

 Navigation

 	
 index

 	
 next |

 	Python Boilerplate 0.1 documentation

Welcome to App Engine Fixture Loader’s documentation!

Contents:

	appengine-fixture-loader
	Installing

	Single-kind loads

	Multi-kind loads

	Multi-kind, multi-level loads

	Parent/Ancestor-based relationships with automatic keys

	Development

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History

	0.1.0 (2014-10-13)

	0.1.1 (2014-12-4)

	0.1.2 (2014-12-4)

	0.1.3 (2014-12-5)

	0.1.4 (2015-2-4)

	0.1.5 (2015-2-11)

	0.1.6 (2015-8-30)

	0.1.7 (2015-11-3)

	0.1.8 (2016-02-05)

	0.1.9 (2016-12-19)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Boilerplate 0.1 documentation

appengine-fixture-loader

A simple way to load Django-like fixtures into the local development datastore, originally intended to be used by testable_appengine [https://github.com/rbanffy/testable_appengine].

 [https://badge.fury.io/py/appengine-fixture-loader]
 [https://travis-ci.org/rbanffy/appengine-fixture-loader]
 [https://pypi.python.org/pypi/appengine-fixture-loader/]
 [https://pypi.python.org/pypi/appengine-fixture-loader/][image: https://coveralls.io/repos/rbanffy/appengine-fixture-loader/badge.svg?branch=master&service=github]
 [https://coveralls.io/github/rbanffy/appengine-fixture-loader?branch=master]
Installing

For the less adventurous, Appengine-Fixture-Loader is available on PyPI at https://pypi.python.org/pypi/Appengine-Fixture-Loader.

Single-kind loads

Let’s say you have a model like this:

class Person(ndb.Model):
 """Our sample class"""
 first_name = ndb.StringProperty()
 last_name = ndb.StringProperty()
 born = ndb.DateTimeProperty()
 userid = ndb.IntegerProperty()
 thermostat_set_to = ndb.FloatProperty()
 snores = ndb.BooleanProperty()
 started_school = ndb.DateProperty()
 sleeptime = ndb.TimeProperty()
 favorite_movies = ndb.JsonProperty()
 processed = ndb.BooleanProperty(default=False)

If you want to load a data file like this:

[
 {
 "__id__": "jdoe",
 "born": "1968-03-03T00:00:00",
 "first_name": "John",
 "last_name": "Doe",
 "favorite_movies": [
 "2001",
 "The Day The Earth Stood Still (1951)"
],
 "snores": false,
 "sleeptime": "23:00",
 "started_school": "1974-02-15",
 "thermostat_set_to": 18.34,
 "userid": 1
 },

...

 {
 "born": "1980-05-25T00:00:00",
 "first_name": "Bob",
 "last_name": "Schneier",
 "favorite_movies": [
 "2001",
 "Superman"
],
 "snores": true,
 "sleeptime": "22:00",
 "started_school": "1985-08-01",
 "thermostat_set_to": 18.34,
 "userid": -5
 }
]

All you need to do is to:

from appengine_fixture_loader.loader import load_fixture

and then:

loaded_data = load_fixture('tests/persons.json', kind=Person)

In our example, loaded_data will contain a list of already persisted Person models you can then manipulate and persist again.

The __id__ attribute, when defined, will save the object with that given id. In our case, the key to the first object defined will be a ndb.Key(‘Person’, ‘jdoe’). The key may be defined on an object by object base - where the __id__ parameter is omitted, an automatic id will be generated - the key to the second one will be something like ndb.Key(‘Person’, 1).

Multi-kind loads

It’s convenient to be able to load multiple kinds of objects from a single file. For those cases, we provide a simple way to identify the kind of object being loaded and to provide a set of models to use when loading the objects.

Consider our original example model:

class Person(ndb.Model):
 """Our sample class"""
 first_name = ndb.StringProperty()
 last_name = ndb.StringProperty()
 born = ndb.DateTimeProperty()
 userid = ndb.IntegerProperty()
 thermostat_set_to = ndb.FloatProperty()
 snores = ndb.BooleanProperty()
 started_school = ndb.DateProperty()
 sleeptime = ndb.TimeProperty()
 favorite_movies = ndb.JsonProperty()
 processed = ndb.BooleanProperty(default=False)

and let’s add a second one:

class Dog(ndb.Model):
 """Another sample class"""
 name = ndb.StringProperty()

Now, if we wanted to make a single file load objects of the two kinds, we’d need to use the __kind__ attribute in the JSON:

[
 {
 "__kind__": "Person",
 "born": "1968-03-03T00:00:00",
 "first_name": "John",
 "last_name": "Doe",
 "favorite_movies": [
 "2001",
 "The Day The Earth Stood Still (1951)"
],
 "snores": false,
 "sleeptime": "23:00",
 "started_school": "1974-02-15",
 "thermostat_set_to": 18.34,
 "userid": 1
 },
 {
 "__kind__": "Dog",
 "name": "Fido"
 }
]

And, to load the file, we’d have to:

from appengine_fixture_loader.loader import load_fixture

and:

loaded_data = load_fixture('tests/persons_and_dogs.json',
 kind={'Person': Person, 'Dog': Dog})

will result in a list of Persons and Dogs (in this case, one person and one dog).

Multi-kind, multi-level loads

Anther common case is having hierarchies of entities that you want to reconstruct for your tests.

Using slightly modified versions of our example classes:

class Person(ndb.Model):
 """Our sample class"""
 first_name = ndb.StringProperty()
 last_name = ndb.StringProperty()
 born = ndb.DateTimeProperty()
 userid = ndb.IntegerProperty()
 thermostat_set_to = ndb.FloatProperty()
 snores = ndb.BooleanProperty()
 started_school = ndb.DateProperty()
 sleeptime = ndb.TimeProperty()
 favorite_movies = ndb.JsonProperty()
 processed = ndb.BooleanProperty(default=False)
 appropriate_adult = ndb.KeyProperty()

and:

class Dog(ndb.Model):
 """Another sample class"""
 name = ndb.StringProperty()
 processed = ndb.BooleanProperty(default=False)
 owner = ndb.KeyProperty()

And using __children__[attribute_name]__ like meta-attributes, as in:

[
 {
 "__kind__": "Person",
 "born": "1968-03-03T00:00:00",
 "first_name": "John",
 "last_name": "Doe",

 ...

 "__children__appropriate_adult__": [
 {
 "__kind__": "Person",
 "born": "1970-04-27T00:00:00",

 ...

 "__children__appropriate_adult__": [
 {
 "__kind__": "Person",
 "born": "1980-05-25T00:00:00",
 "first_name": "Bob",

 ...

 "userid": 3
 }
]
 }
]
 },
 {
 "__kind__": "Person",
 "born": "1999-09-19T00:00:00",
 "first_name": "Alice",

 ...

 "__children__appropriate_adult__": [
 {
 "__kind__": "Person",

 ...

 "__children__owner__": [
 {
 "__kind__": "Dog",
 "name": "Fido"
 }
]
 }
]
 }
]

you can reconstruct entire entity trees for your tests.

Parent/Ancestor-based relationships with automatic keys

It’s also possible to set the parent by using the __children__ attribute.

For our example classes, importing:

[
 {
 "__kind__": "Person",
 "first_name": "Alice",

 ...

 "__children__": [
 {
 "__kind__": "Person",
 "first_name": "Bob",
 ...

 "__children__owner__": [
 {
 "__kind__": "Dog",
 "name": "Fido"
 }
]
 }
]
 }
]

should be equivalent to:

alice = Person(first_name='Alice')
alice.put()
bob = Person(first_name='Bob', parent=alice)
bob.put()
fido = Dog(name='Fido', parent=bob)
fido.put()

You can then retrieve fido with:

fido = Dog.query(ancestor=alice.key).get()

Development

There are two recommended ways to work on this codebase. If you want to keep
one and only one App Engine SDK install, you may clone the repository and run
the tests by:

$ PYTHONPATH=path/to/appengine/library python setup.py test

Alternatively, this project contains code and support files derived from the
testable_appengine project. Testable_appengine was conceived to make it easier
to write (and run) tests for Google App Engine applications and to hook your
application to Travis CI. In essence, it creates a virtualenv and downloads the
most up-to-date SDK and other support tools into it. To use it, you run
make. Calling make help will give you a quick list of available make
targets:

$ make venv
Running virtualenv with interpreter /usr/bin/python2
New python executable in /export/home/ricardo/projects/appengine-fixture-loader/.env/bin/python2
Also creating executable in /export/home/ricardo/projects/appengine-fixture-loader/.env/bin/python
(...)
‘/export/home/ricardo/projects/appengine-fixture-loader/.env/bin/run_tests.py’ -> ‘/export/home/ricardo/projects/appengine-fixture-loader/.env/lib/google_appengine/run_tests.py’
‘/export/home/ricardo/projects/appengine-fixture-loader/.env/bin/wrapper_util.py’ -> ‘/export/home/ricardo/projects/appengine-fixture-loader/.env/lib/google_appengine/wrapper_util.py’
$ source .env/bin/activate
(.env) $ nosetests
..............
--
Ran 14 tests in 2.708s

OK

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Boilerplate 0.1 documentation

Installation

At the command line:

$ easy_install appengine_fixture_loader

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv appengine_fixture_loader
$ pip install appengine_fixture_loader

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Boilerplate 0.1 documentation

Usage

To use App Engine Fixture Loader in a project:

import appengine_fixture_loader

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Boilerplate 0.1 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/rbanffy/appengine-fixture-loader/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

App Engine Fixture Loader could always use more documentation, whether as part of the
official App Engine Fixture Loader docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/rbanffy/appengine-fixture-loader/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up appengine-fixture-loader for local development.

	Fork the appengine-fixture-loader repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/appengine-fixture-loader.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv appengine-fixture-loader
$ cd appengine-fixture-loader/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 appengine-fixture-loader tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/rbanffy/appengine-fixture-loader/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_appengine-fixture-loader

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Boilerplate 0.1 documentation

Credits

Development Lead

	Ricardo Bánffy <rbanffy@gmail.com>

Contributors

John Del Rosario (john2x)

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Python Boilerplate 0.1 documentation

History

0.1.0 (2014-10-13)

	First release on GitHub.

0.1.1 (2014-12-4)

	Add support for multi-kind JSON files

0.1.2 (2014-12-4)

	Minor fixes

0.1.3 (2014-12-5)

	Added support for PropertyKey-based child entities

0.1.4 (2015-2-4)

	Fixed bug in which post-processor was called on every property change

	Added section on development to README.rst

0.1.5 (2015-2-11)

	Added __children__ support

	Added manual key definition through the __id__ attribute

0.1.6 (2015-8-30)

	Builds if you don’t have curl installed

	Minor documentation improvements

0.1.7 (2015-11-3)

	Syntax highlighting on the documentation

	Coverage analysis using Coveralls

0.1.8 (2016-02-05)

	New resources/Makefile

0.1.9 (2016-12-19)

	Replace pep8 with pycodestyle

	Update current SDK version detection to latest version

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Python Boilerplate 0.1 documentation

Index

 Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Python Boilerplate 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ricardo Bánffy.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

