

Welcome to Arcas’ documentation!

Arcas is Python library which allow users to collect academic articles’ metadata.

A large number of scholarly databases and collections offer some form of API access.
An API is an online tool to access data straight from the databases. Arcas is a tool
designed to help communicate/ping various of these APIs.

Arcas offers access to metadata of articles from the following journals
and pre-prints:

	IEEE

	PLOS

	Nature

	Springer

	arXiv

Note some journals might require you to register and generate an application
key. Currently, the following journals require you to register your application:

	IEEE

	Spinger

Guidelines for adding your key to the right place can be found under the How to: Register Application and use api_key.

Table of Contents

	Installing Arcas

	Tutorials
	Tutorial I: Retrieving a single article

	Tutorial II: Retrieve an article from various APIs

	Tutorial III: Retrieving a large number of articles

	Guides
	How to use Arcas from the command line

	How to: Register Application and use api_key

	How to: Collect articles’ based on title

	How to: Collect articles’ based on abstract

	How to: Collect articles’ based on year

	How to: Collect articles’ based on journal

	How to: Collect articles’ based on category

	Reference
	Search Parameters

	Results set

	List of available APIS

Indices and tables

	Search Page

Installing Arcas

From PyPi:

$ pip install arcas

From GitHub:

$ git clone https://github.com/Nikoleta-v3/Arcas.git
$ cd Arcas
$ pip install -r requirements.txt
$ python setup.py install

Arcas is supported by Python 3.5.

Tutorials

Arcas’ tutorials cover the basic usage of the library.

These include retrieving medata of a single article from a single API, retrieving
the same article from various APIs and finally retrieving a large number of medata
from different APIs.

Contents:

	Tutorial I: Retrieving a single article

	Tutorial II: Retrieve an article from various APIs

	Tutorial III: Retrieving a large number of articles

Tutorial I: Retrieving a single article

In this tutorial the aim is to retrieve a single article for the journal
arXiv, where the word ‘Game’ is contained in the title or the abstract.

Initially, let us import Arcas:

>>> import arcas

The APIs, are implemented as classes. Here we make an API instance of the API
arXiv:

>>> api = arcas.Arxiv()

We will now create the query, to which arXiv listens to. records is the
number of records we are requesting for:

>>> parameters = api.parameters_fix(title='Game', abstract='Game', records=1)
>>> url = api.create_url_search(parameters)

The query will be used to ping the API and afterwards we parse the xml file
that has been retrieved:

>>> request = api.make_request(url)
>>> root = api.get_root(request)
>>> raw_article = api.parse(root)
>>> article = api.to_dataframe(raw_article[0])

Note that we are using the library pandas [http://pandas.pydata.org/] to
store the results. The data frame contains metadata on an article as they
are recorded in the journal arXiv. Here we can type the following to see the
columns of the data frame:

>>> article.columns
Index(['url', 'key', 'unique_key', 'title', 'author', 'abstract', 'doi',
 'date', 'journal', 'provenance', 'primary_category', 'category',
 'score', 'open_access'],
 dtype='object')

and we can ask for the title:

>>> article.title.unique()
 array(['A New Approach to Solve a Class of Continuous-Time Nonlinear
 Quadratic Zero-Sum Game Using ADP'], dtype=object)

Note that you might be getting a different title that me. That is fine it’s just
that new articles have been added to the API’s database.

The structure of the results is discussed in depth in result set.

Tutorial II: Retrieve an article from various APIs

In this tutorial we are aiming to make a similar query, to that in
tutorial I, from different APIs.

To achieve that we will use a for loop, to loop over a list of given
APIs classes. For each instance then repeat the following procedure:

>>> for p in [arcas.Ieee, arcas.Plos, arcas.Arxiv, arcas.Springer, arcas.Nature]:

... api = p()
... parameters = api.parameters_fix(title='Game', abstract='Game', records=1)
... url = api.create_url_search(parameters)
... request = api.make_request(url)
... root = api.get_root(request)
... raw_article = api.parse(root)

... for art in raw_article:
... article = api.to_dataframe(art)
... api.export(article, 'results_{}.json'.format(api.__class__.__name__))

The export function, is a function that writes the results to a json [http://www.json.org/] file. Here the results of each API are stored to
a different file named after which API they come from.

Note that you need to require a key before being able to use arcas.Ieee
and arcas.Springer.

Tutorial III: Retrieving a large number of articles

Now that we have learned to ping several APIs for a single article, we will
repeat the procedure for a large number of articles. In this example the
number of articles we would like to retrieve is 20 from each API.

Often, we are looking for hundreds of articles. Rather than asking the API
for all the results at once, the APIs offer a paging mechanism through
start and records. That way we can receive chunks of the
result set at a time. start defines the index of the first returned
article and records the number of articles returned by the query.

>>> for p in [arcas.Ieee, arcas.Plos, arcas.Arxiv, arcas.Springer, arcas.Nature]:
... for start in range(2):
...
... api = p()
... parameters = api.parameters_fix(title='Game', abstract='Game',
... records=10, start=(start * 10))
... url = api.create_url_search(parameters)
... request = api.make_request(url)
... root = api.get_root(request)
... raw_article = api.parse(root)
...
... for art in raw_article:
... article = api.to_dataframe(art)
... api.export(article, 'results_{}.json'.format(api.__class__.__name__))

In our example this might not seem as an important difference. But assume you
were asking for a hundred of articles. Some APIs have a limited number of
articles that be can returned, thus using this practice we avoid overloading
the API.

Note that you need to require a key before being able to use arcas.Ieee
and arcas.Springer.

Guides

Contents:

	How to use Arcas from the command line

	How to: Register Application and use api_key

	How to: Collect articles’ based on title

	How to: Collect articles’ based on abstract

	How to: Collect articles’ based on year

	How to: Collect articles’ based on journal

	How to: Collect articles’ based on category

How to use Arcas from the command line

Arcas is a tool which can be used by the command line as well.

To get information on the arguments we can pass we type the following command
in a command prompt:

$ arcas_scrape --h
Arcas. A library to facilitate scraping of APIs for scholarly resources.

Usage:
 arcas_scrape [-h] [-p API] [-a AUTHOR] [-t TITLE] [-b ABSTRACT] [-y YEAR]
 [-r RECORDS] [-s START] [-v VALIDATE] [-f FILENAME]
 arcas_scrape --version

Options:
 -h --help Show this
 --version Show version.
 -p API The online API, from a given list, to parse [default: arxiv]
 -a AUTHOR Terms to search for in Author
 -t TITLE Terms to search for in Title
 -b ABSTRACT Terms to search for in the Abstract
 -y YEAR Terms to search for in Year
 -r RECORDS Number of records to fetch [default: 1]
 -s START Sequence number of first record to fetch [default: 1]
 -v VALIDATE Checks if query returned with arguments asked [default: False]
 -f FILENAME Name of json file [default: results.json]

How to: Register Application and use api_key

Open APIs exist to allow users to access academic meta data easily. Some of those
APIs may require a user to register their application in order to do so.

Currently, the following APIs implemented within the library will require you to
register:

	IEEE Xplore; registration link: https://developer.ieee.org/member/register

	Springer Open Access API; registration link: https://dev.springernature.com/login

One you have registered as a user and have register your application, it will be
given an application key.

In order to be able to use the APIs listed here via Arcas you will have to add
this key to the api_key.py file under the API’s respective folder.

Firstly, you will have to clone the repository from GitHub using the following
command:

$ git clone https://github.com/Nikoleta-v3/Arcas.git

Once you have a copy of the repository you can see that there is a folder for each
API located at src/arcas. We can see this by typing the following commands:

$ cd Arcas/src/arcas
$ ls
arXiv IEEE __init__.py nature PLOS __pycache__ Springer tools.py version.py

Both IEEE and the Springer folders has an api_key.py file which is where
we need to add your application key.

For example lets consider IEEE. Using the following command we list the files
within the folder:

$ ls IEEE
api_key.py __init__.py main.py

We can also see what’s in the api_key.py file:

$ cat IEEE/api_key.py
api_key = 'Your key here'

All we need to do is replace our key with the 'Your key here' and save.

Once this is done all you have to do is go ahead and install the library. We need
to navigate to the top of the repository:

$ cd ...

and then just use the following command to install the package:

$ python setup.py install

We will need to add your Springer key in src/arcas/Springer/api_key.py as
well so we can use both APIs.

Once we have done this we should be ready to use all the APIs available to us
via Arcas.

How to: Collect articles’ based on title

Academic articles are published with a given title by their authors. Some times
we found ourselves in search of articles relevant to our field and we do not
know where to start. The most common approach is to search articles where a word
describing our topic of interest is included in the article’s title.

For example a mathematician might be interested in looking for articles’ that
the world eigenvalues appears on the title.

Initially we need to chose a publisher, for this example we assume that
we are interested in the articles published by Nature:

>>> import arcas
>>> api = arcas.Nature()

Now all that is needed to specify in the parameters that we want title=’eigenvalues’:

>>> parameters = api.parameters_fix(title='eigenvalues')
>>> url = api.create_url_search(parameters)

The query will be used to ping the API and afterwards we parse the response
that has been retrieved:

>>> request = api.make_request(url)
>>> root = api.get_root(request)
>>> raw_article = api.parse(root)
>>> article = api.to_dataframe(raw_article[0])

We can perform an insanity check and reassure that 'eigenvalues' is indeed
within the title:

>>> 'eigenvalues' in article['title'].unique()[0]
True

Note that Arcas can be used from the command line as well. If we wanted to
reproduced the same example the command would be:

$ arcas_scrape -p nature -t "eigenvalues"

How to: Collect articles’ based on abstract

Often we might search articles based on words that can be found withing
the abstract of the article. For example one might interested in an article’s
metadata for which the word eigenvalues is within the abstract.

For this example we are going to be using the API of Nature:

>>> import arcas
>>> api = arcas.Nature()

Now all that is needed to specify in the parameters that we want abstract=’eigenvalues’:

>>> parameters = api.parameters_fix(title='eigenvalues')
>>> url = api.create_url_search(parameters)

The query will be used to ping the API and afterwards we parse the response
that has been retrieved:

>>> request = api.make_request(url)
>>> root = api.get_root(request)
>>> raw_article = api.parse(root)
>>> article = api.to_dataframe(raw_article[0])

Note that Arcas can be used from the command line as well. To reproduce the query
in the command line would would type the following:

$ arcas_scrape -p nature -a "eigenvalues"

How to: Collect articles’ based on year

Publication date of an article is another search field available with Arcas.
Consider an example whereas we are interested in articles that have been published
on a specific year.

Let us assume that we are interested in the first article that will is returned
by Plos that has been publish in 1993:

>>> import arcas
>>> api = arcas.Plos()

Now all that is needed to specify in the parameters that we want year=1993:

>>> parameters = api.parameters_fix(year=1993)
>>> url = api.create_url_search(parameters)

The url can be used to retrieve the response which is then passed to a data
frame:

>>> request = api.make_request(url)
>>> root = api.get_root(request)
>>> raw_article = api.parse(root)
>>> article = api.to_dataframe(raw_article[0])

The same example can be used to collect the article using the command line:

$ arcas_scrape -p plos -y 1993

How to: Collect articles’ based on journal

Articles can also be retrieved using the full journal name/publication title.

Thus sometime we might not be specifying only the publisher but the
exact journal as well. This can be done using the argument journal.

>>> import arcas
>>> api = arcas.Nature()

Assume that we would like to fetch an article from Nature’s Blood Cancer Journal.
The query message will be the following:

>>> parameters = api.parameters_fix(journal='Blood Cancer Journal')
>>> url = api.create_url_search(parameters)
'http://www.nature.com/opensearch/request?&query=prism.publicationName=Blood Cancer Journal'

How to: Collect articles’ based on category

Subject terms are often given to articles either by the authors or the journals
themselves. Arcas allow the user to search articles that satisfies a given subject
term using the category argument.

For example the query for a game theoretic article in arXiv would be the following:

>>> import arcas
>>> api = arcas.Nature()
>>> parameters = api.parameters_fix(category='Game Theory')
>>> url = api.create_url_search(parameters)
'http://www.nature.com/opensearch/request?&query=dc.subject adj Game Theory'

Reference

Contents:

	Search Parameters

	Results set

	List of available APIS
	arXiv API

	IEEE Xplore

	nature.com OpenSearch API

	Springer Open Access API

	PLOS Search API

Search Parameters

The table below outlines the parameters that can be passed to the query interface:

	Parameter

	Description

	author

	Searches both first name and last name.

	title

	Locate documents containing a word or phrase in the “article title” element.

	abstract

	Locate documents containing a word or phrase in the “abstract” element.

	year

	The value for publication year.

	category

	Allows users to search the by keywords given to an article.

	journal

	Locate documents containing a word or phrase in the “full journal/publication title” element.

	records

	The number of records to fetch.

	start

	Sequence number of first record to fetch.

If a search argument is not available for a given API a message will be displayed.

Results set

Each response of the API returns a list of metadata for a given article.
This list differs for each API. Arcas is designed to return a similar set of
metadata for any given API. Thus the json results of Arcas has the following
list of metadata:

	
	key

	
	A generated key containing an authors name and publication year (e.g. Glynatsi2017)

	
	unique_key

	
	A unique key generated using the hashlib [https://docs.python.org/2/library/hashlib.html]
python library. The hashable string is created by: [author name, title,
year,abstract]

	
	title

	
	Title of article

	
	author

	
	A single entity of an author from the list of authors of the respective article

	
	abstract

	
	The abstract of the article

	
	date

	
	Date of publication

	
	doi

	
	Article’s doi

	
	url

	
	Article’s url

	
	journal

	
	Journal of publication

	
	pages

	
	Pages of publication

	
	key_word

	
	A single entity of a keyword assigned to the article by the given journal

	
	provenance

	
	Scholarly database for where the article was collected

	
	category

	
	A list of subjects given to the article by the authors

	
	score

	
	Score given to article by the given journal

	
	open_access

	
	A boolean describing whether the article is open access or not

Note that if a specific result is not available by an API, not because is missing
but because is not implemented, Arcas returns 'Not available' for the
value of that column.

List of available APIS

A list of the APIs you can ping with Arcas.
Contents:

	arXiv API

	IEEE Xplore

	nature.com OpenSearch API

	Springer Open Access API

	PLOS Search API

arXiv API

arXiv API is hosted at arXiv.org, is a document submission and retrieval system
that is heavily used by the physics, mathematics and computer science
communities.

arXiv is set as the default API for Arcas. For more information on interacting with the
api visit the official site for the user’s manual: https://arxiv.org/help/api/user-manual.

The Arxiv class supports the following arguments as search fields:

	author

	title

	abstract

	category

	journal

	records

	start

The most recent check of compatibility between Arcas and the arXiv API was done
on the 27th of August 2018.

IEEE Xplore

Query the Institute of Electrical and Electronics Engineers content
repository and retrieve results for manipulation and presentation on local
web interfaces.

Information on the IEEE Xplore can be found on the official
site: https://developer.ieee.org/docs.

IEEE Xplore API requires a user to register their application in order to use the
API. Once the application has been registered an API key is generated a user
can use Arcas to collect articles.

Guidelines on using your API key with Arcas can be found under How to: Register Application and use api_key.

The Ieee class supports the following arguments as search fields:

	author

	title

	abstract

	category

	journal

	year

	records

	start

The most recent check of compatibility between Arcas and the nature.com OpenSearch
API was done on the 27th of August 2018.

nature.com OpenSearch API

The nature.com OpenSearch API provides an open, bibliographic search service
for content hosted on nature.com, comprising around half a million news and
research articles and citations

For more information on interacting with the nature.com OpenSearch API visit the
official site: https://www.nature.com/opensearch/.

The Nature class supports the following arguments as search fields:

	author

	title

	abstract

	category

	journal

	year

	records

	start

The most recent check of compatibility between Arcas and the nature.com OpenSearch
API was done on the 27th of August 2018.

Springer Open Access API

Springer Open Access API - Provides metadata and full-text content for more than
370,000 online documents from Springer open access xml, including BioMed Central
and SpringerOpen journals.

Information on the Springer Open Access API can be found on the official
site: https://dev.springer.com/restfuloperations. In order to use the
Springer Open Access API a user must register an application and generate
an application key which is used in the query message for access. Guidelines
on using your API key with Arcas can be found under How to: Register Application and use api_key.

Springer class supports the following arguments as search fields:

	author

	title

	journal

	category

	records

	start

and the most recent check of compatibility between Arcas and the Springer Open AccessI
API was done on the 27th of August 2018.

PLOS Search API

Query content from the seven open-access peer-reviewed journals from the
Public Library of Science using any of the twenty-three terms in the PLOS Search.

For more information on PLOS Search API visit the official site:
http://api.plos.org/ under Documentation.

Plos class supports the following arguments as search fields:

	author

	title

	abstract

	category

	journal

	year

	records

	start

The most recent check of compatibility between Arcas and the nature.com OpenSearch
API was done on the 27th of August 2018.

Index

How to ping Plos

For more information on PLOS Search API visit the official site: http://api.plos.org/solr/faq/.

Plos supports the following arguments as search fields:

	author

	title

	abstract

	category

	journal

	year

	records

	start

Let us consider an example where we would like to retrieve the metadata of single article
with the word “Game” in the title which belongs in the category
“game theory” and it was published on PLOS ONE.

Initially, we import Arcas and make an Plos() instance:

>>> import arcas
>>> api = arcas.Plos()

Secondly we create the parameters list will be used to generate our message to the
API:

>>> parameters = api.parameters_fix(title='Game', category='game theory', records=1)
>>> url = api.create_url_search(parameters)
>>> url
'http://api.plos.org/search?q=title:"Game"+AND+subject:"game theory"&rows=1'

The url then is used to obtain a relevant article:

>>> request = api.make_request(url)
>>> root = api.get_root(request)
>>> raw_article = api.parse(root)
>>> article = api.to_dataframe(*raw_article)

The Plos() class returns the following results:

>>> article.columns
Index(['url', 'key', 'unique_key', 'title', 'author', 'abstract', 'doi',
 'date', 'journal', 'provenance', 'score'],
 dtype='object')

How to ping Springer

For more information on interacting with the Springer api visit the official
site for the user’s manual: https://dev.springernature.com/.

In order to use Sringer api you will need to sign up and create an application
key. You can sign up in the following https://dev.springernature.com/. Once
you have done that you will need to copy the key in the api_key.py. This
is located in the folder src/arcas/Springer.

Once this is done you are all set to interact with the api. Springer supports
the following arguments as search fields:

	author

	title

	journal

	category

	records

	start

Note that abstract is not supported. Let us consider an example where
we would like to retrieve the metadata of single article with the word “Game” in the
title published on year 2010.

Initially, we import Arcas and make an Springer() instance:

>>> import arcas
>>> api = arcas.Springer()

Secondly we create the parameters list will be used to generate our message to the
API:

>>> parameters = api.parameters_fix(title='Game', year=2010, records=1)
>>> url = api.create_url_search(parameters)
>>> url
'http://api.springer.com/metadata/pam?q=title:Game+AND+year:2010+AND+subject:game theory&p=1&api_key=Your key here'

The url then is used to obtain a relevant article:

>>> request = api.make_request(url)
>>> root = api.get_root(request)
>>> raw_article = api.parse(root)
>>> article = api.to_dataframe(*raw_article)

The Springer() class returns the following results:

>>> article.columns
Index(['url', 'key', 'unique_key', 'title', 'author', 'abstract', 'doi',
 'date', 'journal', 'provenance'],
 dtype='object')

 _static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Arcas’ documentation!

 		
 Installing Arcas

 		
 Tutorials

 		
 Tutorial I: Retrieving a single article

 		
 Tutorial II: Retrieve an article from various APIs

 		
 Tutorial III: Retrieving a large number of articles

 		
 Guides

 		
 How to use Arcas from the command line

 		
 How to: Register Application and use api_key

 		
 How to: Collect articles’ based on title

 		
 How to: Collect articles’ based on abstract

 		
 How to: Collect articles’ based on year

 		
 How to: Collect articles’ based on journal

 		
 How to: Collect articles’ based on category

 		
 Reference

 		
 Search Parameters

 		
 Results set

 		
 List of available APIS

 		
 arXiv API

 		
 IEEE Xplore

 		
 nature.com OpenSearch API

 		
 Springer Open Access API

 		
 PLOS Search API

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

