is used to automatically select the lag length with no more than max_lags are included.
- trend (\{‘nc’, ‘c’, ‘ct’, ‘ctt’\}, optional) – The trend component to include in the Zivot-Andrews test ‘c’ - Include a constant (Default) ‘t’ - Include a linear time trend ‘ct’ - Include a constant and linear time trend
- trim (float) – percentage of series at begin/end to exclude from break-period calculation in range [0, 0.333] (default=0.15)
- max_lags (int, optional) – The maximum number of lags to use when selecting lag length
- method (\{‘AIC’, ‘BIC’, ‘t-stat’\}, optional) – The method to use when selecting the lag length ‘AIC’ - Select the minimum of the Akaiake IC ‘BIC’ - Select the minimum of the Schwarz/Bayesian IC ‘t-stat’ - Select the minimum of the Schwarz/Bayesian IC

stat
pvalue
critical_values

4.3. The Unit Root Tests
null_hypothesis
alternative_hypothesis
summary
regression
valid_trends
y
trend
lags

Notes

H0 = unit root with a single structural break

Algorithm follows Baum (2004/2015) approximation to original Zivot-Andrews method. Rather than performing an autolag regression at each candidate break period (as per the original paper), a single autolag regression is run up-front on the base model (constant + trend with no dummies) to determine the best lag length. This lag length is then used for all subsequent break-period regressions. This results in significant run time reduction but also slightly more pessimistic test statistics than the original Zivot-Andrews method.

No attempt has been made to characterize the size/power trade-off.

References

Methods

summary() Summary of test, containing statistic, p-value and critical values

arch.unitroot.ZivotAndrews.summary

ZivotAndrews.summary() Summary of test, containing statistic, p-value and critical values

Properties

alternative_hypothesis The alternative hypothesis
critical_values Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.
lags Sets or gets the number of lags used in the model.
nobs The number of observations used when computing the test statistic.
null_hypothesis The null hypothesis
pvalue Returns the p-value for the test statistic
stat The test statistic for a unit root
Table 9 – continued from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>trend</code></td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td><code>valid_trends</code></td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

**arch.unitroot.ZivotAndrews.alternative_hypothesis**

The alternative hypothesis

**arch.unitroot.ZivotAndrews.critical_values**

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

**arch.unitroot.ZivotAndrews.lags**

Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

**arch.unitroot.ZivotAndrews.nobs**

The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

**arch.unitroot.ZivotAndrews.null_hypothesis**

The null hypothesis

**arch.unitroot.ZivotAndrews.pvalue**

Returns the p-value for the test statistic

**arch.unitroot.ZivotAndrews.stat**

The test statistic for a unit root

**arch.unitroot.ZivotAndrews.trend**

Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

4.3. The Unit Root Tests
arch.unitroot.ZivotAndrews.valid_trends

ZivotAndrews.valid_trends
List of valid trend terms.

arch.unitroot.ZivotAndrews.y

ZivotAndrews.y
Returns the data used in the test statistic

4.3.5 arch.unitroot.VarianceRatio

class arch.unitroot.VarianceRatio(y, lags=2, trend='c', debiased=True, robust=True, overlap=True)

Variance Ratio test of a random walk.

Parameters

• y (ndarray, Series) – The data to test for a random walk
• lags (int) – The number of periods to used in the multi-period variance, which is the numerator of the test statistic. Must be at least 2
• trend (\{'nc', 'c'\}, optional) – 'c' allows for a non-zero drift in the random walk, while 'nc' requires that the increments to y are mean 0
• overlap (bool, optional) – Indicates whether to use all overlapping blocks. Default is True. If False, the number of observations in y minus 1 must be an exact multiple of lags. If this condition is not satisfied, some values at the end of y will be discarded.
• robust (bool, optional) – Indicates whether to use heteroskedasticity robust inference. Default is True.
• debiased (bool, optional) – Indicates whether to use a debiased version of the test. Default is True. Only applicable if overlap is True.

stat
pvalue
critical_values
null_hypothesis
alternative_hypothesis
summary
valid_trends
y
trend
lags
overlap
robust
debiased
Notes

The null hypothesis of a VR is that the process is a random walk, possibly plus drift. Rejection of the null with a positive test statistic indicates the presence of positive serial correlation in the time series.

Examples

```python
>>> from arch.unitroot import VarianceRatio
>>> import datetime as dt
>>> import pandas_datareader as pdr

>>> data = pdr.get_data_fred('DJIA')
>>> data = data.resample('M').last() # End of month
>>> returns = data['DJIA'].pct_change().dropna()
>>> vr = VarianceRatio(returns, lags=12)
>>> print(''.format(vr.pvalue))
0.0000
```

References

Methods

<table>
<thead>
<tr>
<th><code>summary()</code></th>
<th>Summary of test, containing statistic, p-value and critical values</th>
</tr>
</thead>
</table>

`arch.unitroot.VarianceRatio.summary`

VarianceRatio. `summary()`

Summary of test, containing statistic, p-value and critical values

Properties

<table>
<thead>
<tr>
<th><code>alternative_hypothesis</code></th>
<th>The alternative hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>critical_values</code></td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td><code>debiased</code></td>
<td>Sets of gets the indicator to use debiased variances in the ratio</td>
</tr>
<tr>
<td><code>lags</code></td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td><code>nobs</code></td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td><code>null_hypothesis</code></td>
<td>The null hypothesis</td>
</tr>
<tr>
<td><code>overlap</code></td>
<td>Sets of gets the indicator to use overlapping returns in the long-period variance estimator</td>
</tr>
<tr>
<td><code>pvalue</code></td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td><code>robust</code></td>
<td>Sets of gets the indicator to use a heteroskedasticity robust variance estimator</td>
</tr>
<tr>
<td><code>stat</code></td>
<td>The test statistic for a unit root</td>
</tr>
</tbody>
</table>

Continued on next page
Table 11 – continued from previous page

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trend</td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td>valid_trends</td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td>vr</td>
<td>The ratio of the long block lags-period variance to the 1-period variance.</td>
</tr>
<tr>
<td>y</td>
<td>Returns the data used in the test statistic.</td>
</tr>
</tbody>
</table>

**arch.unitroot.VarianceRatio.alternative_hypothesis**

VarianceRatio.alternative_hypothesis

The alternative hypothesis

**arch.unitroot.VarianceRatio.critical_values**

VarianceRatio.critical_values

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

**arch.unitroot.VarianceRatio.debiased**

VarianceRatio.debiased

Sets of gets the indicator to use debiased variances in the ratio

**arch.unitroot.VarianceRatio.lags**

VarianceRatio.lags

Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

**arch.unitroot.VarianceRatio.nobs**

VarianceRatio.nobs

The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

**arch.unitroot.VarianceRatio.null_hypothesis**

VarianceRatio.null_hypothesis

The null hypothesis

**arch.unitroot.VarianceRatio.overlap**

VarianceRatio.overlap

Sets of gets the indicator to use overlapping returns in the long-period variance estimator
arch.unitroot.VarianceRatio.pvalue

VarianceRatio.pvalue
Returns the p-value for the test statistic

arch.unitroot.VarianceRatio.robust

VarianceRatio.robust
Sets the indicator to use a heteroskedasticity robust variance estimator

arch.unitroot.VarianceRatio.stat

VarianceRatio.stat
The test statistic for a unit root

arch.unitroot.VarianceRatio.trend

VarianceRatio.trend
Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

arch.unitroot.VarianceRatio.valid_trends

VarianceRatio.valid_trends
List of valid trend terms.

arch.unitroot.VarianceRatio.vr

VarianceRatio.vr
The ratio of the long block lags-period variance to the 1-period variance

arch.unitroot.VarianceRatio.y

VarianceRatio.y
Returns the data used in the test statistic

4.3.6 arch.unitroot.KPSS

class arch.unitroot.KPSS(y, lags=None, trend='c')
Kwiatkowski, Phillips, Schmidt and Shin (KPSS) stationarity test

Parameters:
- y (ndarray, Series) – The data to test for stationarity
- lags (int, optional) – The number of lags to use in the Newey-West estimator of the long-run covariance. If omitted or None, the number of lags is calculated with the data-dependent method of Hobijn et al. (1998). See also Andrews (1991), Newey & West (1994), and Schwert (1989). Set lags=-1 to use the old method that only depends on the sample size, 12 * (nobs/100) ** (1/4).
- trend (['c', 'ct'], optional) –
The trend component to include in the ADF test 'c' - Include a constant (Default) 'ct' - Include a constant and linear time trend

The null hypothesis of the KPSS test is that the series is weakly stationary and the alternative is that it is non-stationary. If the p-value is above a critical size, then the null cannot be rejected that there and the series appears stationary.

The p-values and critical values were computed using an extensive simulation based on 100,000,000 replications using series with 2,000 observations.

Examples

```python
>>> from arch.unitroot import KPSS
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.macrodata.load().data
>>> inflation = np.diff(np.log(data['cpi']))
>>> kpss = KPSS(inflation)
>>> print('{}{0:0.4f}{}'.format(kpss.stat))
0.2870
>>> print('{}{0:0.4f}{}'.format(kpss.pvalue))
0.1473
>>> kpss.trend = 'ct'
>>> print('{}{0:0.4f}{}'.format(kpss.stat))
0.2075
>>> print('{}{0:0.4f}{}'.format(kpss.pvalue))
0.0128
```

References

Methods

Page 258
arch Documentation, Release 4.11

<table>
<thead>
<tr>
<th>Summary()</th>
<th>Summary of test, containing statistic, p-value and critical values</th>
</tr>
</thead>
</table>

**arch.unitroot.KPSS**.summary

**KPSS**.summary()

Summary of test, containing statistic, p-value and critical values

**Properties**

<table>
<thead>
<tr>
<th>alternative_hypothesis</th>
<th>The alternative hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical_values</td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td>lags</td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td>nobs</td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td>null_hypothesis</td>
<td>The null hypothesis</td>
</tr>
<tr>
<td>pvalue</td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td>stat</td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td>trend</td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td>valid_trends</td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td>y</td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

**arch.unitroot.KPSS**.alternative_hypothesis

**KPSS**.alternative_hypothesis

The alternative hypothesis

**arch.unitroot.KPSS**.critical_values

**KPSS**.critical_values

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

**arch.unitroot.KPSS**.lags

**KPSS**.lags

Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

**arch.unitroot.KPSS**.nobos

**KPSS**.nobos

The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

4.3. The Unit Root Tests
archDocumentation, Release 4.11

```
arch.unitroot.KPSS.null_hypothesis

KPSS.null_hypothesis
The null hypothesis

arch.unitroot.KPSS.pvalue

KPSS.pvalue
Returns the p-value for the test statistic

arch.unitroot.KPSS.stat

KPSS.stat
The test statistic for a unit root

arch.unitroot.KPSS.trend

KPSS.trend
Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

arch.unitroot.KPSS.valid_trends

KPSS.valid_trends
List of valid trend terms.

arch.unitroot.KPSS.y

KPSS.y
Returns the data used in the test statistic

4.3.7 Automatic Bandwidth Selection

```

docs.autobandwidth(y[, kernel])


```

arch.unitroot.auto_bandwidth

```

arch.unitroot.auto_bandwidth(y, kernel='ba')

Parameters

- y (ndarray, Series) – Data on which to apply the bandwidth selection
- kernel (str) – The kernel function to use for selecting the bandwidth
  - ‘ba’, ‘bartlett’, ‘nw’: Bartlett kernel (default)
  - ‘pa’, ‘parzen’, ‘gallant’: Parzen kernel
  - ‘qs’, ‘andrews’: Quadratic Spectral kernel

260 Chapter 4. Unit Root Testing
Returns  The estimated optimal bandwidth.
Return type  float
5.1 Version 4

5.1.1 Release 4.11

• Added `std_resid()` (GH326).
• Error if inputs are not ndarrays, DataFrames or Series (GH315).
• Added a check that the covariance is non-zero when using “studentized” confidence intervals. If the function bootstrapped produces statistics with 0 variance, it is not possible to studentized (GH322).

5.1.2 Release 4.10

• Fixed a bug in arch_lm_test that assumed that the model data is contained in a pandas Series. (GH313).
• Fixed a bug that can affect use in certain environments that reload modules (GH317).

5.1.3 Release 4.9

• Removed support for Python 2.7.
• Added `auto_bandwidth()` to compute optimized bandwidth for a number of common kernel covariance estimators (GH303). This code was written by Michael Rabba.
• Added a parameter `rescale` to `arch_model()` that allows the estimator to rescale data if it may help parameter estimation. If `rescale=True`, then the data will be rescaled by a power of 10 (e.g., 10, 100, or 1000) to produce a series with a residual variance between 1 and 1000. The model is then estimated on the rescaled data. The scale is reported `scale()`. If `rescale=None`, a warning is produced if the data appear to be poorly scaled, but no change of scale is applied. If `rescale=False`, no scale change is applied and no warning is issued.
• Fixed a bug when using the BCA bootstrap method where the leave-one-out jackknife used the wrong centering variable (GH288).
5.1.4 Release 4.8.1

- Fixed a bug which prevented extension modules from being correctly imported.

5.1.5 Release 4.8

- Added Zivot-Andrews unit root test `ZivotAndrews`. This code was originally written by Jim Varanelli.
- Added data dependent lag length selection to the KPSS test, `KPSS`. This code was originally written by Jim Varanelli.
- Added `IndependentSamplesBootstrap` to perform bootstrap inference on statistics from independent samples that may have uneven length (GH260).
- Added `arch_lm_test()` to perform ARCH-LM tests on model residuals or standardized residuals (GH261).
- Fixed a bug in `ADF` when applying to very short time series (GH262).
- Added ability to set the `random_state` when initializing a bootstrap (GH259).

5.1.6 Release 4.7

- Added support for Fractionally Integrated GARCH (FIGARCH) in `FIGARCH`.
- Enable user to specify a specific value of the `backcast` in place of the automatically generated value.
- Fixed a bug where parameter-less models where incorrectly reported as having constant variance (GH248).

5.1.7 Release 4.6

- Added support for MIDAS volatility processes using Hyperbolic weighting in `MidasHyperbolic`(GH233).

5.1.8 Release 4.5

- Added a parameter to forecast that allows a user-provided callable random generator to be used in place of the model random generator (GH225).
- Added a low memory automatic lag selection method that can be used with very large time-series.
- Improved performance of automatic lag selection in ADF and related tests.
5.1.9 Release 4.4

• Added named parameters to Dickey-Fuller regressions.
• Removed use of the module-level NumPy RandomState. All random number generators use separate RandomState instances.
• Fixed a bug that prevented 1-step forecasts with exogenous regressors.
• Added the Generalized Error Distribution for univariate ARCH models.
• Fixed a bug in MCS when using the max method that prevented all included models from being listed.

5.1.10 Release 4.3

• Added FixedVariance volatility process which allows pre-specified variances to be used with a mean model. This has been added to allow so-called zig-zag estimation where a mean model is estimated with a fixed variance, and then a variance model is estimated on the residuals using a ZeroMean variance process.

5.1.11 Release 4.2

• Fixed a bug that prevented fix from being used with a new model (GH156).
• Added first_obs and last_obs parameters to fix to mimic fit.
• Added ability to jointly estimate smoothing parameter in EWMA variance when fitting the model.
• Added ability to pass optimization options to ARCH model estimation (GH195).

5.2 Version 3

• Added forecast code for mean forecasting
• Added volatility hedgehog plot
• Added fix to arch models which allows for user specified parameters instead of estimated parameters.
• Added Hansen’s Skew T distribution to distribution (Stanislav Khrapov)
• Updated IPython notebooks to latest IPython version
• Bug and typo fixes to IPython notebooks
• Changed MCS to give a pvalue of 1.0 to best model. Previously was NaN
• Removed hold_back and last_obs from model initialization and to fit method to simplify estimating a model over alternative samples (e.g., rolling window estimation)
• Redefined hold_back to only accept integers so that is simply defined the number of observations held back. This number is now held out of the sample irrespective of the value of first_obs.

5.3 Version 2

5.3.1 Version 2.2

• Added multiple comparison procedures
• Typographical and other small changes

5.3.2 Version 2.1

• Add unit root tests: * Augmented Dickey-Fuller * Dickey-Fuller GLS * Phillips-Perron * KPSS * Variance Ratio
• Removed deprecated locations for ARCH modeling functions

5.4 Version 1

5.4.1 Version 1.1

• Refactored to move the univariate routines to arch.univariate and added deprecation warnings in the old locations
• Enable numba jit compilation in the python recursions
• Added a bootstrap framework, which will be used in future versions. The bootstrap framework is general purpose and can be used via high-level functions such as conf_int or cov, or as a low level iterator using bootstrap
This package should be cited using Zenodo. For example, for the 4.8.1 release,
CHAPTER 7

Index

• genindex
• modindex


a

arch.bootstrap, 155
arch.bootstrap.multiple_comparison, 221
arch.unitroot, 240
arch.utility.testing, 153
A
ADF (class in arch.unitroot), 241
aic (arch.univariate.base.ARCHModelFixedResult attribute), 152
aic (arch.univariate.base.ARCHModelResult attribute), 145
alternative_hypothesis (arch.unitroot.ADF attribute), 241, 243
alternative_hypothesis (arch.unitroot.DFGLS attribute), 245, 246
alternative_hypothesis (arch.unitroot.KPSS attribute), 258, 259
alternative_hypothesis (arch.unitroot.PhilipsPerron attribute), 248, 250
alternative_hypothesis (arch.unitroot.VarianceRatio attribute), 254, 256
alternative_hypothesis (arch.unitroot.ZivotAndrews attribute), 252, 253
apply() (arch.bootstrap.CircularBlockBootstrap method), 196
apply() (arch.bootstrap.IIDBootstrap method), 172
apply() (arch.bootstrap.IndependentSamplesBootstrap method), 180
apply() (arch.bootstrap.MovingBlockBootstrap method), 204
apply() (arch.bootstrap.StationaryBootstrap method), 189
ARCH (class in arch.univariate), 103
arch.bootstrap (module), 155
arch.bootstrap.multiple_comparison (module), 221
arch.unitroot (module), 240
arch.utility.testing (module), 153
arch_lm_test() (arch.univariate.base.ARCHModelFixedResult method), 148
arch_lm_test() (arch.univariate.base.ARCHModelResult method), 141
arch_model() (in module arch), 5
ARCHModel (class in arch.univariate.base), 74
ARCHModelFixedResult (class in arch.univariate.base), 148
ARCHModelForecast (class in arch.univariate.base), 22
ARCHModelForecastSimulation (class in arch.univariate.base), 22
ARCHModelResult (class in arch.univariate.base), 141
ARX (class in arch.univariate), 54
auto_bandwidth() (in module arch.unitroot), 260

B
backcast() (arch.univariate.ARCH method), 104
backcast() (arch.univariate.ConstantVariance method), 75
backcast() (arch.univariate.EGARCH method), 90
backcast() (arch.univariate.EWMAVariance method), 109
backcast() (arch.univariate.FIGARCH method), 85
backcast() (arch.univariate.FixedVariance method), 118
backcast() (arch.univariate.GARCH method), 80
backcast() (arch.univariate.HARCH method), 95
backcast() (arch.univariate.MIDASHyperbolic method), 99
backcast() (arch.univariate.RiskMetrics2006 method), 113
backcast_transform() (arch.univariate.ARCH method), 104
backcast_transform() (arch.univariate.ConstantVariance method), 75
backcast_transform() (arch.univariate.EGARCH method), 90
backcast_transform() (arch.univariate.EWMAVariance method), 109

backcast_transform()  
   (arch.univariate.FIGARCH method), 85
backcast_transform()  
   (arch.univariate.FixedVariance method), 118
backcast_transform()  
   (arch.univariate.GARCH method), 80
backcast_transform()  
   (arch.univariate.HARCH method), 95
backcast_transform()  
   (arch.univariate.MIDASHyperbolic method), 99
backcast_transform()  
   (arch.univariate.RiskMetrics2006 method), 113
better_models()  
   (arch.bootstrap.SPA method), 222, 223
bic  
   (arch.univariate.base.ARCHModelFixedResult attribute), 152
bic  
   (arch.univariate.base.ARCHModelResult attribute), 145
bootstrap()  
   (arch.bootstrap.CircularBlockBootstrap method), 197
bootstrap()  
   (arch.bootstrap.IIDBootstrap method), 173
bootstrap()  
   (arch.bootstrap.IndependentSamplesBootstrap method), 181
bootstrap()  
   (arch.bootstrap.MovingBlockBootstrap method), 205
bootstrap()  
   (arch.bootstrap.StationaryBootstrap method), 189
bounds()  
   (arch.univariate.ARCH method), 104
bounds()  
   (arch.univariate.ARX method), 55
bounds()  
   (arch.univariate.ConstantMean method), 48
bounds()  
   (arch.univariate.ConstantVariance method), 76
bounds()  
   (arch.univariate.EGARCH method), 90
bounds()  
   (arch.univariate.EWMAVariance method), 109
bounds()  
   (arch.univariate.FIGARCH method), 86
bounds()  
   (arch.univariate.FixedVariance method), 118
bounds()  
   (arch.univariate.GARCH method), 81
bounds()  
   (arch.univariate.GeneralizedError method), 138
bounds()  
   (arch.univariate.HARCH method), 95
bounds()  
   (arch.univariate.HARX method), 62
bounds()  
   (arch.univariate.LS method), 69
bounds()  
   (arch.univariate.MIDASHyperbolic method), 100
bounds()  
   (arch.univariate.Normal method), 129
bounds()  
   (arch.univariate.RiskMetrics2006 method), 114
bounds()  
   (arch.univariate.SkewStudent method), 135
bounds()  
   (arch.univariate.StudentsT method), 131
bounds()  
   (arch.univariate.ZeroMean method), 42
cdf()  
   (arch.univariate.GeneralizedError method), 138
cdf()  
   (arch.univariate.Normal method), 129
cdf()  
   (arch.univariate.SkewStudent method), 135
cdf()  
   (arch.univariate.StudentsT method), 132
CircularBlockBootstrap  
   (class in arch.bootstrap), 195
clone()  
   (arch.bootstrap.CircularBlockBootstrap method), 198
clone()  
   (arch.bootstrap.IIDBootstrap method), 174
clone()  
   (arch.bootstrap.IndependentSamplesBootstrap method), 182
clone()  
   (arch.bootstrap.MovingBlockBootstrap method), 206
clone()  
   (arch.bootstrap.StationaryBootstrap method), 190
compute()  
   (arch.bootstrap.MCS method), 227
compute()  
   (arch.bootstrap.SPA method), 222, 223
compute()  
   (arch.bootstrap.StepM method), 225
compute_param_cov()  
   (arch.univariate.ARX method), 55
compute_param_cov()  
   (arch.univariate.ConstantMean method), 49
compute_param_cov()  
   (arch.univariate.HARX method), 62
compute_param_cov()  
   (arch.univariate.LS method), 69
compute_param_cov()  
   (arch.univariate.ZeroMean method), 42
compute_variance()  
   (arch.univariate.ARCH method), 104
compute_variance()  
   (arch.univariate.ConstantVariance method), 76
compute_variance()  
   (arch.univariate.EGARCH method), 91
compute_variance()  
   (arch.univariate.EWMAVariance method), 109
compute_variance()  
   (arch.univariate.FIGARCH method), 86
compute_variance()  
   (arch.univariate.FixedVariance method), 118
compute_variance()  
   (arch.univariate.GARCH method), 81
compute_variance()  
   (arch.univariate.HARCH method), 95
compute_variance()  
   (arch.univariate.HARX method), 62
compute_variance()  
   (arch.univariate.LS method), 69
compute_variance()  
   (arch.univariate.MIDASHyperbolic method), 100
compute_variance()  
   (arch.univariate.Normal method), 129
compute_variance()  
   (arch.univariate.RiskMetrics2006 method), 114
compute_variance()  
   (arch.univariate.SkewStudent method), 135
compute_variance()  
   (arch.univariate.StudentsT method), 131

compute_variance()
(arch.univariate.RiskMetrics2006 method), 114

conditional_volatility
(arch.univariate.base.ARCHModelFixedResult attribute), 152
conditional_volatility
(arch.univariate.base.ARCHModelResult attribute), 145

conf_int()
(arch.bootstrap.CircularBlockBootstrap method), 198

conf_int()
(arch.bootstrap.IIDBootstrap method), 174

conf_int()
(arch.bootstrap.IndependentSamplesBootstrap method), 183

conf_int()
(arch.bootstrap.MovingBlockBootstrap method), 207

conf_int()
(arch.bootstrap.StationaryBootstrap method), 192

conf_int()
(arch.univariate.base.ARCHModelResult method), 142

ConstantMean (class in arch.univariate), 47
ConstantVariance (class in arch.univariate), 75

constraints()
(arch.univariate.ARCH method), 105

constraints()
(arch.univariate.ARX method), 55

constraints()
(arch.univariate.ConstantMean method), 49

constraints()
(arch.univariate.ConstantVariance method), 76

constraints()
(arch.univariate.EGARCH method), 91

constraints()
(arch.univariate.EWMAVariance method), 109

constraints()
(arch.univariate.FIGARCH method), 86

constraints()
(arch.univariate.FixedVariance method), 119

constraints()
(arch.univariate.GARCH method), 81

constraints()
(arch.univariate.GeneralizedError method), 138

constraints()
(arch.univariate.HARCH method), 95

constraints()
(arch.univariate.HARX method), 62

constraints()
(arch.univariate.LS method), 69

constraints()
(arch.univariate.MIDASHyperbolic method), 100

constraints()
(arch.univariate.Normal method), 129

constraints()
(arch.univariate.RiskMetrics2006 method), 114

constraints()
(arch.univariate.SkewStudent method), 135

constraints()
(arch.univariate.StudentsT method), 132

constraints()
(arch.univariate.ZeroMean method), 42

correction_flag
(arch.univariate.base.ARCHModelResult attribute), 146

cov()
(arch.bootstrap.CircularBlockBootstrap method), 199

cov()
(arch.bootstrap.IIDBootstrap method), 175

cov()
(arch.bootstrap.IndependentSamplesBootstrap method), 183

cov()
(arch.bootstrap.MovingBlockBootstrap method), 207

cov()
(arch.bootstrap.StationaryBootstrap method), 192

critical_values
(arch.unitroot.ADF attribute), 241, 243

critical_values
(arch.unitroot.DFGLS attribute), 245, 246

critical_values
(arch.unitroot.KPSS attribute), 258, 259

critical_values
(arch.unitroot.PhilipsPerron attribute), 248, 250

critical_values
(arch.unitroot.VarianceRatio attribute), 254, 256

critical_values
(arch.unitroot.ZivotAndrews attribute), 251, 253

critical_values
(arch.utility.testing.WaldTestStatistic attribute), 153
critical_values()
(arch.bootstrap.SPA method), 223

data
(arch.bootstrap.CircularBlockBootstrap attribute), 195

data
(arch.bootstrap.IIDBootstrap attribute), 171

data
(arch.bootstrap.IndependentSamplesBootstrap attribute), 179

data
(arch.bootstrap.MovingBlockBootstrap attribute), 203
data
(arch.bootstrap.StationaryBootstrap attribute), 187
debiased
(arch.unitroot.VarianceRatio attribute), 254, 256

DFGLS (class in arch.unitroot), 244
distribution
(arch.univariate.ARX attribute), 60
distribution
(arch.univariate.ConstantMean attribute), 53
distribution
(arch.univariate.HARCH attribute), 67
distribution
(arch.univariate.LS attribute), 73
distribution
(arch.univariate.ZeroMean attribute), 47

Distribution (class in arch.univariate.distribution), 140

EGARCH (class in arch.univariate), 89
EWMAVariance (class in arch.univariate), 108
excluded (arch.bootstrap.MCS attribute), 228

F

FIGARCH (class in arch.univariate), 84
fit() (arch.univariate.ARX method), 56
fit() (arch.univariate.ConstantMean method), 49
fit() (arch.univariate.HARX method), 63
fit() (arch.univariate.LS method), 69
fit() (arch.univariate.ZeroMean method), 43
fit_start (arch.univariate.base.ARCHModelResult attribute), 146
fit_stop (arch.univariate.base.ARCHModelResult attribute), 146
fix() (arch.univariate.ARX method), 56
fix() (arch.univariate.ConstantMean method), 50
fix() (arch.univariate.HARX method), 63
fix() (arch.univariate.LS method), 70
fix() (arch.univariate.ZeroMean method), 43
FixedVariance (class in arch.univariate), 117
forecast() (arch.univariate.ARCH method), 105
forecast() (arch.univariate.ARX method), 57
forecast() (arch.univariate.base.ARCHModelFixedResult method), 149
forecast() (arch.univariate.base.ARCHModelResult method), 142
forecast() (arch.univariate.ConstantMean method), 50
forecast() (arch.univariate.ConstantVariance method), 76
forecast() (arch.univariate.EGARCH method), 91
forecast() (arch.univariate.EWMAVariance method), 110
forecast() (arch.univariate.FIGARCH method), 86
forecast() (arch.univariate.FixedVariance method), 119
forecast() (arch.univariate.GARCH method), 81
forecast() (arch.univariate.HARX method), 96
forecast() (arch.univariate.HARCH method), 64
forecast() (arch.univariate.LS method), 70
forecast() (arch.univariate.MIDASHyperbolic method), 101
forecast() (arch.univariate.RiskMetrics2006 method), 114
forecast() (arch.univariate.ZeroMean method), 44

g

GARCH (class in arch.univariate), 79
GeneralizedError (class in arch.univariate), 137
get_state() (arch.bootstrap.CircularBlockBootstrap method), 180
get_state() (arch.bootstrap.IIDBootstrap method), 184
get_state() (arch.bootstrap.MovingBlockBootstrap method), 208
get_state() (arch.bootstrap.StationaryBootstrap method), 193

H

HARCH (class in arch.univariate), 93
HARX (class in arch.univariate), 60
hedgehog_plot() (arch.univariate.base.ARCHModelFixedResult method), 150
hedgehog_plot() (arch.univariate.base.ARCHModelResult method), 143

I

IIDBootstrap (class in arch.bootstrap), 171
included (arch.bootstrap.MCS attribute), 228
IndependentSamplesBootstrap (class in arch.bootstrap), 179
index (arch.bootstrap.CircularBlockBootstrap attribute), 195, 202
index (arch.bootstrap.IIDBootstrap attribute), 171, 178
index (arch.bootstrap.IndependentSamplesBootstrap attribute), 179, 186
index (arch.bootstrap.MovingBlockBootstrap attribute), 203, 210
index (arch.bootstrap.StationaryBootstrap attribute), 187, 195

K

KPSS (class in arch.unitroot), 257
kw_data (arch.bootstrap.CircularBlockBootstrap attribute), 195
kw_data (arch.bootstrap.IIDBootstrap attribute), 171
kw_data (arch.bootstrap.IndependentSamplesBootstrap attribute), 179
kw_data (arch.bootstrap.MovingBlockBootstrap attribute), 203
kw_data (arch.bootstrap.StationaryBootstrap attribute), 187

L

lags (arch.unitroot.ADF attribute), 241, 243
lags (arch.unitroot.DFGLS attribute), 245, 247
lags (arch.unitroot(KPSS attribute), 258, 259
lags (arch.unitroot.PhilipsPerron attribute), 248, 250
lags (arch.unitroot.VarianceRatio attribute), 254, 256
lags (arch.unitroot.ZivotAndrews attribute), 252, 253
loglikelihood (arch.univariate.base.ARCHModelFixedResult attribute), 152
loglikelihood (arch.univariate.base.ARCHModelResult attribute), 146
loglikelihood() (arch.univariate.GeneralizedError method), 139
loglikelihood() (arch.univariate.Normal method), 129
loglikelihood() (arch.univariate.SkewStudent method), 135
loglikelihood() (arch.univariate.StudentsT method), 132
LS (class in arch.univariate), 67
max_lags (arch.unitroot.ADF attribute), 243
max_lags (arch.unitroot.DFGLS attribute), 247
MCS (class in arch.bootstrap), 226
mean (arch.univariate.base.ARCHModelForecast attribute), 22
MIDASHyperbolic (class in arch.univariate), 98
model (arch.univariate.base.ARCHModelFixedResult attribute), 152
model (arch.univariate.base.ARCHModelResult attribute), 146
MovingBlockBootstrap (class in arch.bootstrap), 203
nobs (arch.unitroot.ADF attribute), 243
nobs (arch.unitroot.DFGLS attribute), 247
nobs (arch.unitroot.KPSS attribute), 259
nobs (arch.unitroot.PhillipsPerron attribute), 250
nobs (arch.unitroot.VarianceRatio attribute), 256
nobs (arch.unitroot.ZivotAndrews attribute), 253
nobs (arch.univariate.base.ARCHModelFixedResult attribute), 152
nobs (arch.univariate.base.ARCHModelResult attribute), 146
Normal (class in arch.univariate), 128
null (arch.utility.testing.WaldTestStatistic attribute), 153
null_hypothesis (arch.unitroot.ADF attribute), 241, 244
null_hypothesis (arch.unitroot.DFGLS attribute), 245, 247
null_hypothesis (arch.unitroot.KPSS attribute), 258, 260
null_hypothesis (arch.unitroot.PhillipsPerron attribute), 248, 250
null_hypothesis (arch.unitroot.VarianceRatio attribute), 254, 256
null_hypothesis (arch.unitroot.ZivotAndrews attribute), 251, 253
num_params (arch.univariate.ARCH attribute), 103
num_params (arch.univariate.ARX attribute), 60
num_params (arch.univariate.base.ARCHModelFixedResult attribute), 152
num_params (arch.univariate.base.ARCHModelResult attribute), 146
num_params (arch.univariate.ConstantMean attribute), 53
num_params (arch.univariate.EGARCH attribute), 89
num_params (arch.univariate.EWMAVariance attribute), 108
num_params (arch.univariate.FIGARCH attribute), 84
num_params (arch.univariate.GARCH attribute), 79
num_params (arch.univariate.HARCH attribute), 67
num_params (arch.univariate.LS attribute), 74
num_params (arch.univariate.MIDASHyperbolic attribute), 98
num_params (arch.univariate.RiskMetrics2006 attribute), 112
num_params (arch.univariate.ZeroMean attribute), 47
optimization_result (arch.univariate.base.ARCHModelResult attribute), 146
overlap (arch.unitroot.VarianceRatio attribute), 254, 256
param_cov (arch.univariate.base.ARCHModelResult attribute), 147
parameter_names() (arch.univariate.ARCH method), 106
parameter_names() (arch.univariate.ARX method), 58
parameter_names() (arch.univariate.ConstantMean method), 52
parameter_names() (arch.univariate.ConstantVariance method), 77
parameter_names() (arch.univariate.EGARCH method), 92
parameter_names() (arch.univariate.EWMAVariance method), 111
parameter_names() (arch.univariate.FIGARCH method), 87
parameter_names() (arch.univariate.FixedVariance method), 120
parameter_names() (arch.univariate.GARCH method), 82
parameter_names() (arch.univariate.GeneralizedError method), 139
parameter_names() (arch.univariate.HARCH method), 97
parameter_names() (arch.univariate.HARX method), 65
parameter_names() (arch.univariate.LS method), 72
parameter_names() (arch.univariate.MIDASHyperbolic method), 101
parameter_names() (arch.univariate.Normal method), 130
parameter_names() (arch.univariate.RiskMetrics2006 method), 115
parameter_names() (arch.univariate.SkewStudent method), 136
parameter_names() (arch.univariate.StudentsT method), 133
parameter_names() (arch.univariate.ZeroMean method), 45
params (arch.univariate.base.ARCHModelFixedResult attribute), 152
params (arch.univariate.base.ARCHModelResult attribute), 147
PhillipsPerron (class in arch.unitroot), 248
plot() (arch.univariate.base.ARCHModelFixedResult method), 150
plot() (arch.univariate.base.ARCHModelResult method), 144
pos_data (arch.bootstrap.CircularBlockBootstrap attribute), 195
pos_data (arch.bootstrap.IIDBootstrap attribute), 171
pos_data (arch.bootstrap.IndependentSamplesBootstrap attribute), 179
pos_data (arch.bootstrap.MovingBlockBootstrap attribute), 203
pos_data (arch.bootstrap.StationaryBootstrap attribute), 187
ppf() (arch.univariate.GeneralizedError method), 139
ppf() (arch.univariate.Normal method), 130
ppf() (arch.univariate.SkewStudent method), 136
ppf() (arch.univariate.StudentsT method), 133
pval (arch.utility.testing.WaldTestStatistic attribute), 153
pvalue (arch.unitroot.ADF attribute), 241, 244
pvalue (arch.unitroot.DFGLS attribute), 245, 247
pvalue (arch.unitroot.KPSS attribute), 258, 260
pvalue (arch.unitroot.PhillipsPerron attribute), 248, 250
pvalue (arch.unitroot.VarianceRatio attribute), 254, 257
pvalue (arch.unitroot.ZivotAndrews attribute), 251, 253
pvalues (arch.bootstrap.MCS attribute), 228
pvalues (arch.bootstrap.SPA attribute), 224
pvalues (arch.univariate.base.ARCHModelResult attribute), 147
random_state (arch.bootstrap.CircularBlockBootstrap attribute), 195, 202
random_state (arch.bootstrap.IIDBootstrap attribute), 171, 178
random_state (arch.bootstrap.IndependentSamplesBootstrap attribute), 179, 187
random_state (arch.bootstrap.MovingBlockBootstrap attribute), 203, 210
random_state (arch.bootstrap.StationaryBootstrap attribute), 187, 195
random_state (arch.univariate.GeneralizedError attribute), 140
random_state (arch.univariate.Normal attribute), 131
random_state (arch.univariate.SkewStudent attribute), 137
random_state (arch.univariate.StudentsT attribute), 134
regression (arch.unitroot.ADF attribute), 241, 244
regression (arch.unitroot.DFGLS attribute), 245, 247
regression (arch.unitroot.ZivotAndrews attribute), 252
reset () (arch.bootstrap.CircularBlockBootstrap method), 201
reset () (arch.bootstrap.IIDBootstrap method), 176
reset () (arch.bootstrap.IndependentSamplesBootstrap method), 185
reset () (arch.bootstrap.MCS method), 227
reset () (arch.bootstrap.MovingBlockBootstrap method), 208
reset () (arch.bootstrap.SPA method), 222, 224
reset () (arch.bootstrap.StationaryBootstrap method), 193
reset () (arch.bootstrap.StepM method), 226
resid (arch.univariate.base.ARCHModelFixedResult attribute), 153
resid (arch.univariate.base.ARCHModelResult attribute), 147
resids() (arch.univariate.ARX method), 58
resids() (arch.univariate.ConstantMean method), 52
resids() (arch.univariate.HARX method), 65
resids() (arch.univariate.LS method), 72
resids() (arch.univariate.ZeroMean method), 45
residual_variance (arch.univariate.base.ARCHModelForecast attribute), 22
residual_variances (arch.univariate.base.ARCHModelForecastSimulation attribute), 23
residuals (arch.univariate.base.ARCHModelForecastSimulation attribute), 23
RiskMetrics2006 (class in arch.univariate), 112
robust (arch.unitroot.VarianceRatio attribute), 254, 257
rsquared (arch.univariate.base.ARCHModelResult attribute), 147
rsquared_adj (arch.univariate.base.ARCHModelResult attribute), 147

S
scale (arch.univariate.base.ARCHModelResult attribute), 147
seed() (arch.bootstrap.CircularBlockBootstrap method), 201
seed() (arch.bootstrap.IIIDBootstrap method), 177
seed() (arch.bootstrap.IndependentSamplesBootstrap method), 185
seed() (arch.bootstrap.MCS method), 227
seed() (arch.bootstrap.MovingBlockBootstrap method), 209
seed() (arch.bootstrap.SPA method), 222, 224
seed() (arch.bootstrap.StationaryBootstrap method), 193
seed() (arch.bootstrap.StepM method), 226
set_state() (arch.bootstrap.CircularBlockBootstrap method), 201
set_state() (arch.bootstrap.IIIDBootstrap method), 177
set_state() (arch.bootstrap.IndependentSamplesBootstrap method), 185
set_state() (arch.bootstrap.MovingBlockBootstrap method), 209
set_state() (arch.bootstrap.StationaryBootstrap method), 193
simulate() (arch.univariate.ARCH method), 106
simulate() (arch.univariate.ARX method), 59
simulate() (arch.univariate.ConstantMean method), 52
simulate() (arch.univariate.ConstantVariance method), 77
simulate() (arch.univariate.EGARCH method), 92
simulate() (arch.univariate.EWMAVariance method), 111
simulate() (arch.univariate.FIGARCH method), 87
simulate() (arch.univariate.FIXedVariance method), 120
simulate() (arch.univariate.GARCH method), 82
simulate() (arch.univariate.GeneralizedError method), 140
simulate() (arch.univariate.HARCH method), 97
simulate() (arch.univariate.HARX method), 66
simulate() (arch.univariate.LS method), 72
simulate() (arch.univariate.MIDASHyperbolic method), 102
simulate() (arch.univariate.Normal method), 130
simulate() (arch.univariate.RiskMetrics2006 method), 115
simulate() (arch.univariate.SkewStudent method), 137
simulate() (arch.univariate.StudentsT method), 133
simulate() (arch.univariate.ZeroMean method), 46
SkewStudent (class in arch.univariate), 134
SPA (class in arch.bootstrap), 222
start (arch.univariate.ARCH attribute), 107
start (arch.univariate.ConstantVariance attribute), 78
start (arch.univariate.EGARCH attribute), 93
start (arch.univariate.EWMAVariance attribute), 112
start (arch.univariate.FIGARCH attribute), 88
start (arch.univariate.FixedVariance attribute), 121
start (arch.univariate.GARCH attribute), 83
start (arch.univariate.HARCH attribute), 98
start (arch.univariate.MIDASHyperbolic attribute), 103
start (arch.univariate.RiskMetrics2006 attribute), 117
starting_values() (arch.univariate.ARCH method), 107
starting_values() (arch.univariate.ARX method), 59
starting_values() (arch.univariate.ConstantMean method), 53
starting_values() (arch.univariate.ConstantVariance method), 78
starting_values() (arch.univariate.EGARCH method), 93
starting_values() (arch.univariate.EWMAVariance method), 111
starting_values() (arch.univariate.FIGARCH method), 88
starting_values() (arch.univariate.FixedVariance method), 120
starting_values() (arch.univariate.GARCH method), 83
starting_values() (arch.univariate.GeneralizedError method), 140
starting_values() (arch.univariate.HARCH method), 97
starting_values() (arch.univariate.HARX method), 66
starting_values() (arch.univariate.LS method), 73
starting_values() (arch.univariate.MIDASHyperbolic method), 102
starting_values() (arch.univariate.Normal method), 130
starting_values()
variance_bounds() (arch.univariate.ARCH method), 107
variance_bounds() (arch.univariate.ConstantVariance method), 78
variance_bounds() (arch.univariate.EGARCH method), 93
variance_bounds() (arch.univariate.EWMAVariance method), 112
variance_bounds() (arch.univariate.FIGARCH method), 88
variance_bounds() (arch.univariate.FixedVariance method), 121
variance_bounds() (arch.univariate.GARCH method), 83
variance_bounds() (arch.univariate.HARCH method), 97
variance_bounds() (arch.univariate.MIDASHyperbolic method), 102
variance_bounds() (arch.univariate.RiskMetrics2006 method), 116
VarianceRatio (class in arch.unitroot), 254
variances (arch.univariate.base.ARCHModelForecastSimulation attribute), 23
volatility (arch.univariate.ARX attribute), 60
volatility (arch.univariate.ConstantMean attribute), 53
volatility (arch.univariate.HARX attribute), 67
volatility (arch.univariate.LS attribute), 74
volatility (arch.univariate.ZeroMean attribute), 47
VolatilityProcess (class in arch.univariate volatility), 121
vr (arch.unitroot.VarianceRatio attribute), 257

W
WaldTestStatistic (class in arch.utility.testing), 153

X
x (arch.univariate.ARX attribute), 60
x (arch.univariate.ConstantMean attribute), 53
x (arch.univariate.HARX attribute), 67
x (arch.univariate.LS attribute), 74
x (arch.univariate.ZeroMean attribute), 47

Y
y (arch.unitroot.ADF attribute), 241, 244
y (arch.unitroot.DFGLS attribute), 245, 248
y (arch.unitroot.KPSS attribute), 258, 260
y (arch.unitroot.PhilipsPerron attribute), 248, 251
y (arch.unitroot.VarianceRatio attribute), 254, 257
y (arch.unitroot.ZivotAndrews attribute), 252, 254

Z
ZeroMean (class in arch.univariate), 41
ZivotAndrews (class in arch.unitroot), 251