

Arca’s documentation!

[image: _images/arca.svg]
 [https://travis-ci.org/pyvec/arca][image: _images/arca1.svg]
 [https://codecov.io/gh/pyvec/arca][image: _images/arca2.svg]
 [https://pypi.org/project/arca/][image: _images/arca3.svg]
 [https://github.com/pyvec/arca/blob/master/LICENSE][image: _images/arca4.svg]
 [https://arca.readthedocs.io/]Arca is a library for running Python functions (callables) from git repositories in various states of isolation.
Arca can also cache the results of these callables using dogpile.cache [https://dogpilecache.readthedocs.io/en/latest/].

Contents

	Quickstart
	Glossary

	Example

	Installation
	Requirements

	Installation

	Settings
	Configuring Arca

	Basic options

	Tasks
	Arguments

	Timeout

	Result

	Caching

	Backends
	Current Environment

	Virtual Environment

	Docker

	Vagrant

	Your own

	Cookbook
	I need some files from the repositories

	I will be running a lot of tasks from the same repository

	Reference
	Arca

	Task

	Result

	Backends

	Exceptions

	Utils

	Changes
	0.3.3 (2019-12-10)

	0.3.2 (2019-11-23)

	0.3.1 (2018-11-16)

	0.3.0 (2018-08-25)

	0.2.1 (2018-06-11)

	0.2.0 (2018-05-09)

	0.1.1 (2018-04-23)

	0.1.0 (2018-04-18)

	0.1.0a0 (2018-04-13)

Quickstart

Glossary

	Arca - name of the library. When written as Arca, the main interface class is being referenced.

	Task - definition of the function (callable), consists of a reference to the object and arguments.

	Backend - a way of running tasks.

Example

To run a Hello World example you’ll only need the arca.Arca and arca.Task classes.
Task is used for defining the task that’s supposed to be run in the repositories.
Arca takes care of all the settings and provides the basic API for running the tasks.

Let’s say we have the following file, called hello_world.py,
in a repository https://example.com/hello_word.git, on branch master.

def say_hello():
 return "Hello World!"

To call the function using Arca, the following example would do so:

from arca import Arca, Task

task = Task("hello_world:say_hello")
arca = Arca()

result = arca.run("https://example.com/hello_word.git", "master", task)
print(result.output)

The code would print Hello World!.

result would be a Result instance. Result has three attributes,
output with the return value of the function call, stdout and stderr contain things printed to the standard outputs
(see the section about Result for more info about the capture of the standard outputs).
If the task fails, arca.exceptions.BuildError would be raised.

By default, the Current Environment Backend is used to run tasks,
which uses the current Python, launching the code in a subprocess. You can learn about backends here.

Installation

Requirements

	Python >= 3.6

Requirements for certain backends:

	Pipenv [https://docs.pipenv.org/] (for certain usecases in Virtualenv Backend)

	Docker [https://www.docker.com/] (for Docker Backend and Vagrant Backend)

	Vagrant [https://www.vagrantup.com/] (for the Vagrant Backend)

Installation

To install the last stable version:

python -m pip install arca

If you want to use the Docker backend:

python -m pip install arca[docker]

Or if you want to use the Vagrant backend:

python -m pip install arca[vagrant]

Or if you wish to install the upstream version:

python -m pip install git+https://github.com/pyvec/arca.git#egg=arca
python -m pip install git+https://github.com/pyvec/arca.git#egg=arca[docker]
python -m pip install git+https://github.com/pyvec/arca.git#egg=arca[vagrant]

Settings

Configuring Arca

There are multiple ways to configure Arca and its backends. (The used options are described bellow.)

	You can initialize the class and backends directly and set it’s options via constructor arguments.

from arca import Arca, VenvBackend

arca = Arca(
 base_dir=".custom_arca_dir",
 backend=VenvBackend(cwd="utils")
)

This option is the most direct but it has one caveat - options set by this method cannot be overridden by the following methods.

2. You can pass a dict with settings. The keys have to be uppercase and prefixed with ARCA_.
Keys for backends can be set in two ways. The first is generic ARCA_BACKEND_<key>,
the second has a bigger priority ARCA_<backend_name>_BACKEND_<key>.
For example the same setting as above would be written as:

arca = Arca(settings={
 "ARCA_BASE_DIR": ".custom_arca_dir",
 "ARCA_BACKEND": "arca.VenvBackend",
 "ARCA_VENV_BACKEND_CWD": "utils",
 "ARCA_BACKEND_CWD": "", # this one is ignored since it has lower priority
})

3. You can configure Arca with environ variables, with keys being the same as in the second method.
Environ variables override settings from the second method.

You can combine these methods as long as you remember that options explicitly specified in constructors
cannot be overridden by the settings and environ methods.

Basic options

This section only describes basic settings, visit the cookbook for more.

Arca class

base_dir (ARCA_BASE_DIR)

Arca needs to clone repositories and for certain backends also store some other files. This options determines
where the files should be stored. The default is .arca. If the folder doesn’t exist it’s created.

backend (ARCA_BACKEND)

This options tells how the tasks should be launched. This setting can be provided as a string, a class or a instance.
The default is arca.CurrentEnvironmentBackend, the Current Environment Backend.

Backends

This section describes settings that are common for all the backends.

requirements_location (ARCA_BACKEND_REQUIREMENTS_LOCATION)

Tells backends where to look for a requirements file in the repositories, so it must be a relative path. You can set it
to None to indicate that requirement file should be ignored. The default is requirements.txt.
If the path file doesn’t exist in the repository than no requirements are installed.

requirements_timeout (ARCA_BACKEND_REQUIREMENTS_TIMEOUT)

Tells backends how long the installing of requirements can take, in seconds.
The default is 120 seconds.
If the limit is exceeded BuildTimeoutError is raised.

pipfile_location (ARCA_BACKEND_PIPFILE_LOCATION)

Tells backends where to look for Pipfile and Pipfile.lock files, for Pipenv [https://docs.pipenv.org/].
It must be a relative path to a directory. You can set it to None to indicate that Pipenv files should be ignored.
The default is an empty string, the root of the repository. If there are Pipenv files in the repository alongside a
requirement file than Pipenv takes precedence.

Both Pipfile and Pipfile.lock must be present in the repository for Pipenv to be used. If only one of them is
present then an exception is raised. The --deploy flag is used, meaning that the Pipfile.lock must be up to
date with Pipfile.

cwd (ARCA_BACKEND_CWD)

Tells Arca in what working directory the tasks should be launched, so again a relative path.
The default is the root of the repository.

Tasks

arca.Task instances are used to define what should be run in the repositories. The definition
consists of a string representation of a callable and arguments.

EntryPoints (from the entrypoints [http://entrypoints.readthedocs.io/en/latest/] library) are used for
defining the callables. Any callable can be used if the result is json-serializable by the standard library json [https://docs.python.org/3/library/json.html#module-json].

Let’s say we have file package/test.py in the repository:

def func():
 x = Test()
 return x.run()

class Test:
 def run(self):
 ...
 return "Hello!"

 @staticmethod
 def method():
 x = Test()
 return x.run()

In that case, the following two tasks would have the same result:

task1 = Task("package.test:func")
task2 = Task("package.test:Test.method")

Arguments

Both positional and keyword arguments can be provided to the task,
however they need to be json-serializable (so types dict, list, str, int, float, bool or None).

Let’s say we the following file test.py in the repository:

def func(x, *, y=5):
 return x * y

The following tasks would use the fuction (with the default y):

task1 = Task("test:func", args=[5]) # -> result would be 25
task2 = Task("test:func", kwargs={"x": 5}) # -> result would be 25 again

Since the x parameter is positional, both ways can be used. However, if we wanted to set y, the task would be
set up like this:

task1 = Task("test:func", args=[5], kwargs={"y": 10}) # -> 50
task2 = Task("test:func", kwargs={"x": 5, "y": 10}) # -> 50 again

Timeout

The arca.Task class allows for a timeout to be defined with the task with the keyword argument timeout.
It must be a positive integer.
The default value is 5 seconds.

When a task exceeds a timeout, arca.exceptions.BuildTimeoutError is raised.

Result

The output of a task is stored and returned in a arca.Result instance.
Anything that’s json-serializable can be returned from the entrypoints.
The arca.Result instances contain three attributes.
output contains the value returned from the entrypoint.
stdout and stderr contain things written to the standard outputs.

Arca uses contextlib.redirect_stdout() [https://docs.python.org/3/library/contextlib.html#contextlib.redirect_stdout] and contextlib.redirect_stderrr() to catch the standard outputs,
which only redirect things written from standard Python code – for example output from a subprocess is not caught.
Due to the way backends launch tasks the callables cannot output anything that is not redirectable by these two context managers.

Caching

Arca can cache results of the tasks using dogpile.cache [https://dogpilecache.readthedocs.io/en/latest/].
The default cache backend is dogpile.cache.null, so no caching.

You can setup caching with the backend setting ARCA_CACHE_BACKEND and all the arguments needed for setup can be set
using ARCA_CACHE_BACKEND_ARGUMENTS which can either be a dict or a json string.

Example setup:

arca = Arca(settings={
 "ARCA_CACHE_BACKEND": "dogpile.cache.redis",
 "ARCA_CACHE_BACKEND_ARGUMENTS": {
 "host": "localhost",
 "port": 6379,
 "db": 0,
 }
})

To see all available cache backends and their settings,
please visit the dogpile.cache documentation [https://dogpilecache.readthedocs.io/en/latest/].
Some of the other backends might have other python dependencies.

When Arca is being initialized, a check is made if the cache backend is writable and readable,
which raises an arca.exceptions.ArcaMisconfigured if it’s not.
If the cache requires some python dependency ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError] will be raised.
If you wish to ignore these errors, ignore_cache_errors setting can be used.

Backends

There are currently four different backends. They can also be initialized in few different ways,
consistent with general settings. You can use the ARCA_BACKEND setting
or you can pass a backend keyword directly to Arca.

The backend setting can be either a string, class or an instance. All the initializations shown bellow are equivalent,
but again, as mentioned in Configuring Arca, the backend keyword cannot be overridden by settings
or environ variables.

from arca import Arca, DockerBackend

Arca(settings={"ARCA_BACKEND": "arca.backend.DockerBackend"})
Arca(settings={"ARCA_BACKEND": DockerBackend})
Arca(backend="arca.backend.DockerBackend")
Arca(backend=DockerBackend)
Arca(backend=DockerBackend())

Setting up backends is based on the same principle as setting up Arca.
You can either pass keyword arguments when initializing the backend class
or you can use settings (described in more details in Configuring Arca). For example these two calls are equivalent:

from arca import Arca, DockerBackend

Arca(settings={
 "ARCA_BACKEND": "arca.backend.DockerBackend",
 "ARCA_BACKEND_PYTHON_VERSION": "3.6.4"
})
Arca(backend=DockerBackend(python_version="3.6.4"))

As mentioned in Basic options, there are two options common for all backends. (See that section for more details.)

	requirements_location

	requirements_timeout

	pipfile_location

	cwd

Current Environment

arca.backend.CurrentEnvironmentBackend

This backend is the default option, it runs the tasks with the same Python that’s used to run Arca, in a subprocess.
There are no extra settings for this backend. All the requirements in repositories are ignored completely.

(possible settings prefixes: ARCA_CURRENT_ENVIRONMENT_BACKEND_ and ARCA_BACKEND_)

Virtual Environment

arca.backend.VenvBackend

This backend uses the Python virtual environments to run the tasks. The environments are created from the Python
used to run Arca and they are shared between repositories that have the same exact requirement file.
The virtual environments are stored in folder venv in folder
determined by the Arca base_dir setting, usually .arca.

For installing requirements using Pipenv it must be available to be launched by the current user.
Disabling Pipenv can be done by setting the pipfile_location to None.

(possible settings prefixes: ARCA_VENV_BACKEND_ and ARCA_BACKEND_)

Docker

arca.backend.DockerBackend

This backend runs tasks in docker containers. To use this backend the user running Arca needs to be able to interact
with docker (see documentation [https://docs.docker.com/install/linux/linux-postinstall/]).

This backend first creates an image with requirements and dependencies installed so the installation only runs once.
By default the images are based on custom images [https://hub.docker.com/r/arcaoss/arca/tags/], which have Python
and several build tools pre-installed.
These images are based on debian (slim stretch version) and use pyenv [https://github.com/pyenv/pyenv]
to install Python.
You can specify you want to base your images on a different image with the inherit_image setting.

Once Arca has an image with the requirements installed, it launches a container for each task and
kills it when the task finishes. This can be modify by setting keep_container_running to True,
then the container is not killed and can be used by different tasks running from the same repository, branch and commit.
This can save time on starting up containers before each task.
You can then kill the containers by calling DockerBackend method stop_containers.

If you’re using Arca on a CI/CD tool or somewhere docker images are not kept long-term, you can setup pushing
images with the installed requirements and dependencies to a docker registry and they will be pulled next time instead
of building them each time. It’s set using use_registry_name and you’ll have to be logged in to docker
using docker login. If you can’t use docker login (for example in PRs on Travis CI), you can set
registry_pull_only and Arca will only attempt to pull from the registry and not push new images.

Settings:

	python_version: What Python version should be used.
In theory any of
these versions [https://github.com/pyenv/pyenv/tree/master/plugins/python-build/share/python-build] could be used,
but only CPython 3.6 has been tested. The default is the Python version of the current environment.
This setting is ignored if inherit_image is set.

	keep_container_running: When True, containers aren’t killed once the task finishes. Default is False.

	apt_dependencies: For some python libraries, system dependencies are required,
for example libxml2-dev and libxslt-dev are needed for lxml.
With this settings you can specify a list of system dependencies that will be installed via debian apt-get.
This setting is ignored if inherit_image is set since Arca can’t
determined how to install requirements on an unknown system.

	disable_pull: Disable pulling prebuilt Arca images from Docker Hub and build even the base images locally.

	inherit_image: If you don’t wish to use the Arca images you can specify what image should be used instead.
Pipenv must be available in the image if the repositories contain Pipenv files. Alternativelly Pipenv can be
disabled by setting the option pipfile_location to None.

	use_registry_name: Uses this registry to store images with installed requirements and dependencies to,
tries to pull image from the registry before building it locally to save time.

	registry_pull_only: Disables pushing to registry.

(possible settings prefixes: ARCA_DOCKER_BACKEND_ and ARCA_BACKEND_)

Vagrant

arca.backend.VagrantBackend

If you’re extra paranoid you can use Vagrant to completely isolate the runtime in a Virtual Machine (VM).
This backend is actually a subclass of DockerBackend and uses docker in the VM to run the tasks.
Docker and Vagrant must be runnable by the current user.

The backend works by building the image with requirements and dependencies locally and pushing it to registry using use_to_registry_name.
Then a VM is launched and the image is pulled there from the registry.
This takes some time when first launching the VM, but if the VM is reused often, the upload/download time is shorted.
The built images are also not lost when the VM is destroyed.

The backend inherits all the settings of DockerBackend (keep_containers_running is True by default) and has these extra settings:

	box: Vagrant box used in the VM. Either has to have docker version >= 1.8 or not have docker at all, in which case
it will be installed when spinning up the VM.
The default is ailispaw/barge [https://app.vagrantup.com/ailispaw/boxes/barge].

	provider: Vagrant provider, default is virtualbox.
Visit vagrant docs [https://www.vagrantup.com/docs/providers/] for more.

	quiet: Tells Vagrant and Fabric (which is used to run the task in the VM) to be quiet. Default is True.
Vagrant and Docker output is logged in separate files for each run in a folder logs in the Arca base_dir.
The filename is logged in the arca logger (see bellow)

	keep_vm_running: Should the VM be kept up once a task finishes? By default False.
If set to True, stop_vm can be used to stop the VM.

	destroy: When stopping the VM (either after a task or after stop_vm() is called), should the VM be destroyed (= deleted) or just halted?
False by default.

(possible settings prefixes: ARCA_VAGRANT_BACKEND_ and ARCA_BACKEND_)

Your own

You can also create your own backend and pass it to Arca. It has be a subclass of arca.BaseBackend and
it has to implement its run method.

Cookbook

I need some files from the repositories

Besides running functions from the repositories, there also might be some files in the repositories that you need,
e.g. images for a webpage. With the Arca method static_filename
you can get the absolute path to that file, to where Arca cloned it.
The method accepts a relative path (can be a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] or str [https://docs.python.org/3/library/stdtypes.html#str]) to the file in the repository.

Example call (file images/example.png from the branch master of https://example.com/hello_word.git):

arca = Arca()

path_to_file = arca.static_filename("https://example.com/hello_word.git",
 "master",
 "images/example.png")

path_to_file will be an absolute Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path].

If the file is not in the repository, FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] will be raised. If the provided relative path
leads out of the repo, FileOutOfRangeError will be raised.

I will be running a lot of tasks from the same repository

Similarly as above, while you’re building a webpage you might need to run a lot of tasks from the same repositories,
to render all the individual pages. However Arca has some overhead for each launched task, but these two
options can speed things up:

Singe pull

This option ensures that each branch is only cloned/pulled once per initialization of Arca.
You can set it up with the Arca single_pull option (ARCA_SINGLE_PULL setting).
This doesn’t help to speedup the first task from a repository, however each subsequent will run faster.
This setting is quite useful for keeping consistency, since the state of the repository can’t change in the middle
of running multiple tasks.

You can tell Arca to pull again (if a task from that repo/branch is called again)
by calling the method Arca.pull_again:

arca = Arca()

...

only this specific branch will be pulled again
arca.pull_again(repo="https://example.com/hello_word.git", branch="master")

all branches from this repo will be pulled again
arca.pull_again(repo="https://example.com/hello_word.git")

everything will be pulled again
arca.pull_again()

Running container

If you’re using the Docker backend, you can speed up things by keeping the containers
for running the tasks running. Since a container for each repository is launched, this can speed up things considerably,
because starting up, copyting files and shutting down containers takes time.

This can be enabled by setting the keep_container_running option to True.
When you’re done with running the tasks you can kill the containers by calling the method
DockerBackend.stop_containers:

arca = Arca(backend=DockerBackend())

...

arca.backend.stop_containers()

Reference

Arca

	
class arca.Arca(backend: Union[Callable, arca.backend.base.BaseBackend, str, arca.utils.NotSet] = NOT_SET, settings=None, single_pull=NOT_SET, base_dir=NOT_SET, ignore_cache_errors=NOT_SET)

	Basic interface for communicating with the library, most basic operations should be possible from this class.

Available settings:

	base_dir: Directory where cloned repositories and other files are stored (default: .arca)

	single_pull: Clone/pull each repository only once per initialization (default: False)

	ignore_cache_errors: Ignore all cache error initialization errors (default: False)

	
cache_key(repo: str, branch: str, task: arca.task.Task, git_repo: git.repo.base.Repo) → str

	Returns the key used for storing results in cache.

	
current_git_hash(repo: str, branch: str, git_repo: git.repo.base.Repo, short: bool = False) → str

	
	Parameters

	
	repo – Repo URL

	branch – Branch name

	git_repo – Repo [https://gitpython.readthedocs.io/en/stable/reference.html#git.repo.base.Repo] instance.

	short – Should the short version be returned?

	Returns

	Commit hash of the currently pulled version for the specified repo/branch

	
get_backend_instance(backend: Union[Callable, arca.backend.base.BaseBackend, str, arca.utils.NotSet]) → arca.backend.base.BaseBackend

	Returns a backend instance, either from the argument or from the settings.

	Raises

	ArcaMisconfigured – If the instance is not a subclass of BaseBackend

	
get_files(repo: str, branch: str, *, depth: Optional[int] = 1, reference: Optional[pathlib.Path] = None) → Tuple[git.repo.base.Repo, pathlib.Path]

	Either clones the repository if it’s not cloned already or pulls from origin.
If single_pull is enabled, only pulls if the repo/branch combination wasn’t pulled again by this instance.

	Parameters

	
	repo – Repo URL

	branch – Branch name

	depth – See run()

	reference – See run()

	Returns

	A Repo [https://gitpython.readthedocs.io/en/stable/reference.html#git.repo.base.Repo] instance for the repo
and a Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to the location where the repo is stored.

	
get_path_to_repo(repo: str) → pathlib.Path

	Returns a Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to the location where all the branches from this repo are stored.

	Parameters

	repo – Repo URL

	Returns

	Path to where branches from this repository are cloned.

	
get_path_to_repo_and_branch(repo: str, branch: str) → pathlib.Path

	Returns a Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to where this specific branch is stored on disk.

	Parameters

	
	repo – Repo URL

	branch – branch

	Returns

	Path to where the specific branch from this repo is being cloned.

	
get_reference_repository(reference: Optional[pathlib.Path], repo: str) → Optional[pathlib.Path]

	Returns a repository to use in clone command, if there is one to be referenced.
Either provided by the user of generated from already cloned branches (master is preferred).

	Parameters

	
	reference – Path to a local repository provided by the user or None.

	repo – Reference for which remote repository.

	
get_repo(repo: str, branch: str, *, depth: Optional[int] = 1, reference: Optional[pathlib.Path] = None) → git.repo.base.Repo

	Returns a Repo [https://gitpython.readthedocs.io/en/stable/reference.html#git.repo.base.Repo] instance for the branch.

See run() for arguments descriptions.

	
make_region() → dogpile.cache.region.CacheRegion

	Returns a CacheRegion based on settings.

	Firstly, a backend is selected.
The default is NullBackend <dogpile.cache.backends.null.NullBackend.

	Secondly, arguments for the backends are generated.
The arguments can be passed as a dict to the setting or as a json string.
If the arguments aren’t a dict or aren’t convertible to a dict, ArcaMisconfigured is raised.

	Lastly, the cache is tested if it works

All errors can be suppressed by the ignore_cache_errors setting.

	Raises

	
	ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError] – In case dogpile has trouble importing the library needed for a backend.

	ArcaMisconfigured – In case the cache is misconfigured in any way or the cache doesn’t work.

	
pull_again(repo: Optional[str] = None, branch: Optional[str] = None) → None

	When single_pull is enables, tells Arca to pull again.

If repo and branch are not specified, pull again everything.

	Parameters

	
	repo – (Optional) Pull again all branches from a specified repository.

	branch – (Optional) When repo is specified, pull again only this branch from that repository.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If branch is specified and repo is not.

	
repo_id(repo: str) → str

	Returns an unique identifier from a repo URL for the folder the repo is gonna be pulled in.

	
run(repo: str, branch: str, task: arca.task.Task, *, depth: Optional[int] = 1, reference: Union[pathlib.Path, str, None] = None) → arca.result.Result

	Runs the task using the configured backend.

	Parameters

	
	repo – Target git repository

	branch – Target git branch

	task – Task which will be run in the target repository

	depth – How many commits back should the repo be cloned in case the target repository isn’t cloned yet.
Defaults to 1, must be bigger than 0. No limit will be used if None is set.

	reference – A path to a repository from which the target repository is forked,
to save bandwidth, –dissociate is used if set.

	Returns

	A Result instance with the output of the task.

	Raises

	
	PullError – If the repository can’t be cloned or pulled

	BuildError – If the task fails.

	
save_hash(repo: str, branch: str, git_repo: git.repo.base.Repo)

	If single_pull is enabled, saves the current git hash of the specified repository/branch combination,
to indicate that it shouldn’t be pull again.

	
should_cache_fn(value: arca.result.Result) → bool

	Returns if the result value should be cached. By default, always returns True, can be
overriden.

	
static_filename(repo: str, branch: str, relative_path: Union[str, pathlib.Path], *, depth: Optional[int] = 1, reference: Union[pathlib.Path, str, None] = None) → pathlib.Path

	Returns an absolute path to where a file from the repo was cloned to.

	Parameters

	
	repo – Repo URL

	branch – Branch name

	relative_path – Relative path to the requested file

	depth – See run()

	reference – See run()

	Returns

	Absolute path to the file in the target repository

	Raises

	
	FileOutOfRangeError – If the relative path leads out of the repository path

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If the file doesn’t exist in the repository.

	
validate_depth(depth: Optional[int]) → Optional[int]

	Converts the depth to int and validates that the value can be used.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the provided depth is not valid

	
validate_reference(reference: Union[pathlib.Path, str, None]) → Optional[pathlib.Path]

	Converts reference to Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If reference can’t be converted to Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path].

	
validate_repo_url(repo: str)

	Validates repo URL - if it’s a valid git URL and if Arca can handle that type of repo URL

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the URL is not valid

Task

	
class arca.Task(entry_point: str, *, timeout: int = 5, args: Optional[Iterable[Any]] = None, kwargs: Optional[Dict[str, Any]] = None)

	A class for defining tasks the run in the repositories. The task is defined by an entry point,
timeout (5 seconds by default), arguments and keyword arguments.
The class uses entrypoints.EntryPoint [https://entrypoints.readthedocs.io/en/latest/api.html#entrypoints.EntryPoint] to load the callables.
As apposed to EntryPoint [https://entrypoints.readthedocs.io/en/latest/api.html#entrypoints.EntryPoint], only objects are allowed, not modules.

Let’s presume we have this function in a package library.module:

def ret_argument(value="Value"):
 return value

This Task would return the default value:

>>> Task("library.module:ret_argument")

These two Tasks would returned an overridden value:

>>> Task("library.module:ret_argument", args=["Overridden value"])
>>> Task("library.module:ret_argument", kwargs={"value": "Overridden value"})

	
hash

	Returns a SHA1 hash of the Task for usage in cache keys.

Result

	
class arca.Result(result: Union[str, Dict[str, Any]])

	For storing results of the tasks. So far only has one attribute, output.

	
output = None

	The output of the task

	
stderr = None

	What the function wrote to stderr

	
stdout = None

	What the function wrote to stdout

Backends

Abstract classes

	
class arca.BaseBackend(**settings)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract class for all the backends, implements some basic functionality.

Available settings:

	requirements_location: Relative path to the requirements file in the target repositories.
Setting to None makes Arca ignore requirements. (default is requirements.txt)

	requirements_timeout: The maximum time in seconds allowed for installing requirements.
(default is 5 minutes, 300 seconds)

	pipfile_location: The folder containing Pipfile and Pipfile.lock. Pipenv files take precedence
over requirements files. Setting to None makes Arca ignore Pipenv files.
(default is the root of the repository)

	cwd: Relative path to the required working directory.
(default is "", the root of the repo)

	
get_requirements_information(path: pathlib.Path) → Tuple[arca.backend.base.RequirementsOptions, Optional[str]]

	Returns the information needed to install requirements for a repository - what kind is used and the hash
of contents of the defining file.

	
get_setting(key, default=NOT_SET)

	Gets a setting for the key.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the key is not set and default isn’t provided.

	
get_settings_keys(key)

	Parameters can be set through two settings keys, by a specific setting (eg. ARCA_DOCKER_BACKEND_KEY)
or a general ARCA_BACKEND_KEY. This function returns the two keys that can be used for this setting.

	
static hash_file_contents(requirements_option: arca.backend.base.RequirementsOptions, path: pathlib.Path) → str

	Returns a SHA256 hash of the contents of path combined with the Arca version.

	
inject_arca(arca)

	After backend is set for a Arca instance, the instance is injected to the backend,
so settings can be accessed, files accessed etc. Also runs settings validation of the backend.

	
run(repo: str, branch: str, task: arca.task.Task, git_repo: git.repo.base.Repo, repo_path: pathlib.Path) → arca.result.Result

	Executes the script and returns the result.

Must be implemented by subclasses.

	Parameters

	
	repo – Repo URL

	branch – Branch name

	task – The requested Task

	git_repo – A Repo [https://gitpython.readthedocs.io/en/stable/reference.html#git.repo.base.Repo] of the repo/branch

	repo_path – Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to the location where the repo is stored.

	Returns

	The output of the task in a Result instance.

	
serialized_task(task: arca.task.Task) → Tuple[str, str]

	Returns the name of the task definition file and its contents.

	
snake_case_backend_name

	CamelCase -> camel_case

	
class arca.backend.base.BaseRunInSubprocessBackend(**settings)

	Bases: arca.backend.base.BaseBackend

Abstract class for backends which run scripts in subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess].

	
get_or_create_environment(repo: str, branch: str, git_repo: git.repo.base.Repo, repo_path: pathlib.Path) → str

	Abstract method which must be implemented in subclasses, which must return a str path to a Python executable
which will be used to run the script.

See BaseBackend.run to see arguments description.

	
run(repo: str, branch: str, task: arca.task.Task, git_repo: git.repo.base.Repo, repo_path: pathlib.Path) → arca.result.Result

	Gets a path to a Python executable by calling the abstract method
get_image_for_repo
and runs the task using subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]

See BaseBackend.run to see arguments description.

Current environment

	
class arca.CurrentEnvironmentBackend(**settings)

	Bases: arca.backend.base.BaseRunInSubprocessBackend

Uses the current Python to run the tasks, however they’re launched in a subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess].

The requirements of the repository are completely ignored.

	
get_or_create_environment(repo: str, branch: str, git_repo: git.repo.base.Repo, repo_path: pathlib.Path) → str

	Returns the path to the current Python executable.

Python virtual environment

	
class arca.VenvBackend(**settings)

	Bases: arca.backend.base.BaseRunInSubprocessBackend

Uses Python virtual environments (see venv [https://docs.python.org/3/library/venv.html#module-venv]), the tasks are then launched in a subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess].
The virtual environments are shared across repositories when they have the exact same requirements.
If the target repository doesn’t have requirements, it also uses a virtual environment, but just with
no extra packages installed.

There are no extra settings for this backend.

	
get_or_create_environment(repo: str, branch: str, git_repo: git.repo.base.Repo, repo_path: pathlib.Path) → str

	Handles the requirements in the target repository, returns a path to a executable of the virtualenv.

	
get_or_create_venv(path: pathlib.Path) → pathlib.Path

	Gets the location of the virtualenv from get_virtualenv_path(), checks if it exists already,
creates it and installs requirements otherwise. The virtualenvs are stored in a folder based
on the Arca base_dir setting.

	Parameters

	path – Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to the cloned repository.

	
get_virtualenv_path(requirements_option: arca.backend.base.RequirementsOptions, requirements_hash: Optional[str]) → pathlib.Path

	Returns the path to the virtualenv the current state of the repository.

Docker

	
class arca.DockerBackend(**kwargs)

	Bases: arca.backend.base.BaseBackend

Runs the tasks in Docker containers.

Available settings:

	python_version - set a specific version, current env. python version by default

	keep_container_running - stop the container right away (default) or keep it running

	apt_dependencies - a list of dependencies to install via apt-get

	disable_pull - build all locally

	inherit_image - instead of using the default base Arca image, use this one

	use_registry_name - use this registry to store images with requirements and dependencies

	registry_pull_only - only use the registry to pull images, don’t push updated

	
build_image(image_name: str, image_tag: str, repo_path: pathlib.Path, requirements_option: arca.backend.base.RequirementsOptions, dependencies: Optional[List[str]])

	Builds an image for specific requirements and dependencies, based on the settings.

	Parameters

	
	image_name – How the image should be named

	image_tag – And what tag it should have.

	repo_path – Path to the cloned repository.

	requirements_option – How requirements are set in the repository.

	dependencies – List of dependencies (in the formalized format)

	Returns

	The Image instance.

	Return type

	docker.models.images.Image [https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.Image]

	
build_image_from_inherited_image(image_name: str, image_tag: str, repo_path: pathlib.Path, requirements_option: arca.backend.base.RequirementsOptions)

	Builds a image with installed requirements from the inherited image. (Or just tags the image
if there are no requirements.)

See build_image() for parameters descriptions.

	Return type

	docker.models.images.Image [https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.Image]

	
check_docker_access()

	Creates a DockerClient [https://docker-py.readthedocs.io/en/stable/client.html#docker.client.DockerClient] for the instance and checks the connection.

	Raises

	BuildError – If docker isn’t accessible by the current user.

	
container_running(container_name)

	Finds out if a container with name container_name is running.

	Returns

	Container [https://docker-py.readthedocs.io/en/stable/containers.html#docker.models.containers.Container] if it’s running, None otherwise.

	Return type

	Optional[docker.models.container.Container]

	
get_arca_base(pull=True)

	Returns the name and tag of image that has the basic build dependencies installed with just pyenv installed,
with no python installed. (Builds or pulls the image if it doesn’t exist locally.)

	
get_container_name(repo: str, branch: str, git_repo: git.repo.base.Repo)

	Returns the name of the container used for the repo.

	
get_dependencies() → Optional[List[str]]

	Returns the apt_dependencies setting to a standardized format.

	Raises

	ArcaMisconfigured – if the dependencies can’t be converted into a list of strings

	Returns

	List of dependencies, None if there are none.

	
get_dependencies_hash(dependencies)

	Returns a SHA1 hash of the dependencies for usage in image names/tags.

	
get_image(image_name, image_tag)

	Returns a Image [https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.Image] instance for the provided name and tag.

	Return type

	docker.models.images.Image [https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.Image]

	
get_image_for_repo(repo: str, branch: str, git_repo: git.repo.base.Repo, repo_path: pathlib.Path)

	Returns an image for the specific repo (based on settings and requirements).

	Checks if the image already exists locally

	Tries to pull it from registry (if use_registry_name is set)

	Builds the image

	Pushes the image to registry so the image is available next time (if registry_pull_only is not set)

See run() for parameters descriptions.

	Return type

	docker.models.images.Image [https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.Image]

	
get_image_name(repo_path: pathlib.Path, requirements_option: arca.backend.base.RequirementsOptions, dependencies: Optional[List[str]]) → str

	Returns the name for images with installed requirements and dependencies.

	
get_image_tag(requirements_option: arca.backend.base.RequirementsOptions, requirements_hash: Optional[str], dependencies: Optional[List[str]]) → str

	Returns the tag for images with the dependencies and requirements installed.

64-byte hexadecimal strings cannot be used as docker tags, so the prefixes are necessary.
Double hashing the dependencies and requirements hash to make the final tag shorter.

Prefixes:

	Image type:

	i – Inherited image

	a – Arca base image

	Requirements:

	r – Does have some kind of requirements

	s – Doesn’t have requirements

	Dependencies:

	d – Does have dependencies

	e – Doesn’t have dependencies

Possible outputs:

	Inherited images:

	ise – no requirements

	ide_<hash(requirements)> – with requirements

	From Arca base image:

	<Arca version>_<Python version>_ase – no requirements and no dependencies

	<Arca version>_<Python version>_asd_<hash(dependencies)> – only dependencies

	<Arca version>_<Python version>_are_<hash(requirements)> – only requirements

	<Arca version>_<Python version>_ard_<hash(hash(dependencies) + hash(requirements))>
– both requirements and dependencies

	
get_image_with_installed_dependencies(image_name: str, dependencies: Optional[List[str]]) → Tuple[str, str]

	Return name and tag of a image, based on the Arca python image, with installed dependencies defined
by apt_dependencies.

	Parameters

	
	image_name – Name of the image which will be ultimately used for the image.

	dependencies – List of dependencies in the standardized format.

	
get_inherit_image() → Tuple[str, str]

	Parses the inherit_image setting, checks if the image is present locally and pulls it otherwise.

	Returns

	Returns the name and the tag of the image.

	Raises

	ArcaMisconfiguration – If the image can’t be pulled from registries.

	
get_install_requirements_dockerfile(name: str, tag: str, repo_path: pathlib.Path, requirements_option: arca.backend.base.RequirementsOptions) → str

	Returns the content of a Dockerfile that will install requirements based on the repository,
prioritizing Pipfile or Pipfile.lock and falling back on requirements.txt files

	
get_or_build_image(name: str, tag: str, dockerfile: Union[str, Callable[..., str]], *, pull=True, build_context: Optional[pathlib.Path] = None)

	A proxy for commonly built images, returns them from the local system if they exist, tries to pull them if
pull isn’t disabled, otherwise builds them by the definition in dockerfile.

	Parameters

	
	name – Name of the image

	tag – Image tag

	dockerfile – Dockerfile text or a callable (no arguments) that produces Dockerfile text

	pull – If the image is not present locally, allow pulling from registry (default is True)

	build_context – A path to a folder. If it’s provided, docker will build the image in the context
of this folder. (eg. if ADD is needed)

	
get_python_base(python_version, pull=True)

	Returns the name and tag of an image with specified python_version installed,
if the image doesn’t exist locally, it’s pulled or built (extending the image from get_arca_base()).

	
get_python_version() → str

	Returns either the specified version from settings or platform.python_version()

	
image_exists(image_name, image_tag)

	Returns if the image exists locally.

	
push_to_registry(image, image_tag: str)

	Pushes a local image to a registry based on the use_registry_name setting.

	Raises

	PushToRegistryError – If the push fails.

	
run(repo: str, branch: str, task: arca.task.Task, git_repo: git.repo.base.Repo, repo_path: pathlib.Path) → arca.result.Result

	Gets or builds an image for the repo, gets or starts a container for the image and runs the script.

	Parameters

	
	repo – Repository URL

	branch – Branch ane

	task – Task to run.

	git_repo – Repo [https://gitpython.readthedocs.io/en/stable/reference.html#git.repo.base.Repo] of the cloned repository.

	repo_path – Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to the cloned location.

	
start_container(image, container_name: str, repo_path: pathlib.Path)

	Starts a container with the image and name container_name and copies the repository into the container.

	Return type

	docker.models.container.Container

	
stop_containers()

	Stops all containers used by this instance of the backend.

	
tar_files(path: pathlib.Path) → bytes

	Returns a tar with the git repository.

	
tar_runner()

	Returns a tar with the runner script.

	
tar_task_definition(name: str, contents: str) → bytes

	Returns a tar with the task definition.

	Parameters

	
	name – Name of the file

	contents – Contens of the definition, utf-8

	
try_pull_image_from_registry(image_name, image_tag)

	Tries to pull a image with the tag image_tag from registry set by use_registry_name.
After the image is pulled, it’s tagged with image_name:image_tag so lookup can
be made locally next time.

	Returns

	A Image [https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.Image] instance if the image exists, None otherwise.

	Return type

	Optional[docker.models.images.Image [https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.Image]]

	
validate_configuration()

	Validates the provided settings.

	Checks inherit_image format.

	Checks use_registry_name format.

	Checks that apt_dependencies is not set when inherit_image is set.

	Raises

	ArcaMisconfigured – If some of the settings aren’t valid.

Vagrant

	
class arca.VagrantBackend(**kwargs)

	Bases: arca.backend.docker.DockerBackend

Uses Docker in Vagrant.

Inherits settings from DockerBackend:

	python_version

	apt_dependencies

	disable_pull

	inherit_image

	use_registry_name

	keep_containers_running - applies for containers inside the VM, default being True for this backend

Adds new settings:

	box - what Vagrant box to use (must include docker >= 1.8 or no docker), ailispaw/barge being the default

	provider - what provider should Vagrant user, virtualbox being the default

	quiet - Keeps the extra vagrant logs quiet, True being the default

	keep_vm_running - Keeps the VM up until stop_vm() is called, False being the default

	destroy - Destroy the VM (instead of halt) when stopping it, False being the default

	
ensure_vm_running(vm_location)

	Gets or creates a Vagrantfile in vm_location and calls vagrant up if the VM is not running.

	
fabric_task

	Returns a fabric task which executes the script in the Vagrant VM

	
get_vm_location() → pathlib.Path

	Returns a directory where a Vagrantfile should be - folder called vagrant in the Arca base dir.

	
init_vagrant(vagrant_file)

	Creates a Vagrantfile in the target dir, with only the base image pulled.
Copies the runner script to the directory so it’s accessible from the VM.

	
inject_arca(arca)

	Apart from the usual validation stuff it also creates log file for this instance.

	
run(repo: str, branch: str, task: arca.task.Task, git_repo: git.repo.base.Repo, repo_path: pathlib.Path)

	Starts up a VM, builds an docker image and gets it to the VM, runs the script over SSH, returns result.
Stops the VM if keep_vm_running is not set.

	
stop_containers()

	Raises an exception in this backend, can’t be used. Stop the entire VM instead.

	
stop_vm()

	Stops or destroys the VM used to launch tasks.

	
validate_configuration()

	Runs arca.DockerBackend.validate_configuration() and checks extra:

	box format

	provider format

	use_registry_name is set and registry_pull_only is not enabled.

Exceptions

	
exception arca.exceptions.ArcaException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

A base exception from which all exceptions raised by Arca are subclassed.

	
exception arca.exceptions.ArcaMisconfigured

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], arca.exceptions.ArcaException

An exception for all cases of misconfiguration.

	
exception arca.exceptions.BuildError(*args, extra_info=None, **kwargs)

	Bases: arca.exceptions.ArcaException

Raised if the task fails.

	
extra_info = None

	Extra information what failed

	
exception arca.exceptions.BuildTimeoutError(*args, extra_info=None, **kwargs)

	Bases: arca.exceptions.BuildError

Raised if the task takes too long.

	
exception arca.exceptions.FileOutOfRangeError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], arca.exceptions.ArcaException

Raised if relative_path in Arca.static_filename
leads outside the repository.

	
exception arca.exceptions.PullError

	Bases: arca.exceptions.ArcaException

Raised if repository can’t be cloned or pulled.

	
exception arca.exceptions.PushToRegistryError(*args, full_output=None, **kwargs)

	Bases: arca.exceptions.ArcaException

Raised if pushing of images to Docker registry in DockerBackend fails.

	
full_output = None

	Full output of the push command

	
exception arca.exceptions.RequirementsMismatch(*args, diff=None, **kwargs)

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], arca.exceptions.ArcaException

Raised if the target repository has extra requirements compared to the current environment
if the requirements_strategy of
CurrentEnvironmentBackend
is set to arca.backends.RequirementsStrategy.raise.

	
diff = None

	The extra requirements

	
exception arca.exceptions.TaskMisconfigured

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], arca.exceptions.ArcaException

Raised if Task is incorrectly defined.

Utils

	
class arca.utils.LazySettingProperty(*, key=None, default=NOT_SET, convert: Callable = None)

	For defining properties for the Arca class and for the backends.
The property is evaluated lazily when accessed, getting the value from settings
using the instances method get_setting. The property can be overridden by the constructor.

	
exception SettingsNotReady

	

	
class arca.utils.NotSet

	For default values which can’t be None.

	
class arca.utils.Settings(data: Optional[Dict[str, Any]] = None)

	A class for handling Arca settings.

	
get(*keys, default: Any = NOT_SET) → Any

	Returns values from the settings in the order of keys, the first value encountered is used.

Example:

>>> settings = Settings({"ARCA_ONE": 1, "ARCA_TWO": 2})
>>> settings.get("one")
1
>>> settings.get("one", "two")
1
>>> settings.get("two", "one")
2
>>> settings.get("three", "one")
1
>>> settings.get("three", default=3)
3
>>> settings.get("three")
Traceback (most recent call last):
...
KeyError:

	Parameters

	
	keys – One or more keys to get from settings. If multiple keys are provided, the value of the first key
that has a value is returned.

	default – If none of the options aren’t set, return this value.

	Returns

	A value from the settings or the default.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If no keys are provided.

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If none of the keys are set and no default is provided.

	
arca.utils.get_hash_for_file(repo: git.repo.base.Repo, path: Union[str, pathlib.Path]) → str

	Returns the hash for the specified path.

Equivalent to git rev-parse HEAD:X

	Parameters

	
	repo – The repo to check in

	path – The path to a file or folder to get hash for

	Returns

	The hash

	
arca.utils.get_last_commit_modifying_files(repo: git.repo.base.Repo, *files) → str

	Returns the hash of the last commit which modified some of the files (or files in those folders).

	Parameters

	
	repo – The repo to check in.

	files – List of files to check

	Returns

	Commit hash.

	
arca.utils.is_dirty(repo: git.repo.base.Repo) → bool

	Returns if the repo has been modified (including untracked files).

	
arca.utils.load_class(location: str) → type

	Loads a class from a string and returns it.

>>> from arca.utils import load_class
>>> load_class("arca.backend.BaseBackend")
<class 'arca.backend.base.BaseBackend'>

	Raises

	ArcaMisconfigured – If the class can’t be loaded.

Changes

0.3.3 (2019-12-10)

	Changes:

	
	Updated dependencies

	Allowed branches with slashes (#79 [https://github.com/pyvec/arca/issues/79])

0.3.2 (2019-11-23)

	Changes:

	
	Moved the project under organisation Pyvec.

	Changed the Docker registry for the base images to arcaoss/arca.

	Fixed unicode paths to repositories (#60 [https://github.com/pyvec/arca/issues/60])

0.3.1 (2018-11-16)

Raising a Arca exception when building of a Docker image fails. (#56 [https://github.com/mikicz/arca/issues/56], #57 [https://github.com/mikicz/arca/pull/57])

0.3.0 (2018-08-25)

	Changes:

	
	Removed CurrentEnvironmentBackend’s capability to process requirements - all requirements are ignored. (BACKWARDS INCOMPATIBLE)

	Added support for installing requirements using Pipenv [https://docs.pipenv.org/].
The directory containing Pipfile and Pipfile.lock is set by the backend option pipfile_location, by default the root of the repository is selected.
The Pipenv files take precedence over regular requirement files.

	The Result class now has two more attributes, stdout and stderr with the outputs of launched tasks to standard output and error.
Priting is therefore now allowed in the endpoints.

	Using UTF-8 locale in Docker images used in DockerBackend.

	Supporting Python 3.7.

0.2.1 (2018-06-11)

Updated dogpile.cache to 0.6.5, enabling compatability with Python 3.7.
Updated the Docker backend to be able to run on Python betas.

0.2.0 (2018-05-09)

This release has multiple backwards incompatible changes against the previous release.

	Changes:

	
	Using extras to install Docker and Vagrant dependencies

	pip install arca[docker] or pip install arca[vagrant] has to be used

	Automatically using cloned repositories as reference for newly cloned branches

	Using Debian as the default base image in the Docker backend:

	apk_dependencies changed to apt_dependencies, now installing using apt-get

	Vagrant backend only creates one VM, instead of multiple – see its documentation

	Added timeout to tasks, 5 seconds by default. Can be set using the argument timeout for Task.

	Added timeout to installing requirements, 300 seconds by default. Can be set using the requirements_timeout configuration option for backends.

0.1.1 (2018-04-23)

Updated gitpython to 2.1.9

0.1.0 (2018-04-18)

Initial release

	Changes:

	
	Updated PyPI description and metadata

0.1.0a0 (2018-04-13)

Initial alfa release

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 arca	

 	
 	
 arca.exceptions	

 	
 	
 arca.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	Arca (class in arca)

 	arca.exceptions (module)

 	
 	arca.utils (module)

 	ArcaException

 	ArcaMisconfigured

B

 	
 	BaseBackend (class in arca)

 	BaseRunInSubprocessBackend (class in arca.backend.base)

 	build_image() (arca.DockerBackend method)

 	
 	build_image_from_inherited_image() (arca.DockerBackend method)

 	BuildError

 	BuildTimeoutError

C

 	
 	cache_key() (arca.Arca method)

 	check_docker_access() (arca.DockerBackend method)

 	
 	container_running() (arca.DockerBackend method)

 	current_git_hash() (arca.Arca method)

 	CurrentEnvironmentBackend (class in arca)

D

 	
 	diff (arca.exceptions.RequirementsMismatch attribute)

 	
 	DockerBackend (class in arca)

E

 	
 	ensure_vm_running() (arca.VagrantBackend method)

 	
 	extra_info (arca.exceptions.BuildError attribute)

F

 	
 	fabric_task (arca.VagrantBackend attribute)

 	
 	FileOutOfRangeError

 	full_output (arca.exceptions.PushToRegistryError attribute)

G

 	
 	get() (arca.utils.Settings method)

 	get_arca_base() (arca.DockerBackend method)

 	get_backend_instance() (arca.Arca method)

 	get_container_name() (arca.DockerBackend method)

 	get_dependencies() (arca.DockerBackend method)

 	get_dependencies_hash() (arca.DockerBackend method)

 	get_files() (arca.Arca method)

 	get_hash_for_file() (in module arca.utils)

 	get_image() (arca.DockerBackend method)

 	get_image_for_repo() (arca.DockerBackend method)

 	get_image_name() (arca.DockerBackend method)

 	get_image_tag() (arca.DockerBackend method)

 	get_image_with_installed_dependencies() (arca.DockerBackend method)

 	get_inherit_image() (arca.DockerBackend method)

 	get_install_requirements_dockerfile() (arca.DockerBackend method)

 	get_last_commit_modifying_files() (in module arca.utils)

 	
 	get_or_build_image() (arca.DockerBackend method)

 	get_or_create_environment() (arca.backend.base.BaseRunInSubprocessBackend method)

 	(arca.CurrentEnvironmentBackend method)

 	(arca.VenvBackend method)

 	get_or_create_venv() (arca.VenvBackend method)

 	get_path_to_repo() (arca.Arca method)

 	get_path_to_repo_and_branch() (arca.Arca method)

 	get_python_base() (arca.DockerBackend method)

 	get_python_version() (arca.DockerBackend method)

 	get_reference_repository() (arca.Arca method)

 	get_repo() (arca.Arca method)

 	get_requirements_information() (arca.BaseBackend method)

 	get_setting() (arca.BaseBackend method)

 	get_settings_keys() (arca.BaseBackend method)

 	get_virtualenv_path() (arca.VenvBackend method)

 	get_vm_location() (arca.VagrantBackend method)

H

 	
 	hash (arca.Task attribute)

 	
 	hash_file_contents() (arca.BaseBackend static method)

I

 	
 	image_exists() (arca.DockerBackend method)

 	init_vagrant() (arca.VagrantBackend method)

 	
 	inject_arca() (arca.BaseBackend method)

 	(arca.VagrantBackend method)

 	is_dirty() (in module arca.utils)

L

 	
 	LazySettingProperty (class in arca.utils)

 	
 	LazySettingProperty.SettingsNotReady

 	load_class() (in module arca.utils)

M

 	
 	make_region() (arca.Arca method)

N

 	
 	NotSet (class in arca.utils)

O

 	
 	output (arca.Result attribute)

P

 	
 	pull_again() (arca.Arca method)

 	PullError

 	
 	push_to_registry() (arca.DockerBackend method)

 	PushToRegistryError

R

 	
 	repo_id() (arca.Arca method)

 	RequirementsMismatch

 	Result (class in arca)

 	run() (arca.Arca method)

 	(arca.BaseBackend method)

 	(arca.DockerBackend method)

 	(arca.VagrantBackend method)

 	(arca.backend.base.BaseRunInSubprocessBackend method)

S

 	
 	save_hash() (arca.Arca method)

 	serialized_task() (arca.BaseBackend method)

 	Settings (class in arca.utils)

 	should_cache_fn() (arca.Arca method)

 	snake_case_backend_name (arca.BaseBackend attribute)

 	start_container() (arca.DockerBackend method)

 	
 	static_filename() (arca.Arca method)

 	stderr (arca.Result attribute)

 	stdout (arca.Result attribute)

 	stop_containers() (arca.DockerBackend method)

 	(arca.VagrantBackend method)

 	stop_vm() (arca.VagrantBackend method)

T

 	
 	tar_files() (arca.DockerBackend method)

 	tar_runner() (arca.DockerBackend method)

 	tar_task_definition() (arca.DockerBackend method)

 	
 	Task (class in arca)

 	TaskMisconfigured

 	try_pull_image_from_registry() (arca.DockerBackend method)

V

 	
 	VagrantBackend (class in arca)

 	validate_configuration() (arca.DockerBackend method)

 	(arca.VagrantBackend method)

 	
 	validate_depth() (arca.Arca method)

 	validate_reference() (arca.Arca method)

 	validate_repo_url() (arca.Arca method)

 	VenvBackend (class in arca)

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Arca’s documentation!

 		
 Quickstart

 		
 Glossary

 		
 Example

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 Settings

 		
 Configuring Arca

 		
 Basic options

 		
 Arca class

 		
 Backends

 		
 Tasks

 		
 Arguments

 		
 Timeout

 		
 Result

 		
 Caching

 		
 Backends

 		
 Current Environment

 		
 Virtual Environment

 		
 Docker

 		
 Vagrant

 		
 Your own

 		
 Cookbook

 		
 I need some files from the repositories

 		
 I will be running a lot of tasks from the same repository

 		
 Singe pull

 		
 Running container

 		
 Reference

 		
 Arca

 		
 Task

 		
 Result

 		
 Backends

 		
 Abstract classes

 		
 Current environment

 		
 Python virtual environment

 		
 Docker

 		
 Vagrant

 		
 Exceptions

 		
 Utils

 		
 Changes

 		
 0.3.3 (2019-12-10)

 		
 0.3.2 (2019-11-23)

 		
 0.3.1 (2018-11-16)

 		
 0.3.0 (2018-08-25)

 		
 0.2.1 (2018-06-11)

 		
 0.2.0 (2018-05-09)

 		
 0.1.1 (2018-04-23)

 		
 0.1.0 (2018-04-18)

 		
 0.1.0a0 (2018-04-13)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

