

aPTK - A Parse Toolkit

aPTK is a Parse Toolkit. It is useful to write documented grammars similar
to BNF grammar language.

Typically you would use it like this:

from aptk import *

class AdditionGrammar(Grammar):
 '''This is the grammar of a simple addition.

 <addition> := <operand> <.ws> "+" <.ws> <operand>
 <ws> := \s*
 <operand> := \d+
 '''

class AdditionActions(ParseActions):
 def make_operand(self, p, lexem):
 return int(str(lexem))

 def make_addition(self, p, lexem):
 return lexem[0].ast + lexem[1].ast

tree = parse("5 + 4", AdditionGrammar)
result = ast("5 + 4", AdditionGrammar, AdditionActions)

The most interesting on the grammars derived from BaseGrammar
is that they are compiled at compile-time of your python module. This is
possible due to some python voodoo with metaclasses in grammar.

	aPTK Tutorial

	aPTK Grammar Syntax
	General

	Statements

	Production Rules

	Backtracking

	Significant Whitespace

	Test Assertions

	Testing of aPTK Grammars

	aptk - API

	aptk - module reference
	aptk.actions - Parse Actions

	aptk.oprec - Operation Precedence Parser

Indices and tables

	Index

	Module Index

	Search Page

aPTK Tutorial

Here shall be a tutorial.

aPTK Grammar Syntax

Syntax of aPTK Grammars are oriented on BNF and a bit on Perl6 grammars.

A grammar consists of production rules and statements. Statements
influence parsing and/or interpretation of the parsed. Optionally you may
add assertions, to prove, that your rules meet your expectations.

General

All rules and statements have to start on same indentation level. If you
want to continue a rule or statement on next line, you can do so by
indenting next line a bit more than the line, where your rule or statement
started:

:grammar grammar

grammar := [<statement>
 | <production-rule>
 | <test-assertion>
]*

ws := \s+

Lines abore define new grammar named “grammar” and define first rule,
the default entry point of the grammar.

Statements

A statement is a line, which starts with a ”:”. There are following
statements supported:

	:grammar <name> [extends [<grammar-name>]+]?

	Define a new grammar named <name>, which extends grammars <grammar-name>.
If you do not pass <grammar-name>, it defaults to Grammar

This statement is available in contexts where you not have
predefined a grammar, as for example if you define your grammar as
python class.

Examples for :grammar:

:grammar very-simple-grammar

:grammar another-grammar extends very-simple-grammar

:grammar x extends aptk.BaseGrammar

	:parse-actions [<name> <python-name>]+

	Define a ParseActions class (or module), which can be later used
in tests (or simply referenced by its name, when creating a parser):

:parse-actions my_module.MyParseAction

This statements imports parse-actions into your grammar, that you
can make use of it in test assertions:

<some-rule> ~~ "some string" -MyParseAction-> some ast

	:parse-action-map [<name> <method-name>]+

	Map <string> to <method-name>, which is expected to exist in
parse-actions passed to parser. After mapping <string> to
<method-name>, you can use <string>= as
operator in production rule, to assign a parse-action:

:parse-action-map
 "foo" make_foo

some-rule foo= "some right-hand side"

These parse-action-map become handy, if there is an action which is done
for more than one capture.

	:sigspace [<non-terminal> | <terminal>]

	Set rule for significant whitespace.

	:args-of <custom-rule-name> [[<arg-flag>]+ | <callable>]

	Specify how args of a complex custom rule are parsed:

arg-flag := "string" | "capturing" | "non-capturing" | "regex" |
 "raw" | "slashed-regex" | "char-class"

callable := <module-name> "." <>

Production Rules

A production rule consists of a name, an operator, and a statement on the
right hand side:

production-rule := <token-def> | <rule-def>

token-name := "{" <name> "}" | <name>
rule-name := "<" <name> ">" | <name>

You can have following operators:

This is the formal definition of production rules, here follow
detailed explanations with examples:

	Tokens

Tokens

Tokens are a special form of production rules:

token-def :- <token-name> "=" <token-value>

	<token-name>

	Can be any name. All characters except whitespace, with two limitations:

	<token-name> must not start and end with a ”:” or be enclosed by
“{:” and ”:}

	<token-name> may be optionally be enclosed by “{” and “}” for better
readability.

	<token-value>

	<token-value> is interpreted as regular expression as described in re [https://docs.python.org/2/library/re.html#module-re].

Tokens are simply macros where {<token-name>} is replaced by <token-value> such
that quantifications of tokens hold:

foo1 = bar
foo2 = [bar]
foo3 = a
foo4 = \n
foo5 = [bar]*

<some-rule-1> := here\x20is\x20{foo1}*
<some-rule-2> := here\x20is\x20{foo2}*
<some-rule-3> := here\x20is\x20{foo3}*
<some-rule-4> := here\x20is\x20{foo4}*
<some-rule-5> := here\x20is\x20{:foo1:}*
<some-rule-6> := here\x20is\x20[{:foo1:}{:foo4:]]*
<some-rule-7> := here\x20is\x20{foo5}

Token replacement creates following rules from this, before really parsing them:

<some-rule-1> := here\x20is\x20(?:bar)*
<some-rule-2> := here\x20is\x20[bar]*
<some-rule-3> := here\x20is\x20a*
<some-rule-4> := here\x20is\x20\n*
<some-rule-5> := here\x20is\x20bar*
<some-rule-6> := here\x20is\x20[bar\n]*
<some-rule-7> := here\x20is\x20(?:(?:bar)*)

You see that tokens are used in a way that the quantification after the
token always quantifies the entire token not like in <some-rule-5> where
simply the value of the token was substituted.

So you can also let your token be exanded with {:<token-name>:} syntax,
which is simply expanding the value of tokens without taking care of
grouping for clean quantifications. This expansions are intended to be
used e.g. as character-classes (this is also the reason for the choice of
syntax), as seen in <some-rule-6>, but maybe there are other use cases.

In <some-rule-7> there is used {foo5} token. Where you see
a special notation of:

foo5 = [bar]*

In tokens a “[” sorrounded by whitespace is replaced by “(?:” and a “]” surrounded
by whitespace or followed by a quantifier like ”?”, “*”, “+” or “{a,b}” is replaced
by ”)” and the optional quantifier. This is for convenience and better readability
of the token rule. Do not confuse with:

foo6 = [bar]*

Because:

{foo5} ~~ barbar

{foo6} ~~ brarab

{foo5} !~ brarab

Rules

Formally rules are defined as this:

rule-def :- <rule-name> <operator> <alternatives>
alternatives :- <sequence> [{or} <sequence>]
sequence :- [<non-terminal> | <terminal>]
non-terminal := [<capturing> | <non-capturing>
 | <sub-rule] <quantification>?

terminal := <string> | <regex>

quantification := "?" | "*" | "+" | "{" \d* "," \d* "}"

operator := <token-op> | <backtracking-op> | <non-backtracking-op>
 | <backtracking-sigspace-op> | <non-backtracking-sigspace-op>

token-op := "="
backtracking-op := ":" <parse-action> "="
backtracking-sigspace-op := ":" <parse-action> "-"
non-backtracking-op := <parse-action> "="
non-backtracking-sigspace-op := <parse-action> "-"

parse-action := ":" | [^=]+

A production rule has the form:

:sigspace {ws}
after-ws = (?<=\s)
before-ws = (?=\s)
or = {after-ws} \| {before-ws}

<production-rule> ::- <non-terminal> <rule-op> <alternatives>

<alternatives> ::- <sequence> [{or} <sequence>]*

<sequence> ::= [<non-terminal> | <terminal>]+

<terminal> ::= <string> | <regex>

<non-terminal> ::= [<capturing> | <non-capturing> | <sub-rule>
] <quantification>?

<quantification> ::= "?" | "*" | "+" | "{" \d* "," \d* "}"

	<non-terminal>

	May be enclosed by “<”, “>” for beeing closer to BNF or better
readability, but this is not neccesserily needed. So:

<foo> ::= "bar"

is equivalent to:

foo ::= "bar"

	<rule-op>

	This is a tricky thing. Usually you will use ”:=”. But you
can use any <parse-action>= for it. See also parse-actions.

There are more flavors of the <rule-op>, for specifying significant
space and backtracking on failure:

	rule-op
	description

	=
	Specify a token, which can be used later as macro.

	:=
	Normal rule.

	::=
	Backtracking rule.

	:foo=
	Backtracking rule calling “foo” method from ParseActions

	foo=
	Normal rule calling “foo” method from ParseActions

	:-
	Normal rule using significant whitespace

	::-
	Backtracking rule using significant whitespace.

In short:

	a rule with a <rule-op> with a preceding ”:”, does
backtracking on failure.

	a rule with a <rule-op> using a “-” instead of “=” has
significant whitespace

	<string>

	May be a double-quoted or a single-quoted string. Like:

"foo" "foo\n" "foo\"" 'foo"bar"' 'bar\''

This is a terminal in terms of grammars.

	<regex>

	Anything, which is not anything else listed here is interpreted as
regular expression like defined in re [https://docs.python.org/2/library/re.html#module-re].

	<non-capturing>

	From syntactical point of view it is a “<.capturing>” rule. So
the same like a capturing rule, except you have a ”.” right behind the
opening “<”.

No-capturing rules pass their captured children to the parental rule,
which combines the children of all non-capturing childrens to its own
list of children.

Examples:

<.simple-rule> <.rule-with-arg:foo> <.ext-rule{ here is more }>

	<capturing>

	Capturing rule has three syntactical flavours:

<ws> ::= \s+

<simple> ::= "<" <non-terminal-name> ">"

<with-arg> ::= "<" <non-terminal-name> ":" <arg> ">"

<with-args> ::= "<" <non-terminal-name> "{" [<.ws> <extarg>]* <.ws> "}>"

<arg> ::= (?:\\\\|\\>|[^>])*

<extarg> ::= (?!\}>\s) (?!\}>$) [^\s]+

Where name is the name of another non-terminal. The two extended versions
of rule-calls are for invoking custom rules, which do more than simply
parsing sequencenses or alternatives.

Please note for <with-args> rules:

Backtracking

Explain here how backtracking works

Significant Whitespace

Explain here how significant whitespace works.

Test Assertions

Assert, that your rules match

If you want to assert, that a rule matches a certain string you can add
an assertion:

<my-rule> ~~ "foo"

Assert, that your rules do not match

If you want to assert that a rule does not match some string you can add
an assertion:

<my-rule> !~ "foo"

Assert, that your rules produce some expected syntax tree

If you want to assert that a rule produces some syntax tree you can add
an assertion:

<my-rule> ~~ "foo" -> my-rule("foo")

Token and exact match

Difference between token match and exact match is, that in token
matches whitespace is ignored and only non-whitespace tokens are compared.
In exact match there is compared complete string:

<my-rule> ~~ "something" ->
 In token
 match only
 non-whitespace tokens
 are considered for
 comparison.

<my-rule> =~ "something" --> "Must output exact this string"

Multiline input

You can specify multiline input (or expected output) by lines preceded by
“``| ``”:

<my-rule> ~~
 | first line
 | second line
 |
 | And a line after an
 | empty line
 ->
 | Same for
 | expected output.

For testing your grammar you can setup test assertions for your rules:

<my-rule> ~~ "foo"
<my-rule> !~ "foo"
<my-rule> ~~ "foo" -> my-rule("foo")
<my-rule> =~ "foo" -> "foo"
<my-rule> =~
 | a really
 | long, long
 | text.
 |
 | with another paragraph
 -> here
 is what
 I expect
 to be the ast's output.

<my-rule> =~ "foo" -MyParseActions-> ['f', 'o', 'o']

Formally test assertions are created with following syntax:

<test-assertion> ::= <test-rule> <test-op> <string-to-match> [<ast-op> <expected-output>]?

<test-rule> ::= "<" <non-terminal-name> ">"

<test-op> ::= (?P<token-match>~~)|(?P<not-match>!~)|(?P<equal-match>=~)

<string-to-match> ::= <quoted-string> | <multi-line-string>
<multi-line-string> ::= [\s* [\|(?P<line>\n) | \|\s <line>]]+

<ast-op> ::= -> | -(?P<parse-actions-name>\w+)->

<expected-output> ::= <quoted-string> | <multi-line-string> | <tokens>

Testing of aPTK Grammars

Another feature of aPTK is, that you can define your grammar-rule
testcases right in your grammar:

:grammar AddGrammar1

<addition> @- <term> "+" <term>
<term> #= \d+
<ws> := \s*

So far our grammar, now here follow the tests:

	Test, if addition matches some
term:

<addition> ~~ "5 + 4"

	Test, if addition matches some term and produces some special
syntax-tree:

<addition> ~~ "5 + 4" -> addition(term('5'), term('4'))

	Test, if addition produces right
AST:

<addition> ~~ "5 + 5" --> [5, 5]

In this case default ParseActions have been used. To use
a different parse-action class you can specify it between the “-” and
“->”, for the above you could also write explicitely:

:parse-actions ParseActions aptk.actions.ParseActions

<addition> =~ "5 + 5" -ParseActions-> [5, 5]

	Assert that addition does not match
something:

<addition> !~ "5- 4"

aptk - API

This is the major interface for the user. Usually you will only:

from aptk import *

And then define your grammar, maybe parse-actions. This could
for example look like this:

class AdditionGrammar(Grammar):
 r'''Parses addition-expressions.

 .. highlight aptk

 sum :- <number> "+" <sum> | <number>

 :parse-actions aptk.Sum

 <sum> ~~ 5 + 3 -Sum-> 8
 '''

class Sum(ParseActions):
 def sum(self, P, lex):
 return sum([x.ast for x in lex])

For parsing a string, you can use parse():

parse_tree = parse("4 + 2", AdditionGrammar, Sum)

For convenience there is also a function ast(), which returns
abstract syntax-tree of a node:

result = ast(parse_tree)

For convienece you can shortcut this with:

result = ast("4 + 2", AdditionGrammar, Sum)

	
class aptk.Grammar(s=None, **kargs)

	Default grammar with basic tokens and rules.

This is the grammar, you will usually derive your grammars from.

It provides most common tokens:

SP = \x20
NL = \r?\n
LF = \n
CR = \r
CRLF = \r\n
ws = \s+
ws? = \s*
N = [^\n]
HWS = [\x20\t\v]
LINE = [^\n]*\n

And a general ActionMap, which lets you connect your grammar to
basic ParseActions:

:parse-action-map
 "$" make_string
 "@" make_list
 "%" make_dict
 "#" make_number
 "<" make_inherit
 ">" make_name
 "~" make_quoted

And most common rules:

ident $= [A-Za-z_\-][\w\-]*
number #= [+-]?\d+(?:\.\d+)?
integer #= \d+
dq-string ~= "(?:\\\\|\\[^\\]|[^"\\])*"
sq-string ~= '(?:\\\\|\\[^\\]|[^'\\])*'
ws $= \b{ws}\b|{ws?}
line $= [^\n]*\n

Making explicit the whitespace rule default from BaseGrammar:

:sigspace <.ws>

Define how args of BRANCH are parsed:

:args-of BRANCH string capturing non-capturing regex

Define operation precedence parser:

:args-of EXPR string capturing non-capturing raw
 => aptk.oprec.OperatorPrecedenceParser

	
BRANCH(P, s=None, start=None, end=None, args=None)

	lookahead and branch into some rule.

Example:

branched := <BRANCH{
 "a" <a-rule>
 [bcd] <bcd-rule>
 a|b <a-or-b-rule>
 <default-rule>
 }>

If string to be matched startswith

	
ERROR(P, s=None, start=None, end=None, args=None)

	raise a syntax error.

Example:

foo := <x> | <ERROR{Expected "x"}>

Please note that whitespace will be collapsed to single space.

	
aptk.parse(s, grammar, actions=None, rule=None)

	parse s with given grammar and apply actions to produced lexems.

	
aptk.ast(s, grammar=None, actions=None, rule=None)

	return ast of s if has one, else, parse s using grammar and actions and return it then

aptk - module reference

	
class aptk.parser.Parser(grammar, actions=None)

	Parser combines grabbar and parse-actions to parser.

An object of this class combines an abstract grammar and parse-actions
to a parser, which produces an abstract syntax tree.

If no actions given, defaults to ParseActions object.

aptk.actions - Parse Actions

Parse Actions are used to create an abstract syntax tree from your parse
tree.

Parse Actions are expected to be attributes of the parse-actions object
passed to Parser. This can be an object of a class derived
from ParseActions, but can be also a module with a collection
of functions.

Parse-Action Callables

A parse-action is called from parser with two parameters:

	parser - current Parser object

	lex - current Lexem object

Whatever the parse-action returns will be then written into the ast
attribute of the Lexem object.

Connecting Parse-Actions to Rules

The parser calls a parse-action for each captured match object, which is
represented by a Lexem object:

	If there is defined a parse-action in the matching rule, it is called.
In following rule there would be called parse-action “some_action”,
if you captured something using <some-rule>:

some-rule some_action= "some text"

You can map shortcuts to actions:

:parse-action-map
 "$" => other_action

other-rule $= "other text"

In this case there would be called parse-action “other_action”, if you
captured “other text” with <other-rule>.

	If there is not defined a parse-action in matching rule, it is tried to
find following parse-actions if <my_rule> was matched:

	my_rule

	make_my_rule

	got_my_rule

	If no parse-action found, there is nothing done

Pairs

Setting an ast to a pair (name, result), where name is the rule’s name
and result is result from parse-action, can be achieved with following
syntax:

paired action=> <some> <rule>

If you append a “>” to your operator and you define an action for your rule
the ast of the capture of <paired> will be the pair
(paired, «result of action()»).

Example

>>> from aptk import *
>>>
>>> class DashArithmeticGrammar(Grammar):
... r"""Simple grammar for addition and substraction.
...
... dash_op <= <sum> | <difference> | <number>
... sum := <number> "+" <dash_op>
... difference := <number> "-" <dash_op>
... """
>>>
>>> class CalculatorActions(ParseActions):
... r"""inherit number from ParseActions"""
... def sum(self, p, lex):
... return lex[0].ast + lex[1].ast
... def difference(self, p, lex):
... return lex[0].ast - lex[1].ast
>>>
>>> ast("1 + 3 - 2",
... grammar = DashArithmeticGrammar,
... actions = CalculatorActions())
2

	
class aptk.grammar.BaseGrammar(s=None, **kargs)

	Most basic grammar class.

Usually you will rather use Grammar instead of this for
deriving you classes from. If you really need a blank grammar, you
can derive your grammar from this class.

A Grammar class has following attributes:

	__metaclass__

	GrammarType - the type of a grammar class

	TOKENS

	A dictionary of token-parsing regexes, which can be used
with {name} for the smart value and {:name:} for the
unchanged value.

Smart value means that if you specify a token like:

token = abcd

You still can quantify the token without having strange
effects:

a-rule := foo{token}+

Will be translated to:

a-rule := foo(?:abcd)+

The other way of access:

b-rule := foo{:token:}+

Will be translated to:

b-rule := fooabcd+

You can use the second form for example for defining character
classes:

word-chars = A-Za-z0-9_
dash = \-
ident = [{:word-chars:}{:dash:}]+

The tokens are evaluated directly after a rule-part is read.

	ACTIONS

	This dictionary maps rule-names to action-names, which are
methods in either ParseAction object passed to parser or
in Grammar. This map is created from implicit parse-action
directives. Parse-actions are run on lexing a MatchObject
and fill the ast-attribute of Lexem with life.

Implicit parse-actions are specified by _PARSE_ACTION_MAP_.

	_START_RULE_

	Name of start-rule if no other given.

	
class aptk.grammar.Grammar(s=None, **kargs)

	Default grammar with basic tokens and rules.

This is the grammar, you will usually derive your grammars from.

It provides most common tokens:

SP = \x20
NL = \r?\n
LF = \n
CR = \r
CRLF = \r\n
ws = \s+
ws? = \s*
N = [^\n]
HWS = [\x20\t\v]
LINE = [^\n]*\n

And a general ActionMap, which lets you connect your grammar to
basic ParseActions:

:parse-action-map
 "$" make_string
 "@" make_list
 "%" make_dict
 "#" make_number
 "<" make_inherit
 ">" make_name
 "~" make_quoted

And most common rules:

ident $= [A-Za-z_\-][\w\-]*
number #= [+-]?\d+(?:\.\d+)?
integer #= \d+
dq-string ~= "(?:\\\\|\\[^\\]|[^"\\])*"
sq-string ~= '(?:\\\\|\\[^\\]|[^'\\])*'
ws $= \b{ws}\b|{ws?}
line $= [^\n]*\n

Making explicit the whitespace rule default from BaseGrammar:

:sigspace <.ws>

Define how args of BRANCH are parsed:

:args-of BRANCH string capturing non-capturing regex

Define operation precedence parser:

:args-of EXPR string capturing non-capturing raw
 => aptk.oprec.OperatorPrecedenceParser

	
BRANCH(P, s=None, start=None, end=None, args=None)

	lookahead and branch into some rule.

Example:

branched := <BRANCH{
 "a" <a-rule>
 [bcd] <bcd-rule>
 a|b <a-or-b-rule>
 <default-rule>
 }>

If string to be matched startswith

	
ERROR(P, s=None, start=None, end=None, args=None)

	raise a syntax error.

Example:

foo := <x> | <ERROR{Expected "x"}>

Please note that whitespace will be collapsed to single space.

	
aptk.grammar.compile(input, type=None, name=None, extends=None, grammar=None, filename=None)

	compile a grammar

You can pass different inputs to this class, which has influence on
return value.

	# input is grammar

	class:

class MyGrammar(Grammar):
 r"""This is my grammar class

 .. highlight:: aptk

 My grammar has following rule::

 <foo> = "bar"
 """

This is the way you usually invoke compile() with a
grammar class, because compile() is invoked by
GrammarType.

	# Append whatever is defined in input to

	grammar:

class MyGrammar(Grammar):
 r"""Here are rules defined"""

...

compile("here are more rules", grammar=MyGrammar)

input may be either a file object (something having a read() method)
or a string.

	# Create a new grammar named name, which extends grammars passed in

	iteratable extends. If you do not pass extends, then your grammar
will extends Grammar, extracting the rules from input.

Simply compile input to a list of grammars.

	list_of_grammars = compile(“”“

	:grammar first
some := <rule>

:grammar second
another := <rule>

“””)

input may be either a file object (something having a read() method)
or a string.

	Parameters

	
	input

	Pass a grammar class, a string or whatever, which has a read()
method, e.g. a file object.

	type

	Type of input, “sphinx” or “native”.

	name

	Name of grammar, which shall be created and keep the rules given
in input.

	extends

	If you pass a name you may pass extends as a list of names
of grammars.

	grammar

	If you pass a grammar class, the input is added to this grammar
class.

	filename

	for informative purpose

	Returns

	A GrammarClass or (if no specific grammar given in some way) a list
of grammar classes.

aptk.oprec - Operation Precedence Parser

Operation precedence parsers are intended to parse expressions, where
never is a sequence of non-terminals. Usually
you will use it to parse (mathematical) expressions.

You can invoke OperationPrecedenceParser into your grammar by using:

:args-of OPTABLE string capturing non-capturing raw
 => aptk.oprec.OperatorPrecedenceParser

Then you can create rules like this:

my_rule_name1 := <OPTABLE{
 :rule T <.term>
 ...
 }>

my_rule_name2 := <OPTABLE{
 :rule T <.term2>
 :rule W ""
 :rule E
 ...
 }>

Every OPTABLE invokation creates a new rule.

In any Grammar-descending grammar this is already done for you
and operation precedence is accessible via rule EXPR:

:grammar operation-precedence-parser-tests

expr := <EXPR{
 :flags with-ops

 :op L E+E
 }>

You have to define a <term>, such that a term, which is the only
non-terminal-rule in expressions, can be parsed:

term := <number> | <ident>

Expression above parses for example following expressions:

<expr> ~~ 5 + 5
 -> expr(E+E(number('5'), op('+'), number('5')))

<expr> ~~ 1 + 2 + 3
 -> expr(E+E(
 E+E(
 number('1'),
 op('+'),
 number('2')
),
 op('+'),
 number('3')
))

You see in parse trees of expressions above, that the operator is also
lexed (as “op”). This is triggered by flag with-ops. If you
leave out this flag, operators are not lexed, as you see in further
examples:

expr2 :- <EXPR{
 :op L E+E
 :op L E-E = E+E
 :op L E*E > E+E
 :op L E/E = E*E
 :op L E**E > E*E
 :op L E++ > E**E
 :op R ++E = E++
 :op R (E) > E++
 }>

First example where operator precedence table is used:

<expr2> ~~ 5 + 5 * 4
 -> expr2(E+E(
 number('5'),
 E*E(number('5'), number('4'))
))

A more complex example:

<expr2> ~~ 5**2 + 4**2/3**1 * 2 + 1
 -> expr2(E+E(
 E+E(
 E**E(number('5'), number('2')),
 E*E(
 E/E(
 E**E(number('4'), number('2')),
 E**E(number('3'), number('1'))
),
 number('2')
)
),
 number('1')
))

Here you see how whitespace has influence on tokenizer:

<expr2> ~~ 1*3+++++1
 -> expr2(E+E(
 E*E(number('1'), E++(E++(number('3')))),
 number('1')
))

<expr2> ~~ 1*3++ + ++1
 -> expr2(E+E(
 E*E(number('1'), E++(number('3'))),
 ++E(number('1'))
))

<expr2> ~~ 1*3+++(++1)
 -> expr2(E+E(
 E*E(number('1'), E++(number('3'))),
 (E)(++E(number('1')))
))

<expr2> ~~ (1*3)++
 -> expr2(E++(
 (E)(
 E*E(
 number('1'),
 number('3')
)
)
))

Here you see how operator precedence has influence on interpretation of
a term ++1--:

prepostest1 := <EXPR{
 :op L ++E
 :op L E-- > ++E
 }>

<prepostest1> ~~ ++1-- -> prepostest1(++E(E--(number('1'))))

prepostest2 := <EXPR{
 :op L ++E
 :op L E-- < ++E
 }>

<prepostest2> ~~ ++1-- -> prepostest2(E--(++E(number('1'))))

postcirc1 :- <EXPR{
 :op R E(E)
 :op R E,E < E(E)
 }>

<postcirc1> ~~ sum(1, 2)
 -> postcirc1(E(E)(
 E,E(
 number('1'),
 number('2')
)
))

<postcirc1> ~~ sum(1, 2, 3, 4)
 -> postcirc1(E(E)(
 E,E(
 number('1'),
 E,E(
 number('2'),
 E,E(
 number('3'),
 number('4')
)
)
)
))

Typical operator association you find here:

	http://msdn.microsoft.com/en-us/library/126fe14k.aspx

	http://en.cppreference.com/w/cpp/language/operator_precedence

	
class aptk.grammar_tester.GrammarTest(name, op, pos, input, actions, expected, skip=None, debug=False)

	simple class to save testdata

	
class aptk.grammar_tester.GrammarTestCase(name, grammar_test, grammar)

	A TestCase for Grammar

	
class aptk.grammar_tester.RuleTest(name, op, pos, input, actions, expected, skip=None, debug=False)

	name specifies a rule

	
class aptk.grammar_tester.TokenTest(name, op, pos, input, actions, expected, skip=None, debug=False)

	name specifies a token

	
aptk.grammar_tester.generate_testsuite(grammar, suite=None, patterns=None)

	gets a grammar class and maybe a suite

	
exception aptk.grammar_compiler.GrammarError(grammar_compiler, msg, **kargs)

	exception in grammar compilation.

This exception is raised, if there is an error in grammar compilation.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aptk	

 	
 	
 aptk.actions	

 	
 	
 aptk.grammar	

 	
 	
 aptk.grammar_compiler	

 	
 	
 aptk.grammar_syntax	

 	
 	
 aptk.grammar_tester	

 	
 	
 aptk.oprec	

 	
 	
 aptk.parser	

Index

 A
 | B
 | C
 | E
 | G
 | P
 | R
 | T

A

 	
 	aptk (module)

 	aptk.actions (module), [1]

 	aptk.grammar (module)

 	aptk.grammar_compiler (module)

 	
 	aptk.grammar_syntax (module)

 	aptk.grammar_tester (module)

 	aptk.oprec (module), [1]

 	aptk.parser (module)

 	ast() (in module aptk)

B

 	
 	BaseGrammar (class in aptk.grammar)

 	
 	BRANCH() (aptk.Grammar method)

 	(aptk.grammar.Grammar method)

C

 	
 	compile() (in module aptk.grammar)

E

 	
 	ERROR() (aptk.Grammar method)

 	(aptk.grammar.Grammar method)

G

 	
 	generate_testsuite() (in module aptk.grammar_tester)

 	Grammar (class in aptk)

 	(class in aptk.grammar)

 	
 	GrammarError

 	GrammarTest (class in aptk.grammar_tester)

 	GrammarTestCase (class in aptk.grammar_tester)

P

 	
 	parse() (in module aptk)

 	
 	Parser (class in aptk.parser)

R

 	
 	
 RFC

 	RFC 3986

 	
 	RuleTest (class in aptk.grammar_tester)

T

 	
 	TokenTest (class in aptk.grammar_tester)

TODO

	improve and verify operation precedence parser

	improve and structure documentation

	create rule_producer from fully integrated sphinx grammars, with
reST directives, e.g.:

.. grammar:: MyGrammar

.. token:: a-token

 this token does this and that

.. rule:: foo

 <bar> <.glork>

.. rule:: bar

...

aptk.oprec - Operation Precedence Parser

Operation precedence parsers are intended to parse expressions, where
never is a sequence of non-terminals. Usually
you will use it to parse (mathematical) expressions.

You can invoke OperationPrecedenceParser into your grammar by using:

:args-of OPTABLE string capturing non-capturing raw
 => aptk.oprec.OperatorPrecedenceParser

Then you can create rules like this:

my_rule_name1 := <OPTABLE{
 :rule T <.term>
 ...
 }>

my_rule_name2 := <OPTABLE{
 :rule T <.term2>
 :rule W ""
 :rule E
 ...
 }>

Every OPTABLE invokation creates a new rule.

In any Grammar-descending grammar this is already done for you
and operation precedence is accessible via rule EXPR:

:grammar operation-precedence-parser-tests

expr := <EXPR{
 :flags with-ops

 :op L E+E
 }>

You have to define a <term>, such that a term, which is the only
non-terminal-rule in expressions, can be parsed:

term := <number> | <ident>

Expression above parses for example following expressions:

<expr> ~~ 5 + 5
 -> expr(E+E(number('5'), op('+'), number('5')))

<expr> ~~ 1 + 2 + 3
 -> expr(E+E(
 E+E(
 number('1'),
 op('+'),
 number('2')
),
 op('+'),
 number('3')
))

You see in parse trees of expressions above, that the operator is also
lexed (as “op”). This is triggered by flag with-ops. If you
leave out this flag, operators are not lexed, as you see in further
examples:

expr2 :- <EXPR{
 :op L E+E
 :op L E-E = E+E
 :op L E*E > E+E
 :op L E/E = E*E
 :op L E**E > E*E
 :op L E++ > E**E
 :op R ++E = E++
 :op R (E) > E++
 }>

First example where operator precedence table is used:

<expr2> ~~ 5 + 5 * 4
 -> expr2(E+E(
 number('5'),
 E*E(number('5'), number('4'))
))

A more complex example:

<expr2> ~~ 5**2 + 4**2/3**1 * 2 + 1
 -> expr2(E+E(
 E+E(
 E**E(number('5'), number('2')),
 E*E(
 E/E(
 E**E(number('4'), number('2')),
 E**E(number('3'), number('1'))
),
 number('2')
)
),
 number('1')
))

Here you see how whitespace has influence on tokenizer:

<expr2> ~~ 1*3+++++1
 -> expr2(E+E(
 E*E(number('1'), E++(E++(number('3')))),
 number('1')
))

<expr2> ~~ 1*3++ + ++1
 -> expr2(E+E(
 E*E(number('1'), E++(number('3'))),
 ++E(number('1'))
))

<expr2> ~~ 1*3+++(++1)
 -> expr2(E+E(
 E*E(number('1'), E++(number('3'))),
 (E)(++E(number('1')))
))

<expr2> ~~ (1*3)++
 -> expr2(E++(
 (E)(
 E*E(
 number('1'),
 number('3')
)
)
))

Here you see how operator precedence has influence on interpretation of
a term ++1--:

prepostest1 := <EXPR{
 :op L ++E
 :op L E-- > ++E
 }>

<prepostest1> ~~ ++1-- -> prepostest1(++E(E--(number('1'))))

prepostest2 := <EXPR{
 :op L ++E
 :op L E-- < ++E
 }>

<prepostest2> ~~ ++1-- -> prepostest2(E--(++E(number('1'))))

postcirc1 :- <EXPR{
 :op R E(E)
 :op R E,E < E(E)
 }>

<postcirc1> ~~ sum(1, 2)
 -> postcirc1(E(E)(
 E,E(
 number('1'),
 number('2')
)
))

<postcirc1> ~~ sum(1, 2, 3, 4)
 -> postcirc1(E(E)(
 E,E(
 number('1'),
 E,E(
 number('2'),
 E,E(
 number('3'),
 number('4')
)
)
)
))

Typical operator association you find here:

	http://msdn.microsoft.com/en-us/library/126fe14k.aspx

	http://en.cppreference.com/w/cpp/language/operator_precedence

aptk.actions - Parse Actions

Parse Actions are used to create an abstract syntax tree from your parse
tree.

Parse Actions are expected to be attributes of the parse-actions object
passed to Parser. This can be an object of a class derived
from ParseActions, but can be also a module with a collection
of functions.

Parse-Action Callables

A parse-action is called from parser with two parameters:

	parser - current Parser object

	lex - current Lexem object

Whatever the parse-action returns will be then written into the ast
attribute of the Lexem object.

Connecting Parse-Actions to Rules

The parser calls a parse-action for each captured match object, which is
represented by a Lexem object:

	If there is defined a parse-action in the matching rule, it is called.
In following rule there would be called parse-action “some_action”,
if you captured something using <some-rule>:

some-rule some_action= "some text"

You can map shortcuts to actions:

:parse-action-map
 "$" => other_action

other-rule $= "other text"

In this case there would be called parse-action “other_action”, if you
captured “other text” with <other-rule>.

	If there is not defined a parse-action in matching rule, it is tried to
find following parse-actions if <my_rule> was matched:

	my_rule

	make_my_rule

	got_my_rule

	If no parse-action found, there is nothing done

Pairs

Setting an ast to a pair (name, result), where name is the rule’s name
and result is result from parse-action, can be achieved with following
syntax:

paired action=> <some> <rule>

If you append a “>” to your operator and you define an action for your rule
the ast of the capture of <paired> will be the pair
(paired, «result of action()»).

Example

>>> from aptk import *
>>>
>>> class DashArithmeticGrammar(Grammar):
... r"""Simple grammar for addition and substraction.
...
... dash_op <= <sum> | <difference> | <number>
... sum := <number> "+" <dash_op>
... difference := <number> "-" <dash_op>
... """
>>>
>>> class CalculatorActions(ParseActions):
... r"""inherit number from ParseActions"""
... def sum(self, p, lex):
... return lex[0].ast + lex[1].ast
... def difference(self, p, lex):
... return lex[0].ast - lex[1].ast
>>>
>>> ast("1 + 3 - 2",
... grammar = DashArithmeticGrammar,
... actions = CalculatorActions())
2

URI Generic Syntax

In RFC 3986 [https://tools.ietf.org/html/rfc3986.html] there is embedded a grammar for parsing URIs:

:grammar URI

In chapter 1.1.2. there is started with some examples, which can be used
as testcases for the grammar:

<URI> ~~ ftp://ftp.co.za/rfc/rfc1808.txt
<URI> ~~ http://www.ietf.org/rfc/rfc2396.txt
<URI> ~~ ldap://[2001:db8::7]/c=GB?objectclass?one
<URI> ~~ mailto:John.Doe@example.com
<URI> ~~ news:comp.infosystems.www.servers.unix
<URI> ~~ tel:+1-816-555-1212
<URI> ~~ telnet://192.0.2.16:80/
<URI> ~~ urn:oasis:names:specification:docbook:dtd:xml:4.1.2

For finding out which parts should be captured, an expected parse-tree
can be added to some of the test-urls:

<URI> ~~ ftp://ftp.co.za/rfc/rfc1808.txt
 -> URI(
 scheme('ftp'),
 authority(host(reg-name('ftp.co.za'))),
 path('/rfc/rfc1808.txt')
)

<URI> ~~ ldap://[2001:db8::7]/c=GB?objectclass?one
 -> URI(
 scheme('ldap'),
 authority(host(IPv6-address('2001:db8::7'))),
 path('/c=GB'),
 query('objectclass?one')
)

<URI> ~~ tel:+1-816-555-1212
 -> URI(
 scheme('tel'),
 path('+1-816-555-1212')
)

<URI> ~~ urn:oasis:names:specification:docbook:dtd:xml:4.1.2
 -> URI(
 scheme('urn'),
 path('oasis:names:specification:docbook:dtd:xml:4.1.2')
)

We add a test to match all parts:

<URI> ~~ http://userinfo@foo.bar.com/some/path?some=query#fragment
 -> URI(
 scheme('http'),
 authority(
 userinfo('userinfo'),
 host(reg-name('foo.bar.com'))),
 path('/some/path'),
 query('some=query'),
 fragment('fragment')
)

Instead of doing the grammar 1-1 here, we create an aPTK optimized form:

<URI> ::= <scheme> ":" <.hier-part> ["?" <query>]? ["#" <fragment>]?

There are two more possible entry-points into the grammar:

<URI-reference> ::= <.URI> | <.relative-ref>
<absolute-URI> ::= <scheme> ":" <.hier-part> ["?" <query>]?

Setup basic character-classes:

alpha = A-Z a-z
digit = 0-9
unreserved = {:alpha:} {:digit:} \- . ~
gen-delims = : / ? # \[\] @
sub-delims = ! $ & ' () * + , ; =
reserved = {:gen-delims:} {:sub-delims:}
hexdigit = 0-9 A-F a-f

Other basic tokens:

pct-encoded = % [{:hexdigit:}]{2}
pchar = [{:unreserved:} {:sub-delims:} : @] | {:pct-encoded:}
pchar-qs = [{:unreserved:} {:sub-delims:} : @ ? /] | {:pct-encoded:}

Paths can be created as (capturing) tokens:

segment = {pchar}*
segment-nz = {pchar}+
segment-nz-nc = [[{:unreserved:} {:sub-delims:} @] | {:pct-encoded:}]+
path-abempty = (?P<path> [/ {segment}]*)
path-absolute = (?P<path> / [{segment-nz} [/ {segment}]*]?)
path-noscheme = (?P<path> {segment-nz-nc} [/ {segment}]*)
path-rootless = (?P<path> {segment-nz} [/ {segment}]*)
path-empty = (?P<path> (?!{pchar}))

And IP-addresses can also be parsed by tokens:

h16 = [{:hexdigit:}]{1,4}
h16c = {:h16:} :
dec-octet = \d | [1-9]\d | 1\d\d | 2[0-4]\d | 25[0-5]
IPv4-address = [{dec-octet}]{3} {dec-octet}
ls32 = {:h16:} : {:h16:} | {IPv4-address}

IPv6-address = {h16c}{6}{ls32}
 | :: {h16c}{5}{ls32}
 | {h16}? :: {h16c}{4}{ls32}
 | [{h16c}{,1}{h16}]? :: {h16c}{3}{ls32}
 | [{h16c}{,2}{h16}]? :: {h16c}{2}{ls32}
 | [{h16c}{,3}{h16}]? :: {h16c}{1}{ls32}
 | [{h16c}{,4}{h16}]? :: {ls32}
 | [{h16c}{,5}{h16}]? :: {h16}
 | [{h16c}{,6}{h16}]? ::

reg-name = [[{:unreserved:}{:sub-delims:}] | {pct-encoded}]+

reg-name := {reg-name}

Now rules are created top bottom in order of appearence:

scheme := [{:alpha:}][{:alpha:}{:digit:}+\-.]*

hier-part := "//" <authority> {path-abempty}
 | {path-absolute}
 | {path-rootless}
 | {path-empty}

authority := [<userinfo> "@"]? <host> [":" <port>]?

port := \d+

userinfo := [{:unreserved:}{:sub-delims:}:]*

host := <.IP-literal> | <IPv4-address> | <reg-name>

IP-literal := "[" [<IPv6-address> | <IPvFuture>] "]"

IPvFuture := "v" [{:hexdigit:}]+ "." [{:unreserved:}{:sub-delims:}:]+

IPv4-address := {IPv4-address}
IPv6-address := {IPv6-address}

query := {pchar-qs}*
fragment := {pchar-qs}*

relative-ref := <.relative-part> ["?" <query>]? ["#" <fragment>]?

relative-part := "//" <authority> {path-abempty}
 | {path-absolute}
 | {path-noscheme}
 | {path-empty}

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

nav.xhtml

 Table of Contents

 		aPTK - A Parse Toolkit

 		aPTK Tutorial

 		aPTK Grammar Syntax

 		General

 		Statements

 		Production Rules

 		Tokens

 		Rules

 		Backtracking

 		Significant Whitespace

 		Test Assertions

 		Assert, that your rules match

 		Assert, that your rules do not match

 		Assert, that your rules produce some expected syntax tree

 		Token and exact match

 		Multiline input

 		Testing of aPTK Grammars

 		aptk - API

 		aptk - module reference

 		aptk.actions - Parse Actions

 		Parse-Action Callables

 		Connecting Parse-Actions to Rules

 		Pairs

 		Example

 		aptk.oprec - Operation Precedence Parser

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

