
Arbor Workflows Documentation
Release None

Kitware, Inc.

February 22, 2017

Contents

1 User’s Guide 3
1.1 Advanced Mode . 3
1.2 OpenTree Integration . 3
1.3 Table Operations . 4

2 Tutorials 7
2.1 Demonstration Videos . 7

3 Administrator’s Guide 9
3.1 Installation . 9

4 Indices and tables 11

i

ii

Arbor Workflows Documentation, Release None

Please visit the Arbor Workflows homepage or the GitHub repository for more information.

Contents 1

http://www.arborworkflows.com
https://github.com/ArborWorkflows/ArborWebApps

Arbor Workflows Documentation, Release None

2 Contents

CHAPTER 1

User’s Guide

Advanced Mode

See the following sections of the TangeloHub documentation for using the Advanced Mode interface available at
https://arbor.kitware.com.

Creating an analysis

Creating a workflow

OpenTree Integration

Arbor contains a set of analyses designed to provide connectivity to the Open Tree of Life (opentreeoflife.org). These
analyses provide taxonomy lookup and subtree access services. The goal is to provide techniques for users to access
open tree data without having to explicitly program using the OpenTree API calls. Instead, the API calls are embedded
inside Arbor workflow steps.

These operations are currently in prototype form and should be tested and adjusted as the OpenTree API and Arbor’s
functionality continue to evolve.

Taxonomy Analyses

Explore OpenTree species name completion

This analysis lets users provide a comma-separated list of partial names (name prefixes) that will be used to query
the OpenTree taxonomy. A table is returned that provides all the values returned as attempts to complete the queries
partial names. This uses the “autocomplete” function of OpenTree’s API.

Verbose OpenTree TNRS return for names

This analysis is written to allow for exploring the OpenTree TNRS data return. It uses the OpenTree v2 API
“match_names” interface. A single column table, or a table with the names in the first column, is expected. All
names are extracted from the table and a single query of the name list is performed. A table is built containing the full
taxonomy lookup results.

3

https://arbor.kitware.com
http://tangelohub.readthedocs.org/en/latest/creating-an-analysis.html
http://tangelohub.readthedocs.org/en/latest/creating-a-workflow.html

Arbor Workflows Documentation, Release None

Lookup names using OpenTree auto completion

This operation assumes a single column table, or a table where the first column is the species of a matrix. Each name
in the column is used to query the OpenTree “autocomplete” API function in order to determine a matching node in
the Tree of Life. Currently, only the first taxonomic return is examined and used if it is indicated as a taxon (or leaf
node) in the tree. Therefore, this analysis can be used to identify OpenTree taxa that correspond to a user’s character
matrix.

Lookup names using OpenTree Taxonomy

This operation is similar to the “Lookup with auto completion” described above, except this operation uses OpenTree’s
v2 “match_names” API call. The match_names API call does not currently delineate between taxa and non-taxa, so
an attempt has been made, at the Arbor level, to filter returns for only taxa by examining the attributes returned by
OpenTree. This methodology should be reviewed before extensive use.

Tree Operations

Return the OpenTree subtree from a node list

Given a list of OpenTree node IDs (OttIds), return a tree that contains these taxa, and only these taxa. This analysis
calls OpenTree’s SubtreeForNodes API endpoint. The output of this function is the returned tree in Newick format.

Table Operations

Arbor is designed to make it easier to perform comparative analysis on tabular and tree datasets without the need
for custom programming. Users of Arbor are able to invoke operations on their datasets one at a time, or collect
operations into a workflow to be executed by Arbor. The following is a list of table operations currently available in
Arbor. Additional operations will be added as the Arbor system continues to develop.

Row Operations

Append Rows

This merges two tables which have the same column headers, but different content rows. The analysis should look for
all headers in either input file and output the union of the individual column header fields. If values are sparse (missing
some columns in some rows), let it be sparse initially. This can be used to “merge” tables together, when the attribute
columns match.

Select Random Rows

Select a random subset of the input rows to pass through. Input is a table and an integer value indicating how many
rows are desired in the output table. The algorithm selects output rows randomly from the entire length of the input
table. This can be used to generate samples out of a large trait matrix, to test a workflow with a smaller matching tree,
for example.

4 Chapter 1. User’s Guide

Arbor Workflows Documentation, Release None

Drop Rows by Value

Pass all rows of an input table through the analysis unless a particular test criteria is met. If the test is met, this row
will be “dropped” from the output table. The criteria is specified by specifying a column header name and a comma
separated list of values to look for. For example, drop a row from a character matrix, where the “species” entry is
“anolis occultus”. This will drop the species from the matrix but pass the other species values through.

Aggregate table by average

A table algorithm that inputs a table and a column name to use as a “class” identifier. It is assumed that the class column
will have a finite number of categorical values, even if they are numerical in nature. The algorithm will generate a
table output with only one row per class value. All the attribute values for each individual row from a particular class
will be aggregated. To illustrate, consider an example with a table containing 100 observations across a number of
islands. An “Island” column is included, where rows have the the value “Cuba”, “Puerto Rico”, or “Hispaniola” –
representing three “classes” of observations. If aggregated by “Island”, the output table will have three rows and all
the continuous attributes in the output table will be the average of all rows that contributed to each corresponding class.
This is sometimes called a “Group By” operation.

Aggregate table by max

This is the same operation as “aggregate table by max”, except the maximum value observed for each class is returned
instead of the average value of all class members.

Column Operations

Append Columns

This analysis appends columns of two datasets together. One “index” column is named and this column is used as
the primary key to bring together all column entries from each table together into a single row record. For example,
lets say we have a 1st table indexed by a scientific name with 3 attribute columns and a 2nd table indexed by the
same scientific name, with 2 additional attribute columns (lets call them attribute 4 & 5). This analysis will output
a five column table, where the index column (scientific name) has been used to correctly merge attributes for each
corresponding row together.

Extract Columns

Accept an input table and a list of column header names. Only the columns contained in the header list are passed
through to the output. Therefore, this is a way of keeping only the most important columns in a table instance. The
column selection input is organized as a single-column table, because it will be easy to read as a table, also.

Extract Columns by string

The same algorithm as above, but the user can enter a list of columns to extract as a comma separated list when the
algorithm is run. This is useful for interactively working with a table a step at a time.

1.3. Table Operations 5

Arbor Workflows Documentation, Release None

6 Chapter 1. User’s Guide

CHAPTER 2

Tutorials

Demonstration Videos

Here are some short demonstration videos to illustrate some of the features of the Arbor web interface:

Introduction

An Introduction to the Arbor Interface

Creating a New Analysis

Making a new analysis with the Arbor interface

Creating a Workflow

How to create and execute a multistep workflow in Arbor

OpenTree Integration

In the link below, we use Arbor analyses that invoke the OpenTree API. This integration technique makes it possible
to query the OpenTree for taxonomy lookup and subtree extraction without having to write any program code. The
algorithms performed in the Arbor analyses need to be yet refined to produce useful phylogenetic results:

Simple examples of OpenTree integration with Arbor

LifeMapper Integration

Below is a link to preliminary work to request species occurrence points from LifeMapper in order to examine phylo-
genetic and species range information together:

Prototype connections to LifeMapper for species occurrences

7

http://youtu.be/wnHMem4F9i4
http://youtu.be/n2M5F0EjISg
http://youtu.be/HImUo94BLn8
http://youtu.be/Kba7TQgs7oY
http://youtu.be/o7EkYl5A1ec

Arbor Workflows Documentation, Release None

8 Chapter 2. Tutorials

CHAPTER 3

Administrator’s Guide

Installation

TangeloHub Installation

Arbor Workflows uses Flow, developed by Kitware, as its main interface. Follow the Flow Vagrant install instructions
with the Ansible arbor setting set to true (the default) to spin up your own instance.

Easy Mode App Installation

The easy mode applications must be added through an additional repository checkout and a few symbolic links. To set
up these links, first enter your Vagrant VM with:

vagrant ssh

Once inside your virtual machine, checkout the ArborWebApps repository to the /vagrant directory, which will be
exposed on your host machine.

cd /vagrant
git clone https://github.com/arborworkflows/ArborWebApps.git
cd app
ln -s ../ArborWebApps/phylogenetic-signal .
ln -s ../ArborWebApps/ancestral-state .

Now you will also need to import the “Phylogenetic signal” and “Ancestral state” analyses from the public Arbor at
http://arborclassic.arborworkflows.com by selecting the analysis and clicking Download, then uploading them on your
instance with the Upload button.

9

https://github.com/Kitware/flow/
http://tangelohub.readthedocs.org/en/latest/installation.html#vagrant-install
http://arborclassic.arborworkflows.com:9080

Arbor Workflows Documentation, Release None

10 Chapter 3. Administrator’s Guide

CHAPTER 4

Indices and tables

• genindex

• search

11

	User's Guide
	Advanced Mode
	OpenTree Integration
	Table Operations

	Tutorials
	Demonstration Videos

	Administrator's Guide
	Installation

	Indices and tables

