
ara Documentation
Release 0.16.6.dev2

Red Hat

Sep 12, 2019

Contents

1 Table of Contents 3
1.1 FAQ . 3

1.1.1 What is ARA ? . 3
1.1.2 What does the web interface look like ? . 3
1.1.3 What versions of Ansible are supported ? . 8
1.1.4 Does ARA support running on Python 3 ? . 9
1.1.5 What’s an Ansible callback ? . 9
1.1.6 Why is ARA being developed ? . 9
1.1.7 Why don’t you use Ansible Tower (AWX), Rundeck or Semaphore ? 9
1.1.8 Can Ansible with ARA run on a different server than the web application ? 10
1.1.9 Can ARA be used outside the context of OpenStack or continuous integration ? 10

1.2 Installing ARA . 10
1.2.1 RHEL, CentOS, Fedora packages . 10
1.2.2 Ubuntu, Debian packages . 11
1.2.3 Installing ARA from trunk source . 11
1.2.4 Installing ARA from latest release on PyPi . 11

1.3 Configuration . 11
1.3.1 Ansible . 11
1.3.2 ARA . 12
1.3.3 Parameters and their defaults . 13
1.3.4 The CLI client and the web application . 16

1.4 Web Server Configuration . 17
1.4.1 Embedded server . 17
1.4.2 Apache+mod_wsgi . 17
1.4.3 Serving static HTML reports . 21

1.5 Serving ARA sqlite databases over http . 21
1.5.1 wsgi_sqlite configuration . 22
1.5.2 Using wsgi_sqlite with Apache’s mod_wsgi . 23
1.5.3 Using a virtual environment . 23

1.6 Usage . 24
1.6.1 Using the callback . 24
1.6.2 Using the ara_record module . 24
1.6.3 Using the ara_read module . 25
1.6.4 Looking at the data . 26
1.6.5 Querying the database with the CLI . 27
1.6.6 Browsing the web interface . 29

i

1.6.7 Generating a static HTML version of the web application 29
1.6.8 Generating a static junit version of the task results . 30
1.6.9 Generating a static subunit version of the task results . 31

1.7 Contributing . 32
1.7.1 Set up your Ubuntu Launchpad account . 32
1.7.2 Filing issues and bugs . 32
1.7.3 Contributing code or code reviews . 37
1.7.4 Sending a patch for review . 38
1.7.5 Running tests locally . 39
1.7.6 More reading . 40

1.8 Manifesto: Project core values . 40
1.8.1 1) Simplicity is fundamental . 40
1.8.2 2) Do one thing and do it well . 41
1.8.3 3) Empower users to get their work done . 41
1.8.4 4) Don’t require users to change their workflows . 41
1.8.5 5) De-centralized, offline and standalone by default . 41

ii

ara Documentation, Release 0.16.6.dev2

Contents 1

ara Documentation, Release 0.16.6.dev2

2 Contents

CHAPTER 1

Table of Contents

1.1 FAQ

1.1.1 What is ARA ?

ARA makes Ansible runs easier to visualize, understand and troubleshoot.

ARA provides four things:

1. An Ansible callback plugin to record playbook runs into a local or remote database

2. The ara_record and ara_read pair of Ansible modules to record and read persistent data with ARA

3. A CLI client to query the database

4. A dynamic, database-driven web interface that can also be generated and served from static files

1.1.2 What does the web interface look like ?

A video preview and explanation of the web interface is available on YouTube, featuring playbook runs from the
OpenStack-Ansible project.

Otherwise, here’s some screenshots highlighting some of ARA’s features:

Home page

The home page highlights the data recorded by ARA:

3

https://github.com/openstack/ara
https://www.ansible.com/
https://www.youtube.com/watch?v=k3i8VPCanGo
https://github.com/openstack/openstack-ansible

ara Documentation, Release 0.16.6.dev2

Playbook reports

The core of the web application interface revolves around one and single page where you’ll be able to find all the
information about your playbooks:

Ansible parameters

ARA stores parameters and options passed to your ansible-playbook command:

4 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

Playbook host summary

Quickly have a glance at summary statistics or host facts for your playbook:

Recorded host facts

If Ansible gathered facts as part of your playbook, ARA will save them and make them available:

1.1. FAQ 5

ara Documentation, Release 0.16.6.dev2

Organized task results

Quickly and easily get insight into your task results.

Sort them by duration to find which took the longest time

6 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

Search and filter by task name, host, action or status

Click on the action to get context on where a specific task ran

Click on the status to dig into all the data made available by Ansible

1.1. FAQ 7

ara Documentation, Release 0.16.6.dev2

Arbitrarily recorded data

The ara_record and ara_read built-in Ansible modules allow you to write and read arbitrary data, making them
available in the web interface:

1.1.3 What versions of Ansible are supported ?

The upstream Ansible community and maintainers provide support for the latest two major stable releases and ARA
follows the same support cycle.

8 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

At this time, the minimum required version of Ansible to run the latest version of ARA is 2.4.1.0. New development
is tested against the latest versions of 2.4, 2.5 as well as devel which is currently the future version of Ansible, 2.6.

If you are using a release of Ansible that is no longer supported, we strongly encourage you to upgrade as soon as
possible in order to benefit from the latest features and security fixes.

Older unsupported versions of Ansible can contain unfixed security vulnerabilities (CVE).

1.1.4 Does ARA support running on Python 3 ?

Yes.

The support for running ARA on a python 3 environment landed in ARA 0.14.0. Previous versions would not work
on python 3.

1.1.5 What’s an Ansible callback ?

Ansible Callbacks are essentially hooks provided by Ansible. Ansible will send an event and you can react to it with a
callback. You could use a callback to do things like print additional details or, in the case of ARA, record the playbook
run data in a database.

1.1.6 Why is ARA being developed ?

Ansible is an awesome tool. It can be used for a lot of things.

Reading and interpreting the output of an ansible-playbook run, especially one that is either long running,
involves a lot of hosts or prints a lot of output can be tedious. This is especially true when you happen to be running
Ansible hundreds of times during the day, through automated means – for example when doing continuous integration
or continuous delivery.

ARA aims to do one thing and do it well: Record Ansible runs and provide means to visualize these records to help
you be more efficient.

1.1.7 Why don’t you use Ansible Tower (AWX), Rundeck or Semaphore ?

Ansible Tower is a product from Red Hat while Ansible AWX is the upstream open source version of Tower. ARA is
not mutually exclusive with either: you can use it with your Tower or AWX deployment but it’s only job is to provide
reporting.

Ansible Tower, AWX, Semaphore and Rundeck all have something in common. They are tools that control (or want
to control) the whole workflow from end-to-end and they do so in a fairly “centralized” fashion where everything runs
from the place where the software is hosted.

They provide features like inventory management, ACLs, playbook execution, editing features and so on.

Since they are the ones actually running Ansible, it makes sense that they can record and display the data in an
organized way.

ARA is decentralized and self-contained: pip install ara, configure the callback in ansible.cfg, run a
playbook and it’ll be recorded, wherever it is. ARA doesn’t want to do things like inventory management, provide
editing features or control the workflow. It just wants to record data and provide an intuitive interface for it.

When using ARA, you can store and browse your data locally and this is in fact the default behavior. You are not
required to use a central server or upload your data elsewhere.

1.1. FAQ 9

https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://www.ansible.com/tower
https://github.com/ansible/awx
https://github.com/ansible-semaphore/semaphore
http://rundeck.org/plugins/ansible/2016/03/11/ansible-plugin.html

ara Documentation, Release 0.16.6.dev2

While the features provided by Tower and other products are definitely nice, the scope of ARA is kept narrow on
purpose. By doing so, ARA remains a relatively simple application that is very easy to install and configure. It does
not require any changes to your setup or workflow, it adds itself in transparently and seamlessly.

For more information regarding the core values and the scope for the ARA project, refer to the project manifesto.

1.1.8 Can Ansible with ARA run on a different server than the web application ?

ARA comes bundled in an all-in-one package: callback, modules, web application and command line interface. When
you install ARA, you get all of those out of the box.

The ARA components themselves are mostly decoupled, however, and as long as they can all communicate with the
same database, you’ll get the same experience.

You can run Ansible with ARA on your laptop, save to a local sqlite database and run the web application from the
embedded server, everything offline, if that’s what you need.

However, you can also, for example, use a MySQL configuration to have Ansible and ARA send data to a remote
database server instead.

Another server could host the web application with Apache+mod_wsgi with the same database configuration and you
would be accessing the same recorded data.

You could also have ARA installed on yet another computer with the same configuration and the command line
interface will be able to retrieve the data automatically as well.

1.1.9 Can ARA be used outside the context of OpenStack or continuous integration
?

ARA has no dependencies or requirements with OpenStack or Jenkins for CI. You can use ARA with Ansible for any
playbook in any context.

ARA is completely generic but was developed out of necessity to make troubleshooting OpenStack continuous inte-
gration jobs faster and easier.

1.2 Installing ARA

Installing ARA is easy.

1.2.1 RHEL, CentOS, Fedora packages

Required dependencies

yum install gcc python-devel libffi-devel openssl-devel redhat-rpm-config

Development or integration testing dependencies

yum install python-setuptools libselinux-python libxml2-devel libxslt-devel
easy_install pip
pip install tox

10 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

1.2.2 Ubuntu, Debian packages

Required dependencies

apt-get install gcc python-dev libffi-dev libssl-dev

Development or integration testing dependencies

apt-get install python-pip libxml2-dev libxslt1-dev
pip install tox

1.2.3 Installing ARA from trunk source

pip install git+https://git.openstack.org/openstack/ara

1.2.4 Installing ARA from latest release on PyPi

pip install [--user] ara

When installing ARA using --user, command line scripts will be installed inside ~/.local/bin folder which
may not be in PATH. You may want to assure that this folder is in PATH or to use the alternative calling method
python -m ara which calls Ansible module directly.

The alternative calling method has the advantage that allows user to control which python interpreter would be used.
For example you could install ARA in both python2 and python3 and call the one you want.

1.3 Configuration

1.3.1 Ansible

To begin using ARA, you’ll first need to set up Ansible so it knows about the the ARA callback and, if necessary, the
ara_record and ara_read modules.

The callback and modules are bundled when installing ARA but you need to know where they have been installed in
order to let Ansible know where they are located.

This location will be different depending on your operating system, how you are installing ARA and whether you are
using Python 2 or Python 3.

ARA ships a set of convenience Python modules to help you configure Ansible to use it.

They can be used like so:

$ python -m ara.setup.path
/usr/lib/python2.7/site-packages/ara

$ python -m ara.setup.action_plugins
/usr/lib/python2.7/site-packages/ara/plugins/actions

(continues on next page)

1.3. Configuration 11

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

$ python -m ara.setup.callback_plugins
/usr/lib/python2.7/site-packages/ara/plugins/callbacks

Using ansible.cfg

This sets up a new ansible.cfg file to load the callbacks and modules from the appropriate locations:

$ python -m ara.setup.ansible | tee ansible.cfg
[defaults]
callback_plugins=/usr/lib/python2.7/site-packages/ara/plugins/callbacks
action_plugins=/usr/lib/python2.7/site-packages/ara/plugins/actions

Or alternatively, if you have a customized ansible.cfg file, you can retrieve only what you need using the other helpers
such as the following:

• python -m ara.setup.callback_plugins

• python -m ara.setup.action_plugins

Using environment variables

Depending on the context and your use case, configuring Ansible using environment variables instead of an
ansible.cfg file might be more convenient.

ARA provides a helper module that prints out the necessary export commands:

$ python -m ara.setup.env
export ANSIBLE_CALLBACK_PLUGINS=/usr/lib/python2.7/site-packages/ara/plugins/callbacks
export ANSIBLE_ACTION_PLUGINS=/usr/lib/python2.7/site-packages/ara/plugins/actions

Note that the module doesn’t actually run those exports, you’ll want to run them yourself, add them in a bash script or
a bashrc, etc.

1.3.2 ARA

ARA uses the same mechanism and configuration files as Ansible to retrieve it’s configuration. It comes with sane
defaults that can be customized if need be.

The order of priority is the following:

1. Environment variables

2. ./ansible.cfg (In the current working directory)

3. ~/.ansible.cfg (In the home directory)

4. /etc/ansible/ansible.cfg

When using the ansible.cfg file, the configuration options must be set under the ara namespace, as follows:

[ara]
variable = value

12 Chapter 1. Table of Contents

https://docs.ansible.com/ansible/intro_configuration.html#configuration-file
https://docs.ansible.com/ansible/intro_configuration.html#configuration-file
https://docs.ansible.com/ansible/intro_configuration.html#environmental-configuration

ara Documentation, Release 0.16.6.dev2

Note: The callback, CLI client and web application all share the same settings. For example, if you configure the
database location, all three will use that location.

1.3.3 Parameters and their defaults

Environment variable [ara] ansible.cfg vari-
able

Default value

ARA_DIR dir ~/.ara
ARA_DATABASE database sqlite:///~/.ara/ansible.sqlite
ARA_HOST host 127.0.0.1
ARA_PORT port 9191
ARA_APPLICATION_ROOT application_root /
ARA_LOG_CONFIG logconfig None
ARA_LOG_FILE logfile ~/.ara/ara.log
ARA_LOG_LEVEL loglevel INFO
ARA_LOG_FORMAT logformat %(asctime)s - %(levelname)s - %(mes-

sage)s
ARA_IGNORE_FACTS ignore_facts ansible_env
ARA_IGNORE_PARAMETERS ignore_parameters extra_vars
ARA_IGNORE_EMPTY_GENERATION ignore_empty_generation True
ARA_IGNORE_MIMETYPE_WARNINGS ig-

nore_mimetype_warnings
True

ARA_PLAYBOOK_OVERRIDE playbook_override None
ARA_PLAYBOOK_PER_PAGE playbook_per_page 10
ARA_RESULT_PER_PAGE result_per_page 25
SQLALCHEMY_ECHO sqlalchemy_echo False
SQLALCHEMY_POOL_SIZE sqlalchemy_pool_size None (default managed by flask-

sqlalchemy)
SQLALCHEMY_POOL_TIMEOUT sqlalchemy_pool_timeout None (default managed by flask-

sqlalchemy)
SQLALCHEMY_POOL_RECYCLE sqlalchemy_pool_recycle None (default managed by flask-

sqlalchemy)

ARA_DIR

Base directory where ARA will store it’s log file and sqlite database, unless specified otherwise.

ARA_DATABASE

ARA records Ansible data in a database. The callback, the CLI client and the web application all need to know where
that database is located.

ARA ensures the database exists and it’s schema is created when it is run.

ARA comes out of the box with sqlite enabled and no additional setup required. If, for example, you’d like to use
MySQL instead, you will need to create a database and it’s credentials:

1.3. Configuration 13

http://flask-sqlalchemy.pocoo.org/2.3/config/#configuration-keys
http://flask-sqlalchemy.pocoo.org/2.3/config/#configuration-keys
http://flask-sqlalchemy.pocoo.org/2.3/config/#configuration-keys
http://flask-sqlalchemy.pocoo.org/2.3/config/#configuration-keys

ara Documentation, Release 0.16.6.dev2

CREATE DATABASE ara;
CREATE USER ara@localhost IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON ara.* TO ara@localhost;
FLUSH PRIVILEGES;

And then setup the database connection:

export ARA_DATABASE="mysql+pymysql://ara:password@localhost/ara"
or
[ara]
database = mysql+pymysql://ara:password@localhost/ara

When using a different database driver such as MySQL (pymysql), you also need to make sure you install the driver:

From pypi
pip install pymysql
For RHEL derivatives
yum install python-PyMySQL
For Debian or Ubuntu
apt-get install python-pymysql

Alternatively, if you prefer PostgreSQL, you can do the following in psql:

CREATE ROLE ara WITH LOGIN PASSWORD 'password';
CREATE DATABASE ara OWNER ara;
GRANT ALL ON DATABASE ara TO ara;

Be sure you update your pg_hba.conf afterwards if needed.

Then, setup the database connection:

export ARA_DATABASE="postgresql+psycopg2://ara:password@localhost:5432/ara"
or
[ara]
database = postgresql+psycopg2://ara:password@localhost:5432/ara

You will need to install the database driver by:

From pypi
pip install psycopg2
For RHEL derivatives
yum install python-psycopg2
For Debian or Ubuntu
apt-get install python-psycopg2

ARA_HOST

The host on which the development server will bind to by default when using the ara-manage runserver com-
mand.

It is equivalent to the -h or --host argument of the ara-manage runserver command.

ARA_PORT

The port on which the development server will listen on by default when using the ara-manage runserver
command.

14 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

It is equivalent to the -p or --port argument of the ara-manage runserver command.

ARA_APPLICATION_ROOT

The path at which the web application should be loaded.

The default behavior is to load the application at the root (/) of your host. Change this parameter if you’d like to host
your application elsewhere.

For example, /ara would make the application available under http://host/ara instead of http://host/.

ARA_LOG_CONFIG

Path to a python logging config file.

If the filename ends in .yaml or .yml the file will be loaded as yaml. If the filename ends in .json the file
will be loaded as json. The resulting dict for either will be treated as a logging config dict and passed to log-
ging.config.dictConfig.

Otherwise it will be assumed to a logging config file and the path will be passed to logging.config.fileConfig.

If this option is given it superseeds the other individual log options.

ARA_LOG_FILE

Path to the logfile to store ARA logs in.

ARA_LOG_LEVEL

The loglevel to adjust debug or verbosity.

ARA_LOG_FORMAT

The log format of the logs.

ARA_IGNORE_FACTS

When Ansible gathers host facts or uses the setup module, your host facts are recorded by ARA and are also available
as part of your reports.

By default, only the host fact ansible_env is not saved due to the sensitivity of the information it could contain
such as tokens, passwords or otherwise privileged information.

This configuration allows you to customize what ARA will and will not save. It is a list, provided by comma-separated
values.

ARA_IGNORE_PARAMETERS

ARA will, by default, save every parameter and option passed to ansible-playbook (except extra-vars) and make
them available as part of your reports.

If, for example, you use extra_vars to send a password or secret variable to your playbooks, it is likely you don’t want
this saved in ARA’s database.

1.3. Configuration 15

https://docs.python.org/3/library/logging.config.html#logging-config-dictschema
https://docs.python.org/3/library/logging.config.html#logging-config-fileformat
https://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line

ara Documentation, Release 0.16.6.dev2

This configuration allows you to customize what ARA will and will not save. It is a list, provided by comma-separated
values.

ARA_IGNORE_EMPTY_GENERATION

When using ara generate html, whether or not to ignore warnings provided by flask-frozen about endpoints
for which the application found no available data.

For example, if you do not use the ara_record module as part of your playbooks, this avoids printing a Missin-
gURLGeneratorWarning because there is no recorded data to render.

ARA_IGNORE_MIMETYPE_WARNINGS

When using ara generate html, whether or not to ignore file mimetype warnings provided by flask-frozen.

ARA_PLAYBOOK_OVERRIDE

This configuration is exposed mostly for the purposes of the ara generate html and ara generate junit
commands but you can use it as well.

ARA_PLAYBOOK_OVERRIDE will limit the playbooks displayed in the web application to the list of playbook IDs
specified. This is expected to be playbook IDs (ex: retrieved through ara playbook list) in a comma-separated
list.

ARA_PLAYBOOK_PER_PAGE

This is the amount of playbooks runs shown in a single page in the ARA web interface. The default is 10 but you
might want to tweak this number up or down depending on the amount of hosts, tasks and task results contained in
your playbooks. This directly influences the weight of the pages that will end up being displayed. Setting this value
too high might yield very heavy pages.

Set this parameter to 0 to disable playbook listing pagination entirely.

ARA_RESULT_PER_PAGE

This is the amount of results shown in a single page in the different data tables such as hosts, plays and tasks of
the ARA web interface. The default is 25 but you might want to tweak this number up or down depending on your
preference. This has no direct impact on the weight of the page being sent for the reports as these data tables are
rendered on the client side.

Set this parameter to 0 to disable pagination for results entirely.

1.3.4 The CLI client and the web application

The CLI client and the web application do not need to be run on the same machine that Ansible is executed from but
they do need a database and know it’s location.

Both could query a local sqlite database or a remote MySQL database, for example.

16 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

1.4 Web Server Configuration

The web interface provided by ARA is a simple Flask application. There are many ways to deploy and host a Flask
application, here we cover two different ways which should help you get started.

In any case, ARA will need to be installed before you proceed. Refer to the documentation if you need to know how
to install ARA.

1.4.1 Embedded server

ARA comes bundled with an embedded server meant for development or debugging purposes.

Note that any serious deployment should probably not be running off of this as it is not meant to be serving clients
directly at any kind of scale.

To start the development server, use the provided ara-manage runserver command:

$ ara-manage runserver --help
usage: ara-manage runserver [-?] [-h HOST] [-p PORT] [--threaded]

[--processes PROCESSES] [--passthrough-errors]
[-d] [-D] [-r] [-R]

Runs the Flask development server i.e. app.run()

optional arguments:
-?, --help show this help message and exit
-h HOST, --host HOST
-p PORT, --port PORT
--threaded
--processes PROCESSES
--passthrough-errors
-d, --debug enable the Werkzeug debugger (DO NOT use in production

code)
-D, --no-debug disable the Werkzeug debugger
-r, --reload monitor Python files for changes (not 100% safe for

production use)
-R, --no-reload do not monitor Python files for changes

To expose any non-default configurations to the development server (such as the database location), the same principles
as usual apply – you need to have an ansible.cfg file or declare environment variables.

For example, to fire the server to listen on all IPv4 addresses on port 8080 while using a database at /tmp/ara.
sqlite:

$ export ARA_DATABASE="sqlite:////tmp/ara.sqlite"
$ ara-manage runserver -h 0.0.0.0 -p 8080

* Running on http://0.0.0.0:8080/ (Press CTRL+C to quit)

1.4.2 Apache+mod_wsgi

Note: ARA needs to be installed on the server where Apache will be running. Refer to the documentation if you need
to know how to install ARA.

1.4. Web Server Configuration 17

http://flask.pocoo.org/docs/0.12/deploying/

ara Documentation, Release 0.16.6.dev2

Fedora/CentOS/RHEL

Install Apache+mod_wsgi

yum install httpd mod_wsgi
systemctl enable httpd
systemctl start httpd

Create a directory for Ansible and ARA

This directory is where we will store the files that Apache will need to read and write to.

mkdir -p /var/www/ara

Copy ARA’s WSGI script to the web directory

ARA provides a WSGI script when it is installed: ara-wsgi. We need to copy it to the directory we just created,
/var/www/ara.

The location where ara-wsgi is installed depends on how you installed ARA and the distribution you are running.
You can use which to find where it is located:

cp -p $(which ara-wsgi) /var/www/ara/

Create the Ansible and ARA configuration

The defaults provided by ARA and Ansible are not suitable for a use case where we are deploying with Apache. We
need to provide different settings:

cat <<EOF >/var/www/ara/ansible.cfg
[defaults]
This directory is required to store temporary files for Ansible and ARA
local_tmp = /var/www/ara/.ansible/tmp

[ara]
This will default the database and logs location to be inside that directory.
dir = /var/www/ara/.ara
EOF

For additional parameters, such as the database location or backend, look at the configuration documentation.

File permissions and SElinux

Make sure everything is owned by Apache so it can read and write to the directory:

chown -R apache:apache /var/www/ara

Additionally, if you are running with selinux enforcing, you need to allow Apache to manage the files in /var/www/
ara. You can toggle the httpd_unified boolean for that:

18 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

setsebool -P httpd_unified 1

Apache configuration

Set up the Apache virtual host at /etc/httpd/conf.d/ara.conf:

<VirtualHost *:80>
Replace ServerName by your hostname
ServerName ara.domain.tld

ErrorLog /var/log/httpd/ara-error.log
LogLevel warn
CustomLog /var/log/httpd/ara-access.log combined

WSGIDaemonProcess ara user=apache group=apache processes=4 threads=1
WSGIScriptAlias / /var/www/ara/ara-wsgi

SetEnv ANSIBLE_CONFIG /var/www/ara/ansible.cfg

<Directory /var/www/ara>
WSGIProcessGroup ara
WSGIApplicationGroup %{GLOBAL}
Require all granted

</Directory>
</VirtualHost>

Restart Apache and you’re done:

systemctl restart httpd

You should now be able to access the web interface at the domain you set up !

Debian/Ubuntu

Install Apache+mod_wsgi

apt-get install apache2 libapache2-mod-wsgi
systemctl enable apache2
systemctl start apache2

Create the directory for Ansible and ARA

This directory is where we will store the files that Apache will need to read and write to.

mkdir -p /var/www/ara

Copy ARA’s WSGI script to the web directory

ARA provides a WSGI script when it is installed: ara-wsgi. We need to copy it to the directory we just created,
/var/www/ara.

1.4. Web Server Configuration 19

ara Documentation, Release 0.16.6.dev2

The location where ara-wsgi is installed depends on how you installed ARA and the distribution you are running.
You can use which to find where it is located:

cp -p $(which ara-wsgi) /var/www/ara/

Create the Ansible and ARA configuration

The defaults provided by ARA and Ansible are not suitable for a use case where we are deploying with Apache. We
need to provide different settings:

cat <<EOF >/var/www/ara/ansible.cfg
[defaults]
This directory is required to store temporary files for Ansible and ARA
local_tmp = /var/www/ara/.ansible/tmp

[ara]
This will default the database and logs location to be inside that directory.
dir = /var/www/ara/.ara
EOF

For additional parameters, such as the database location or backend, look at the configuration documentation.

File permissions

Make sure everything is owned by Apache so it can read and write to the directory:

chown -R www-data:www-data /var/www/ara

Apache configuration

Set up the Apache virtual host at /etc/apache2/sites-available/ara.conf:

<VirtualHost *:80>
Replace ServerName by your hostname
ServerName ara.domain.tld

ErrorLog /var/log/apache2/ara-error.log
LogLevel warn
CustomLog /var/log/apache2/ara-access.log combined

WSGIDaemonProcess ara user=www-data group=www-data processes=4 threads=1
WSGIScriptAlias / /var/www/ara/ara-wsgi

SetEnv ANSIBLE_CONFIG /var/www/ara/ansible.cfg

<Directory /var/www/ara>
WSGIProcessGroup ara
WSGIApplicationGroup %{GLOBAL}
Require all granted

</Directory>
</VirtualHost>

Ensure the configuration is enabled:

20 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

a2ensite ara

Restart Apache and you’re done:

systemctl restart apache2

You should now be able to access the web interface at the domain you set up !

1.4.3 Serving static HTML reports

Nginx Configuration

Assuming that you are storing ARA reports as static html using a Nginx server you may find this configuration useful
as it assures that prezipped files (like index.html.gz) are served transparently by the server.

location /artifacts {
gzip_static on;
root /var/www/html;
autoindex on;
index index.html index.htm;
rewrite ^(.*)/$ $1/index.html;

}

You may need a different nginx build that has the ngx_http_gzip_static_module compiled. For example nginx from
EPEL (CentOS/RHEL) yum repositories includes this module.

1.5 Serving ARA sqlite databases over http

Hosting statically generated reports is not very efficient at a large scale. The reports are relatively small in size but can
contain thousands of files if you are generating a report that contains thousands of tasks.

However, using a centralized database (such as MySQL) might not be optimal either. Perhaps due to the latency or
maybe because of the concurrency of the runs. It is also possible you are not interested in aggregating data in the first
place and would rather keep individual reports.

ARA ships a bundled WSGI middleware, wsgi_sqlite.py.

This middleware allows you to store your ansible.sqlite databases on a web server (for example, a logserver
for your CI jobs) and load these databases on the fly without needing to generate static reports.

It works by matching a requested URL (ex: http://logserver/some/path/ara-report) against the
filesystem location (ex: /srv/static/logs/some/path/ara-report/ansible.sqlite) and loading
ARA’s web application so that it reads from the database directly.

To put this use case into perspective, it was “benchmarked” against a single job from the OpenStack-Ansible project:

• 4 playbooks

• 4647 tasks

• 4760 results

• 53 hosts, of which 39 had gathered host facts

• 416 saved files

1.5. Serving ARA sqlite databases over http 21

https://nginx.org/en/docs/http/ngx_http_gzip_static_module.html
https://fedoraproject.org/wiki/EPEL
https://github.com/openstack/openstack-ansible

ara Documentation, Release 0.16.6.dev2

Generating a static report from that database takes ~1min30s on an average machine. It weighs 63MB (27MB recur-
sively gzipped), contains 5321 files and 5243 directories.

This middleware allows you to host the exact same report on your web server just by storing the sqlite database which
is just one file and weighs 5.6MB.

1.5.1 wsgi_sqlite configuration

Configuration for the wsgi_sqlite.py script can be done through environment variables, for example with
Apache’s SetEnv directive.

ARA_WSGI_USE_VIRTUALENV

Enable virtual environment usage if ARA is installed in a virtual environment. You will need to set
ARA_WSGI_VIRTUALENV_PATH if enabling this.

Defaults to 0, set to 1 to enable.

ARA_WSGI_VIRTUALENV_PATH

When using a virtual environment, where the virtualenv is located. Defaults to None, set to the absolute path of your
virtualenv.

ARA_WSGI_TMPDIR_MAX_AGE

This WSGI middleware creates temporary directories which should be discarded on a regular basis to avoid them
accumulating. This is a duration, in seconds, before cleaning directories up.

Defaults to 3600.

ARA_WSGI_LOG_ROOT

Absolute path on the filesystem that matches the DocumentRoot of your webserver vhost.

For a DocumentRoot of /srv/static/logs, this value should be /srv/static/logs.

Defaults to /srv/static/logs.

ARA_WSGI_DATABASE_DIRECTORY

Subdirectory in which ARA sqlite databases are expected to reside in. For example, ara-report would expect:
http://logserver/some/path/ara-report/ansible.sqlite.

This variable should match the WSGIScriptAliasMatch pattern of your webserver vhost.

Defaults to ara-report.

22 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

1.5.2 Using wsgi_sqlite with Apache’s mod_wsgi

The vhost requires you to redirect requests to */ara-report/* to the WSGI middleware. In order to do so, the
vhost must look like the following:

<VirtualHost *:80>
Remember that DocumentRoot and ARA_WSGI_LOG_ROOT must match
DocumentRoot /srv/static/logs
ServerName logs.domain.tld

ErrorLog /var/log/httpd/logs.domain.tld-error.log
LogLevel warn
CustomLog /var/log/httpd/logs.domain.tld-access.log combined

Look out for the user/group which is different based on your distro
WSGIDaemonProcess ara user=apache group=apache processes=4 threads=1

SetEnv ARA_WSGI_TMPDIR_MAX_AGE 3600
SetEnv ARA_WSGI_LOG_ROOT /srv/static/logs
SetEnv ARA_WSGI_DATABASE_DIRECTORY ara-report

<Directory "/usr/bin">
<Files "ara-wsgi-sqlite">

Require all granted
</Files>

</Directory>

Redirect everything after /ara-report to the middleware
WSGIScriptAliasMatch ^.*/ara-report /usr/bin/ara-wsgi-sqlite

</VirtualHost>

1.5.3 Using a virtual environment

When using ARA from a virtual environment, you need to adjust your configuration accordingly.

For example, your vhost might need to look like this instead:

<VirtualHost *:80>
Remember that DocumentRoot and ARA_WSGI_LOG_ROOT must match
DocumentRoot /srv/static/logs
ServerName logs.domain.tld

ErrorLog /var/log/httpd/logs.domain.tld-error.log
LogLevel warn
CustomLog /var/log/httpd/logs.domain.tld-access.log combined

Look out for the user/group which is different based on your distro
WSGIDaemonProcess ara user=apache group=apache processes=4 threads=1 python-home=/

→˓opt/venv/ara

SetEnv ARA_WSGI_USE_VIRTUALENV 1
SetEnv ARA_WSGI_VIRTUALENV_PATH /opt/venv/ara
SetEnv ARA_WSGI_TMPDIR_MAX_AGE 3600
SetEnv ARA_WSGI_LOG_ROOT /srv/static/logs
SetEnv ARA_WSGI_DATABASE_DIRECTORY ara-report

(continues on next page)

1.5. Serving ARA sqlite databases over http 23

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

<Directory "/opt/venv/ara/bin">
<Files "ara-wsgi-sqlite">

Require all granted
</Files>

</Directory>

Redirect everything after /ara-report to the middleware
WSGIScriptAliasMatch ^.*/ara-report /opt/venv/ara/bin/ara-wsgi-sqlite

</VirtualHost>

1.6 Usage

Once ARA is installed and configured, you’re ready to use it!

1.6.1 Using the callback

The callback is executed by Ansible automatically once the path is set properly in the callback_plugins Ansible
configuration.

After running an Ansible playbook, the database will be created if it doesn’t exist and will be used automatically.

1.6.2 Using the ara_record module

ARA comes with a built-in Ansible module called ara_record.

This module can be used as an action for a task in your Ansible playbooks in order to register whatever you’d like in
a key/value format, for example:

- name: Test playbook

hosts: localhost
tasks:
- name: Get git version of playbooks

command: git rev-parse HEAD
register: git_version

Registering the result of an ara_record tasks is equivalent to
doing an ara_read on the key
- name: Record git version

ara_record:
key: "git_version"
value: "{{ git_version.stdout }}"

register: version

- name: Print recorded data
debug:

msg: "{{ version.playbook_id}} - {{ version.key }}: {{ version.value }}

It also supports data types which will have an impact on how the value will be displayed in the web interface. The
default type if not specified is “text”. Example usage:

24 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

- ara_record:

key: "{{ item.key }}"
value: "{{ item.value }}"
type: "{{ item.type }}"

with_items:
- { key: "log", value: "error", type: "text" }
- { key: "website", value: "http://domain.tld", type: "url" }
- { key: "data", value: '{ "key": "value" }', type: "json" }
- { key: "somelist", value: ['one', 'two'], type: "list" }
- { key: "somedict", value: {'key': 'value' }, type: "dict" }

It is also possible to run an ara_record task on a specific playbook that might already be completed. This is
particularly useful for recording data that might only be available or computed after your playbook run has been
completed:

Write data to a specific (previously run) playbook
(Retrieve playbook uuid's with 'ara playbook list')
- ara_record:

playbook: uuuu-iiii-dddd-0000
key: logs
value: "{{ lookup('file', '/var/log/ansible.log') }}"
type: text

Or as an ad-hoc command:

ansible localhost -m ara_record \
-a "playbook=uuuu-iiii-dddd-0000 key=logs value={{ lookup('file', '/var/log/

→˓ansible.log') }}"

This data will be recorded inside ARA’s database and associated with the particular playbook run that was executed.

You can then query ARA, either through the CLI or the web interface to see the recorded values.

1.6.3 Using the ara_read module

ARA comes with a built-in Ansible module called ara_read that can read data that was previously recorded with
ara_record within the same playbook run.

This module can be used as an action for a task anywhere in your in your Ansible playbooks as long as it is within the
same playbook run. It can be re-used across plays or roles if necessary, for example:

- name: Test play on localhost

hosts: localhost
tasks:
- name: Compute md5sum of file

command: md5sum file
register: local_mdfive

- name: Record md5sum of dile
ara_record:

key: "md5sum"
value: "{{ local_mdfive.stdout }}"

(continues on next page)

1.6. Usage 25

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

- name: Test play on remote hosts
hosts: webservers
tasks:

- name: Retrieve md5sum
ara_read:
key: "md5sum"

register: mdfive

- name: Compare md5sum of files
shell: diff <(md5sum file) <(echo "{{ mdfive.value }}")

It is also possible to run an ara_read task on a specific playbook that might already be completed. This is particularly
useful for reading data that might only be available or computed after your playbook run has been completed:

Read data from a specific (previously run) playbook
(Retrieve playbook uuid's with 'ara playbook list')
- ara_read:

playbook: uuuu-iiii-dddd-0000
key: logs

register: logs

Or as an ad-hoc command:

ansible localhost -m ara_read -a "playbook=uuuu-iiii-dddd-0000 key=logs"

Note: ara_read on a specific playbook id should only be used if you need to tie data back into Ansible for other
tasks. If you just need to browse or view recorded data on the command line, you should probably be using the ARA
CLI: ara data show.

1.6.4 Looking at the data

Once you’ve run ansible-playbook at least once, the database will be populated with data:

Example with sqlite
$ sqlite3 ~/.ara/ansible.sqlite
SQLite version 3.11.0 2016-02-15 17:29:24
Enter ".help" for usage hints.
sqlite> select * from playbooks;
15d05ac3-95b6-4767-ab1e-5365f76e5b09|playbooks/test.yml|2016-05-14 03:17:57.
→˓866103|2016-05-14 03:17:59.451822

Example with MySQL
mysql -e "select * from ara.playbooks;"
+--------------------------------------+--------------+---------------------+---------
→˓------------+
| id | path | time_start | time_
→˓end |
+--------------------------------------+--------------+---------------------+---------
→˓------------+
| 48912da8-4e83-4fdb-b73d-62b03f2a5ed9 | playbook.yml | 2016-05-14 03:27:39 | 2016-05-
→˓14 03:27:39 |
+--------------------------------------+--------------+---------------------+---------
→˓------------+ (continues on next page)

26 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

1.6.5 Querying the database with the CLI

ARA provides a CLI client to query the database.

Example commands:

$ ara help
usage: ara [--version] [-v | -q] [--log-file LOG_FILE] [-h] [--debug]

A CLI client to query ARA databases

optional arguments:
--version show program's version number and exit
-v, --verbose Increase verbosity of output. Can be repeated.
-q, --quiet Suppress output except warnings and errors.
--log-file LOG_FILE Specify a file to log output. Disabled by default.
-h, --help Show help message and exit.
--debug Show tracebacks on errors.

Commands:
complete print bash completion command
data list Returns a list of recorded key/value pairs
data show Show details of a recorded key/value pair
file list Returns a list of files
file show Show details of a file
generate html Generates a static tree of the web application
generate junit Generate junit stream from ara data
help print detailed help for another command
host facts Show facts for a host
host list Returns a list of hosts
host show Show details of a host
play list Returns a list of plays
play show Show details of a play
playbook delete Delete playbooks from the database.
playbook list Returns a list of playbooks
playbook show Show details of a playbook
result list Returns a list of results
result show Show details of a result
stats list Returns a list of statistics
stats show Show details of a statistic
task list Returns a list of tasks
task show Show details of a task

ara help result list
usage: ara result list [-h] [-f {csv,json,table,value,yaml}] [-c COLUMN]

[--max-width <integer>] [--noindent]
[--quote {all,minimal,none,nonnumeric}]

Returns a list of results

optional arguments:
-h, --help show this help message and exit

output formatters:
(continues on next page)

1.6. Usage 27

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

output formatter options

-f {csv,json,table,value,yaml}, --format {csv,json,table,value,yaml}
the output format, defaults to table

-c COLUMN, --column COLUMN
specify the column(s) to include, can be repeated

table formatter:
--max-width <integer>

Maximum display width, 0 to disable

json formatter:
--noindent whether to disable indenting the JSON

CSV Formatter:
--quote {all,minimal,none,nonnumeric}

when to include quotes, defaults to nonnumeric

ara result list
+--------------------------------------+-----------+--------------------+---------+---
→˓-----+---------+-------------+---------------+---------------------+----------------
→˓-----+
| ID | Host | Task | Changed |
→˓Failed | Skipped | Unreachable | Ignore Errors | Time Start | Time End
→˓ |
+--------------------------------------+-----------+--------------------+---------+---
→˓-----+---------+-------------+---------------+---------------------+----------------
→˓-----+
| 79ee4b5b-667d-43a1-b10d-b48ebf422141 | localhost | Ping | False |
→˓False | False | False | False | 2016-05-14 03:27:39 | 2016-05-14
→˓03:27:39 |
| b3a04d9e-c9df-4126-8481-5bdb9d9795f7 | localhost | Really debug thing | False |
→˓False | False | False | False | 2016-05-14 03:27:39 | 2016-05-14
→˓03:27:39 |
+--------------------------------------+-----------+--------------------+---------+---
→˓-----+---------+-------------+---------------+---------------------+----------------
→˓-----+

ara result show b3a04d9e-c9df-4126-8481-5bdb9d9795f7 --long
+---------------+---+
| Field | Value |
+---------------+---+
ID	b3a04d9e-c9df-4126-8481-5bdb9d9795f7
Host	localhost
Task	Really debug thing (1d24921e-bebc-4732-a362-32df24c8cb8b)
Changed	False
Failed	False
Skipped	False
Unreachable	False
Ignore Errors	False
Time Start	2016-05-14 03:27:39
Time End	2016-05-14 03:27:39
Result	{
	"_ansible_no_log": false,
	"_ansible_verbose_always": true,
	"changed": false,
	"failed": false,

(continues on next page)

28 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

	"msg": "Really debug thing",
	"skipped": false,
	"unreachable": false
	}
+---------------+---+

1.6.6 Browsing the web interface

The web UI frontend is a visualization of the data recorded in the database. It provides insight on your playbooks,
your hosts, your tasks and the results of your playbook run.

The interface provided by ARA provides is a simple Flask application. There are currently two documented options
to host the web interface:

1. Embedded development server (easiest but least performance) 3. Apache with mod_wsgi (recommended)

These should be enough to get you started or help you choose your own path on other deployment options you might
be used to when hosting Flask applications.

1.6.7 Generating a static HTML version of the web application

ARA is able to generate a static html version of it’s dynamic, database-driven web application.

This can be useful if you need to browse the results of playbook runs without having to rely on the database backend
configured.

For example, in the context of continuous integration, you could run an Ansible job with ARA, generate a static version
and then recover the resulting build as artifacts of the jobs, allowing you to browse the results in-place.

This is done with the ara generate html command.

Note: Hosting statically generated reports is not very efficient at a large scale. Please refer to: Advanced use cases.

By default, ARA will generate a static version for all the recorded playbook runs in it’s database. It is also possible
to generate a report for one or many specific playbooks. This is done by retrieving the playbook IDs you are inter-
ested in with ara playbook list and then using the ara generate html command with the --playbook
parameter:

$ ara help generate html
usage: ara generate html [-h] [--playbook <playbook> [<playbook> ...]] <path>

Generates a static tree of the web application

positional arguments:
<path> Path where the static files will be built in

optional arguments:
-h, --help show this help message and exit
--playbook <playbook> [<playbook> ...]

Only include the specified playbooks in the
generation.

$ ara generate html /tmp/build/
Generating static files at /tmp/build/...

(continues on next page)

1.6. Usage 29

http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

Done.
$ tree /tmp/build/
/tmp/build/

host
anotherhost
index.html
localhost

index.html
play

play
6ec9ef1d-dd73-4378-8347-1242f6be8f1e

playbook
bf81a7db-b549-49d9-b10e-19918225ec60

index.html
results

anotherhost
index.html
ok

localhost
index.html
ok

index.html
result

136100f7-fba7-44ba-83fc-1194509ad2dd
37532523-b2ec-4931-bb73-3c7e5c6fa7bf
3cef2a10-8f41-4f01-bc49-12bed179d7e9
e3b7e172-c6e4-4ee4-b4bc-9a51ff84decb

static
css

ara.css
bootstrap.min.css
bootstrap-theme.min.css

js
bootstrap.min.js
jquery-2.2.3.min.js

task
570fe763-69bb-4141-80d4-578189c5938b
946e1bc6-28b9-4f2f-ad4f-75b3c6c9032d

13 directories, 22 files

1.6.8 Generating a static junit version of the task results

ARA is able to generate a junit xml report that contains task results and their status.

This is done with the ara generate junit command.

By default, ARA will generate a report on all task results across all the recorded playbook runs in it’s database. It is
also possible to generate a report for one or many specific playbooks. This is done by retrieving the playbook IDs
you are interested in with ara playbook list and then using the ara generate junit command with the
--playbook parameter:

$ ara help generate junit
usage: ara generate junit [-h] [--playbook <playbook> [<playbook> ...]]

<output file>

(continues on next page)

30 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

Generate junit stream from ara data

positional arguments:
<output file> The file to write the junit xml to. Use "-" for

stdout.

optional arguments:
-h, --help show this help message and exit
--playbook <playbook> [<playbook> ...]

Only include the specified playbooks in the
generation.

$ ara generate junit -
<?xml version="1.0" ?>
<testsuites errors="0" failures="3" tests="66" time="33.0">

<testsuite errors="0" failures="3" name="Ansible Tasks" skipped="5" tests="66"
→˓time="33">

<testcase classname="localhost._home_dev_ara_ara_tests_integration_smoke_yml.
→˓ARA_Tasks_test_play" name="Deferred setup" time="3.000000"/>

<testcase classname="localhost._home_dev_ara_ara_tests_integration_smoke_yml.
→˓ARA_Tasks_test_play" name="include"/>

<testcase classname="localhost._home_dev_ara_ara_tests_integration_smoke_yml.
→˓ARA_Tasks_test_play" name="Ensure temporary directory exists"/>

<testcase classname="localhost._home_dev_ara_ara_tests_integration_smoke_yml.
→˓ARA_Tasks_test_play" name="Check if a file exists"/>

<testcase classname="localhost._home_dev_ara_ara_tests_integration_smoke_yml.
→˓ARA_Tasks_test_play" name="Touch a file if it doesn't exist"/>

<testcase classname="localhost._home_dev_ara_ara_tests_integration_smoke_yml.
→˓ARA_Tasks_test_play" name="Remove a file if it doesn't exist"/>

<testcase classname="localhost._home_dev_ara_ara_tests_integration_smoke_yml.
→˓ARA_Tasks_test_play" name="Remove a file if it exists">
[...]

1.6.9 Generating a static subunit version of the task results

ARA is able to generate a subunit report that contains task results and their status.

This is done with the ara generate subunit command.

By default, ARA will generate a report on all task results across all the recorded playbook runs in it’s database. It is
also possible to generate a report for one or many specific playbooks. This is done by retrieving the playbook IDs you
are interested in with ara playbook list and then using the ara generate subunit command with the
--playbook parameter:

$ ara help generate subunit
usage: ara generate subunit [-h] [--playbook <playbook> [<playbook> ...]]

<output file>

Generate subunit binary stream from ARA data

positional arguments:
<output file> The file to write the subunit binary stream to. Use

"-" for stdout.

(continues on next page)

1.6. Usage 31

ara Documentation, Release 0.16.6.dev2

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--playbook <playbook> [<playbook> ...]

Only include the specified playbooks in the
generation.

$ ara generate subunit - | subunit2csv
test,status,start_time,stop_time
50d4e04fe034bea7479bc4a3fa3703254298baa8,success,2017-07-28 03:07:21+00:00,2017-07-28
→˓03:07:21+00:00
a62f7a36683972efe1ef6e51e389417521502153,success,2017-07-28 03:07:22+00:00,2017-07-28
→˓03:07:22+00:00
8902778f958439806aee2a22c26d8b79dc61c964,success,2017-07-28 03:07:22+00:00,2017-07-28
→˓03:07:22+00:00
fd2d199b22b635ed82b41d5edf8c1774f64484dc,success,2017-07-28 03:07:22+00:00,2017-07-28
→˓03:07:22+00:00
[...]

1.7 Contributing

ARA is an Open Source project and welcomes contributions, whether they are in the form of feedback, comments,
suggestions, bugs, code contributions or code reviews.

ARA does not use GitHub for issues or pull requests.

The project has decided to be hosted under the OpenStack umbrella to benefit from the code review and testing
infrastructure on which hundreds of developers contribute to hundreds of projects every day.

This proven infrastructure brings with it a robust contribution workflow to be able to contribute, review, test and merge
code easily and efficiently.

The end result is higher standards, better code, more testing, less regressions and more stability.

If you are familiar with the process of contributing to an OpenStack project, ARA is no different. If this is something
new for you, you should be excited and read on.

This documentation you will find here is mostly a summary of OpenStack’s developer getting started guide.

Note: ARA is not an official OpenStack project. As such, you are not required to have signed a contributors agreement
with the OpenStack foundation to be able to contribute to ARA.

1.7.1 Set up your Ubuntu Launchpad account

OpenStack’s Gerrit and StoryBoard instances currently use Launchpad for authentication. If you do not already have
a Launchpad account, you will need to create one here.

1.7.2 Filing issues and bugs

Once you have your Ubuntu Launchpad account set up, you’re ready to start contributing to the ARA project tracker
in StoryBoard.

32 Chapter 1. Table of Contents

https://www.openstack.org/
https://docs.openstack.org/infra/manual/developers.html
https://review.openstack.org
https://storyboard.openstack.org/#!/page/about
https://login.launchpad.net/+login
https://login.launchpad.net/+login
https://storyboard.openstack.org/#!/page/about

ara Documentation, Release 0.16.6.dev2

First, you’ll need to login to StoryBoard – the ARA project can be found here: https://storyboard.openstack.org/#!
/project/843

1.7. Contributing 33

https://storyboard.openstack.org/#!/project/843
https://storyboard.openstack.org/#!/project/843

ara Documentation, Release 0.16.6.dev2

Once you’re logged in, you’ll want to create a story for the openstack/ara project:

34 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

1.7. Contributing 35

ara Documentation, Release 0.16.6.dev2

And then you’re done:

36 Chapter 1. Table of Contents

ara Documentation, Release 0.16.6.dev2

1.7.3 Contributing code or code reviews

Set up your Gerrit code review account

If you’ll be contributing code or code reviews, you’ll need to set up your Gerrit code review account.

Once you have your Launchpad account, you will be able to sign in to review.openstack.org.

To be able to submit code, Gerrit needs to have your public SSH key in the same way Github does. To do that, click
on your name at the top right and go to the settings where you will see the tab to set up your SSH key.

Installing Git Review

Git Review is a python module that adds a “git review” command that wraps around the process of sending a commit
for review in Gerrit. You need to install it to be able to send patches for code reviews.

There are different ways to install git-review, choose your favorite.

Install development dependencies

ARA requires some additional dependencies for development purposes, for running tests, for example.

Make sure they are installed according to the documentation.

1.7. Contributing 37

https://review.openstack.org/
https://docs.openstack.org/infra/manual/developers.html#install-the-git-review-utility

ara Documentation, Release 0.16.6.dev2

1.7.4 Sending a patch for review

The process looks a bit like this:

$ git clone https://github.com/openstack/ara
$ cd ara
$ git checkout -b super_cool_feature

<< hack on super_cool_feature >>

$ git commit -a --message="This is my super cool feature"
$ git review

When you send a commit for review, it’ll create a code review request in Gerrit for you. When that review is created,
it will automatically be tested by a variety of jobs that the ARA maintainers have set up to test every patch that is sent.

We’ll check for things like code quality (pep8/flake8), run unit tests to catch regressions and we’ll also run both
integration tests on different operating systems to make sure everything really works.

The result of the tests are added as a comment in the review when all of them are completed. If you’re interested in
digging into the logs for a particular test, clicking on the results of the test will take you to console, debug logs and a
built version of ARA’s web interface.

If you get a failed test result and you believe you have fixed the issue, add the files, amend your commit (git commit
--amend) and send it for review once again. This will create a new patchset that will be up for review and testing.

To be able to merge a patch, the tests have to come back successful and the core reviewers must provide their agreement
with the patch.

38 Chapter 1. Table of Contents

https://review.openstack.org

ara Documentation, Release 0.16.6.dev2

1.7.5 Running tests locally

Unit tests:

Python 2.7
tox -e py27
Python 3.5
tox -e py35

pep8/flake8/bandit/bashate tests:

tox -e pep8

Documentation tests:

This will also build the docs locally in docs/build/html
tox -e docs

Integration tests:

At the root of the ARA source, you’ll find the run_tests.sh script that allows you to easily run integration tests
across a range of different configurations.

ARA’s integration tests do not require superuser privileges, are all self-contained in temporary directories and python
virtual environments. They are designed to safely and easily run either on your local machine or in a CI environment
such as Jenkins.

Here’s how you would run_tests.sh to run integration tests:

$./run_tests.sh -h
usage: ./run-tests.sh [-a|--ansible ANSIBLE_VERSION] [-a|--python PYTHON_VERSION] [-
→˓h|--help]

Runs ARA integration tests

optional arguments:
-a, --ansible Ansible version to test with (ex: '2.3.1.0', 'devel')

Defaults to version in requirements.txt (latest version of Ansible)
-p, --python Python version from a tox environment to test with (ex: 'py27',
→˓'py35')

Defaults to py27
-h, --help Prints this help dialog.

With the default configuration (latest release of Ansible and py27)
$./run_tests.sh
or.. with the devel version of Ansible with py35
$./run_tests.sh -a devel -p py35

PostgreSQL integration tests:

In order to get run_tests.sh to run PostgreSQL integration tests, you’ll need to set a few environment variables:

export ARA_TEST_PGSQL=1
export ARA_TEST_PGSQL_USER=ara
export ARA_TEST_PGSQL_PASSWORD=password

You’ll also need development headers for PostgreSQL to build psycopg2, the defacto pgsql adapter for Python.

To install the package on Ubuntu/Debian:

1.7. Contributing 39

ara Documentation, Release 0.16.6.dev2

sudo apt install postgresql-server-dev-9.5

To install the package on RHEL/CentOS/Fedora:

sudo yum install postgresql-devel

If you need an ephemeral PostgreSQL server to test against, you can spin one up with Docker easily:

docker run --name ara_pgsql \
-e POSTGRES_USER=${ARA_TEST_PGSQL_USER} \
-e POSTGRES_PASSWORD=${ARA_TEST_PGSQL_PASSWORD} \
-e POSTGRES_DB=ara \
-p 5432:5432 \
-d postgres:alpine

Once the PostgreSQL is up and the environment variables are set, you’re ready to run integration tests as usual:

./run_tests.sh

1.7.6 More reading

• Official OpenStack developer documentation

• Gerrit documentation

• Git commit good practices

1.8 Manifesto: Project core values

ARA is an open source project that was created by Ansible users for Ansible users.

Its purpose is to provide a way to simply and easily understand what happens throughout playbook runs at any scale.

ARA itself is composed of several components to achieve that purpose. The project as well as those components
adhere to some important core values.

This manifesto exists to explain the different core values incorporated in the project’s development and roadmap for
users, contributors and developers alike.

1.8.1 1) Simplicity is fundamental

In the Zen of Python, you’ll find the following:

Simple is better than complex

This is paramount to the project. ARA should always be simple to install, simple to use and simple to understand.

Simplicity is also expressed in terms of configurability: ARA should come with sane and working defaults out of the
box.

It should be simple (but not required) to customize the behavior of ARA. This is why ARA can be configured using
the exact same means as Ansible.

40 Chapter 1. Table of Contents

https://docs.openstack.org/infra/manual/developers.html
https://review.openstack.org/Documentation/intro-quick.html
https://wiki.openstack.org/wiki/GitCommitMessages
https://www.python.org/dev/peps/pep-0020/

ara Documentation, Release 0.16.6.dev2

1.8.2 2) Do one thing and do it well

The scope of the ARA project is narrow on purpose and is strongly aligned with one of the values from the UNIX
philosophy:

Write programs that do one thing and do it well

ARA records Ansible playbook runs and makes the recorded data available and intuitive for users and systems.

A narrow project scope for ARA allows developers and users to focus on a limited feature set in order to ensure each
component is built and usable both simply and optimally.

1.8.3 3) Empower users to get their work done

This core value of the project is about being receptive to user feedback and understanding what they need.

ARA should provide generic implementations to allow them to get their work done while keeping in mind the two
previous core values.

This warrants examples in order to have a common understanding of what this means:

• ARA does not provide additional data beyond what is sent and made available by Ansible directly. Ansible
upstream modules can be improved to send more information that would then be made available to ARA.

• ARA does not “connect” directly to systems such as Logstash but provides machine-readable output through its
command line interface (CLI), allowing users to feed data easily to the system of their choosing.

• ARA does not tell you which host Ansible ran from or automatically discover the git versions of your playbooks
but allows you to save arbitrary data in its database for future reference.

1.8.4 4) Don’t require users to change their workflows

ARA should never require users to change how they already use Ansible beyond installing and configuring Ansible to
use ARA.

ARA should be a drop-in, seamless and transparent addition to their workflows.

1.8.5 5) De-centralized, offline and standalone by default

It should never be required to run Ansible with ARA from one single, unique and central location.

Users should be able to record data no matter where Ansible runs, whether it is on their laptops, workstations, servers,
virtual machines, etc.

ARA should provide the means to easily aggregate collected data in the form of a centralized relational database but it
should default to a standalone, offline and self-contained mode of operation.

1.8. Manifesto: Project core values 41

https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Unix_philosophy
https://www.elastic.co/products/logstash

	Table of Contents
	FAQ
	What is ARA ?
	What does the web interface look like ?
	What versions of Ansible are supported ?
	Does ARA support running on Python 3 ?
	What’s an Ansible callback ?
	Why is ARA being developed ?
	Why don’t you use Ansible Tower (AWX), Rundeck or Semaphore ?
	Can Ansible with ARA run on a different server than the web application ?
	Can ARA be used outside the context of OpenStack or continuous integration ?

	Installing ARA
	RHEL, CentOS, Fedora packages
	Ubuntu, Debian packages
	Installing ARA from trunk source
	Installing ARA from latest release on PyPi

	Configuration
	Ansible
	ARA
	Parameters and their defaults
	The CLI client and the web application

	Web Server Configuration
	Embedded server
	Apache+mod_wsgi
	Serving static HTML reports

	Serving ARA sqlite databases over http
	wsgi_sqlite configuration
	Using wsgi_sqlite with Apache’s mod_wsgi
	Using a virtual environment

	Usage
	Using the callback
	Using the ara_record module
	Using the ara_read module
	Looking at the data
	Querying the database with the CLI
	Browsing the web interface
	Generating a static HTML version of the web application
	Generating a static junit version of the task results
	Generating a static subunit version of the task results

	Contributing
	Set up your Ubuntu Launchpad account
	Filing issues and bugs
	Contributing code or code reviews
	Sending a patch for review
	Running tests locally
	More reading

	Manifesto: Project core values
	1) Simplicity is fundamental
	2) Do one thing and do it well
	3) Empower users to get their work done
	4) Don’t require users to change their workflows
	5) De-centralized, offline and standalone by default

