
AppDaemon Documentation
Release 3.0.1

Andrew Cockburn

Apr 14, 2018

Contents

1 Upgrading from 2.x 3

i

ii

AppDaemon Documentation, Release 3.0.1

AppDaemon is a loosely coupled, multithreaded, sandboxed python execution environment for writing automation
apps for Home Assistant home automation software. It also provides a configurable dashboard (HADashboard) suit-
able for wall mounted tablets.

Contents 1

https://home-assistant.io/

AppDaemon Documentation, Release 3.0.1

2 Contents

CHAPTER 1

Upgrading from 2.x

This documentation is for AppDaemon is 3.0.0 or later. If you are upgrading from a 2.x version, there have been
some changes to the way AppDaemon is configured, and you will need to edit your config files and make some other
changes. The changes are listed below:

Note that not all changes will apply to everyone, some of them are in fairly obscure parts of AppDaemon that few if
any people use, however, everyone will have to make some changes, so read carefully.

• AppDaemon no longer supports python 3.4

This is a fairly significant step, and the decision to do this was influenced by HASS’ pending end of support for Python
3.4. There are many technical reasons why this is a good thing, but the bottom line is that you will need to upgrade
your pyton version to run HASS anyway, so I took this opportunity to follow suit. AppDaemon 3.0 will remain in beta
until HASS drops python 3.4 support entirely.

• Apps need to change the import and super class

The naming and placement of the imports needed to change to support the plugin architecture, and to make more sense
of the naming in a multiple plugin environment. You will need to edit each of your apps and change the top couple of
lines from:

import appdaemon.appapi as appapi

class MyClass(appapi.AppDaemon):
...

to:

import appdaemon.plugins.hass.hassapi as hass

class MyClass(hass.Hass):
...

Note, we are changing both the import name, and the superclass.

• info_listen_state() now returns the namespace in addition to the previous parameters

3

AppDaemon Documentation, Release 3.0.1

I introduced namespaces as a way of handling multiple plugins at the same time - the docs have more details, but if
you are just using a single HASS instance, as everyone has been doing until now, you can safely ignore namespaces.

• The “ha_started” event has been renamed to “plugin_started”

If you use this event, the name has been changed. The plugin started event has a parameter called name which gives
the name of the plugin that was restarted.

• RSS Feed parameters have been moved to the hadashboard section

When HADashboard is integrated with HASS, the config for HADashboard needs to be all in one place.

e.g.:

hadashboard:
dash_url: http://192.168.1.20:5050
rss_feeds:
- feed: http://rss.cnn.com/rss/cnn_topstories.rss

target: news
rss_update: 300

• Log directives now have their own section

Logging is a function of the underlying execution code, not specifically AppDaemon (for instance, when integrated
with HASS, AppDaemon will use HASS logging. For that Reason, the log directives were pulled out into their own
section. The section is optional, and if not specified all the previous defaults will apply.

For example:

log:
accessfile: /export/hass/appdaemon_test/logs/access.log
errorfile: /export/hass/appdaemon_test/logs/error.log
logfile: /export/hass/appdaemon_test/logs/appdaemon.log
log_generations: 5
log_size: 1024

appdaemon:
...

• AppDaemon section renamed to appdaemon, HADashboard section renamed to hadashboard

This was done mainly for consistency, and because the capitals bugged me ;)

• Plugins (such as the HASS plugin now have their own parameters under the plugin section of the config file

This comes down to a reorganization of the appdaemon.yaml file to reflect the fact that there are now plugins and
there may be more than one of them. Rather than having its own section, the HASS plugin is now listed under the
appdaemon section, although the arguments remain the same. Here is an example:

appdaemon:
api_port: 5001
api_key: !secret appdaemon_key
threads: 10
time_zone: GMT+0BST-1,M3.5.0
plugins:
HASS:

type: hass
ha_key: !secret home_assistant_key
ha_url: http://192.168.1.20:8123
#commtype: SSE

• –commtype command line argument has been moved to the appdaemon.cfg file

4 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

This parameter applies specifically to HASS, so it made no sense to have it as a commandline argument. See above
for an example.

• Accessing other Apps arguments is now via the app_config attribute, config retains just the AppDaemon
configuration parameters

Required due to the restructuring of the config files.

• the self.ha_config attribute has been replaced by the self.get_hass_config() api call and now supports
namespaces.

This reflects the fact that the yaml files have been reconfigured, and that the config info is now owned by the individual
plugins.

• The !secret directive has been moved to the top level of appdaemon.yaml

The same argument as the logs - not strictly relevant to AppDaemon, more a concern of the execution environment.

• apps.yaml in the config directory has now been deprecated

One of the new features in 3.0 is that it is now possible to split the apps.yaml into multiple files. You are free to do this
in any way you want and place the yaml files with any name, anywhere in the directoty hierarchy under the appdir.
Apart from flexibility, another reason for this was to prepare the way for later features around configuration tools and
automatic app installs. For now, the only necessary step is to move your apps.yaml file from the config dircetory into
the apps directory. If you do not, you will get a warning but everything should still work for now. If you do stick with
apps.yaml at in the config directory for now, any other yaml files in the apps directory will be ignored.

• select_value() has been renamed to set_value() to harmonize with HASS

A minor change just to reflect the recent changes to HASS in this area, e.g input_slider being renamed to
input_number and the sevice name changing.

• It is no longer possible to automatically migrate from the legacy cfg style of config, and support for cfg files has
been dropped.

This has been on the cards for a while - if you are still using cfg files, use the latest 2.0 version of appdaemon to
migrate to yaml style configuration before you upgrade to 3.0.

• App modules not listed in an apps.yaml file will no longer be loaded. Python modules may still be imported
directly if they are in a directory in which other apps reside.

• cert_path is deprecated. With the replacement of requests with aiohttp, it is now sufficient to set
cert_verify to False to use a self signed certificate.

• In apps.yaml, dependencies should now be a proper yaml list rather than a comma separated string

This rewrite introduces some breaking changes as dependencies are now tracked at the app level rather than the module
level. This gives a lot more flexibility, and solves a couple of problems. For instance, @ReneTode, the undisputed
AppDaemon power user has one App that he is running 60 different instances of. Under the old system, a change
to one of those instances parameters in apps.yaml forced all 60 apps to reload - not good :) With the new app level
dependencies, just the affected app will reload, along with any other apps that depend on it.

While I was in the code I made another change that I had been wanting to for a while - dependencies used to be a
comma separated list, now they are a true yaml list.

So what does that mean for anyone upgrading? Well, if you weren’t using dependencies before, then absolutely
nothing, all should work the same.

If you were using dependencies, you will need to make some minor changes, to reference apps rather than modules,
and to change the format for multiple entries. Here’s an example of an old style dependency tree:

app1:
module: module1
class: class1

5

AppDaemon Documentation, Release 3.0.1

app2:
module: module2
class: class2

app3:
module: module3
class: class3
dependencies: module1

app4:
module: module4
class: class4
dependencies: module1,module2

Under the new system we change the dependencies to apps and change the way the dependencies are listed:

app1:
module: module1
class: class1

app2:
module: module2
class: class2

app3:
module: module3
class: class3
dependencies: app1

app4:
module: module4
class: class4
dependencies:
- app1
- app2

As you can see, single dependencies can be listed inline, but if you have more than one you must us the YAML list
format.

For those of you that are relying on the module based reloading to force reloads of modules that aren’t apps, this can
be achieved using global module dependencies.

Contents:

1.1 Installation

Installation is either by pip3 or Docker. There is also an official hass.io build.

Note: Windows and Raspbian users should check the environment specific section at the end of this doc for additional
information.

1.1.1 Install and Run using Docker

Follow the instructions in the Docker Tutorial

1.1.2 Install Using pip3

Before running AppDaemon you will need to install the package:

6 Chapter 1. Upgrading from 2.x

DOCKER_TUTORIAL.html

AppDaemon Documentation, Release 3.0.1

$ sudo pip3 install --pre appdaemon

Note: the --pre flag is required or you will install version 2.1.12. There are many breaking changes between 2.1.12
and this beta so ensure you have the correct version installed before proceeding.

1.1.3 Install Using hass.io

There are a couple of hass.io addons for AppDaemon maintained by:

• frenck.

• sparck75.

1.1.4 Configuration

When you have appdaemon installed by either method you are ready to start working on the appdaemon.yaml file. For
docker users, you will already have a skeleton to work with. For pip users, you need to create a configuration directory
somewhere (e.g. /home/homeassistant/conf) and create a file in there called appdaemon.yaml.

Your initial file should look something like this:

appdaemon:
threads: 10
plugins:
HASS:

type: hass
ha_url: <some_url>
ha_key: <some_key>

A more complete example could look like the following:

secrets: /some/path
log:

accessfile: /export/hass/appdaemon_test/logs/access.log
errorfile: /export/hass/appdaemon_test/logs/error.log
logfile: /export/hass/appdaemon_test/logs/appdaemon.log
log_generations: 3
log_size: 1000000

appdaemon:
threads: 10
time_zone: <time zone>
api_port: 5000
api_key: !secret api_key
api_ssl_certificate: <path/to/root/CA/cert>
api_ssl_key: <path/to/root/CA/key>
plugins:
HASS:

type: hass
ha_url: <some_url>
ha_key: <some key>
cert_path: <path/to/root/CA/cert>
cert_verify: True
namespace: default

The top level consists of a number of sections:

1.1. Installation 7

https://github.com/hassio-addons/repository
https://github.com/sparck75/hassio-addons

AppDaemon Documentation, Release 3.0.1

secrets

AppDaemon supports the use of secrets in the configuration file, to allow separate storage of sensitive information
such as passwords. For this to work, AppDaemon expects to find a file called secrets.yaml in the configuration
directory, or a named file introduced by the top level secrets: section. The file should be a simple list of all the
secrets. The secrets can be referred to using a !secret value in the configuration file.

The secret: section is optional. If it doesn’t exist, AppDaemon looks for a file called secrets.yaml in the
config directory.

An example secrets.yaml might look like this:

home_assistant_key: password123
appdaemon_key: password456

The secrets can then be referred to as follows:

appdaemon:
api_key: !secret appdaemon_key
threads: '10'
plugins:
HASS:

type: hass
ha_key: !secret home_assistant_key
ha_url: http://192.168.1.20:8123

log

The log: section is optional but if included, must have at least one directive in it. The directives are as follows:

• logfile (optional) is the path to where you want AppDaemon to keep its main log. When run from the
command line this is not used -log messages come out on the terminal. When running as a daemon this is
where the log information will go. In the example above I created a directory specifically for AppDaemon to
run from, although there is no reason you can’t keep it in the appdaemon directory of the cloned repository.
If logfile = STDOUT, output will be sent to stdout instead of stderr when running in the foreground, if not
specified, output will be sent to STDOUT.

• errorfile (optional) is the name of the logfile for errors - this will usually be errors during compilation and
execution of the apps. If errorfile = STDERR errors will be sent to stderr instead of a file, if not specified,
output will be sent to STDERR.

• diagfile (optional) is the name of the log files for diagnostic information. This will contain information
form the log_thread_actions parameter, as well as information dumped from AppDaemon’s internal
state when the AppDaemon process is sent a SIGUSR1 signal.

• log_size (optional) is the maximum size a logfile will get to before it is rotated if not specified, this will
default to 1000000 bytes.

• log_generations (optional) is the number of rotated logfiles that will be retained before they are overwrit-
ten if not specified, this will default to 3 files.

appdaemon

The appdaemon: section has a number of directives:

8 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

• threads (required) - the number of dedicated worker threads to create for running the apps. Note, this will
bear no resembelance to the number of apps you have, the threads are re-used and only active for as long as
required to run a particular callback or initialization, leave this set to 10 unless you experience thread starvation

• filters (optional) - see below

• plugins (required) - see below

• latitude (optional) - latitude for AppDaemon to use. If not specified, AppDaemon will query the latitude
from Home Assistant

• longitude (optional) - longitude for AppDaemon to use. If not specified, AppDaemon will query the longi-
tude from Home Assistant

• elevation (optional) - elevation for AppDaemon to use. If not specified, AppDaemon will query the elevation
from Home Assistant

• time_zone (optional) - timezone for AppDaemon to use. If not specified, AppDaemon will query the time-
zone from Home Assistant

• api_key (optional) - adds the requirement for AppDaemon API calls to provide a key in the header of a request

• api_ssl_certificate (optional) - certificate to use when running the API over SSL

• api_ssl_key (optional) - key to use when running the API over SSL

• exclude_dirs (optional) - a list of subdirectories to ignore under the apps directory when looking for apps

• missing_app_warnings (optional) - by default, AppDaemon will log a warning if it finds a python file that
has no associated configuration in an apps.yaml file. If this parameter is set to 1 the warning will be suppressed.
This allows non-appdaemon python files to be distributed along with apps.

• invalid_yaml_warnings (optional) - by default, AppDaemon will log a warning if it finds an apps.yaml
file that doesn’t include “class” and “module” for an app. If this parameter is set to 1 the warning will be
suppressed. This is intended to ease the distribution of additional yaml files along with apps.

• production_mode (optional) - If set to true, AppDaemon will only check for changes in Apps and apps.yaml
files when AppDaemon is restarted, as opposed to every second. This can save some processing power on busy
systems. Defaults to False

• log_thread_actions (optional) - if set to 1, AppDaemon will log all callbacks on entry and exit for the
scheduler, events and state changes - this can be useful for troubleshooting thread starvation issues

When using the exclude_dirs directive you should supply a list of directory names that should be ignored, e.g.

exclude_dirs:
- dir1
- dir2
- dir3

AppDaemon will search for matching directory names at any level of the folder hierarchy under appdir and will exclude
that directory and any beneath it. It is not possible to match multiple level directory names e.g. somedir/dir1. In
that case the match should be on dir1, with the caveat that if you have dir1 anywhere else in the hierarchy it will also
be excluded.

In the required plugins: sub-section, there will usually be one or more plugins with a number of directives intro-
duced by a top level name:

• type (required) The type of the plugin. For Home Assistant this will always be hass

• ha_url (required for the hass plugin) is a reference to your home assistant installation and must include the
correct port number and scheme (http:// or https:// as appropriate)

1.1. Installation 9

AppDaemon Documentation, Release 3.0.1

• ha_key (required for the hass plugin) should be set to your home assistant password if you have one, other-
wise it can be removed.

• cert_verify (optional) - flag for cert verification for HASS - set to False to disable verification on self
signed certs, or certs for which the address used doesn;tmatch the cert address (e.g. using an internal IP address)

• api_port (optional) - Port the AppDaemon RESTFul API will listen on. If not specified, the RESTFul API
will be turned off.

• namespace (optional) - which namespace to use. This can safely be left out unless you are planning to use
multiple plugins (see below)

Optionally, you can place your apps in a directory other than under the config directory using the app_dir directive.

e.g.:

app_dir: /etc/appdaemon/apps

A Note About Plugins

In the example above, you will see that home assistant is configured as a plugin. For most applications there is little
significance to this - just configure a single plugin for HASS exactly as above. However, for power users this is a way
to allow AppDaemon to work with more than one installation of Home Assistant. The plugin architecture also allows
the creation of plugins for other purposes, e.g. different home automation systems.

To configure more than one plugin, simply add a new section to the plugins list and configure it appropriately. Before
you do this, make sure to review the section on namespaces to fully understand what this entails, and if you are using
more than one plugin, make sure you use the namespace directive to create a unique namespace for each plugin. (One
of the plugins may be safely allowed to use the default value, however any more than that will require the namespace
directive. There is also no harm in giving them all namespaces, since the default namespace is literally default and
has no particular significance, it’s just a different name, but if you use namespaces other than default you will need to
change your Apps to understand which namespaces are in use.).

Filters

The use of filters allows you to run an arbitary command against a file with a specific extenstion to generate a new .py
file. The usecases for this are varied, but this can be used to run a preprocessor on an app, or perhaps some kind of
global substitute or any of a number of other commands. AppDaemon, when made aware of the filter via configurtion,
will look for files in the appdir with the specified extension, and run the specified command on them writing the output
to a new file with the specified extension. The output extension would usually be a .py file whcih would then be picked
up by normal app processing, meaning that if you edit the original input file, the result will be a new .py file that is
part of an app whcih will then be restarted.

In addition, it is possible to chain multiple filters, as the filter list is processed in order - just ensure you end with a .py
file.

A simple filter would look like this:

filters:
- command_line: /bin/cat $1 > $2

input_ext: cat
output_ext: py

This would result in AppDaemon looking for any files with the extension .cat and running the /bin/cat command
and creating a file with an extension of .py. In the command_line, $1 and $2 are replaced by the correctly named
input and output files. In this example the output is just a copy of the input but this technique could be used with
commands such as sed and awk, or even m4 for more complex manipulations.

10 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

A chained set of filters might look like this:

filters:
- command_line: /bin/cat $1 > $2

input_ext: mat
output_ext: cat

- command_line: /bin/cat $1 > $2
input_ext: cat
output_ext: py

These will run in order resulting in edits to a .mat file running through the 2 filters and resulting in a new .py file
which will run as the app in the usual way.

Finally, it is possible to have multiple unconnected fiters like so:

filters:
- command_line: /bin/cat $1 > $2

input_ext: mat
output_ext: .py

- command_line: /bin/cat $1 > $2
input_ext: cat
output_ext: py

Here we have defined .mat and .cat files as both creating new apps. In a real world example the command_line
would be different.

Configuring a Test App

To add an initial test app to match the configuration above, we need to first create an apps subdirectory under the
conf directory. Then create a file in the apps directory called hello.py, and paste the following into it using your
favorite text editor:

import appdaemon.plugins.hass.hassapi as hass

#
Hello World App
#
Args:
#

class HelloWorld(hass.Hass):

def initialize(self):
self.log("Hello from AppDaemon")
self.log("You are now ready to run Apps!")

Then, we can create a file called apps.yaml in the apps directory and add an entry for the Hello World App like this:

hello_world:
module: hello
class: HelloWorld

App configuration is fully described in the API doc.

With this app in place we will be able to test the App part of AppDaemon when we first run it.

1.1. Installation 11

API.md

AppDaemon Documentation, Release 3.0.1

Configuring the Dashboard

Configuration of the dashboard component (HADashboard) is described separately in the Dashboard doc

1.1.5 Example Apps

There are a number of example apps under conf/examples in the git repository, and the conf/examples.yaml
file gives sample parameters for them.

1.1.6 Running

Docker

Assuming you have set the config up as described in the tutotial for Docker, you should see the logs output as follows:

$ docker logs appdaemon
2016-08-22 10:08:16,575 INFO Got initial state
2016-08-22 10:08:16,576 INFO Loading Module: /export/hass/appdaemon_test/conf/apps/
→˓hello.py
2016-08-22 10:08:16,578 INFO Loading Object hello_world using class HelloWorld from
→˓module hello
2016-08-22 10:08:16,580 INFO Hello from AppDaemon
2016-08-22 10:08:16,584 INFO You are now ready to run Apps!

Note that for Docker, the error and regular logs are combined.

PIP3

You can run AppDaemon from the command line as follows:

$ appdaemon -c /home/homeassistant/conf

If all is well, you should see something like the following:

$ appdaemon -c /home/homeassistant/conf
2016-08-22 10:08:16,575 INFO Got initial state
2016-08-22 10:08:16,576 INFO Loading Module: /home/homeassistant/conf/apps/hello.py
2016-08-22 10:08:16,578 INFO Loading Object hello_world using class HelloWorld from
→˓module hello
2016-08-22 10:08:16,580 INFO Hello from AppDaemon
2016-08-22 10:08:16,584 INFO You are now ready to run Apps!

1.1.7 AppDaemon arguments

usage: appdaemon [-h] [-c CONFIG] [-p PIDFILE] [-t TICK] [-s STARTTIME]
[-e ENDTIME] [-i INTERVAL]
[-D {DEBUG,INFO,WARNING,ERROR,CRITICAL}] [-v] [-d]

optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG

full path to config diectory

12 Chapter 1. Upgrading from 2.x

DASHBOARD_INSTALL.html

AppDaemon Documentation, Release 3.0.1

-p PIDFILE, --pidfile PIDFILE
full path to PID File

-t TICK, --tick TICK time in seconds that a tick in the schedular lasts
-s STARTTIME, --starttime STARTTIME

start time for scheduler <YYYY-MM-DD HH:MM:SS>
-e ENDTIME, --endtime ENDTIME

end time for scheduler <YYYY-MM-DD HH:MM:SS>
-i INTERVAL, --interval INTERVAL

multiplier for scheduler tick
-D {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --debug {DEBUG,INFO,WARNING,ERROR,CRITICAL}

debug level
-v, --version show program's version number and exit
-d, --daemon run as a background process

-c is the path to the configuration directory. If not specified, AppDaemon will look for a file named appdaemon.
cfg first in ~/.homeassistant then in /etc/appdaemon. If the directory is not specified and it is not found
in either location, AppDaemon will raise an exception. In addition, AppDaemon expects to find a dir named apps
immediately subordinate to the config directory.

-d and -p are used by the init file to start the process as a daemon and are not required if running from the command
line.

-D can be used to increase the debug level for internal AppDaemon operations as well as apps using the logging
function.

The -s, -i, -t and -e options are for the Time Travel feature and should only be used for testing. They are described in
more detail in the API documentation.

1.1.8 Starting At Reboot

To run AppDaemon at reboot, you can set it up to run as a systemd service as follows.

Add Systemd Service (appdaemon@appdaemon.service)

First, create a new file using vi:

$ sudo vi /etc/systemd/system/appdaemon@appdaemon.service

Add the following, making sure to use the correct full path for your config directory. Also make sure you edit the
User to a valid user to run AppDaemon, usually the same user as you are running Home Assistant with is a good
choice.

[Unit]
Description=AppDaemon
After=home-assistant@homeassistant.service
[Service]
Type=simple
User=%1
ExecStart=/usr/local/bin/appdaemon -c <full path to config directory>
[Install]
WantedBy=multi-user.target

The above should work for hasbian, but if your homeassistant service is named something different you may need to
change the After= lines to reflect the actual name.

1.1. Installation 13

AppDaemon Documentation, Release 3.0.1

Activate Systemd Service

$ sudo systemctl daemon-reload
$ sudo systemctl enable appdaemon@appdaemon.service --now

Now AppDaemon should be up and running and good to go.

1.1.9 Operation

Since AppDaemon under the covers uses the exact same APIs as the frontend UI, you typically see it react at about
the same time to a given event. Calling back to Home Assistant is also pretty fast especially if they are running on the
same machine. In action, observed latency above the built in automation component is usually sub-second.

1.1.10 Updating AppDaemon

To update AppDaemon after new code has been released, just run the following command to update your copy:

$ sudo pip3 install --upgrade appdaemon

If you are using docker, refer to the steps in the tutorial.

1.1.11 Windows Support

AppDaemon runs under windows and has been tested with the official 3.5.2 release of python. There are a couple of
caveats however:

• The -d or --daemonize option is not supported owing to limitations in the Windows implementation of
Python.

• Some internal diagnostics are disabled. This is not user visible but may hamper troubleshooting of internal
issues if any crop up

AppDaemon can be installed exactly as per the instructions for every other version using pip3.

1.1.12 Windows Under the Linux Subsystem

Windows 10 now supports a full Linux bash environment that is capable of running Python. This is essentially an
Ubuntu distribution and works extremely well. It is possible to run AppDaemon in exactly the same way as for Linux
distributions, and none of the above Windows Caveats apply to this version. This is the recommended way to run
AppDaemon in a Windows 10 and later environment.

1.1.13 Raspbian

Some users have reported a requirement to install a couple of packages prior to installing AppDaemon with the pip3
method:

$ sudo apt-get install python-dev
$ sudo apt-get install libffi-dev

14 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

1.1.14 Raspberry Pi Docker

Since the official Docker image isn’t compatible with raspberry Pi, you will need to build your own docker image from
the downloaded repository. The Dockerfile also needs a couple of changes:

1. Change the image line to use a Resin image:

FROM arm32v7/python:3.6

2. Change the RUN line to the following:

RUN pip3 install requests && pip3 install .

You can then build and run a docker image locally as follows:

For more information on running AppDaemon under Docker, see the Docker Tutorial. The key difference is that you
will be running a locally built instance of AppDaemon rather than one from Docker Hub, so for run commands, make
usre yo uspecify “appdaemon:latest” as the image, as above, rather than “acockburn/appdaemon:latest” as the tutorial
states.

At the time of writing, @torkildr is maintaining a linked Raspberry Pi image here:

https://hub.docker.com/r/torkildr/rpi-appdaemon/

1.2 AppDaemon Tutorial

I have been working on a new subsystem to complement Home Assistant’s Automation and Scripting components.
AppDaemon is a python daemon that consumes events from Home Assistant and feeds them to snippets of python
code called “Apps”. An App is a Python class that is instantiated possibly multiple times from AppDaemon and
registers callbacks for various system events. It is also able to inspect and set state and call services. The API provides
a rich environment suited to home automation tasks that can also leverage all the power of Python.

1.2.1 Another Take on Automation

If you haven’t yet read Paulus’ excellent Blog entry on Perfect Home Automation I would encourage you to take a
look. As a veteran of several Home Automation systems with varying degrees success, it was this article more than
anything else that convinced me that Home Assistant had the right philosophy behind it and was on the right track. One
of the most important points made is that being able to control your lights from your phone, 9 times out of 10 is harder
than using a lightswitch - where Home Automation really comes into its own is when you start removing the need to
use a phone or the switch - the “Automation” in Home Automation. A surprisingly large number of systems out there
miss this essential point and have limited abilities to automate anything which is why a robust and open system such
as Home Assistant is such an important part of the equation in bring this all together in the vast and chaotic ecosystem
that is the “Internet of Things”.

So given the importance of Automation, what should Automation allow us to do? I am a pragmatist at heart so I judge
individual systems by the ease of accomplishing a few basic but representative tasks:

• Can the system respond to presence or absence of people?

• Can I turn a light on at Sunset +/- a certain amount of time?

• Can I arrive home in light or dark and have the lights figure out if they should be on or off?

• As I build my system out, can I get the individual pieces to co-operate and use and re-use (potentially complex)
logic to make sure everything works smoothly?

• Is it open and expandable?

• Does it run locally without any reliance on the cloud?

1.2. AppDaemon Tutorial 15

https://hub.docker.com/r/torkildr/rpi-appdaemon/
https://home-assistant.io/blog/2016/01/19/perfect-home-automation/

AppDaemon Documentation, Release 3.0.1

In my opinion, Home Assistant accomplishes the majority of these very well with a combination of Automations,
Scripts and Templates, and its Restful API.

So why AppDaemon? AppDaemon is not meant to replace Home Assistant Automations and Scripts, rather comple-
ment them. For a lot of things, automations work well and can be very succinct. However, there is a class of more
complex automations for which they become harder to use, and appdeamon then comes into its own. It brings quite a
few things to the table:

• New paradigm - some problems require a procedural and/or iterative approach, and AppDaemon Apps are a
much more natural fit for this. Recent enhancements to Home Assistant scripts and templates have made huge
strides, but for the most complex scenarios, Apps can do things that Automations can’t

• Ease of use - AppDaemon’s API is full of helper functions that make programming as easy and natural as
possible. The functions and their operation are as “Pythonic” as possible, experienced Python programmers
should feel right at home.

• Reuse - write a piece of code once and instantiate it as an app as many times as you need with different param-
eters e.g. a motion light program that you can use in 5 different places around your home. The code stays the
same, you just dynamically add new instances of it in the config file

• Dynamic - AppDaemon has been designed from the start to enable the user to make changes without requiring a
restart of Home Assistant, thanks to its loose coupling. However, it is better than that - the user can make changes
to code and AppDaemon will automatically reload the code, figure out which Apps were using it and restart them
to use the new code with out the need to restart AppDaemon itself. It is also possible to change parameters for
an individual or multiple apps and have them picked up dynamically, and for a final trick, removing or adding
apps is also picked up dynamically. Testing cycles become a lot more efficient as a result.

• Complex logic - Python’s If/Else constructs are clearer and easier to code for arbitrarily complex nested logic

• Durable variables and state - variables can be kept between events to keep track of things like the number of
times a motion sensor has been activated, or how long it has been since a door opened

• All the power of Python - use any of Python’s libraries, create your own modules, share variables, refactor and
re-use code, create a single app to do everything, or multiple apps for individual tasks - nothing is off limits!

It is in fact a testament to Home Assistant’s open nature that a component like AppDaemon can be integrated so neatly
and closely that it acts in all ways like an extension of the system, not a second class citizen. Part of the strength of
Home Assistant’s underlying design is that it makes no assumptions whatever about what it is controlling or reacting to,
or reporting state on. This is made achievable in part by the great flexibility of Python as a programming environment
for Home Assistant, and carrying that forward has enabled me to use the same philosophy for AppDaemon - it took
surprisingly little code to be able to respond to basic events and call services in a completely open ended manner - the
bulk of the work after that was adding additonal functions to make things that were already possible easier.

1.2.2 How it Works

The best way to show what AppDaemon does is through a few simple examples.

Sunrise/Sunset Lighting

Lets start with a simple App to turn a light on every night fifteen minutes (900 seconds) before sunset and off every
morning at sunrise. Every App when first started will have its initialize() function called which gives it a chance
to register a callback for AppDaemons’s scheduler for a specific time. In this case we are using run_at_sunrise()
and run_at_sunset() to register 2 separate callbacks. The named argument offset is the number of seconds
offset from sunrise or sunset and can be negative or positive (it defaults to zero). For complex intervals it can be
convenient to use Python’s datetime.timedelta class for calculations. In the example below, when sunrise or
just before sunset occurs, the appropriate callback function, sunrise_cb() or before_sunset_cb() is called
which then makes a call to Home Assistant to turn the porch light on or off by activating a scene. The variables

16 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

args["on_scene"] and args["off_scene"] are passed through from the configuration of this particular
App, and the same code could be reused to activate completely different scenes in a different version of the App.

import appdaemon.plugins.hass.hassapi as hass

class OutsideLights(hass.Hass):

def initialize(self):
self.run_at_sunrise(self.sunrise_cb)
self.run_at_sunset(self.before_sunset_cb, offset=-900)

def sunrise_cb(self, kwargs):
self.turn_on(self.args["off_scene"])

def before_sunset_cb(self, kwargs):
self.turn_on(self.args["on_scene"])

This is also fairly easy to achieve with Home Assistant automations, but we are just getting started.

Motion Light

Our next example is to turn on a light when motion is detected and it is dark, and turn it off after a period of time.
This time, the initialize() function registers a callback on a state change (of the motion sensor) rather than a
specific time. We tell AppDaemon that we are only interested in state changes where the motion detector comes on by
adding an additional parameter to the callback registration - new = "on". When the motion is detected, the callack
function motion() is called, and we check whether or not the sun has set using a built-in convenience function:
sun_down(). Next, we turn the light on with turn_on(), then set a timer using run_in() to turn the light off
after 60 seconds, which is another call to the scheduler to execute in a set time from now, which results in AppDaemon
calling light_off() 60 seconds later using the turn_off() call to actually turn the light off. This is still pretty
simple in code terms:

import appdaemon.plugins.hass.hassapi as hass

class MotionLights(hass.Hass):

def initialize(self):
self.listen_state(self.motion, "binary_sensor.drive", new = "on")

def motion(self, entity, attribute, old, new, kwargs):
if self.sun_down():

self.turn_on("light.drive")
self.run_in(self.light_off, 60)

def light_off(self, kwargs):
self.turn_off("light.drive")

This is starting to get a little more complex in Home Assistant automations requiring an Automation rule and two
separate scripts.

Now lets extend this with a somewhat artificial example to show something that is simple in AppDaemon but very
difficult if not impossible using automations. Lets warn someone inside the house that there has been motion outside
by flashing a lamp on and off 10 times. We are reacting to the motion as before by turning on the light and setting
a timer to turn it off again, but in addition, we set a 1 second timer to run flash_warning() which when called,
toggles the inside light and sets another timer to call itself a second later. To avoid re-triggering forever, it keeps a
count of how many times it has been activated and bales out after 10 iterations.

1.2. AppDaemon Tutorial 17

AppDaemon Documentation, Release 3.0.1

import appdaemon.plugins.hass.hassapi as hass

class FlashyMotionLights(hass.Hass):

def initialize(self):
self.listen_state(self.motion, "binary_sensor.drive", new = "on")

def motion(self, entity, attribute, old, new, kwargs):
if self.self.sun_down():

self.turn_on("light.drive")
self.run_in(self.light_off, 60)
self.flashcount = 0
self.run_in(self.flash_warning, 1)

def light_off(self, kwargs):
self.turn_off("light.drive")

def flash_warning(self, kwargs):
self.toggle("light.living_room")
self.flashcount += 1
if self.flashcount < 10:

self.run_in(self.flash_warning, 1)

Of course if I wanted to make this App or its predecessor reusable I would have provide parameters for the sensor, the
light to activate on motion, the warning light and even the number of flashes and delay between flashes.

In addition, Apps can write to AppDaemon’s logfiles, and there is a system of constraints that allows yout to control
when and under what circumstances Apps and callbacks are active to keep the logic clean and simple.

1.2.3 Final Thoughts

I have spent the last few weeks moving all of my (fairly complex) automations over to AppDaemon and so far it is
working very reliably.

Some people will maybe look at all of this and say “what use is this, I can already do all of this”, and that is fine,
as I said this is an alternative not a replacement, but I am hopeful that for some users this will seem a more natural,
powerful and nimble way of building potentially very complex automations.

If this has whet your appetite, feel free to give it a try. You can find installation instructions, here, including full
installation instructions, an API reference, and a number of fully fleshed out examples.

Happy Automating!

1.2.4 Other Tutorials

Here is a list of other tutorials that have been created by AppDaemon users:

By Rene Tode:

• AppDaemon For Beginners

By Supahnoob:

• AppDaemon Tutorial #1 Tracker-Notifier

• AppDaemon Tutorial #2 Errorlog Notifications

• AppDaemon Tutorial #3 Utility Functions

18 Chapter 1. Upgrading from 2.x

INSTALL.rst
https://github.com/ReneTode/My-AppDaemon/tree/master/AppDaemon_for_Beginner
https://community.home-assistant.io/t/appdaemon-tutorial-1-tracker-notifier/12545
https://community.home-assistant.io/t/appdaemon-tutorial-2-errorlog-notifications/12907
https://community.home-assistant.io/t/appdaemon-tutorial-3-utility-functions/13247

AppDaemon Documentation, Release 3.0.1

• AppDaemon Tutorial #4 Libraries & Interactivity

1.3 Appdaemon with Docker

A quick tutorial to Appdaemon with Docker

1.3.1 About Docker

Docker is a popular application container technology. Application containers allow an application to be built in a
known-good state and run totally independant of other applications. This makes it easier to install complex soft-
ware and removes concerns about application dependency conflicts. Containers are powerful, however they require
abstractions that can sometimes be confusing.

This guide will help you get the Appdaemon Docker image running and hopefully help you become more comfortable
with using Docker. There are multiple ways of doing some of these steps which are removed for the sake of keeping
it simple. As your needs change, just remember there’s probably a way to do what you want!

1.3.2 Prereqs

This guide assumes:

• You already have Docker installed. If you still need to do this, follow the Docker Installation documentation

• You have Home Assistant up and running

• You are comfortable with some tinkering. This is a pre-req for Appdaemon too!

1.3.3 Testing your System

Our first step will be to verify that we can get Appdaemon running on our machine, which tests that we can successfully
“pull” (download) software from Docker Hub, execute it, and get output that Appdaemon is working. We will worry
about our persistent (normal) configuration later.

Before you start, you need to know the following:

• HA_URL: The URL of your running Home Assistant, in the form of http://[name]:[port]. Port is
usually 8123.

• HA_KEY: If your Home Assistant requires an API key, you’ll need that

Now, on your Docker host, for linux users, run the following command, substituting the values above in the quotes
below. (Note, if you do not need an HA_KEY, you can omit the entire -e HA_KEY line)

docker run --rm -it -p 5050:5050 \
-e HA_URL="<your HA_URL value>" \
-e HA_KEY="<your HA_KEY value>" \
-e DASH_URL="http://$HOSTNAME:5050" \
acockburn/appdaemon:latest

You should see some download activity the first time you run this as it downloads the latest Appdaemon image. After
that is downloaded, Docker will create a container based on that image and run it. It will automatically delete itself
when it exits, since right now we are just testing.

You will see Appdaemon’s output appear on your screen, and you should look for lines like these being output:

1.3. Appdaemon with Docker 19

https://community.home-assistant.io/t/appdaemon-tutorial-4-libraries-interactivity/14057
https://docs.docker.com/engine/installation/

AppDaemon Documentation, Release 3.0.1

Appdaemon successfully connected to Home Assistant

2017-04-01 14:26:48.361140 INFO Connected to Home Assistant 0.40.0

The ‘apps’ capability of Appdaemon is working, running the example Hello World app

2017-04-01 14:26:48.330084 INFO hello_world: Hello from AppDaemon
2017-04-01 14:26:48.333040 INFO hello_world: You are now ready to run Apps!

The ‘dashboard’ capability of Appdaemon has started.

2017-04-01 14:26:48.348260 INFO HADashboard Started
2017-04-01 14:26:48.349135 INFO Listening on ('0.0.0.0', 5050)

Now open up a web browser, and browse to http://:5050. You should see the “Welcome to HADashboard for Home
Assistant” screen and see the Hello dashboard is available.

If all of these checks work, congratulations! Docker and Appdaemon are working on your system! Hit Control-C to
exit the container, and it will clean up and return to the command line. It’s almost as if nothing happened. . . :)

1.3.4 Persistent Configuration

In Docker, containers (the running application) are considered ephemeral. Any state that you want to be able to
preserve must be stored outside of the container so that the container can be disposed and recreated at any time. In the
case of Appdaemon, this means you would be concerned about your conf folder.

The first step is to create a location on your filesystem to store the conf folder. It does not matter where this is, some
people like to store it in the same location as Home Assistant. I like to keep a folder structure under /docker on my
systems, so we can simply do something like:

mkdir -p /docker/appdaemon/conf

Next, we will run a container again, omiting the --rm -it parameters and adding -d so that it stays background
and doesn’t disappear when it exits. We will also add --restart=always so that the container will auto-start on
system boot and restart on failures, and lastly specify our conf folder location. Note that the folder path must be fully
qualified and not relative.

docker run --name=appdaemon -d -p 5050:5050 \
--restart=always \
-e HA_URL="<your HA_URL value>" \
-e HA_KEY="<your HA_KEY value>" \
-e DASH_URL="http://$HOSTNAME:5050" \
-v <your_conf_folder>:/conf \
acockburn/appdaemon:latest

I would suggest documenting the command line above in your notes, so that you have it as a reference in the future for
rebuilding and upgrading. If you back up your command line, as well as your conf folder, you can trivially restore
Appdaemon on another machine or on a rebuild!

If your conf folder is brand new, the Appdaemon Docker will copy the default configuration files into this folder. If
there are already configuration files, it will not overwrite them. Double check that the files are there now.

You are now ready to start working on your Appdaemon configurations!

At this point forward, you can edit configurations on your conf folder and Appdaemon will load them see the
AppDaemon Installation page for full instrctions on AppDaemon configuration. Have fun!

20 Chapter 1. Upgrading from 2.x

http://:5050
INSTALL.html

AppDaemon Documentation, Release 3.0.1

1.3.5 Viewing Appdaemon Log Output

You can view the output of your Appdaemon with this command:

docker logs appdaemon

If you’d like to tail the latest output, try this:

docker logs -f --tail 20 appdaemon

1.3.6 Upgrading Appdaemon

Upgrading with Docker really doesn’t exist in the same way as with non-containerized apps. Containers are considered
ephemeral and are an instance of a base, known-good application image. Therefore the process of upgrading is simply
disposing of the old version, grabbing a newer version of the application image and starting up a new container with
the new version’s image. Since the the persistent state (conf) was kept, it is effectively an upgrade.

(It is possible to get into downgrades and multiple versions, however in this guide we are keeping it simple!)

Run the following commands:

docker stop appdaemon
docker rm appdaemon
docker pull acockburn/appdaemon:latest
docker run --name=appdaemon -d -p 5050:5050 \

--restart=always \
-e HA_URL="<your HA_URL value>" \
-e HA_KEY="<your HA_KEY value>" \
-e DASH_URL="http://$HOSTNAME:5050" \
-v <your_conf_folder>:/conf \
acockburn/appdaemon:latest

1.3.7 Controlling the Appdaemon Conter

To restart Appdaemon:

docker restart appdaemon

To stop Appdaemon:

docker stop appdaemon

To start Appdaemon back up after stopping:

docker start appdaemon

To check the running state, run the following and look at the ‘STATUS’ column:

docker ps -a

1.3.8 Running with Appdaemon Debug

If you need to run Appdaemon with Debug, it may be easiest to stop your normal appdaemon and run a temporary
container with the debug flag set. This presumes you already have a configured conf folder you are debugging, so

1.3. Appdaemon with Docker 21

AppDaemon Documentation, Release 3.0.1

we don’t need to pass the HA/DASH variables into the container.

Run the following commands:

docker stop appdaemon
docker run --rm -it -p 5050:5050 \

-v <your_conf_folder>:/conf \
-e EXTRA_CMD="-D DEBUG" \
acockburn/appdaemon:latest

Once you are done with the debug, start the non-debug container back up:

docker start appdaemon

1.3.9 Timezones

Some users have reported issues with the Docker container running in different timezones to the host OS - this is
obviously problematic for any of the scheduler functions. Adding the following to the Docker command line has
helped for some users:

-v /etc/localtime:/etc/localtime:ro

1.3.10 Home Assistant SSL

If your Home Assistant is running with self-signed certificates, you will want to point to the location of the certifi-
cate files as part of the container creation process. Add -v <your_cert_path>:/certs to the docker run
command line

1.3.11 Removing Appdaemon

If you no longer want to use Appdaemon :(, use the following commands:

docker kill appdaemon
docker rm appdaemon
docker rmi acockburn/appdaemon:latest

You can delete the conf folder if you wish at this time too. Appdaemon is now completely removed.

1.4 Writing AppDaemon Apps

AppDaemon is a loosely coupled, sandboxed, multi-threaded Python execution environment for writing automation
apps for Home Assistant home automation software. It is intended to complement the Automation and Script compo-
nents that Home Assistant currently offers.

1.4.1 Examples

Example apps that showcase most of these functions are available in the AppDaemon repository:

Apps

22 Chapter 1. Upgrading from 2.x

https://home-assistant.io/
https://github.com/home-assistant/appdaemon/tree/dev/conf/example_apps

AppDaemon Documentation, Release 3.0.1

1.4.2 Anatomy of an App

Automations in AppDaemon are performed by creating a piece of code (essentially a Python Class) and then instan-
tiating it as an Object one or more times by configuring it as an App in the configuration file. The App is given a
chance to register itself for whatever events it wants to subscribe to, and AppDaemon will then make calls back into
the Object’s code when those events occur, allowing the App to respond to the event with some kind of action.

The first step is to create a unique file within the apps directory (as defined in the appdaemon section of configuration
file - see The Installation Page for further information on the configuration of AppDaemon itself). This file is in fact a
Python module, and is expected to contain one or more classes derived from the supplied appdaemon class, imported
from the supplied appdaemon.plugins.hass.hassapi module. The start of an app might look like this:

import appdaemon.plugins.hass.hassapi as hass

class OutsideLights(hass.Hass):

When configured as an app in the config file (more on that later) the lifecycle of the App begins. It will be instantiated
as an object by AppDaemon, and immediately, it will have a call made to its initialize() function - this function
must appear as part of every app:

def initialize(self):

The initialize function allows the app to register any callbacks it might need for responding to state changes, and also
any setup activities. When the initialize() function returns, the App will be dormant until any of its callbacks
are activated.

There are several circumstances under which initialize() might be called:

• Initial start of AppDaemon

• Following a change to the Class code

• Following a change to the module parameters

• Following initial configuration of an app

• Following a change in the status of Daylight Saving Time

• Following a restart of Home Assistant

In every case, the App is responsible for recreating any state it might need as if it were the first time it was ever started.
If initialize() is called, the app can safely assume that it is either being loaded for the first time, or that all
callbacks and timers have been cancelled. In either case, the App will need to recreate them. Depending upon the
application, it may be desirable for the App to establish a state, such as whether or not a particular light is on, within
the initialize() function to ensure that everything is as expected or to make immediate remedial action (e.g.,
turn off a light that might have been left on by mistake when the app was restarted).

After the initialize() function is in place, the rest of the app consists of functions that are called by the various
callback mechanisms, and any additional functions the user wants to add as part of the program logic. Apps are able
to subscribe to two main classes of events:

• Scheduled Events

• State Change Events

These, along with their various subscription calls and helper functions, will be described in detail in later sections.

Optionally, a class can add a terminate() function. This function will be called ahead of the reload to allow the
class to perform any tidy up that is necessary.

WARNING: Unlike other types of callback, calls to initialize() and terminate() are synchronous to App-
Daemon’s management code to ensure that initialization or cleanup is completed before the App is loaded or reloaded.

1.4. Writing AppDaemon Apps 23

INSTALL.html

AppDaemon Documentation, Release 3.0.1

This means that any significant delays in the terminate() code could have the effect of hanging AppDaemon for
the duration of that code - this should be avoided.

To wrap up this section, here is a complete functioning App (with comments):

import appdaemon.plugins.hass.hassapi as hass
import datetime

Declare Class
class NightLight(hass.Hass):
#initialize() function which will be called at startup and reload
def initialize(self):
Create a time object for 7pm
time = datetime.time(19, 00, 0)
Schedule a daily callback that will call run_daily() at 7pm every night
self.run_daily(self.run_daily_callback, time)

Our callback function will be called by the scheduler every day at 7pm
def run_daily_callback(self, kwargs):
Call to Home Assistant to turn the porch light on
self.turn_on("light.porch")

To summarize - an App’s lifecycle consists of being initialized, which allows it to set one or more states and/or
schedule callbacks. When those callbacks are activated, the App will typically use one of the Service Calling calls to
effect some change to the devices of the system and then wait for the next relevant state change. Finally, if the App is
reloaded, there is a call to its terminate() function if it exists. That’s all there is to it!

1.4.3 About the API

The implementation of the API is located in the AppDaemon class that Apps are derived from. The code for the
functions is therefore available to the App simply by invoking the name of the function from the object namespace
using the self keyword, as in the above examples. self.turn_on() for example is just a method defined in the
parent class and made available to the child. This design decision was made to simplify some of the implementation
and hide passing of unnecessary variables during the API invocation.

1.4.4 Configuration of Apps

Apps are configured by specifying new sections in an app configuration file. The App configuration files exist under the
apps directory and can be called anything as long as they end in .yaml. You can have one single file for configuration
of all apps, or break it down to have one yaml file per app, or anything in between. Coupled with the fact that you
can have any number of subdirectopries for apps and yaml files, this gives you the flexibility to structure your apps as
you see fit.

The entry for an individual app within a yaml file is simply a dictionary entry naming the app, with subfields to supply
various parameters. The name of the section is the name the App is referred to within the system in log files etc. and
must be unique.

To configure a new App you need a minimum of two directives:

• module - the name of the module (without the .py) that contains the class to be used for this App

• class - the name of the class as defined within the module for the APPs code

Although the section/App name must be unique, it is possible to re-use a class as many times as you want, and
conversely to put as many classes in a module as you want. A sample definition for a new App might look as follows:

24 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

newapp:
module: new
class: NewApp

When AppDaemon sees the following configuration it will expect to find a class called NewApp defined in a module
called new.py in the apps subdirectory. Apps can be placed at the root of the Apps directory or within a subdirectory,
an arbitrary depth down - wherever the App is, as long as it is in some subdirectory of the Apps dir, or in the Apps dir
itself, AppDaemon will find it. There is no need to include information about the path, just the name of the file itself
(without the .py) is sufficient. If names in the subdirectories overlap, AppDir will pick one of them but the exact
choice it will make is undefined.

When starting the system for the first time or when reloading an App or Module, the system will log the fact in its
main log. It is often the case that there is a problem with the class, maybe a syntax error or some other problem. If
that is the case, details will be output to the error log allowing the user to remedy the problem and reload.

1.4.5 Steps to writing an App

1. Create the code in a new or shared module by deriving a class from AppDaemon, add required callbacks and
code

2. Add the App to the app configuration file

3. There is no number 3

1.4.6 Reloading Modules and Classes

Reloading of modules is automatic. When the system spots a change in a module, it will automatically reload
and recompile the module. It will also figure out which Apps were using that Module and restart them, caus-
ing their terminate() functions to be called if they exist, all of their existing callbacks to be cleared, and their
initialize() function to be called.

The same is true if changes are made to an App’s configuration - changing the class, or arguments (see later) will cause
that app to be reloaded in the same way. The system is also capable of detecting if a new app has been added, or if one
has been removed, and it will act appropriately, starting the new app immediately and removing all callbacks for the
removed app.

The suggested order for creating a new App is to first add the apps.yaml entry then the module code and work until it
compiles cleanly. A good workflow is to continuously monitor the error file (using tail -f on Linux for instance)
to ensure that errors are seen and can be remedied.

1.4.7 Passing Arguments to Apps

There wouldn’t be much point in being able to run multiple versions of an App if there wasn’t some way to instruct
them to do something different. For this reason it is possible to pass any required arguments to an App, which are
then made available to the object at runtime. The arguments themselves can be called anything (apart from module
or class) and are simply added into the section after the 2 mandatory directives like so:

MyApp:
module: myapp
class: MyApp
param1: spam
param2: eggs

1.4. Writing AppDaemon Apps 25

AppDaemon Documentation, Release 3.0.1

Within the Apps code, the 2 parameters (as well as the module and class) are available as a dictionary called args,
and accessed as follows:

param1 = self.args["param1"]
param2 = self.args["param2"]

A use case for this might be an App that detects motion and turns on a light. If you have 3 places you want to run
this, rather than hardcoding this into 3 separate Apps, you need only code a single app and instantiate it 3 times with
different arguments. It might look something like this:

downstairs_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.downstairs_hall
light: light.downstairs_hall

upstairs_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.upstairs_hall
light: light.upstairs_hall

garage_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.garage
light: light.garage

Apps can use arbitrarily complex structures within argumens, e.g.:

entities:
- entity1
- entity2
- entity3

Which can be accessed as a list in python with:

for entity in self.args.entities:
do some stuff

Also, this opens the door to really complex parameter structures if required:

sensors:
sensor1:
type:thermometer
warning_level: 30
units: degrees

sensor2:
type:moisture
warning_level: 100
units: %

1.4.8 App Dependencies

It is possible for apps to be dependant upon other apps. Some examples where this might be the case are:

• A global app that defines constants for use in other apps

• An app that provides a service for other modules, e.g. a TTS app

26 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

In these cases, when changes are made to one of these apps, we also want the apps that depend upon them to be
reloaded. Furthermore, we also want to guarantee that they are loaded in order so that the apps depended upon by
other modules are loaded first.

AppDaemon fully supports this through the use of the dependency directive in the App configuration. Using this
directive, each App identifies other apps that it depends upon. The dependency directive will identify the name of the
App it cares about, and AppDaemon will see to it that the dependency is loaded before the app depending on it, and
that the dependent app will be reloaded if it changes.

For example, an App Consumer, uses another app Sound to play sound files. Sound in turn uses Global to store
some global values. We can represent these dependencies as follows:

Global:
module: global
class: Global

Sound
module: sound
class: Sound
dependencies: Global

Consumer:
module: sound
class: Sound
dependencies: Sound

It is also possible to have multiple dependencies, added as a yaml list

Consumer:
module: sound
class: Sound
dependencies:
- Sound
- Global

AppDaemon will write errors to the log if a dependency is missing and it will also detect circular dependencies.

1.4.9 App Loading Priority

It is possible to influence the loading order of Apps using the dependency system. To add a loading priority to an app,
simply add a priority entry to its paremeters. e.g.:

downstairs_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.downstairs_hall
light: light.downstairs_hall
priority: 10

Priorities can be any number you like, and can be float values if required, the lower the number the higher the priority.
AppDaemon will load any modules with a priority in the order specified.

For modules with no priority specified, the priority is assumed to be 50. It is therefore possible to cause modules to
be loaded before and after modules with no priority.

The priority system is complimentary to the dependency system, although they are trying to solve different problems.
Dependencies should be used when an app literally depends upon another, for instance it is using variables stored in it
with the get_app() call. Priorities should be used when an app does some setup for other apps but doesn’t provide

1.4. Writing AppDaemon Apps 27

AppDaemon Documentation, Release 3.0.1

variables or code for the dependent app. An example of this might be an App that sets up some sensors in Home
Assistant, or sets some switch or input_slider to a specific value. It may be necessary for that setup to be performed
before other apps are started, but there is no requirement to reload those apps if the first app changes.

To accommodate both systems, dependency trees are assigned priorities in the range 50 - 51, again allowing apps to
set priorities such that they will be loaded before or after specific sets of dependent apps.

Note that apps that are dependent upon other apps, and apps that are depended upon by other apps will ignore any
priority setting in their configuration.

1.4.10 Global Module Dependencies

The previously described dependencies and load order have all been at the app level. It is however sometimes conve-
nient to have global modules that have no apps in them, that nonetheless require dependency tracking. For instance,
a global module might have a number of useful variables in it. When they change, a number of apps may need to be
restarted. To configure this dependency tracking, it is first necessary to define which modules are going to be tracked.
This is done in any apps.yaml file, although it should only be in one place. We use the global_modules directive:

global_modules: global

This means that the file globals.py anywhere with in the apps directory hierarchy is marked as a global module.
Any app may simply import globals and use its variables and functions. Marking multiple modules as global can
be achieved using standard YAML list format:

global_modules:
- global1
- global2
- global3

Once we have marked the global modules, the next step is to configure any apps that are dependant upon them. This
is done by adding a global_dependencies field to the app descrption, e.g.:

app1:
class: App
module: app
global_dependencies: global

Or for multiple dependencies:

app1: class: App module: app global_dependencies:

• global1

• global2

With this in place, whenever a global module is changes that apps depend upon, all dependant apps will be reloaded.
This also works well with the app level dependencies. If a change to a global module forces an app to reload that other
apps are dependant upon, the dependant apps will also be reloaded in sequence.

1.4.11 Plugin Reloads

When a plugin reloads e.g. due to the underlying system restarting, or a network issue, AppDaemon’s default assump-
tion is that all apps could potentially be dependant on that system, and it will force a restart of every app. It is possible
to modify this behavior at the individual app level, using the plugin parameter in apps.yaml. Specifying a specific
plugin or list of plugins will force the app to reload after the named plugin restarts.

For a simple AppDaemon install, the appdaemon.yaml file might look something like this:

28 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

appdaemon:
threads: 10
plugins:
HASS:

type: hass
ha_url: <some_url>
ha_key: <some_key>

In this setup, there is only one plugin and it is called HASS - this will be the case for most AppDaemon users.

To make an app explicitly reload when only this plugin and no other is restarted (e.g. in the case when HASS restarts
or when AppDaemon loses connectivity to HASS), use the plugin parameter like so:

appname:
module: some_module
class: some_class
plugin: HASS

If you have more than one plugin, you can make an app dependent on more than one plgin by specifying a YAML list:

appname:
module: some_module
class: some_class
plugin:

- HASS
- OTHERPLUGIN

If you want to prevent the app from reloading at all, just set the plugin parameter to some value that doesn’t match
any plugin name, e.g.:

appname:
module: some_module
class: some_class
plugin: NONE

Note, that this only effects reloading at plugin restart time:

• apps will be reloaded if the module they use changes

• apps will be reloaded if their apps.yaml changes

• apps will be reloaded when a change to or from DST occurs

• apps will be reloaded if an app they depend upon is reloaded as part of a plugin restart

• apps will be reloaded if changes are made to a global module that they depend upon

1.4.12 Callback Constraints

Callback constraints are a feature of AppDaemon that removes the need for repetition of some common coding checks.
Many Apps will wish to process their callbacks only when certain conditions are met, e.g. someone is home, and it’s
after sunset. These kinds of conditions crop up a lot, and use of callback constraints can significantly simplify the
logic required within callbacks.

Put simply, callback constraints are one or more conditions on callback execution that can be applied to an individual
App. An App’s callbacks will only be executed if all of the constraints are met. If a constraint is absent it will not be
checked for.

1.4. Writing AppDaemon Apps 29

AppDaemon Documentation, Release 3.0.1

For example, the presence callback constraint can be added to an App by adding a parameter to its configuration like
this:

some_app:
module: some_module
class: SomeClass
constrain_presence: noone

Now, although the initialize() function will be called for SomeClass, and it will have a chance to register as
many callbacks as it desires, none of the callbacks will execute, in this case, until everyone has left. This could be
useful for an interior motion detector App for instance. There are several different types of constraints:

• input_boolean

• input_select

• presence

• time

An App can have as many or as few as are required. When more than one constraint is present, they must all evaluate
to true to allow the callbacks to be called. Constraints becoming true are not an event in their own right, but if they are
all true at a point in time, the next callback that would otherwise been blocked due to constraint failure will now be
called. Similarly, if one of the constraints becomes false, the next callback that would otherwise have been called will
be blocked.

They are described individually below.

input_boolean

By default, the input_boolean constraint prevents callbacks unless the specified input_boolean is set to “on”. This is
useful to allow certain Apps to be turned on and off from the user interface. For example:

some_app:
module: some_module
class: SomeClass
constrain_input_boolean: input_boolean.enable_motion_detection

If you want to reverse the logic so the constraint is only called when the input_boolean is off, use the optional state
parameter by appending “,off” to the argument, e.g.:

some_app:
module: some_module
class: SomeClass
constrain_input_boolean: input_boolean.enable_motion_detection,off

input_select

The input_select constraint prevents callbacks unless the specified input_select is set to one or more of the nominated
(comma separated) values. This is useful to allow certain Apps to be turned on and off according to some flag, e.g. a
house mode flag.

Single value
constrain_input_select: input_select.house_mode,Day
or multiple values

constrain_input_select: input_select.house_mode,Day,Evening,Night

30 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

presence

The presence constraint will constrain based on presence of device trackers. It takes 3 possible values:

• noone - only allow callback execution when no one is home

• anyone - only allow callback execution when one or more person is home

• everyone - only allow callback execution when everyone is home

constrain_presence: anyone
or
constrain_presence: someone
or
constrain_presence: noone

time

The time constraint consists of 2 variables, constrain_start_time and constrain_end_time. Callbacks
will only be executed if the current time is between the start and end times. - If both are absent no time constraint will
exist - If only start is present, end will default to 1 second before midnight - If only end is present, start will default to
midnight

The times are specified in a string format with one of the following formats:

• HH:MM:SS - the time in Hours Minutes and Seconds, 24 hour format.

• sunrise|sunset [+|- HH:MM:SS]- time of the next sunrise or sunset with an optional positive or negative
offset in Hours Minutes and seconds

The time based constraint system correctly interprets start and end times that span midnight.

Run between 8am and 10pm
constrain_start_time: "08:00:00"
constrain_end_time: "22:00:00"
Run between sunrise and sunset
constrain_start_time: sunrise
constrain_end_time: sunset
Run between 45 minutes before sunset and 45 minutes after sunrise the next day
constrain_start_time: sunset - 00:45:00
constrain_end_time: sunrise + 00:45:00

days

The day constraint consists of as list of days for which the callbacks will fire, e.g.

constrain_days: mon,tue,wed

Callback constraints can also be applied to individual callbacks within Apps, see later for more details.

1.4.13 A Note on Threading

AppDaemon is multi-threaded. This means that any time code within an App is executed, it is executed by one of many
threads. This is generally not a particularly important consideration for this application; in general, the execution time
of callbacks is expected to be far quicker than the frequency of events causing them. However, it should be noted for
completeness, that it is certainly possible for different pieces of code within the App to be executed concurrently, so

1.4. Writing AppDaemon Apps 31

AppDaemon Documentation, Release 3.0.1

some care may be necessary if different callback for instance inspect and change shared variables. This is a fairly
standard caveat with concurrent programming, and if you know enough to want to do this, then you should know
enough to put appropriate safeguards in place. For the average user however this shouldn’t be an issue. If there
are sufficient use cases to warrant it, I will consider adding locking to the function invocations to make the entire
infrastructure threadsafe, but I am not convinced that it is necessary.

An additional caveat of a threaded worker pool environment is that it is the expectation that none of the callbacks tie
threads up for a significant amount of time. To do so would eventually lead to thread exhaustion, which would make
the system run behind events. No events would be lost as they would be queued, but callbacks would be delayed which
is a bad thing.

Given the above, NEVER use Python’s time.sleep() if you want to perform an operation some time in the future,
as this will tie up a thread for the period of the sleep. Instead use the scheduler’s run_in() function which will
allow you to delay without blocking any threads.

1.4.14 State Operations

A note on Home Assistant State

State within Home Assistant is stored as a collection of dictionaries, one for each entity. Each entity’s dictionary
will have some common fields and a number of entity type specific fields The state for an entity will always have the
attributes:

• last_updated

• last_changed

• state

Any other attributes such as brightness for a lamp will only be present if the entity supports them, and will be stored
in a sub-dictionary called attributes. When specifying these optional attributes in the get_state() call, no
special distinction is required between the main attributes and the optional ones - get_state() will figure it out for
you.

Also bear in mind that some attributes such as brightness for a light, will not be present when the light is off.

In most cases, the attribute state has the most important value in it, e.g. for a light or switch this will be on or off,
for a sensor it will be the value of that sensor. Many of the AppDaemon API calls and callbacks will implicitly return
the value of state unless told to do otherwise.

Although the use of get_state() (below) is still supported, as of AppDaemon 2.0.9 it is possible to access HASS
state directly as an attribute of the App itself, under the entities attribute.

For instance, to access the state of a binary sensor, you could use:

sensor_state = self.entities.binary_sensor.downstairs_sensor.state

Similarly, accessing any of the entity attributes is also possible:

name = self.entities.binary_sensor.downstairs_sensor.attributes.friendly_name

About Callbacks

A large proportion of home automation revolves around waiting for something to happen and then reacting to it; a
light level drops, the sun rises, a door opens etc. Home Assistant keeps track of every state change that occurs within
the system and streams that information to AppDaemon almost immediately.

32 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

An individual App however usually doesn’t care about the majority of state changes going on in the system; Apps
usually care about something very specific, like a specific sensor or light. Apps need a way to be notified when a
state change happens that they care about, and be able to ignore the rest. They do this through registering callbacks.
A callback allows the App to describe exactly what it is interested in, and tells AppDaemon to make a call into its
code in a specific place to be able to react to it - this is a very familiar concept to anyone familiar with event-based
programming.

There are 3 types of callbacks within AppDaemon:

• State Callbacks - react to a change in state

• Scheduler Callbacks - react to a specific time or interval

• Event Callbacks - react to specific Home Assistant and Appdaemon events.

All callbacks allow the user to specify additional parameters to be handed to the callback via the standard Python
**kwargs mechanism for greater flexibility, these additional arguments are handed to the callback as a standard
Python dictionary,

About Registering Callbacks

Each of the various types of callback have their own function or functions for registering the callback:

• listen_state() for state callbacks

• Various scheduler calls such as run_once() for scheduler callbacks

• listen_event() for event callbacks.

Each type of callback shares a number of common mechanisms that increase flexibility.

Callback Level Constraints

When registering a callback, you can add constraints identical to the Application level constraints described earlier.
The difference is that a constraint applied to an individual callback only affects that callback and no other. The con-
straints are applied by adding Python keyword-value style arguments after the positional arguments. The parameters
themselves are named identically to the previously described constraints and have identical functionality. For instance,
adding:

constrain_presence="everyone"

to a callback registration will ensure that the callback is only run if the callback conditions are met and in addition
everyone is present although any other callbacks might run whenever their event fires if they have no constraints.

For example:

self.listen_state(self.motion, "binary_sensor.drive", constrain_presence="everyone")

User Arguments

Any callback has the ability to allow the App creator to pass through arbitrary keyword arguments that will be presented
to the callback when it is run. The arguments are added after the positional parameters just like the constraints. The
only restriction is that they cannot be the same as any constraint name for obvious reasons. For example, to pass the
parameter arg1 = "home assistant" through to a callback you would register a callback as follows:

self.listen_state(self.motion, "binary_sensor.drive", arg1="home assistant")

Then in the callback it is presented back to the function as a dictionary and you could use it as follows:

1.4. Writing AppDaemon Apps 33

AppDaemon Documentation, Release 3.0.1

def motion(self, entity, attribute, old, new, kwargs):
self.log("Arg1 is {}".format(kwargs["arg1"]))

State Callbacks

AppDaemons’s state callbacks allow an App to listen to a wide variety of events, from every state change in the system,
right down to a change of a single attribute of a particular entity. Setting up a callback is done using a single API call
listen_state() which takes various arguments to allow it to do all of the above. Apps can register as many or as
few callbacks as they want.

About State Callback Functions

When calling back into the App, the App must provide a class function with a known signature for AppDaemon to
call. The callback will provide various information to the function to enable the function to respond appropriately. For
state callbacks, a class defined callback function should look like this:

def my_callback(self, entity, attribute, old, new, kwargs):
<do some useful work here>

You can call the function whatever you like - you will reference it in the listen_state() call, and you can create
as many callback functions as you need.

The parameters have the following meanings:

self

A standard Python object reference.

entity

Name of the entity the callback was requested for or None.

attribute

Name of the attribute the callback was requested for or None.

old

The value of the state before the state change.

new

The value of the state after the state change.

old and new will have varying types depending on the type of callback.

34 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

**kwargs

A dictionary containing any constraints and/or additional user specific keyword arguments supplied to the
listen_state() call.

The kwargs dictionary will also contain a field called handle that provides the callback with the handle that identifies
the listen_state() entry that resulted in the callback.

1.4.15 Publishing State from an App

Using AppDaemon it is possible to explicitly publish state from an App. The published state can contain whatever you
want, and is treated exactly like any other HA state, e.g. to the rest of AppDaemon, and the dashboard it looks like an
entity. This means that you can listen for state changes in other apps and also publish arbitary state to the dashboard
via use of specific entity IDs. To publish state, you will use set_app_state(). State can be retrieved and listened
for with the usual AppDaemon calls.

1.4.16 The Scheduler

AppDaemon contains a powerful scheduler that is able to run with 1 second resolution to fire off specific events at set
times, or after set delays, or even relative to sunrise and sunset. In general, events should be fired less than a second
after specified but under certain circumstances there may be short additional delays.

About Schedule Callbacks

As with State Change callbacks, Scheduler Callbacks expect to call into functions with a known and specific signature
and a class defined Scheduler callback function should look like this:

def my_callback(self, kwargs):
<do some useful work here>

You can call the function whatever you like; you will reference it in the Scheduler call, and you can create as many
callback functions as you need.

The parameters have the following meanings:

self

A standard Python object reference

**kwargs

A dictionary containing Zero or more keyword arguments to be supplied to the callback.

Creation of Scheduler Callbacks

Scheduler callbacks are created through use of a number of convenience functions which can be used to suit the
situation.

1.4. Writing AppDaemon Apps 35

AppDaemon Documentation, Release 3.0.1

Scheduler Randomization

All of the scheduler calls above support 2 additional optional arguments, random_start and random_end. Using
these arguments it is possible to randomize the firing of callbacks to the degree desired by setting the appropriate
number of seconds with the parameters.

• random_start - start of range of the random time

• random_end - end of range of the random time

random_start must always be numerically lower than random_end, they can be negative to denote a random
offset before and event, or positive to denote a random offset after an event. The event would be a an absolute or
relative time or sunrise/sunset depending on whcih scheduler call you use and these values affect the base time by the
spcified amount. If not specified, they will default to 0.

For example:

Run a callback in 2 minutes minus a random number of seconds between 0 and 60, e.g.
→˓run between 60 and 120 seconds from now
self.handle = self.run_in(callback, 120, random_start = -60, **kwargs)
Run a callback in 2 minutes plus a random number of seconds between 0 and 60, e.g.
→˓run between 120 and 180 seconds from now
self.handle = self.run_in(callback, 120, random_end = 60, **kwargs)
Run a callback in 2 minutes plus or minus a random number of seconds between 0 and
→˓60, e.g. run between 60 and 180 seconds from now
self.handle = self.run_in(callback, 120, random_start = -60, random_end = 60,
→˓**kwargs)

1.4.17 Sunrise and Sunset

AppDaemon has a number of features to allow easy tracking of sunrise and sunset as well as a couple of scheduler
functions. Note that the scheduler functions also support the randomization parameters described above, but they
cannot be used in conjunction with the offset parameter.

1.4.18 Calling Services

About Services

Services within Home Assistant are how changes are made to the system and its devices. Services can be used to turn
lights on and off, set thermostats and a whole number of other things. Home Assistant supplies a single interface to
all these disparate services that take arbitrary parameters. AppDaemon provides the call_service() function to
call into Home Assistant and run a service. In addition, it also provides convenience functions for some of the more
common services making calling them a little easier.

1.4.19 Events

About Events

Events are a fundamental part of how Home Assistant works under the covers. HA has an event bus that all components
can read and write to, enabling components to inform other components when important events take place. We have
already seen how state changes can be propagated to AppDaemon - a state change however is merely an example of
an event within Home Assistant. There are several other event types, among them are:

• homeassistant_start

36 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

• homeassistant_stop

• state_changed

• service_registered

• call_service

• service_executed

• platform_discovered

• component_loaded

Using AppDaemon, it is possible to subscribe to specific events as well as fire off events.

In addition to the Home Assistant supplied events, AppDaemon adds 2 more events. These are internal to AppDaemon
and are not visible on the Home Assistant bus:

• appd_started - fired once when AppDaemon is first started and after Apps are initialized

• plugin_started - fired every time AppDaemon detects a Home Assistant restart

• plugin_stopped - fired once every time AppDaemon loses its connection with HASS

About Event Callbacks

As with State Change and Scheduler callbacks, Event Callbacks expect to call into functions with a known and specific
signature and a class defined Scheduler callback function should look like this:

def my_callback(self, event_name, data, kwargs):
<do some useful work here>

You can call the function whatever you like - you will reference it in the Scheduler call, and you can create as many
callback functions as you need.

The parameters have the following meanings:

self

A standard Python object reference.

event_name

Name of the event that was called, e.g. call_service.

data

Any data that the system supplied with the event as a dict.

kwargs

A dictionary containing Zero or more user keyword arguments to be supplied to the callback.

1.4. Writing AppDaemon Apps 37

AppDaemon Documentation, Release 3.0.1

listen_event()

Listen event sets up a callback for a specific event, or any event.

Synopsis

handle = listen_event(function, event = None, **kwargs):

Returns

A handle that can be used to cancel the callback.

Parameters

function

The function to be called when the event is fired.

event

Name of the event to subscribe to. Can be a standard Home Assistant event such as service_registered or an
arbitrary custom event such as "MODE_CHANGE". If no event is specified, listen_event() will subscribe to all
events.

**kwargs (optional)

One or more keyword value pairs representing App specific parameters to supply to the callback. If the keywords
match values within the event data, they will act as filters, meaning that if they don’t match the values, the callback
will not fire.

As an example of this, a Minimote controller when activated will generate an event called zwave.
scene_activated, along with 2 pieces of data that are specific to the event - entity_id and scene. If you
include keyword values for either of those, the values supplied to the ‘listen_event()1 call must match the values in the
event or it will not fire. If the keywords do not match any of the data in the event they are simply ignored.

Filtering will work with any event type, but it will be necessary to figure out the data associated with the event to
understand what values can be filtered on. This can be achieved by examining Home Assistant’s logfiles when the
event fires.

Examples

self.listen_event(self.mode_event, "MODE_CHANGE")
Listen for a minimote event activating scene 3:
self.listen_event(self.generic_event, "zwave.scene_activated", scene_id = 3)
Listen for a minimote event activating scene 3 from a specific minimote:
self.listen_event(self.generic_event, "zwave.scene_activated", entity_id = "minimote_
→˓31", scene_id = 3)

38 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Use of Events for Signalling between Home Assistant and AppDaemon

Home Assistant allows for the creation of custom events and existing components can send and receive them. This
provides a useful mechanism for signaling back and forth between Home Assistant and AppDaemon. For instance, if
you would like to create a UI Element to fire off some code in Home Assistant, all that is necessary is to create a script
to fire a custom event, then subscribe to that event in AppDaemon. The script would look something like this:

alias: Day
sequence:
- event: MODE_CHANGE

event_data:
mode: Day

The custom event MODE_CHANGE would be subscribed to with:

self.listen_event(self.mode_event, "MODE_CHANGE")

Home Assistant can send these events in a variety of other places - within automations, and also directly from Alexa
intents. Home Assistant can also listen for custom events with its automation component. This can be used to signal
from AppDaemon code back to home assistant. Here is a sample automation:

automation:
trigger:
platform: event
event_type: MODE_CHANGE
...
...

This can be triggered with a call to AppDaemon’s fire_event() as follows:

self.fire_event("MODE_CHANGE", mode = "Day")

Use of Events for Interacting with HADashboard

HADashboard listens for certain events. An event type of “hadashboard” will trigger certain actions such as page
navigation. For more information see the ‘ Dashboard configuration pages <DASHBOARD.html>‘__

AppDaemon provides convenience functions to assist with this.

1.4.20 Presence

Presence in Home Assistant is tracked using Device Trackers. The state of all device trackers can be found using the
get_state() call, however AppDaemon provides several convenience functions to make this easier.

Writing to Logfiles

AppDaemon uses 2 separate logs - the general log and the error log. An AppDaemon App can write to either of these
using the supplied convenience methods log() and error(), which are provided as part of parent AppDaemon
class, and the call will automatically pre-pend the name of the App making the call. The -D option of AppDaemon
can be used to specify what level of logging is required and the logger objects will work as expected.

ApDaemon loggin also allows you to use placeholders for the module, fucntion and line number. If you include the
following in the test of your message:

1.4. Writing AppDaemon Apps 39

AppDaemon Documentation, Release 3.0.1

__function__
__module__
__line__

They will automatically be expanded to the appropriate values in the log message.

1.4.21 Getting Information in Apps and Sharing information between Apps

Sharing information between different Apps is very simple if required. Each app gets access to a global dictionary
stored in a class attribute called self.global_vars. Any App can add or read any key as required. This operation
is not however threadsafe so some care is needed.

In addition, Apps have access to the entire configuration if required, meaning they can access AppDaemon configu-
ration items as well as parameters from other Apps. To use this, there is a class attribute called self.config. It
contains a standard Python nested Dictionary.

To get AppDaemon’s config parameters for example:

app_timezone = self.config["time_zone"]

To access any apps parameters, use the class attribute called app_config. This is a python Dictionary with an entry
for each app, keyed on the App’s name.

other_apps_arg = self.app_config["some_app"]["some_parameter"].

AppDaemon also exposes configuration from Home Assistant such as the Latitude and Longitude configured in
HA. All of the information available from the Home Assistant /api/config endpoint is available using the
get_hass_config() call. E.g.:

config = self.get_hass_config()
self.log("My current position is {}(Lat), {}(Long)".format(config["latitude"], config[
→˓"longitude"]))

And finally, it is also possible to use config as a global area for sharing parameters across Apps. Simply add the
required parameters to the top level of the appdaemon.yaml file:

logs:
...
appdaemon:
...
global_var: hello world

Then access it as follows:

my_global_var = conf.config["global_var"]

1.4.22 Development Workflow

Developing Apps is intended to be fairly simple but is an exercise in programming like any other kind of Python
programming. As such, it is expected that apps will contain syntax errors and will generate exceptions during the de-
velopment process. AppDaemon makes it very easy to iterate through the development process as it will automatically
reload code that has changed and also will reload code if any of the parameters in the configuration file change as well.

The recommended workflow for development is as follows:

40 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

• Open a window and tail the appdaemon.log file

• Open a second window and tail the error.log file

• Open a third window or the editor of your choice for editing the App

With this setup, you will see that every time you write the file, AppDaemon will log the fact and let you know it has
reloaded the App in the appdaemon.log file.

If there is an error in the compilation or a runtime error, this will be directed to the error.log file to enable you to
see the error and correct it. When an error occurs, there will also be a warning message in appdaemon.log to tell
you to check the error log.

1.4.23 Time Travel

OK, time travel sadly isn’t really possible but it can be very useful when testing Apps. For instance, imagine you
have an App that turns a light on every day at sunset. It might be nice to test it without waiting for Sunset - and with
AppDaemon’s “Time Travel” features you can.

Choosing a Start Time

Internally, AppDaemon keeps track of its own time relative to when it was started. This make is possible to start App-
Daemon with a different start time and date to the current time. For instance to test that sunset App, start AppDaemon
at a time just before sunset and see if it works as expected. To do this, simply use the “-s” argument on AppDaemon’s
command line. e,g,:

$ appdaemon -s "2016-06-06 19:16:00"
2016-09-06 17:16:00 INFO AppDaemon Version 1.3.2 starting
2016-09-06 17:16:00 INFO Got initial state
2016-09-06 17:16:00 INFO Loading Module: /export/hass/appdaemon_test/conf/test_apps/
→˓sunset.py
...

Note the timestamps in the log - AppDaemon believes it is now just before sunset and will process any callbacks
appropriately.

Speeding things up

Some Apps need to run for periods of a day or two for you to test all aspects. This can be time consuming, but Time
Travel can also help here in two ways. The first is by speeding up time. To do this, simply use the -t option on
the command line. This specifies the amount of time a second lasts while time travelling. The default of course is 1
second, but if you change it to 0.1 for instance, AppDaemon will work 10x faster. If you set it to 0, AppDaemon
will work as fast as possible and, depending in your hardware, may be able to get through an entire day in a matter
of minutes. Bear in mind however, due to the threaded nature of AppDaemon, when you are running with -t 0 you
may see actual events firing a little later than expected as the rest of the system tries to keep up with the timer. To set
the tick time, start AppDaemon as follows:

$ appdaemon -t 0.1

AppDaemon also has an interval flag - think of this as a second multiplier. If the flag is set to 3600 for instance, each
tick of the scheduler will jump the time forward by an hour. This is good for covering vast amounts of time quickly
but event firing accuracy will suffer as a result. For example:

$ appdaemon -i 3600

1.4. Writing AppDaemon Apps 41

AppDaemon Documentation, Release 3.0.1

Automatically stopping

AppDaemon can be set to terminate automatically at a specific time. This can be useful if you want to repeatedly rerun
a test, for example to test that random values are behaving as expected. Simply specify the end time with the -e flag
as follows:

$ appdaemon -e "2016-06-06 10:10:00"
2016-09-06 17:16:00 INFO AppDaemon Version 1.3.2 starting
2016-09-06 17:16:00 INFO Got initial state
2016-09-06 17:16:00 INFO Loading Module: /export/hass/appdaemon_test/conf/test_apps/
→˓sunset.py
..,

The -e flag is most useful when used in conjuntion with the -s flag and optionally the -t flag. For example, to run
from just before sunset, for an hour, as fast as possible:

$ appdaemon -s "2016-06-06 19:16:00" -e "2016-06-06 20:16:00" -t 0

A Note On Times

Some Apps you write may depend on checking times of events relative to the current time. If you are time travelling
this will not work if you use standard python library calls to get the current time and date etc. For this reason, always
use the AppDamon supplied time(), date() and datetime() calls, documented earlier. These calls will consult
with AppDaemon’s internal time rather than the actual time and give you the correct values.

Other Functions

AppDaemon allows some introspection on its stored schedule and callbacks which may be useful for some applica-
tions. The functions:

• get_scheduler_entries()

• get_callback_entries()

Return the internal data structures, but do not allow them to be modified directly. Their format may change.

About HASS Disconnections

When AppDaemon is unable to connect initially with Home Assistant, it will hold all Apps in statsis until it initially
connects, nothing else will happen and no initialization routines will be called. If AppDaemon has been running
connected to Home Assitant for a while and the connection is unexpectedly lost, the following will occur:

• When HASS first goes down or becomes disconnected, an event called ha_disconnected will fire

• While disconnected from HASS, Apps will continue to run

• Schedules will continue to be honored

• Any operation reading locally cached state will succeed

• Any operation requiring a call to HASS will log a warning and return without attempting to contact hass

When a connection to HASS is reestablished, all Apps will be restarted and their initialize() routines will be
called.

42 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

1.4.24 RESTFul API Support

AppDaemon supports a simple RESTFul API to enable arbitary HTTP connections to pass data to Apps and trigger
actions. API Calls must use a content type of application/json, and the response will be JSON encoded. The
RESTFul API is disabled by default, but is enabled by adding an ad_port directive to the AppDaemon section of
the configuration file. The API can run http or https if desired, separately from the dashboard.

To call into a specific App, construct a URL, use the regular HADashboard URL, and append /api/appdaemon,
then add the name of the endpoint as registered by the app on the end, for example:

http://192.168.1.20:5050/api/appdaemon/hello_endpoint

This URL will call into an App that registered an endpoint named hello_endpoint.

Within the app, a call must be made to register_endpoint() to tell AppDaemon that the app is expecting calls
on that endpoint. When registering an endpoint, the App supplies a function to be called when a request comes in to
that endpoint and an optional name for the endpoint. If not specified, the name will default to the name of the App as
specified in the configuration file.

Apps can have as many endpoints as required, however the names must be unique across all of the Apps in an App-
Daemon instance.

It is also possible to remove endpoints with the unregister_endpoint() call, making the endpoints truly dy-
namic and under the control of the App.

Here is an example of an App using the API:

import appdaemon.plugins.hass.hassapi as hass

class API(hass.Hass):

def initialize(self):
self.register_endpoint(my_callback, "test_endpoint")

def my_callback(self, data):

self.log(data)

response = {"message": "Hello World"}

return response, 200

The response must be a python structure that can be mapped to JSON, or can be blank, in which case specify "" for
the response. You should also return an HTML status code, that will be reported back to the caller, 200 should be
used for an OK response.

As well as any user specified code, the API can return the following codes:

• 400 - JSON Decode Error

• 401 - Unauthorized

• 404 - App not found

Below is an example of using curl to call into the App shown above:

hass@Pegasus:~$ curl -i -X POST -H "Content-Type: application/json" http://192.168.1.
→˓20:5050/api/appdaemon/test_endpoint -d '{"type": "Hello World Test"}'
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 26

1.4. Writing AppDaemon Apps 43

AppDaemon Documentation, Release 3.0.1

Date: Sun, 06 Aug 2017 16:38:14 GMT
Server: Python/3.5 aiohttp/2.2.3

{"message": "Hello World"}hass@Pegasus:~$

1.4.25 API Security

If you have added a key to the AppDaemon config, AppDaemon will expect to find a header called “x-ad-access” in
the request with a value equal to the configured key. A security key is added for the API with the api_key directive
described in the Installation Documentation

If these conditions are not met, the call will fail with a return code of 401 Not Authorized. Here is a succesful
curl example:

hass@Pegasus:~$ curl -i -X POST -H "x-ad-access: fred" -H "Content-Type: application/
→˓json" http://192.168.1.20:5050/api/appdaemon/api -d '{"type": "Hello World
Test"}'

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 26
Date: Sun, 06 Aug 2017 17:30:50 GMT
Server: Python/3.5 aiohttp/2.2.3

{"message": "Hello World"}hass@Pegasus:~$

And an example of a missing key:

hass@Pegasus:~$ curl -i -X POST -H "Content-Type: application/json" http://192.168.1.
→˓20:5050/api/appdaemon/api Test"}'ype": "Hello World
HTTP/1.1 401 Unauthorized
Content-Length: 112
Content-Type: text/plain; charset=utf-8
Date: Sun, 06 Aug 2017 17:30:43 GMT
Server: Python/3.5 aiohttp/2.2.3

<html><head><title>401 Unauthorized</title></head><body><h1>401 Unauthorized</h1>
→˓Error in API Call</body></html>hass@Pegasus:~$

1.4.26 Alexa Support

AppDaemon is able to use the API support to accept calls from Alexa. Amazon Alexa calls can be directed to AppDae-
mon and arrive as JSON encoded requests. AppDaemon provides several helper functions to assist in understanding
the request and responding appropriately. Since Alexa only allows one URL per skill, the mapping will be 1:1 between
skills and Apps. When constructing the URL in the Alexa Intent, make sure it points to the correct endpoint for the
App you are using for Alexa.

In addition, if you are using API security keys (recommended) you will need to append it to the end of the url as
follows:

http://<some.host.com>/api/appdaemon/alexa?api_password=<password>

For more information about configuring Alexa Intents, see the Home Assistant Alexa Documentation

When configuring Alexa support for AppDaemon some care is needed. If as most people are, you are using SSL to
access Home Assistant, there is contention for use of the SSL port (443) since Alexa does not allow you to change

44 Chapter 1. Upgrading from 2.x

INSTALL.html
https://home-assistant.io/components/alexa/

AppDaemon Documentation, Release 3.0.1

this. This means that if you want to use AppDaemon with SSL, you will not be able to use Home Assistant remotely
over SSL. The way around this is to use NGINX to remap the specific AppDamon API URL to a different port, by
adding something like this to the config:

location /api/appdaemon/ {
allow all;
proxy_pass http://localhost:5000;
proxy_set_header Host $host;
proxy_redirect http:// http://;

}

Here we see the default port being remapped to port 5000 which is where AppDamon is listening in my setup.

Since each individual Skill has its own URL it is possible to have different skills for Home Assitant and AppDaemon.

1.4.27 Putting it together in an App

The Alexa App is basically just a standard API App that uses Alexa helper functions to understand the incoming
request and format a response to be sent back to Amazon, to describe the spoken resonse and card for Alexa.

Here is a sample Alexa App that can be extended for whatever intents you want to configure.

import import appdaemon.plugins.hass.hassapi as hass
import random
import globals

class Alexa(hass.Hass):

def initialize(self):
pass

def api_call(self, data):
intent = self.get_alexa_intent(data)

if intent is None:
self.log("Alexa error encountered: {}".format(self.get_alexa_error(data)))
return "", 201

intents = {
"StatusIntent": self.StatusIntent,
"LocateIntent": self.LocateIntent,

}

if intent in intents:
speech, card, title = intents[intent](data)
response = self.format_alexa_response(speech = speech, card = card, title

→˓= title)
self.log("Recieved Alexa request: {}, answering: {}".format(intent,

→˓speech))
else:

response = self.format_alexa_response(speech = "I'm sorry, the {} does
→˓not exist within AppDaemon".format(intent))

return response, 200

def StatusIntent(self, data):
response = self.HouseStatus()
return response, response, "House Status"

1.4. Writing AppDaemon Apps 45

AppDaemon Documentation, Release 3.0.1

def LocateIntent(self, data):
user = self.get_alexa_slot_value(data, "User")

if user is not None:
if user.lower() == "jack":

response = self.Jack()
elif user.lower() == "andrew":

response = self.Andrew()
elif user.lower() == "wendy":

response = self.Wendy()
elif user.lower() == "brett":

response = "I have no idea where Brett is, he never tells me anything"
else:

response = "I'm sorry, I don't know who {} is".format(user)
else:

response = "I'm sorry, I don't know who that is"

return response, response, "Where is {}?".format(user)

def HouseStatus(self):

status = "The downstairs temperature is {} degrees farenheit,".format(self.
→˓entities.sensor.downstairs_thermostat_temperature.state)

status += "The upstairs temperature is {} degrees farenheit,".format(self.
→˓entities.sensor.upstairs_thermostat_temperature.state)

status += "The outside temperature is {} degrees farenheit,".format(self.
→˓entities.sensor.side_temp_corrected.state)

status += self.Wendy()
status += self.Andrew()
status += self.Jack()

return status

def Wendy(self):
location = self.get_state(globals.wendy_tracker)
if location == "home":

status = "Wendy is home,"
else:

status = "Wendy is away,"

return status

def Andrew(self):
location = self.get_state(globals.andrew_tracker)
if location == "home":

status = "Andrew is home,"
else:

status = "Andrew is away,"

return status

def Jack(self):
responses = [

"Jack is asleep on his chair",
"Jack just went out bowling with his kitty friends",
"Jack is in the hall cupboard",
"Jack is on the back of the den sofa",

46 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

"Jack is on the bed",
"Jack just stole a spot on daddy's chair",
"Jack is in the kitchen looking out of the window",
"Jack is looking out of the front door",
"Jack is on the windowsill behind the bed",
"Jack is out checking on his clown suit",
"Jack is eating his treats",
"Jack just went out for a walk in the neigbourhood",
"Jack is by his bowl waiting for treats"

]

return random.choice(responses)

1.4.28 Google API.AI

Similarly, Google’s API.AI for Google home is supported - here is the Google version of the same App.To set up Api.ai
with your google home refer to the apiai component in home-assistant. Once it is setup you can use the appdaemon
API as the webhook.

import appdaemon.plugins.hass.hassapi as hass
import random
import globals

class Apiai(hass.Hass):

def initialize(self):
pass

def api_call(self, data):
intent = self.get_apiai_intent(data)

if intent is None:
self.log("Apiai error encountered: Result is empty")
return "", 201

intents = {
"StatusIntent": self.StatusIntent,
"LocateIntent": self.LocateIntent,

}

if intent in intents:
speech = intents[intent](data)
response = self.format_apiai_response(speech)
self.log("Recieved Apai request: {}, answering: {}".format(intent,

→˓speech))
else:

response = self.format_apaiai_response(speech = "I'm sorry, the {} does
→˓not exist within AppDaemon".format(intent))

return response, 200

def StatusIntent(self, data):
response = self.HouseStatus()
return response

def LocateIntent(self, data):

1.4. Writing AppDaemon Apps 47

AppDaemon Documentation, Release 3.0.1

user = self.get_apiai_slot_value(data, "User")

if user is not None:
if user.lower() == "jack":

response = self.Jack()
elif user.lower() == "andrew":

response = self.Andrew()
elif user.lower() == "wendy":

response = self.Wendy()
elif user.lower() == "brett":

response = "I have no idea where Brett is, he never tells me anything"
else:

response = "I'm sorry, I don't know who {} is".format(user)
else:

response = "I'm sorry, I don't know who that is"

return response

def HouseStatus(self):

status = "The downstairs temperature is {} degrees farenheit,".format(self.
→˓entities.sensor.downstairs_thermostat_temperature.state)

status += "The upstairs temperature is {} degrees farenheit,".format(self.
→˓entities.sensor.upstairs_thermostat_temperature.state)

status += "The outside temperature is {} degrees farenheit,".format(self.
→˓entities.sensor.side_temp_corrected.state)

status += self.Wendy()
status += self.Andrew()
status += self.Jack()

return status

def Wendy(self):
location = self.get_state(globals.wendy_tracker)
if location == "home":

status = "Wendy is home,"
else:

status = "Wendy is away,"

return status

def Andrew(self):
location = self.get_state(globals.andrew_tracker)
if location == "home":

status = "Andrew is home,"
else:

status = "Andrew is away,"

return status

def Jack(self):
responses = [

"Jack is asleep on his chair",
"Jack just went out bowling with his kitty friends",
"Jack is in the hall cupboard",
"Jack is on the back of the den sofa",
"Jack is on the bed",
"Jack just stole a spot on daddy's chair",

48 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

"Jack is in the kitchen looking out of the window",
"Jack is looking out of the front door",
"Jack is on the windowsill behind the bed",
"Jack is out checking on his clown suit",
"Jack is eating his treats",
"Jack just went out for a walk in the neigbourhood",
"Jack is by his bowl waiting for treats"

]

return random.choice(responses)

1.4.29 Plugins

As of version 3.0, AppDaemon has been rewritten to use a pluggable architecture for connection to the systems it
monitors. At the time of writing, only one real plugin exists, the homeassistant plugin, and this works the same way
that it always has. (There is also an experimental dummy plugin used for testing purposes).

In future it will be possible to create plugins that interface with other systems for instance other home automation
systems, or anything else for that matter, and expose their operation to AppDaemon and write Apps to monitor and
control them.

An interesting caveat of this is that the architecture has been designed so that multiple instances of each plugin can be
configured, meaning for instance that it is possible to connect AppDaemon to 2 or more instances of Home Assistant.

To configure additional plugins of any sort, simply add a new section in the list of plugins in the AppDaemon section.

Here is an example of a plugin section with 2 hass instances and 2 dummy instances:

plugins:
HASS1:
type: hass
ha_key: !secret home_assistant1_key
ha_url: http://192.168.1.20:8123

HASS2:
namespace: hass2
type: hass
ha_key: !secret home_assistant2_key
ha_url: http://192.168.1.21:8123

TEST:
namespace: test1
type: dummy
configuration: /export/hass/appdaemon_test/dummy/test1.yaml

TEST2:
namespace: test2
type: dummy
configuration: /export/hass/appdaemon_test/dummy/test2.yaml

The type parameter defines which of the plugins are used, and the parameters for each plugin type will be different.
As you can see, the parameters for both hass instances are similar, and it supports all the parameters described in the
installation section of the docs - here I am just using a subset.

1.4.30 Namespaces

A critical piece of this is the concept of namespaces. Each plugin has an optional‘‘namespace‘‘ directive. If you
have more than 1 plugin of any type, their state is separated into namespaces, and you need to name those namespaces
using the namespace parameter. If you don’t supply a namespace, the namespace defaults to default and this

1.4. Writing AppDaemon Apps 49

AppDaemon Documentation, Release 3.0.1

is the default for all areas of AppDaemon meaning that if you only have one plugin you don’t need to worry about
namespace at all.

In the case above, the first instance had no namespace so its namespace will be called default. The second hass
namespace will be hass2 and so on.

These namespaces can be accessed separately by the various API calls to keep things separate, but individual Apps
can switch between namespaces at will as well as monitor all namespaces in certain calls like listen_state() or
listen_event() by setting the namespace to global.

Use of Namespaces in Apps

Each App maintains a current namespace at all times. At initialization, this is set to default. This means that if you
only have a single plugin you don’t need to worry about namespaces at all as everything will just work.

There are 2 ways to work with namespaces in apps. The first is to make a call to set_namespace() whenever you
want to change namespaces. For instance, if in the configuration above, you wanted a particular app to work entirely
with the HASS2 plugin instance, all you would need to do is put the following code at the top of your initialize()
function:

self.set_namespace("hass2")

Note that you should use the value of the namespace parameter, not the name of the plugin section. From that point
on, all state changes, events, service calls etc. will apply to the HASS2 instance and the HASS1 and DUMMY instances
will be ignored. This is convenient for the case in which you don’t need to switch between namespaces.

In addition, most of the api calls allow you to optionally supply a namespace for them to operate under. This will
override the namespace set by set_namespace() for that call only.

For example:

self.set_namespace("hass2")
Get the entity value from the HASS2 plugin
Since the HASS2 plugin is configured with a namespace of "hass2"
state = self.get_state("light.light1")

Get the entity value from the HASS1 plugin
Since the HASS1 plugin is configured with a namespace of "default"
state = self.get_state("light.light1", namespace="default")

In this way it is possible to use a single app to work with multiple namespaces easily and quickly.

A Note on Callbacks

One important thing to note, when working with namespaces is that callbacks will honor the namespace they were
created with. So if for instance you create a listen_state() callback with a namespace of default then later
change the namespace to hass1, that callback will continue to listen to the default namespace.

For instance:

self.set_namespace("default")
self.listen_state(callback)
self.set_namespace("hass2")
self.listen_state(callback)
self.set_namespace("dummy1")

50 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

This will leave us with 2 callbacks, one listening for state changes in default and one for state changes in hass2,
regardless of the final value of the namespace.

Similarly:

self.set_namespace("dummy2")
self.listen_state(callback, namespace="default")
self.listen_state(callback, namespace="hass2")
self.set_namespace("dummy1")

This code fragment will achieve the same result as above since the namespace is being overridden, and will keep the
same value for that callback regardless of what the namespace is set to.

1.4.31 Custom Constraints

An App can also register its own custom constraints which can then be used in exactly the same way as App level
or callback level constraints. A custom constraint is simply a python function that returns True or False when
presented with the constraint argument. If it returns True, the constraint is regarded as satisfied and the callback will
be made (subject to any other constraints also evaluating to True. Likewise, a False return means that the callback
won’t fire. Custom constraints are a handy way to control multiple callbacks that have some complex logic and enable
you to avoid duplicating code in all callbacks.

To use a custom constraint, it is first necessary to register the function to be used to evaluate
it using the register_constraint() api call. Constraints can also be unregistered using the
deregister_constraint() call, and the list_constraints() call will return a list of currently regis-
tered constraints.

Here is an example of how this all fits together.

We start off with a python function that accepts a value to be evaluated like this:

def is_daylight(self, value):
if self.sun_up():

return True
else:

return False

To use this in a callback level constraint simply use:

self.register_constraint("is_daylight")
handle = self.run_every(self.callback, time, 1, is_daylight=1)

Now callback() will only fire if the sun is up.

Using the value parameter you can parameterize the constraint for more complex behavior and use in different situa-
tions for different callbacks. For instance:

def sun(self, value):
if value == "up":

if self.sun_up():
return True

elif value == "down":
if self.sun_down():
return True

return False

You can use this with 2 separate constraints like so:

1.4. Writing AppDaemon Apps 51

AppDaemon Documentation, Release 3.0.1

self.register_constraint("sun")
handle = self.run_every(self.up_callback, time, 1, sun="up")
handle = self.run_every(self.down_callback, time, 1, sun="down")

1.5 AppDaemon API Reference

1.5.1 State Operations

get_state()

Synopsis

get_state(entity=None, attribute=None, namespace=None)

get_state() is used to query the state of any component within Home Assistant. State updates are continuously
tracked so this call runs locally and does not require AppDaemon to call back to Home Assistant and as such is very
efficient.

Returns

get_state() returns a dictionary or single value, the structure of which varies according to the parameters
used. If an entity or attribute does not exist, get_state() will return None.

Parameters

All parameters are optional, and if get_state() is called with no parameters it will return the entire state of Home
Assistant at that given time. This will consist of a dictionary with a key for each entity. Under that key will be the
standard entity state information.

entity

This is the name of an entity or device type. If just a device type is provided, e.g. light or binary_sensor,
get_state() will return a dictionary of all devices of that type, indexed by the entity_id, containing all the state
for each entity.

If a fully qualified entity_id is provided, get_state() will return the state attribute for that entity, e.g. on or
off for a light.

attribute

Name of an attribute within the entity state object. If this parameter is specified in addition to a fully qualified
entity_id, a single value representing the attribute will be returned, or None if it is not present.

The value all for attribute has special significance and will return the entire state dictionary for the specified entity
rather than an individual attribute value.

52 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

namespace

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

Return state for the entire system
state = self.get_state()

Return state for all switches in the system
state = self.get_state("switch")

Return the state attribute for light.office_1
state = self.get_state("light.office_1")

Return the brightness attribute for light.office_1
state = self.get_state("light.office_1", attribute="brightness")

Return the entire state for light.office_1
state = self.get_state("light.office_1", attribute="all")

set_state()

set_state() will make a call back to Home Assistant and make changes to the internal state of Home Assistant.
Note that for instance, setting the state of a light to on won’t actually switch the device on, it will merely change the
state of the device in Home Assistant so that it no longer reflects reality. In most cases, the state will be corrected the
next time Home Assistant polls the device or someone causes a state change manually. To effect actual changes of
devices use one of the service call functions.

One possible use case for set_state() is for testing. If for instance you are writing an App to turn on a light
when it gets dark according to a luminance sensor, you can use set_state() to temporarily change the light level
reported by the sensor to test your program. However this is also possible using the developer tools.

At the time of writing, it appears that no checking is done as to whether or not the entity exists, so it is possible to add
entirely new entries to Home Assistant’s state with this call.

Synopsis

set_state(entity_id, **kwargs)

Returns

set_state() returns a dictionary representing the state of the device after the call has completed.

Parameters

entity_id

Entity id for which the state is to be set, e.g. light.office_1.

1.5. AppDaemon API Reference 53

AppDaemon Documentation, Release 3.0.1

values

A list of keyword values to be changed or added to the entities state. e.g. state = "off". Note that any optional
attributes such as colors for bulbs etc, need to reside in a dictionary called attributes; see the example.

namespace

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

status = self.set_state("light.office_1", state = "on", attributes = {"color_name":
→˓"red"})

listen_state()

listen_state() allows the user to register a callback for a wide variety of state changes.

Synopsis

handle = listen_state(callback, entity = None, **kwargs)

Returns

A unique identifier that can be used to cancel the callback if required. Since variables created within object methods
are local to the function they are created in, and in all likelihood the cancellation will be invoked later in a different
function, it is recommended that handles are stored in the object namespace, e.g. self.handle.

Parameters

All parameters except callback are optional, and if listen_state() is called with no additional parameters it
will subscribe to any state change within Home Assistant.

callback

Function to be invoked when the requested state change occurs. It must conform to the standard State Callback format
documented Here

entity

This is the name of an entity or device type. If just a device type is provided, e.g. light or binary_sensor,
listen_state() will subscribe to state changes of all devices of that type. If a fully qualified entity_id is
provided, listen_state() will listen for state changes for just that entity.

54 Chapter 1. Upgrading from 2.x

APPGUIDE.html#state-callbacks

AppDaemon Documentation, Release 3.0.1

When called, AppDaemon will supply the callback function, in old and new, with the state attribute for that entity, e.g.
on or off for a light.

attribute (optional)

Name of an attribute within the entity state object. If this parameter is specified in addition to a fully qualified
entity_id, listen_state() will subscribe to changes for just that attribute within that specific entity. The new
and old parameters in the callback function will be provided with a single value representing the attribute.

The value all for attribute has special significance and will listen for any state change within the specified entity, and
supply the callback functions with the entire state dictionary for the specified entity rather than an individual attribute
value.

new = (optional)

If new is supplied as a parameter, callbacks will only be made if the state of the selected attribute (usually state) in
the new state match the value of new.

old = (optional)

If old is supplied as a parameter, callbacks will only be made if the state of the selected attribute (usually state) in
the old state match the value of old.

Note: old and new can be used singly or together.

duration = (optional)

If duration is supplied as a parameter, the callback will not fire unless the state listened for is maintained for that
number of seconds. This makes the most sense if a specific attribute is specified (or the default of state is used), and
in conjunction with the old or new parameters, or both. When the callback is called, it is supplied with the values
of entity, attr, old and new that were current at the time the actual event occured, since the assumption is that
none of them have changed in the intervening period.

if you use duration when listening for an entire device type rather than a specific entity, or for all state changes,
you may get unpredictable results, so it is recommended that this parameter is only used in conjunction with the state
of specific entities.

immediate = (optional)

True or False

Quick check enables the countdown for a delay parameter to start at the time the callback is registered, rather
than requiring one or more state changes. This can be useful if for instance you want the duration to be triggered
immediately if a light is already on.

If immediate is in use, and new and duration are both set, AppDaemon will check if the entity is already set to
the new state and if so it will start the clock immediately. In this case, old will be ignored and when the timer triggers,
its state will be set to None. If new or entity are not set, immediate will be ignored.

1.5. AppDaemon API Reference 55

AppDaemon Documentation, Release 3.0.1

oneshot = (optional)

True or False

If oneshot is true, the callback will be automatically cancelled after the first state change that results in a callback.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter. The value global for namespace has special significance, and means that the callback will
listen to state updates from any plugin.

**kwargs

Zero or more keyword arguments that will be supplied to the callback when it is called.

Examples

Listen for any state change and return the state attribute
self.handle = self.listen_state(self.my_callback)

Listen for any state change involving a light and return the state attribute
self.handle = self.listen_state(self.my_callback, "light")

Listen for a state change involving light.office1 and return the state attribute
self.handle = self.listen_state(self.my_callback, "light.office_1")

Listen for a state change involving light.office1 and return the entire state as a
→˓dict
self.handle = self.listen_state(self.my_callback, "light.office_1", attribute = "all")

Listen for a state change involving the brightness attribute of light.office1
self.handle = self.listen_state(self.my_callback, "light.office_1", attribute =
→˓"brightness")

Listen for a state change involving light.office1 turning on and return the state
→˓attribute
self.handle = self.listen_state(self.my_callback, "light.office_1", new = "on")

Listen for a state change involving light.office1 changing from brightness 100 to
→˓200 and return the state attribute
self.handle = self.listen_state(self.my_callback, "light.office_1", old = "100", new
→˓= "200")

Listen for a state change involving light.office1 changing to state on and
→˓remaining on for a minute
self.handle = self.listen_state(self.my_callback, "light.office_1", new = "on",
→˓duration = 60)

Listen for a state change involving light.office1 changing to state on and
→˓remaining on for a minute
Trigger the delay immediately if the light is already on
self.handle = self.listen_state(self.my_callback, "light.office_1", new = "on",
→˓duration = 60, immediate = True)

56 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

cancel_listen_state()

Cancel a listen_state() callback. This will mean that the App will no longer be notified for the specific state
change that has been cancelled. Other state changes will continue to be monitored.

Synopsis

cancel_listen_state(handle)

Returns

Nothing

Parameters

handle

The handle returned when the listen_state() call was made.

Examples

self.cancel_listen_state(self.office_light_handle)

info_listen_state()

Get information on state a callback from its handle.

Synopsis

entity, attribute, kwargs = self.info_listen_state(self.handle)

Returns

entity, attribute, kwargs - the values supplied when the callback was initially created.

Parameters

handle

The handle returned when the listen_state() call was made.

1.5. AppDaemon API Reference 57

AppDaemon Documentation, Release 3.0.1

Examples

entity, attribute, kwargs = self.info_listen_state(self.handle)

1.5.2 Scheduler Calls

run_in()

Run the callback in a defined number of seconds. This is used to add a delay, for instance a 60 second delay before
a light is turned off after it has been triggered by a motion detector. This callback should always be used instead of
time.sleep() as discussed previously.

Synopsis

self.handle = self.run_in(callback, delay, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

delay

Delay, in seconds before the callback is invoked.

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

self.handle = self.run_in(self.run_in_c, 10)
self.handle = self.run_in(self.run_in_c, , 5, title = "run_in5")

run_once()

Run the callback once, at the specified time of day. If the time of day is in the past, the callback will occur on the next
day.

58 Chapter 1. Upgrading from 2.x

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

Synopsis

self.handle = self.run_once(callback, time, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

time

A Python time object that specifies when the callback will occur. If the time specified is in the past, the callback will
occur the next day at the specified time.

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

Run at 4pm today, or 4pm tomorrow if it is already after 4pm
import datetime
...
runtime = datetime.time(16, 0, 0)
handle = self.run_once(self.run_once_c, runtime)

run_at()

Run the callback once, at the specified date and time.

Synopsis

self.handle = self.run_at(callback, datetime, **kwargs)

Returns

A handle that can be used to cancel the timer. run_at() will raise an exception if the specified time is in the past.

1.5. AppDaemon API Reference 59

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

datetime

A Python datetime object that specifies when the callback will occur.

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

Run at 4pm today
import datetime
...
runtime = datetime.time(16, 0, 0)
today = datetime.date.today()
event = datetime.datetime.combine(today, runtime)
handle = self.run_once(self.run_once_c, event)

run_daily()

Execute a callback at the same time every day. If the time has already passed, the function will not be invoked until
the following day at the specified time.

Synopsis

self.handle = self.run_daily(callback, start, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

60 Chapter 1. Upgrading from 2.x

APPGUIDE.html#about-schedule-callbacks
APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

start

A Python time object that specifies when the callback will occur. If the time specified is in the past, the callback will
occur the next day at the specified time.

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

Run daily at 7pm
import datetime
...
time = datetime.time(19, 0, 0)
self.run_daily(self.run_daily_c, runtime)

run_hourly()

Execute a callback at the same time every hour. If the time has already passed, the function will not be invoked until
the following hour at the specified time.

Synopsis

self.handle = self.run_hourly(callback, start, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

start

A Python time object that specifies when the callback will occur, the hour component of the time object is ignored.
If the time specified is in the past, the callback will occur the next hour at the specified time. If time is not supplied,
the callback will start an hour from the time that run_hourly() was executed.

1.5. AppDaemon API Reference 61

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

Run every hour, on the hour
import datetime
...
time = datetime.time(0, 0, 0)
self.run_hourly(self.run_hourly_c, runtime)

run_minutely()

Execute a callback at the same time every minute. If the time has already passed, the function will not be invoked until
the following minute at the specified time.

Synopsis

self.handle = self.run_minutely(callback, start, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

start

A Python time object that specifies when the callback will occur, the hour and minute components of the time object
are ignored. If the time specified is in the past, the callback will occur the next hour at the specified time. If time is
not supplied, the callback will start a minute from the time that run_minutely() was executed.

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

62 Chapter 1. Upgrading from 2.x

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

Examples

Run Every Minute on the minute
import datetime
...
time = datetime.time(0, 0, 0)
self.run_minutely(self.run_minutely_c, time)

run_every()

Execute a repeating callback with a configurable delay starting at a specific time.

Synopsis

self.handle = self.run_every(callback, time, repeat, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

time

A Python datetime object that specifies when the initial callback will occur.

repeat

After the initial callback has occurred, another will occur every repeat seconds.

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

Run every 17 minutes starting in 2 hours time
import datetime
...
self.run_every(self.run_every_c, time, 17 * 60)

1.5. AppDaemon API Reference 63

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

cancel_timer()

Cancel a previously created timer

Synopsis

self.cancel_timer(handle)

Returns

None

Parameters

handle

A handle value returned from the original call to create the timer.

Examples

self.cancel_timer(handle)

info_timer()

Get information on a scheduler event from its handle.

Synopsis

time, interval, kwargs = self.info_timer(handle)

Returns

time - datetime object representing the next time the callback will be fired

interval - repeat interval if applicable, 0 otherwise.

kwargs - the values supplied when the callback was initially created.

Parameters

handle

The handle returned when the scheduler call was made.

64 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Examples

time, interval, kwargs = self.info_timer(handle)

1.5.3 Sunrise and Sunset

run_at_sunrise()

Run a callback every day at or around sunrise.

Synopsis

self.handle = self.run_at_sunrise(callback, offset=0, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

offset =

The time in seconds that the callback should be delayed after sunrise. A negative value will result in the callback
occurring before sunrise. This parameter cannot be combined with random_start or random_end

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

import datetime
...
Run 45 minutes before sunset

self.run_at_sunrise(self.sun, offset = datetime.timedelta(minutes = -45).total_
→˓seconds(), "Sunrise -45 mins")
or you can just do the math yourself

self.run_at_sunrise(self.sun, offset = 30 * 60, "Sunrise +30 mins")
Run at a random time +/- 60 minutes from sunrise

self.run_at_sunrise(self.sun, random_start = -60*60, random_end = 60*60, "Sunrise,
→˓random +/- 60 mins")

1.5. AppDaemon API Reference 65

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

Run at a random time between 30 and 60 minutes before sunrise
self.run_at_sunrise(self.sun, random_start = -60*60, random_end = 30*60, "Sunrise,
→˓random - 30 - 60 mins")

run_at_sunset()

Run a callback every day at or around sunset.

Synopsis

self.handle = self.run_at_sunset(callback, offset=0, **kwargs)

Returns

A handle that can be used to cancel the timer.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Scheduler Callback
format documented Here.

offset =

The time in seconds that the callback should be delayed after sunrise. A negative value will result in the callback
occurring before sunrise. This parameter cannot be combined with random_start or random_end

**kwargs

Arbitary keyword parameters to be provided to the callback function when it is invoked.

Examples

Example using timedelta
import datetime
...
self.run_at_sunset(self.sun, offset = datetime.timedelta(minutes = -45).total_
→˓seconds(), "Sunset -45 mins")
or you can just do the math yourself

self.run_at_sunset(self.sun, offset = 30 * 60, "Sunset +30 mins")
Run at a random time +/- 60 minutes from sunset

self.run_at_sunset(self.sun, random_start = -60*60, random_end = 60*60, "Sunset,
→˓random +/- 60 mins")
Run at a random time between 30 and 60 minutes before sunset

self.run_at_sunset(self.sun, random_start = -60*60, random_end = 30*60, "Sunset,
→˓random - 30 - 60 mins")

66 Chapter 1. Upgrading from 2.x

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 3.0.1

sunrise()

Return the time that the next Sunrise will occur.

Synopsis

self.sunrise()

Returns

A Python datetime that represents the next time Sunrise will occur.

Examples

rise_time = self.sunrise()

sunset()

Return the time that the next Sunset will occur.

Synopsis

self.sunset()

Returns

A Python datetime that represents the next time Sunset will occur.

Examples

set_time = self.sunset()

sun_up()

A function that allows you to determine if the sun is currently up.

Synopsis

result = self.sun_up()

1.5. AppDaemon API Reference 67

AppDaemon Documentation, Release 3.0.1

Returns

True if the sun is up, False otherwise.

Examples

if self.sun_up():
do something

sun_down()

A function that allows you to determine if the sun is currently down.

Synopsis

result = self.sun_down()

Returns

True if the sun is down, False otherwise.

Examples

if self.sun_down():
do something

1.5.4 Services

call_service()

Call service is the basic way of calling a service within AppDaemon. It can call any service and provide any required
parameters. Available services can be found using the developer tools in the UI. For listed services, the part before
the first period is the domain, and the part after is the service name. For instance, light/turn_on has a domain of
light and a service name of turn_on.

Synopsis

self.call_service(self, service, **kwargs)

Returns

None

68 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Parameters

service

The service name, e.g. light/turn_on.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

**kwargs

Each service has different parameter requirements. This argument allows you to specify a comma separated list of
keyword value pairs, e.g. entity_id = light.office_1. These parameters will be different for every service
and can be discovered using the developer tools. Most if not all service calls require an entity_id however, so use
of the above example is very common with this call.

Examples

self.call_service("light/turn_on", entity_id = "light.office_lamp", color_name = "red
→˓")
self.call_service("notify/notify", title = "Hello", message = "Hello World")

turn_on()

This is a convenience function for the homassistant.turn_on function. It is able to turn on pretty much anything
in Home Assistant that can be turned on or run:

• Lights

• Switches

• Scenes

• Scripts

And many more.

Synopsis

self.turn_on(entity_id, **kwargs)

Returns

None

1.5. AppDaemon API Reference 69

AppDaemon Documentation, Release 3.0.1

Parameters

entity_id

Fully qualified entity_id of the thing to be turned on, e.g. light.office_lamp or scene.downstairs_on

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

**kwargs

A comma separated list of key value pairs to allow specification of parameters over and above entity_id.

Examples

self.turn_on("switch.patio_lights")
self.turn_on("scene.bedrrom_on")
self.turn_on("light.office_1", color_name = "green")

turn_off()

This is a convenience function for the homassistant.turn_off function. Like homeassistant.turn_on,
it is able to turn off pretty much anything in Home Assistant that can be turned off.

Synopsis

self.turn_off(entity_id)

Returns

None

Parameters

entity_id

Fully qualified entity_id of the thing to be turned off, e.g. light.office_lamp or scene.downstairs_on.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

70 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Examples

self.turn_off("switch.patio_lights")
self.turn_off("light.office_1")

toggle()

This is a convenience function for the homassistant.toggle function. It is able to flip the state of pretty much
anything in Home Assistant that can be turned on or off.

Synopsis

self.toggle(entity_id)

Returns

None

Parameters

entity_id

Fully qualified entity_id of the thing to be toggled, e.g. light.office_lamp or scene.downstairs_on.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

self.toggle("switch.patio_lights")
self.toggle("light.office_1", color_name = "green")

set_value()

This is a convenience function for the input_number.set_value function. It is able to set the value of an
input_number in Home Assistant.

Synopsis

self.set_value(entity_id, value)

1.5. AppDaemon API Reference 71

AppDaemon Documentation, Release 3.0.1

Returns

None

Parameters

entity_id

Fully qualified entity_id of the input_slider to be changed, e.g. input_number.alarm_hour.

value

The new value to set the input slider to.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

self.set_value("input_number.alarm_hour", 6)

select_option()

This is a convenience function for the input_select.select_option function. It is able to set the value of an
input_select in Home Assistant.

Synopsis

self.select_option(entity_id, option)

Returns

None

Parameters

entity_id

Fully qualified entity_id of the input_select to be changed, e.g. input_select.mode.

72 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

value

The new value to set the input slider to.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

self.select_option("input_select.mode", "Day")

notify()

This is a convenience function for the notify.notify service. It will send a notification to a named notification
service. If the name is not specified it will default to notify/notify.

Synopsis

notify(message, **kwargs)

Returns

None

Parameters

message

Message to be sent to the notification service.

title = (optional)

Title of the notification - optional.

name = (optional)

Name of the notification service - optional.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

1.5. AppDaemon API Reference 73

AppDaemon Documentation, Release 3.0.1

Examples

self.notify("Switching mode to Evening")
self.notify("Switching mode to Evening", title = "Some Subject", name = "smtp")

1.5.5 Events

listen_event()

Listen event sets up a callback for a specific event, or any event.

Synopsis

handle = listen_event(callback, event = None, **kwargs):

Returns

A handle that can be used to cancel the callback.

Parameters

callback

Function to be invoked when the requested state change occurs. It must conform to the standard Event Callback format
documented Here.

event

Name of the event to subscribe to. Can be a standard Home Assistant event such as service_registered or an
arbitrary custom event such as "MODE_CHANGE". If no event is specified, listen_event() will subscribe to all
events.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter. The value global for namespace has special significance, and means that the callback will
lsiten to state updates from any plugin.

**kwargs (optional)

One or more keyword value pairs representing App specific parameters to supply to the callback. If the keywords
match values within the event data, they will act as filters, meaning that if they don’t match the values, the callback
will not fire.

As an example of this, a Minimote controller when activated will generate an event called zwave.
scene_activated, along with 2 pieces of data that are specific to the event - entity_id and scene. If you

74 Chapter 1. Upgrading from 2.x

APPGUIDE.html#about-event-callbacks

AppDaemon Documentation, Release 3.0.1

include keyword values for either of those, the values supplied to the ‘listen_event()1 call must match the values in the
event or it will not fire. If the keywords do not match any of the data in the event they are simply ignored.

Filtering will work with any event type, but it will be necessary to figure out the data associated with the event to
understand what values can be filtered on. This can be achieved by examining Home Assistant’s logfiles when the
event fires.

Examples

self.listen_event(self.mode_event, "MODE_CHANGE")
Listen for a minimote event activating scene 3:

self.listen_event(self.generic_event, "zwave.scene_activated", scene_id = 3)
Listen for a minimote event activating scene 3 from a specific minimote:

self.listen_event(self.generic_event, "zwave.scene_activated", entity_id = "minimote_
→˓31", scene_id = 3)

cancel_listen_event()

Cancels callbacks for a specific event.

Synopsis

cancel_listen_event(handle)

Returns

None.

Parameters

handle

A handle returned from a previous call to listen_event().

Examples

self.cancel_listen_event(handle)

info_listen_event()

Get information on an event callback from its handle.

1.5. AppDaemon API Reference 75

AppDaemon Documentation, Release 3.0.1

Synopsis

service, kwargs = self.info_listen_event(handle)

Returns

service, kwargs - the values supplied when the callback was initially created.

Parameters

handle

The handle returned when the listen_event() call was made.

Examples

service, kwargs = self.info_listen_event(handle)

fire_event()

Fire an event on the HomeAssistant bus, for other components to hear.

Synopsis

fire_event(event, **kwargs)

Returns

None.

Parameters

event

Name of the event. Can be a standard Home Assistant event such as service_registered or an arbitrary custom
event such as "MODE_CHANGE".

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

76 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

**kwargs

Zero or more keyword arguments that will be supplied as part of the event.

Examples

self.fire_event("MY_CUSTOM_EVENT", jam="true")

1.5.6 Presence

get_trackers()

Return a list of all device tracker names. This is designed to be iterated over.

Synopsis

tracker_list = get_trackers()

Parameters

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Returns

An iterable list of all device trackers.

Examples

trackers = self.get_trackers()
for tracker in trackers:

do something

get_tracker_details()

Return a list of all device trackers and their associated state.

Synopsis

tracker_list = get_tracker_details()

1.5. AppDaemon API Reference 77

AppDaemon Documentation, Release 3.0.1

Parameters

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Returns

A list of all device trackers with their associated state.

Examples

trackers = self.get_tracker_details()
for tracker in trackers:

do something

get_tracker_state()

Get the state of a tracker. The values returned depend in part on the configuration and type of device trackers in the
system. Simpler tracker types like Locative or NMAP will return one of 2 states:

• home

• not_home

Some types of device tracker are in addition able to supply locations that have been configured as Geofences, in which
case the name of that location can be returned.

Synopsis

location = self.get_tracker_state(tracker_id)

Returns

A string representing the location of the tracker.

Parameters

tracker_id

Fully qualified entity_id of the device tracker to query, e.g. device_tracker.andrew.

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

78 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Examples

trackers = self.get_trackers()
for tracker in trackers:
self.log("{} is {}".format(tracker, self.get_tracker_state(tracker)))

everyone_home()

A convenience function to determine if everyone is home. Use this in preference to getting the state of group.
all_devices() as it avoids a race condition when using state change callbacks for device trackers.

Synopsis

result = self.everyone_home()

Returns

Returns True if everyone is at home, False otherwise.

Parameters

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

if self.everyone_home():
do something

anyone_home()

A convenience function to determine if one or more person is home. Use this in preference to getting the state of
group.all_devices() as it avoids a race condition when using state change callbacks for device trackers.

Synopsis

result = self.anyone_home()

Returns

Returns True if anyone is at home, False otherwise.

1.5. AppDaemon API Reference 79

AppDaemon Documentation, Release 3.0.1

Parameters

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

if self.anyone_home():
do something

noone_home()

A convenience function to determine if no people are at home. Use this in preference to getting the state of
group.all_devices() as it avoids a race condition when using state change callbacks for device trackers.

Synopsis

result = self.noone_home()

Returns

Returns True if no one is home, False otherwise.

Parameters

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

if self.noone_home():
do something

1.5.7 Miscellaneous Helper Functions

time()

Returns a python time object representing the current time. Use this in preference to the standard Python ways to
discover the current time, especially when using the “Time Travel” feature for testing.

80 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Synopsis

time()

Returns

A localised Python time object representing the current AppDaemon time.

Parameters

None

Example

now = self.time()

date()

Returns a python date object representing the current date. Use this in preference to the standard Python ways to
discover the current date, especially when using the “Time Travel” feature for testing.

Synopsis

date()

Returns

A localised Python time object representing the current AppDaemon date.

Parameters

None

Example

today = self.date()

datetime()

Returns a python datetime object representing the current date and time. Use this in preference to the standard
Python ways to discover the current time, especially when using the “Time Travel” feature for testing.

1.5. AppDaemon API Reference 81

AppDaemon Documentation, Release 3.0.1

Synopsis

datetime()

Returns

A localised Python datetime object representing the current AppDaemon date and time.

Parameters

None

Example

now = self.datetime()

convert_utc()

Home Assistant provides timestamps of several different sorts that may be used to gain additional insight into
state changes. These timestamps are in UTC and are coded as ISO 8601 Combined date and time strings.
convert_utc() will accept one of these strings and convert it to a localised Python datetime object represent-
ing the timestamp

Synopsis

convert_utc(utc_string)

Returns

convert_utc(utc_string) returns a localised Python datetime object representing the timestamp.

Parameters

utc_string

An ISO 8601 encoded date and time string in the following format: 2016-07-13T14:24:02.040658-04:00

Example

parse_time()

Takes a string representation of a time, or sunrise or sunset offset and converts it to a datetime.time object.

82 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Synopsis

parse_time(time_string)

Returns

A datetime.time object, representing the time given in the time_string argument.

Parameters

time_string

A representation of the time in a string format with one of the following formats:

• HH:MM:SS - the time in Hours Minutes and Seconds, 24 hour format.

• sunrise|sunset [+|- HH:MM:SS]- time of the next sunrise or sunset with an optional positive or negative offset in
Hours Minutes and seconds

Example

time = self.parse_time("17:30:00")
time = self.parse_time("sunrise")
time = self.parse_time("sunset + 00:30:00")
time = self.parse_time("sunrise + 01:00:00")

now_is_between()

Takes two string representations of a time, or sunrise or sunset offset and returns true if the current time is between
those 2 times. now_is_between() can correctly handle transitions across midnight.

Synopsis

now_is_between(start_time_string, end_time_string)

Returns

True if the current time is within the specified start and end times, False otherwise.

Parameters

start_time_string, end_time_string

A representation of the start and end time respectively in a string format with one of the following formats:

• HH:MM:SS - the time in Hours Minutes and Seconds, 24 hour format.

1.5. AppDaemon API Reference 83

AppDaemon Documentation, Release 3.0.1

• sunrise|sunset [+|- HH:MM:SS]- time of the next sunrise or sunset with an optional positive or negative
offset in Hours Minutes and seconds

Example

if self.now_is_between("17:30:00", "08:00:00"):
do something

if self.now_is_between("sunset - 00:45:00", "sunrise + 00:45:00"):
do something

friendly_name()

frindly_name() will return the Friendly Name of an entity if it has one.

Synopsis

Name = self.friendly_name(entity_id)

Returns

The friendly name of the entity if it exists or the entity id if not.

Example

tracker = "device_tracker.andrew"
self.log("{} ({}) is {}".format(tracker, self.friendly_name(tracker), self.get_
→˓tracker_state(tracker)))

split_entity()

split_entity() will take a fully qualified entity id of the form light.hall_light and split it into 2 values,
the device and the entity, e.g. light and hall_light.

Synopsis

device, entity = self.split_entity(entity_id)

Parameters

entity_id

Fully qualified entity id to be split.

84 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Returns

A list with 2 entries, the device and entity respectively.

Example

device, entity = self.split_entity(entity_id)
if device == "scene":

do something specific to scenes

entity_exists()

Synopsis

entity_exists(entity)

entity_exists() is used to verify if a given entity exists in Home Assistant or not.

Returns

entity_exists() returns True if the entity exists, False otherwise.

Parameters

entity

The fully qualified name of the entity to check for (including the device type)

namespace = (optional)

Namespace to use for the call - see the section on namespaces for a detailed description. In most cases it is safe to
ignore this parameter

Examples

Return state for the entire system
if self.entity_exists("light.living_room"):

do something
...

get_app()

get_app() will return the instantiated object of another app running within the system. This is useful for calling
functions or accessing variables that reside in different apps without requiring duplication of code.

1.5. AppDaemon API Reference 85

AppDaemon Documentation, Release 3.0.1

Synopsis

get_app(self, name)

Parameters

name

Name of the app required. This is the name specified in header section of the config file, not the module or class.

Returns

An object reference to the class.

Example

MyApp = self.get_app("MotionLights")
MyApp.turn_light_on()

split_device_list()

split_device_list() will take a comma separated list of device types (or anything else for that matter) and
return them as an iterable list. This is intended to assist in use cases where the App takes a list of entities from an
argument, e.g. a list of sensors to monitor. If only one entry is provided, an iterable list will still be returned to avoid
the need for special processing.

Synopsis

devices = split_device_list(list)

Returns

A list of split devices with 1 or more entries.

Example

for sensor in self.split_device_list(self.args["sensors"]):
do something for each sensor, e.g. make a state subscription

1.5.8 Logfiles

AppDaemon provides a couple of convenience functions for loggin to bith the main log and the app error log. These
will automatically insert the app name for information.

86 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

log()

Synopsis

log(message, level = "INFO")

Returns

Nothing

Parameters

Message

The message to log.

level

The log level of the message - takes a string representing the standard logger levels.

Examples

self.log("Log Test: Parameter is {}".format(some_variable))
self.log("Log Test: Parameter is {}".format(some_variable), level = "ERROR")
self.log("Line: __line__, module: __module__, function: __function__, Message:
→˓Something bad happened")

error()

Synopsis

error(message, level = "WARNING")

Returns

Nothing

Parameters

Message

The message to log.

1.5. AppDaemon API Reference 87

AppDaemon Documentation, Release 3.0.1

level

The log level of the message - takes a string representing the standard logger levels.

Examples

self.error("Some Warning string")
self.error("Some Critical string", level = "CRITICAL")

If you want to perform more elaborate logging or formattin, the underlying logger objects can be obtained:

get_main_log()

Synopsis

self.get_main_log()

Returns

The underlying logger object used for the main log.

log = self.get_main_log()
log.log(50, "Log a critical error")

get_error_log()

Synopsis

self.get_error_log()

Returns

The underlying logger object used for the error log.

error_log = self.get_error_log()
error_log.log(40, "Log an error")

1.5.9 API

register_endpoint()

Register an endpoint for API calls into an App.

88 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Synopsis

register_endpoint(callback, name = None)

Returns

handle - a handle that can be used to remove the registration

Parameters

callback

The function to be called when a request is made to the named endpoint

name

The name of the endpoint to be used for the call. If None the name of the App will be used.

Examples

self.register_endpoint(my_callback)
self.register_callback(alexa_cb, "alexa")

unregister_endpoint()

Remove a previously registered endpoint.

Synopsis

unregister_endpoint(handle)

Returns

None

Parameters

handle

A handle returned by a previous call to register_endpoint

1.5. AppDaemon API Reference 89

AppDaemon Documentation, Release 3.0.1

Examples

self.unregister_endpoint(handle)

1.5.10 Alexa Helper Functions

get_alexa_intent()

Register an endpoint for API calls into an App.

Synopsis

self.get_alexa_intent(data)

Returns

A string representing the Intent from the interaction model that was requested

Parameters

data

The request data received from Alexa.

Examples

intent = self.get_alexa_intent(data)

get_alexa_slot_value()

Return values for slots form the interaction model.

Synopsis

self.get_alexa_slot_value(data, name = None)

Returns

A string representing the value of the slot from the interaction model, or a hash of slots.

90 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Parameters

data

The request data received from Alexa.

name

Name of the slot. If a name is not specified, all slots will be returned as a dictionary. If a name is spedicied but is not
found, None will be returned.

Examples

beer_type = self.get_alexa_intent(data, "beer_type")
all_slots = self.get_alexa_intent(data)

self.format_alexa_response(speech = speech, card = card, title = title)

format_alexa_response()

Format a response to be returned to Alex including speech and a card.

Synopsis

self.format_alexa_response(speech = speech, card = card, title = title)

Returns

None

Parameters

speech =

The text for Alexa to say

card =

Text for the card

title =

Title for the card

1.5. AppDaemon API Reference 91

AppDaemon Documentation, Release 3.0.1

Examples

format_alexa_response(speech = "Hello World", card = "Greetings to the world", title
→˓= "Hello")

1.5.11 Google Home Helper Functions

get_apiai_intent()

Register an endpoint for API calls into an App.

Synopsis

self.get_apiai_intent(data)

Returns

A string representing the Intent from the interaction model that was requested

Parameters

data

The request data received from Google Home.

Examples

intent = self.get_apiai_intent(data)

get_apiai_slot_value()

Return values for slots form the interaction model.

Synopsis

self.get_apiai_slot_value(data, name = None)

Returns

A string representing the value of the slot from the interaction model, or a hash of slots.

92 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Parameters

data

The request data received from Google Home.

name

Name of the slot. If a name is not specified, all slots will be returned as a dictionary. If a name is spedicied but is not
found, None will be returned.

Examples

beer_type = self.get_apiai_intent(data, "beer_type")
all_slots = self.get_apiai_intent(data)

self.format_apiai_response(speech = speech)

format_appapi_response()

Format a response to be returned to Google Home including speech.

Synopsis

self.format_apiai_response(speech = speech)

Returns

None

Parameters

speech =

The text for Google Home to say

Examples

format_apiai_response(speech = "Hello World")

1.5. AppDaemon API Reference 93

AppDaemon Documentation, Release 3.0.1

1.5.12 Dashboard Functions

set_app_state()

Publish state information to AppDaemon’s internal state and push the state changes out to listening Apps and Dash-
boards.

Synopsis

self.set_app_state(entity_id, state)

Returns

None.

Parameters

entity_id

A name for the new state. It must conform to the standard entity_id format, e.g. <device_type>.<name>.
however device type and name can be whatever you like as long as you ensure it doesn’t conflict with any real devices.
For clarity, I suggest the convention of using appdaemon as the device type. A single App can publish to as many
entity ids as desired.

state

The state to be associated with the entity id. This is a dictionary and must contain the entirety of the state information,
It will replace the old state information, and calls like listen_state() should work correctly reporting the old
and the new state information as long as you keep the dictionary looking similar to HA status updates, e.g. the main
state in a state field, and any attributes in an attributes sub-dictionary.

Examples

self.set_app_state("appdaemon.alerts", {"state": number, "attributes": {"unit_of_
→˓measurement": ""}})

This is an example of a state update that can be used with a sensor widget in HADashboard. “state” is the actual value,
and the widget also expects an attribute called “unit_of_measurement” to work correctly.

dash_navigate()

Force all connected Dashboards to navigate to a new URL

94 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Synopsis

dash_navigate(self, target, timeout = -1, ret = None)

Returns

None.

Parameters

target

A URL for the dashboard to navigate to e.g. /MainDash

ret

Time to wait before the optional second change. If not specified the first change will be permanent.

timeout

URL to navigate back to after timeout. If not specified, the dashboard will navigate back to the original panel.

Examples

self.dash_navigate("/AlarmStatus", timeout=10) # Switch to AlarmStatus Panel
→˓then return to current panel after 10 seconds
self.dash_navigate("/Locks", timeout=10, ret="/Main") # Switch to Locks Panel then
→˓return to Main panel after 10 seconds

1.5.13 Constraints

register_constraint()

Register a custom constraint

Synopsis

register_constraint(self, name)

Returns

None.

1.5. AppDaemon API Reference 95

AppDaemon Documentation, Release 3.0.1

Parameters

name

Name of the function to register for the constraint. Note: this is a string not a function reference.

Examples

self.register_constraint("my_custom_constraint")

deregister_constraint()

De-register a custom constraint.

Synopsis

deregister_constraint(self, name)

Returns

None.

Parameters

name

Name of the function to register for the constraint. Note: this is a string not a function reference.

Examples

self.deregister_constraint("my_custom_constraint")

list_constraints()

Get a list of all currently registered custom constraints. Note: this list will include any constraints registered by the
plugin itself.

Synopsis

constraints = list_constraints()

96 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Returns

A list of all currently registered constraints.

Examples

list = self.list_constraints()

1.5.14 Namespace

set_namespace()

Set a new namespace for the app to use from that point forward.

Synopsis

set_namespace(self, namespace)

Returns

None.

Parameters

namespace

The value for the namespace to use moving forward.

Examples

self.set_namespace("hass1")
self.set_namespace("default")

1.5.15 Home Assistant Config

get_hass_config()

Get Home Assistant configuration data such as latitude and longitude.

Synopsis

get_hass_config()

1.5. AppDaemon API Reference 97

AppDaemon Documentation, Release 3.0.1

Returns

A dictionary containing all the configuration information available from the Home Assistant /api/config endpoint.

Examples

config = self.get_hass_config()
self.log("My current position is {}(Lat), {}(Long)".format(config["latitude"], config[
→˓"longitude"]))

1.5.16 Introspection

get_scheduler_entries()

Get information on AppDaemon scheduler entries.

Synopsis

get_scheduler_entries()

Returns

A dictionary containing all the information for entries in the AppDaemon scheduler

Examples

schedule = self.get_scheduler_entries()

get_callback_entries()

Get information on AppDaemon callback entries.

Synopsis

get_callback_entries()

Returns

A dictionary containing all the information for entries in the AppDaemon state and event callback table

98 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Examples

callbacks = self.get_callback_entries()

get_thread_info()

Get information on AppDaemon worker threads.

Synopsis

get_thread_info()

Returns

A dictionary containing all the information for AppDaemon worker threads

Examples

thread_info = self.get_thread_info()

get_ad_version()

Return the cuurent version of AppDaemon

Synopsis

get_ad_version()

Returns

A string containing the version number

Examples

version = self.get_ad_version()

1.6 Dashboard Install and Configuration

HADashboard is a dashboard for Home Assistant that is intended to be wall mounted, and is optimized for distance
viewing.

1.6. Dashboard Install and Configuration 99

https://home-assistant.io/

AppDaemon Documentation, Release 3.0.1

Fig. 1.1: UI

100 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

1.6.1 Installation and Configuration

HADashboard is dependent upon AppDaemon. As a first step please refer to the AppDaemon Installation Documen-
tation.

When you have AppDaemon installed and running, configuration of the Dashboard is pretty simple. You just need to
add a directive to the appdaemon.yaml file - dash_url.

This and the optional dash_dir directive should be in the toplevel of the file under a new hadashboard: section.

• dash_url - the url you want the dashboard service to listen on

For instance:

appdaemon:
...

hadashboard:
dash_url: http://192.168.1.20:5050

To enable https support for HADashboard, add the following directives pointing to your certificate and keyfile:

dash_ssl_certificate: /etc/letsencrypt/live/somehost/fullchain.pem
dash_ssl_key: /etc/letsencrypt/live/somehost/privkey.pem

To password protect HADashboard use the dash_password directive:

dash_password: some_password

Or you can use the secret function and place the actual password in your secrets.yaml file:

dash_password: !secret dash_password

By default, dashboards are searched for under the config directory in a sub directory called dashboards. Optionally,
you can place your dashboards in a directory other than under the config directory using the dashboard_dir
directive.

e.g.:

hadashboard:
dashboard_dir: /etc/appdaemon/dashboards

Next, you will need to create the dashboards directive either under the conf directory, or wherever you specify with
dash_dir. Once that is done, for testing purposes, create a file in the dashboards directory called Hello.dash
and paste in the following:

##
Main arguments, all optional
##
title: Hello Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

label:
widget_type: label
text: Hello World

layout:
- label(2x2)

1.6. Dashboard Install and Configuration 101

INSTALL.html
INSTALL.html

AppDaemon Documentation, Release 3.0.1

When you have added the lines to the config and created the dashboards directory and test dashbboard, restart App-
Daemon and you will be ready to go. If you navigate to the top level, e.g. http://192.168.1.20:5050 in the
case above, you will see a welcome page with a list of configured dashboards. If you haven’t yet configured any the
list will be empty.

When you have created a dashboard you can navigate to it by going to http://192.168.1.20:5050/
<Dashboard Name>

If you are using AppDaemon just for the dasboard and not the Apps, you can disable the app engine with the following
directive:

appdaemon:
disable_apps: 1

This will free up some CPU and memory.

HADashboard pre-compiles all of the user created Dashboard for efficiency. It will detect when changes have been
made to widgets, styles or dahsboards and automatically recompile. This is usually desirable as compilation can take
several seconds on slower hardware for a fully loaded dashboard, however to force a recompilation every time, use the
following directive:

hadashboard:
dash_force_compile: 1

This will force dashboard recompilation whenever the dashboard is loaded. You can also force a recompilation by
adding the parameter recompile=1 to the dashboard URL.

By default, information and errors around access to the Dashboard will go to the same place as AppDaemon’s log. To
split the page access out to a different file, use the accessfile directive, e.g.:

hadashboard:
accessfile: /var/log/dash_access

To force dashboard recompilation of all dashboards after a restart, use:

hadashboard:
dash_compile_on_start: 1

This should not be necessary but may on occasion be required after an upgrade to pickup changes.

1.6.2 Dashboard URL Parameters

The dashboard URL supports a couple of extra parameters:

• skin - name of the skin you want to use, default is default

• recompile - set to anything to force a recompilation of the dashboard

For example, the following url will load a dashboard called main with the obsidian skin:

http://<ip address>:<port>/Main?skin=obsidian

102 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Fig. 1.2: UI

1.7. Dashboard Creation 103

AppDaemon Documentation, Release 3.0.1

1.7 Dashboard Creation

1.7.1 Dashboard Creation

Dashboard configuration is simple yet very powerful. Dashboards can be created in single files or made modular for
reuse of blocks of widgets. Dashboards are configured using YAML.

We will start with a simple single file configuration. Create a file with a .dash extension in the dashboards
directory, and pull it up in your favorite editor.

Main Settings

A top level dashboard will usually have one of a number of initial directives to configure aspects of the dashboard,
although they are all optional. An example is as follows:

##
Main arguments, all optional
##
title: Main Panel
widget_dimensions: [120, 120]
widget_size: [1, 1]
widget_margins: [5, 5]
columns: 8
global_parameters:

use_comma: 0
precision: 1
use_hass_icon: 1
namespace: default
devices:

media_player:
step: 5

These are all fairly self explanatory:

• title - the name that will end up in the title of the web page, defaults to “HADashboard”.

• widget_dimensions - the unit height and width of the individual widgets in pixels. Note that the absolute
size is not too important as on tablets at least the browser will scale the page to fit. What is more important is
the aspect ratio of the widgets as this will affect whether or not the dashboard completely fills the tablets screen.
The default is [120, 120] (width, height). This works well for a regular iPad.

• widget_size - the number of grid blocks each widget will be by default if not specified

• widget_margins - the size of blank space between widgets.

• rows - the total number of rows in the dashboard. This will help with spacing, but is optional for dashboards
with fewer than 15 rows

• columns - the number of columns the dasboard will have.

• scalable - if set to False this parameter will disable resizing and double tap zooming on iOS devices,
default is to not disable zooming.

• global_parameters - a list of parameters that will be applied to every widget. If the widget does not
accept that parameter it will be ignored. Global parameters can be overriden at the widget definition if desired.
This is useful for instance if you want to use commas as decimals for all of your widgets. This will also apply
to widgets defined with just their entity ids so they will not require a formal widget definition just to change
the decimal separator. The namespace parameter will be explained further in the namespace section of this

104 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

document. Within the global paraemeters it is also possible to set parameters at the device level by including
a device entry (see above for an example). Under device you can add an entry for any widget type, then under
that, list global parameters that will be applied to just that widget type. For instance, in the example above, the
default step size for the all media players is set to 5% rather than the default 10%.

The very simplest dashboard needs a layout so it can understand where to place the widgets. We use a layout
directive to tell HADasboard how to place them. Here is an example:

layout:
- light.hall, light.living_room, input_boolean.heating
- media_player(2x1), sensor.temperature

As you can see, here we are refering directly to native Home Assistant entities. From this, HADashboard is able to
figure out the right widget type and grab its friendly name and add it to the dasboard. For the clock and weather
widgets there is no associated entity id so just your clock.clock or weather.weather.

The layout command is intended to be visual in how you lay out the widgets. Each layout entry represents a row on
the dashboard, each comma separated widget represents a cell on that row.

Widgets can also have a size associated with them - that is the (2x1) directive appended to the name. This is simply
the width of the widget in columns and the height of the widget in rows. For instance, (2x1) would refer to a widget
2 cells wide and 1 cell high. If you leave of the sizing information, the widget will use the widget_size dashboard
parameter if specified, or default to (1x1) if not. HADasboard will do its best to calculate the right layout from what
you give it but expect strange behavior if you add too many widgets on a line.

For a better visual cue you can lay the widgets out with appropriate spacing to see what the grid will look like more
intuitively:

layout:
- light.hall, light.living_room, input_boolean.heating
- media_player(2x1), sensor.temperature

. . . and so on.

Make sure that the number of widths specified adds up to the total number of columns, and don’t forget to take into
account widgets that are more than one row high (e.g. the weather widget here).

If you want a blank space you can use the special widget name spacer. To leave a whole row empty, just leave an
entry for it with no text. For instance:

- light.hall, light.living_room, input_boolean.heating
-
- media_player(2x1), sensor.temperature

The above would leave the 2nd row empty. If you want more than one empty line use empty as follows”:

- light.hall, light.living_room, input_boolean.heating
- empty: 2
- media_player(2x1), sensor.temperature

This would leave the 2nd and 3rd rows empty.

And that is all there to it, for a simple one file dashboard.

Detailed Widget Definition

The approach above is ok for simple widgets like lights, but HADashboard has a huge range of customization options.
To access these, you need to formally define the widget along with its associated parameters.

1.7. Dashboard Creation 105

AppDaemon Documentation, Release 3.0.1

To define a widget simply add lines elsewhere in the file. Give it a name , a widget type and a number of optional
parameters like this:

weather_widget:
widget_type: weather
units: "°F"

Here we have defined a widget of type “weather”, and given it an optional parameter to tell it what units to use
for temperature. Each widget type will have different required parameters, refer to the documentation below for a
complete list for each type. All widgets support ways to customize colors and text sizes as well as attibutes they need
to understand how to link the widget to Home Assistant, such as entity_ids.

Lets look at a couple more examples of widget definitions:

clock:
widget_type: clock

weather:
widget_type: weather
units: "°F"

side_temperature:
widget_type: sensor
title: Temperature
units: "°F"
precision: 0
entity: sensor.side_temp_corrected

side_humidity:
widget_type: sensor
title: Humidity
units: "%"
precision: 0
entity: sensor.side_humidity_corrected

andrew_presence:
widget_type: device_tracker
title: Andrew
device: andrews_iphone

wendy_presence:
widget_type: device_tracker
title: Wendy
device: wendys_iphone

mode:
widget_type: sensor
title: House Mode
entity: input_select.house_mode

light_level:
widget_type: sensor
title: Light Level
units: "lux"
precision: 0
shorten: 1
entity: sensor.side_multisensor_luminance_25_3

porch_motion:

106 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

widget_type: binary_sensor
title: Porch
entity: binary_sensor.porch_multisensor_sensor_27_0

garage:
widget_type: switch
title: Garage
entity: switch.garage_door
icon_on: fa-car
icon_off: fa-car
warn: 1

Now, instead of an entity id we refer to the name of the widgets we just defined:

layout:
- clock(2x1), weather(2x2), side_temperature(1x1), side_humidity(1x1), andrew_

→˓presence(1x1), wendy_presence(1x1)
- mode(2x1), light_level(2x1), porch_motion(1x1), garage(1x1)

It is also possible to add a widget from a standalone file. The file will contain a single widget definition. To create a
clock widget this way we would make a file called clock.yaml and place it in the dashboard directory along with
the dashboard. The contents would look something like this:

widget_type: clock
widget_style: "color: red"

Note that the indentation level starts at 0. To include this file, just reference a widget called clock in the layout, and
HADashboard will automatically load the widget.

A file will override a native entity, so you can create your dashboard just using entities, but if you want to customize a
specific entity, you can just create a file named <entity_name>.yaml and put the settings in there. You can also
override entity names by specifying a widget of that name in the same or any other file, which will take priority over
a standalone yaml file.

And that is all there to it, for a simple one file dashboard.

1.7.2 Advanced Dashboard Definition

When you get to the point where you have multiple dashboards, you may want to take a more modular approach, as
you will find that in many cases you want to reuse parts of other dashboards. For instance, I have a common header
for mine consisting of a row or two of widgets I want to see on every dashboard. I also have a footer of controls to
switch between dashboards that I want on each dashboard as well.

To facilitate this, it is possible to include additional files, inline to build up dashboards in a more modular fashion.
These additional files end in .yaml to distinguish them from top level dashboards. They can contain additional
widget definitions and also optionally their own layouts.

The sub files are included in the layout using a variation of the layout directive:

layout:
- include: top_panel

This will look for a file called top_panel.yaml in the dashboards directory, then include it. There are a couple of
different ways this can be used.

• If the yaml file includes its own layouts directive, the widgets from that file will be placed as a block, in the way
described by its layout, making it reusable. You can change the order of the blocks inclusion by moving where

1.7. Dashboard Creation 107

AppDaemon Documentation, Release 3.0.1

in the original layout directive you include them.

• If the yaml file just includes widget definitions, it is possible to perform the layout in the higher level dash if you
prefer so you still get an overall view of the dashboard. This approach has the benefit that you can be completely
flexible in the layout wheras the first method defines fixed layouts for the included blocks.

I prefer the completely modular approach - here is an example of a full top level dashboard created in that way:

title: Main Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

layout:
- include: top_panel
- include: main_middle_panel
- include: mode_panel
- include: bottom_panel

As you can see, it includes four modular sub-dashes. Since these pieces all have their own layout information there
is no need for additional layout in the top level file. Here is an example of one of the self contained sub modules
(mode_panel.yaml):

clock:
widget_type: clock

weather:
widget_type: weather
units: "°F"

side_temperature:
widget_type: sensor
title: Temperature
units: "°F"
precision: 0
entity: sensor.side_temp_corrected

side_humidity:
widget_type: sensor
title: Humidity
units: "%"
precision: 0
entity: sensor.side_humidity_corrected

andrew_presence:
widget_type: device_tracker
title: Andrew
device: andrews_iphone

wendy_presence:
widget_type: device_tracker
title: Wendy
device: dedb5e711a24415baaae5cf8e880d852

mode:
widget_type: sensor
title: House Mode
entity: input_select.house_mode

108 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

light_level:
widget_type: sensor
title: Light Level
units: "lux"
precision: 0
shorten: 1
entity: sensor.side_multisensor_luminance_25_3

porch_motion:
widget_type: binary_sensor
title: Porch
entity: binary_sensor.porch_multisensor_sensor_27_0

garage:
widget_type: switch
title: Garage
entity: switch.garage_door
icon_on: fa-car
icon_off: fa-car
warn: 1

layout:
- clock(2x1), weather(2x2), side_temperature, side_humidity, andrew_presence,

→˓wendy_presence
- mode(2x1), light_level(2x1), porch_motion, garage

Now if we take a look at that exact same layout, but assume that just the widget definitions are in the sub-blocks, we
would end up with something like this - note that we must explicitly lay out each widget we have included in the other
files:

title: Main Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

layout:
- include: top_panel
- include: main_middle_panel
- include: mode_panel
- include: bottom_panel
- clock(2x1), weather(2x2), side_temperature, side_humidity, andrew_presence,

→˓wendy_presence
- mode(2x1), light_level(2x1), porch_motion, garage
- wlamp_scene, don_scene, doff_scene, dbright_scene, upstairs_thermometer,

→˓downstairs_thermometer, basement_thermometer, thermostat_setpoint
- obright_scene, ooff_scene, pon_scene, poff_scene, night_motion, guest_mode,

→˓cooling, heat
- morning(2x1), day(2x1), evening(2x1), night(2x1)
- load_main_panel, load_upstairs_panel, load_upstairs, load_downstairs, load_

→˓outside, load_doors, load_controls, reload

In this case, the actual layout including a widget must be after the include as you might expect.

A few caveats for loaded sub files:

• Sub files can include other subfiles to a maximum depth of 10 - please avoid circular references!

• When layout information is included in a sub file, the subfile must comprise 1 or more complete dashboard rows
- partial rows or blocks are not supported.

1.7. Dashboard Creation 109

AppDaemon Documentation, Release 3.0.1

As a final option, you can create widget definitions in the main file and use them in the layout of the header/footer/etc.
For example, if you have a header that has a label in it that lists the room that the dashboard is associated with, you
can put the label widget definition in the header file but all the pages get the same message. If you put the label widget
definition in the main file for the room, and reference it from the layout in the header, each page has the right name
displayed in the header.

For example:

clock:
widget_type: clock

layout:
- label(2x2),clock(2x2)

In this example of a header, we reference a clock and a label in the layout. We can re-use this header, but in order to
make the label change for every page we use it on we actually define it in the dashboard file itself, and include the
header in the layout:

title: Den Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

label:
widget_type: label
text: Welcome to the Den

layout:
- include: header

1.7.3 Widget Customization

Widgets allow customization using arbitary CSS styles for the individual elements that make up the widget. Every
widget has a ‘widget_style argument to apply styles to the whole widget, as well as one or more additional style
arguments that differ for each widget. To customize a widget background for instance:

clock:
widget_type: clock
widget_style: "background: white;"

As is usual with CSS you can feed it multiple parameters at once, e.g.:

clock:
widget_type: clock
widget_style: "background: white; font-size: 150%;"

You can use any valid CSS style here although you should probably steer away from some of the formatting types as
they may interact badly with HADasboards formatting. Widget level styles will correctly override just the style in the
skin they are replacing.

In the case of the clock widget, it also supports date_style and time_style to modify those elements accord-
ingly:

clock:
widget_type: clock
widget_style: "background: white"
date_style: "color: black"
time_style: "color: green"

110 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Since date_style and time_style are applied to more specific elements, they will override widget_style.
Also note that some widget styles may be specified in the widget’s CSS, in which case that style will override
widget_style but not the more specific styles.

1.7.4 State and state text

Some widgets allow you to display not only an icon showing the state but also text of the state itself. The following
widgets allow this:

• scene

• binary_sensor

• icon

• switch

• device_tracker

• script

• lock

• cover

• input_boolean

In order to enable this, just add:

state_text: 1

to the widget definition. This will then make the widget show the HA state below the icon. Since native HA state is
not always very pretty it is also possible to map this to better values, for instance in a different language than English.

To add a state map, just add a state_map list to the widget definition listing the HA states and what you actually want
displayed. For instance:

state_map:
"on": Aan
"off": Uit

One wrinkle here is that YAML over enthusiastically “helps” by interpreting things like on and off as booleans so
the quotes are needed to prevent this.

1.7.5 Icons

Widgets that allow the specification of icons have access to both Font Awesome and Material Design Icons. To specify
an icon simply use the prefix fa- for Font Aweesome and mdi- for Material Design. e,g,:

icon_on: fa-alert
icon_off: mdi-cancel

In addition, the widget can be configured to use whatever icon is defined for it in Home Assistant by setting the
parameter:

use_hass_icon: 1

This can also be set at the dashboard level as a global parameter.

1.7. Dashboard Creation 111

http://fontawesome.io/cheatsheet/
https://materialdesignicons.com/

AppDaemon Documentation, Release 3.0.1

1.7.6 External Commands

The dashboard can accept command from external systems to prompt actions, such as navigation to different pages.
These can be achieved through a variety of means:

• AppDaemon API Calls

• HASS Automations/Scripts

• Alexa Intents

The mechanism used for this is HASS custom events. AppDaemon has its own API calls to handle these events, for
further details see the AppDaemon API Pages. The custom event name is hadashboard and the dashboard will
respond to various commands with associated data.

To create a suitable custom event within a HASS automation, script or Alexa Intent, simply define the event and
associated data as follows (this is a script example):

alias: Navigate
sequence:
- event: hadashboard

event_data:
command: navigate
timeout: 10
target: SensorPanel
sticky: 0

The current list of commands supported and associated arguments are as follows:

navigate

Force any connected dashboards to navigate to a new page

Arguments

target - Name of the new Dashboard to navigate to, e.g. SensorPanel - this is not a URL. timeout - length of
time to stay on the new dashboard before returning to the original. This argument is optional and if not specified, the
navigation will be permanent.

Note that if there is a click or touch on the new panel before the timeout expires, the timeout will be cancelled.

timeout - length of time to stay on the new dashboard return - dashboard to return to after the timeout has
elapsed. sticky - wether or not to reyurn to the original dashboard after it has been clicked on. Default behavior
(sticky=0) is to remain on the new dashboard if cliked and return to the original otherwise. With sticky=`,
clicking the dasboard will extend the amount of time but it will return to the original dashboard after a period of
inactivity equal to timeout.

1.7.7 Namespaces

For a full explanation of namespaces see the Writing AppDaemon Apps Section of the guide. Namespaces may
be ignored in HADashboard if only one plugin is in use.

If multiple namespaces are in use, HADasboard is able to specify either at the dashboard level or the widget level
which namespace to use. This is achieved by use of the namespace parameter. This parameter may be specified for
each individual widget if desired. If it is specified as one of the global paraneters, it will apply to all widgets but may

112 Chapter 1. Upgrading from 2.x

API.html

AppDaemon Documentation, Release 3.0.1

be overriden for individual widgets. If not specified as a global parameter, the default namespace will be used for any
widgets that do not override it. For example:

##
Main arguments, all optional
##
title: Main Panel
widget_dimensions: [120, 120]
widget_size: [1, 1]
widget_margins: [5, 5]
columns: 8
global_parameters:

use_comma: 0
precision: 1
use_hass_icon: 1
Not setting namespace here so the default namespace is used

Clock has no namespace
clock:

widget_type: clock

side_temperature doesn't specify a namespace so will use the default
If we specified a different namespace in the global options it would use that
→˓instead
side_temperature:

widget_type: sensor
title: Temperature
units: "°F"
precision: 0
entity: sensor.side_temp_corrected

side_humidity overrides the default and uses the hass2 namespace
It will use hass2 regardless of any global setting
side_humidity:

namespace: hass2
widget_type: sensor
title: Humidity
units: "%"
precision: 0
entity: sensor.side_humidity_corrected

One caveat to namespaces is that the RSS widget always works with the default namespace - since the RSS feeds are
supplied by AppDaemon itself, and not one of the plugins.

1.7.8 Widget Reference

Here is the current list of widgets and their description and supported parameters:

clock

A simple 12 hour clock with the date. Not currently very customizable but it will be improved upon.

Mandatory arguments:

None

1.7. Dashboard Creation 113

AppDaemon Documentation, Release 3.0.1

Optional Arguments:

• time_format - set to “24hr” if you want military time/24 hour clock

• show_seconds - set to 1 if you want to see seconds on the display

• date_format_country - Format the clock in the style of a specific country. This can take a simple value
like us or more complex parameters as described here.

• date_format_options - if using date_format_country you can also add additional options for for-
matting as described here.. For example:

clock:
widget_type: clock
date_format_country: "ro"
date_format_options:

weekday: "short"
day: "numeric"
month: "numeric"

Style Arguments:

• widget_style

• time_style

• date_style

weather

Up to date weather reports. By default it’s configured to work with dark sky sensor. To use all the features you need
to add these sensors to monitored_conditions:

• temperature

• apparent_temperature

• temperature_min

• temperature_max

• humidity

• precip_probability

• precip_intensity

• precip_type

• wind_speed

• wind_bearing

• pressure

• icon

To have the forecast displayed set show_forecast to 1. For it to work you additionally need to add the forecast
option in dark_sky Home Assistant configuration.

114 Chapter 1. Upgrading from 2.x

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl#Locale_identification_and_negotiation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleDateString

AppDaemon Documentation, Release 3.0.1

forecast:
- 1

Mandatory arguments:

None

Optional Arguments:

• title

• show_forecast - show the forecast

• prefer_icons - use icons instead of text

• forecast_title - title of the forecast if enabled

• sensors - list of sensors used by the widget

You can change the entities used by the widget by overwriting their values in the sensors key in configuration.

Example with default values:

sample_weather:
title: Today
show_foreacast: 1
prefer_icons: 1
forecast_title: Tomorrow
sensors:
icon: sensor.dark_sky_icon
temperature: sensor.dark_sky_temperature
apparent_temperature: sensor.dark_sky_apparent_temperature
humidity: sensor.dark_sky_humidity
precip_probability: sensor.dark_sky_precip_probability
precip_intensity: sensor.dark_sky_precip_intensity
precip_type: sensor.dark_sky_precip
pressure: sensor.dark_sky_pressure
wind_speed: sensor.dark_sky_wind_speed
wind_bearing: sensor.dark_sky_wind_bearing
forecast_icon: sensor.dark_sky_icon_1
forecast_temperature_min: sensor.dark_sky_daily_low_temperature_1
forecast_temperature_max: sensor.dark_sky_daily_high_temperature_1
forecast_precip_probability: sensor.dark_sky_precip_probability_1
forecast_precip_type: sensor.dark_sky_precip_1

Cosmetic Arguments:

• widget_style

• main_style

• unit_style

• sub_style

• sub_unit_style

1.7. Dashboard Creation 115

AppDaemon Documentation, Release 3.0.1

• title_style

weather_summary

An icon and summary reflecting the weather forecast. Requires dark sky to be configured in Home Assistant and
expects to be used with one of the following sensors:

• sensor.dark_sky_daily_summary

• sensor.dark_sky_hourly_summary

• sensor.dark_sky_summary

Mandatory arguments:

• entity - the entity to be monitored

Optional Arguments:

• title - the title displayed on the tile

Cosmetic Arguments:

• state_text_style

• text_style

• title_style

• widget_style

london_underground

A widget to report on the status of a London Underground line and provide the reason for delays if there are any.
Requires the London Underground sensor to be configured in Home Assistant. This widget is designed to be a 2x2
tile.

It is recommended to update the background style to reflect the color of the underground line. An example would be
as follows:

widget_style: "background-color: #0098D4"

The colors of the various lines are: - Bakerloo: #B36305 - Central: #E32017 - Circle: #FFD300 - District: #00782A
- DLR: #00A4A7 - Hammersmith & City: #F3A9BB - Jubilee: #A0A5A9 - London Overground: #EE7C0E -
Metropolitan: #9B0056 - Northern: #000000 - Piccadilly: #003688 - Victoria: #0098D4 - Waterloo & City: #95CDBA

For smaller dashboards the Description text can be too long to fit in the widget properly. In that case hide the text as
follows:

state_text_style: "display: none"

116 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Mandatory arguments:

• entity - the entity to be monitored

Optional Arguments:

• title - the title displayed on the tile

Cosmetic Arguments:

• state_text_style

• text_style

• title_style

• widget_style

sensor

A widget to report on values for any sensor in Home Assistant

The widget will detect whether or not it is showing a numeric value, and if so, it will use the numeric style. If
it is showing text it will use the text style, which among other things makes the text size smaller. To display an
attribute of a sensor rather than the state itself add the attribute to the end of the sensor name. For example, to
display the description of the sensor.dark_sky_summary sensor you would use the following entity definition: “sen-
sor.dark_sky_summary.Description”.

Note that you can define a sub_entity to be an attribute of the entity using the entity_to_sub_entity_attribute argument,
or an entity as an attribute of the sub_entity using the sub_entity_to_entity_attribute.

Mandatory Arguments:

• entity - the entity_id of the sensor to be monitored

OR - sub_entity - the entity_id of the sensor to be monitored

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed, if not specified HAs unit will be used, specify “” for no units

• precision - the number of decimal places

• shorten - if set to one, the widget will abbreviate the readout for high numbers, e.g. 1.1K instead of 1100

• use_comma - if set to one‘, a comma will be used as the decimal separator

• state_map

• sub_entity - second entity to be displayed in the state text area

• sub_entity_map - state map for the sub_entity

1.7. Dashboard Creation 117

AppDaemon Documentation, Release 3.0.1

• entity_to_sub_entity_attribute - the attribute of the entity to use as the sub_entity

• sub_entity_to_entity_attribute - the attribute of the sub_entity to use as the entity

Style Arguments:

• widget_style

• title_style

• title2_style

• value_style

• text_style

• unit_style

• container_style

input_select

A widget to display and select values from an input_select entity in Home Assistant.

Mandatory Arguments:

• entity - the entity_id of the sensor to be monitored

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• widget_style

• title_style

• title2_style

• select_style

• selectcontainer_style

rss

A widget to display an RSS feed.

Note that the actual feeds are configured in appdaemon.yaml as follows:

118 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

hadashboard:

rss_feeds:
- feed: <feed_url>

target: <target_name>
- feed: <feed url>

target: <target_name>

...

rss_update: <feed_refresh_interval>

• feed_url - fully qualified path to rss feed, e.g. http://rss.cnn.com/rss/cnn_topstories.rss

• target name - the entity of the target RSS widget in the dashboard definition file

• feed_refresh_interval - how often AppDaemon will refresh the RSS feeds

There is no limit to the number of feeds you configure, and you will need to configure one RSS widget to display each
feed.

The RSS news feed cannot be configured if you are still using the legacy .cfg file type.

Mandatory Arguments:

• entity - the name of the configured feed - this must match the target_name configured in the AppDaemon
configuration

• interval - the period between display of different items within the feed

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• recent - the number of most recent stories that will be shown. If not specified, all stories in the feed will be
shown.

• show_description - if set to 1 the widget will show a short description of the story as well as the title.
Default is 0

Style Arguments:

• widget_style

• title_style

• title2_style

• text_style

gauge

A widget to report on numeric values for sensors in Home Assistant in a gauge format.

1.7. Dashboard Creation 119

AppDaemon Documentation, Release 3.0.1

Mandatory Arguments:

• entity - the entity_id of the sensor to be monitored

• max - maximum value to show

• min - minimum value to show

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed, if not specified HAs unit will be used, specify “” for no units

Style Arguments:

• widget_style

• title_style

• title2_style

• low_color

• med_color

• high_color

• bgcolor

• color

Note that unlike other widgets, the color settings require an actual color, rather than a CSS style.

device_tracker

A Widget that reports on device tracker status. It can also be optionally be used to toggle the status between “home”
and “not_home”.

Mandatory Arguments:

• device - name of the device from known_devices.yaml, not the entity_id.

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• enable - set to 1 to enable the widget to toggle the device_tracker status

• state_text

• state_map

120 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

• active_map

Active map is used to specify states other than “home” that will be regarded as active, meaning the icon will light up.
This can be useful if tracking a device tracker within the house using beacons for instance.

Example:

wendy_presence_mapped:
widget_type: device_tracker
title: Wendy
title2: Mapped
device: wendys_iphone
active_map:
- home
- house
- back_yard
- upstairs

In the absence of an active map, only the state home will be regarded as active.

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

• state_text_style

label

A widget to show a simple static text string

Mandatory Arguments

None

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• text - the text displayed on the tile

1.7. Dashboard Creation 121

AppDaemon Documentation, Release 3.0.1

Cosmetic Arguments

• widget_style

• title_style

• title2_style

• text_style

scene

A widget to activate a scene

Mandatory Arguments

• entity - the entity_id of the scene

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

script

A widget to run a script

Mandatory Arguments

• entity - the entity_id of the script

122 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

mode

A widget to track the state of an input_select by showing active when it is set to a specific value. Also allows
scripts to be run when activated.

Mandatory Arguments

• entity - the entity_id of the input_select

• mode - value of the input select to show as active

• script - script to run when pressed

• state_text

• state_map

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• icon_on

• icon_off

• widget_style

1.7. Dashboard Creation 123

AppDaemon Documentation, Release 3.0.1

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

switch

A widget to monitor and activate a switch

Mandatory Arguments

• entity - the entity_id of the switch

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Cosmetic Arguments

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

lock

A widget to monitor and activate a lock

Note that unlike HASS, Dashboard regards an unlocked lock as active. By contrast, the HASS UI shows a locked lock
as “on”. Since the purpose of the dashboard is to alert at a glance on anything that is unusual, I chose to make the
unlocked state “active” which means in the default skin it is shown as red, wheras a locked icon is shown as gray. You
can easily change this behavior by setting active and inactive styles if you prefer.

Mandatory Arguments

• entity - the entity_id of the lock

124 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Cosmetic Arguments

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

cover

A widget to monitor and activate a cover. At this time only the open and close actions are supported.

Mandatory Arguments

• entity - the entity_id of the cover

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Cosmetic Arguments

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

1.7. Dashboard Creation 125

AppDaemon Documentation, Release 3.0.1

• title2_style

input_boolean

A widget to monitor and activate an input_boolean

Mandatory Arguments

• entity - the entity_id of the input_boolean

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Cosmetic Arguments

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

binary_sensor

A widget to monitor a binary_sensor

Mandatory Arguments

• entity - the entity_id of the binary_sensor

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

126 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Cosmetic Arguments

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

• state_text_style

icon

A widget to monitor the state of an entity and display a different icon and style for each listed state, and is configured
in a similar manner to the following:

icon:
title: icon
widget_type: icon
entity: binary_sensor.basement_door_sensor
state_text: 1
icons:
"active":

icon: fa-glass
style: "color: green"

"inactive":
icon: fa-repeat
style: "color: blue"

"idle":
icon: fa-frown-o
style: "color: red"

"default":
icon: fa-rocket
style: "color: cyan"

The icons list is mandatory, and each entry must contain both an icon and a style entry. It is recommended that quotes
are used around the state names, as without these, YAML will translate states like on and off to true and false

The default entry icon and style will be used if the state doesn’t match any in the list - meaning that it is not necessary
to define all states if only 1 or 2 actually matter.

Mandatory Arguments

• entity - the entity_id of the binary_sensor

• icons - a list of icons and styles to be applied for various states.

Optional Arguments:

• title - the title displayed on the tile

1.7. Dashboard Creation 127

AppDaemon Documentation, Release 3.0.1

• title2 - a second line of title text

• state_text

• state_map

Cosmetic Arguments

• widget_style

• title_style

• title2_style

• state_text_style

light

A widget to monitor and contol a dimmable light

Mandatory Arguments

• entity - the entity_id of the light

Optional Arguments:

• icon_on

• icon_off

• title - the title displayed on the tile

• title2 - a second line of title text

• on_attributes - a list of supported HA attributes to set as initial values for the light.

Note that rgb_color and xy_color are not specified with list syntac as in Home Assistant scenes. See below for
examples.

e.g.

testlight2:
widget_type: light
entity: light.office_2
title: office_2
on_attributes:

brightness: 100
color_temp: 250

or:

testlight2:
widget_type: light
entity: light.office_2
title: office_2
on_attributes:

128 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

brightness: 100
rgb_color: 128, 34, 56

or:

testlight2:
widget_type: light
entity: light.office_2
title: office_2
on_attributes:

brightness: 100
xy_color: 0.4, 0.9

Cosmetic Arguments

• widget_style

• icon_on

• icon_off

• icon_up

• icon_down

• title_style

• title2_style

• icon_style_active

• icon_style_inactive

• text_style

• level_style

• level_up_style

• level_down_style

input_number

A widget to monitor and contol an input number

Mandatory Arguments

• entity - the entity_id of the input_number

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed

• use_comma - if set to one, a comma will be used as the decimal separator

1.7. Dashboard Creation 129

AppDaemon Documentation, Release 3.0.1

Cosmetic Arguments

• title_style

• title2_style

• minvalue_style

• maxvalue_style

• value_style

• slider_style

• slidercontainer_style

• widget_style

input_slider

An alternate widget to monitor and contol an input number, using plus and minus buttons instead of a slider.

Mandatory Arguments

• entity - the entity_id of the input_number

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed

• use_comma - if set to one, a comma will be used as the decimal separator

Cosmetic Arguments

• title_style

• title2_style

• minvalue_style

• maxvalue_style

• value_style

• slider_style

• slidercontainer_style

• widget_style

climate

A widget to monitor and contol a climate entity

130 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Mandatory Arguments

• entity - the entity_id of the climate entity

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• step - the size of step in temperature when fading the slider up or down

• units - the unit symbol to be displayed

• precision - the number of digits to display after the decimal point

Cosmetic Arguments

• widget_style

• icon_up

• icon_down

• title_style

• title2_style

• text_style

• level_style

• level_up_style

• level_down_style

media_player

A widget to monitor and control a media player

Mandatory Arguments

• entity - the entity_id of the media player

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• truncate_name - if specified, the name of the media will be truncated to this length.

• step - the step (in percent) that the volume buttons will use. (default, 10%)

1.7. Dashboard Creation 131

AppDaemon Documentation, Release 3.0.1

Cosmetic Arguments

• widget_style

• icon_on

• icon_off

• icon_up

• icon_down

• title_style

• title2_style

• icon_style_active

• icon_style_inactive

• text_style

• level_style

• level_up_style

• level_down_style

group

A widget to monitor and contol a group of lights

Mandatory Arguments

• entity - the entity_id of the group

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• monitored_entity - the actual entity to monitor

Groups currently do no report back state changes correctly when attributes light brightness are changed. As a
workaround, instead of looking for state changes in the group, we use monitored_entity instead. This is not
necessary of there are no dimmable lights in the group, however if there are, it should be set to the entity_id of one of
the dimmable group members.

Cosmetic Arguments

• widget_style

• icon_on

• icon_off

• icon_up

132 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

• icon_down

• title_style

• title2_style

• icon_style_active

• icon_style_inactive

• text_style

• level_style

• level_up_style

• level_down_style

navigate

A widget to navgigate to a new URL, intended to be used for switching between dashboards.

Mandatory Arguments

None, but either url or dashboard must be specified.

Optional Arguments:

• url - a url to navigate to. Use a full URL including the “http://” or “https://” part.

• dashboard - a dashboard to navigate to e.g. MainPanel

• title - the title displayed on the tile

• args - a list of arguments.

• skin - Skin to use with the new screen (for HADash URLs only)

For an arbitary URL, Args can be anything. When specifying a dashboard parameter, args have the following meaning:

• timeout - length of time to stay on the new dashboard

• return - dashboard to return to after the timeout has elapsed.

• sticky - whether or not to return to the original dashboard after it has been clicked on. Default behav-
ior (sticky=0) is to remain on the new dashboard if clicked and return to the original otherwise. With
sticky=1`, clicking the dashboard will extend the amount of time but it will return to the original dashboard
after a period of inactivity equal to timeout.

Both timeout and return must be specified.

If adding arguments, use the args variable. Do not append them to the URL or you may break skinning. Add arguments
like this:

some_widget:
widget_type: navigate
title: Amazon
url: http://amazon.com
args:

arg1: fred
arg2: jim

1.7. Dashboard Creation 133

http://
https://

AppDaemon Documentation, Release 3.0.1

or:

some_widget:
widget_type: navigate
title: Sensors
dashboard: Sensors
args:

timeout: 10
return: Main

Cosmetic Arguments

• icon_active

• icon_inactive

• widget_style

• title_style

• title2_style

• icon_active_style

• icon_inactive_style

reload

A widget to reload the current dashboard.

Mandatory Arguments

None.

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Cosmetic Arguments

• icon_active

• icon_inactive

• widget_style

• title_style

• title2_style

• icon_active_style

• icon_inactive_style

134 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

javascript

A widget to run an arbitary JavaScript command.

Mandatory Arguments

• command - the JavaScript command to be run.

e.g.

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Cosmetic Arguments

• icon_active

• icon_inactive

• widget_style

• title_style

• title2_style

• icon_active_style

• icon_inactive_style

iframe

A widget to display other content within the dashboard

Mandatory Arguments

• url_list - a list of 1 or more URLs to cycle though. or

• img_list - a list of 1 or more Image URLs to cycle through.

Optional Arguments:

• title - the title displayed on the tile

• refresh - (seconds) if set, the iframe widget will progress down its list every refresh period, returning to the
beginning when it hits the end. Use this in conjunction with a single entry in the url_list to have a single
url refresh at a set interval.

For regular HTTP sites, use the url_list argument, for images the img_list argument should work better.

Example:

1.7. Dashboard Creation 135

AppDaemon Documentation, Release 3.0.1

iframe:
widget_type: iframe
title: Cats
refresh: 60
url_list:

- https://www.pexels.com/photo/grey-and-white-short-fur-cat-104827/
- https://www.pexels.com/photo/eyes-cat-coach-sofa-96938/
- https://www.pexels.com/photo/silver-tabby-cat-lying-on-brown-wooden-surface-

→˓126407/
- https://www.pexels.com/photo/kitten-cat-rush-lucky-cat-45170/
- https://www.pexels.com/photo/grey-fur-kitten-127028/
- https://www.pexels.com/photo/cat-whiskers-kitty-tabby-20787/
- https://www.pexels.com/photo/cat-sleeping-62640/

Content will be shown with scroll bars which can be undesirable. For images this can be alleviated by using an image
resizing service such as the one offered by Google.

weather_frame:
widget_type: iframe
title: Radar
refresh: 300
frame_style: ""
img_list:

- https://images1-focus-opensocial.googleusercontent.com/gadgets/proxy?
→˓url=https://icons.wxug.com/data/weather-maps/radar/united-states/hartford-
→˓connecticut-region-current-radar-animation.gif&container=focus&refresh=240&resize_
→˓h=640&resize_h=640

- https://images1-focus-opensocial.googleusercontent.com/gadgets/proxy?
→˓url=https://icons.wxug.com/data/weather-maps/radar/united-states/bakersfield-
→˓california-region-current-radar.gif&container=focus&refresh=240&resize_h=640&resize_
→˓h=640

Cosmetic Arguments

• widget_style

• title_style

camera

A widget to display a refreshing camera image on the dashboard

Mandatory Arguments

• entity_picture

This can be found using the developer tools, and will be one of the parameters associated with the camera you want to
view. If you are using a password, you will need to append &api_password=<your password> to the end of
the entity_picture. It will look something like this:

http://192.168.1.20:8123/api/camera_proxy/camera.living_room?token=<your
token>&api_password=<redacted>

If you are using SSL, remeber to use the full DNS name and not the IP address.

136 Chapter 1. Upgrading from 2.x

https://carlo.zottmann.org/posts/2013/04/14/google-image-resizer.html

AppDaemon Documentation, Release 3.0.1

Optional Arguments:

• refresh - (seconds) if set, the camera image will refresh every interval.

Cosmetic Arguments

• widget_style

• title_style

alarm

A widget to report on the state of an alarm and allow code entry

Mandatory Arguments:

• entity - the entity_id of the alarm to be monitored

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• widget_style

• title_style

• title2_style

• state_style

• panel_state_style

• panel_code_style

• panel_background_style

• panel_button_style

Temperature

A widget to report display a temperature using a thermometer styke view

Mandatory Arguments:

• entity - the entity_id of the alarm to be monitored

• settings - a list if values describing the thermometer with the following entries:

• minValue - minimum value to display

1.7. Dashboard Creation 137

AppDaemon Documentation, Release 3.0.1

• maxValue - maximum value to display

• width - width of the widget, set this to the same width as your cell size or less

• height - height of the widget, set this to the same height as your cell size or less

• majorTicks - Where to mark major values, a list

• highights - color ranges, a list

See the example below:

your_temperature:
widget_type: temperature
entity: sensor.your_sensor
settings:
minValue: 15
maxValue: 30
width: 120
height: 120
majorTicks: [15,20,25,30]
highlights: [{'from': 15, 'to': 18, 'color': 'rgba(0,0, 255, .3)'},{'from': 24,

→˓'to': 30, 'color': 'rgba(255, 0, 0, .3)'}]

Optional Arguments:

None

Style Arguments:

None

Radial

A widget to display a numeric value as a gauge

Mandatory Arguments:

• entity - the entity_id of the alarm to be monitored

• settings - a list if values describing the gauge with the following entries:

• title - title of the guage

• minValue - minimum value to display

• maxValue - maximum value to display

• majorTicks - Where to mark major values, a list

• highights - color ranges, a list

See the example below:

138 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

your_radial:
widget_type: radial
entity: sensor.your_sensor
settings:
title: any title
minValue: 0
maxValue: 100
majorTicks: [0,20,40,60,80,100]
highlights: [{'from': 0, 'to': 18, 'color': 'rgba(0,0, 255, .3)'},{'from': 25, 'to

→˓': 100, 'color': 'rgba(255, 0, 0, .3)'}]

Optional Arguments:

None

Style Arguments:

None

1.7.9 Skins

HADashboard fully supports skinning and ships with a number of skins. To access a specific skin, append the pa-
rameter skin=<skin name> to the dashboard URL. Skin names are sticky if you use the Navigate widet to switch
between dashboards and will stay in force until another skin or no skin is specified.

HADasboard currently has the following skins available:

• default - the classic HADashboard skin, very simple

• obsidian, contributed by @rpitera

• zen, contributed by @rpitera

• simplyred, contributed by @rpitera

• glassic, contributed by @rpitera

1.7.10 Skin development

HADashboard fully supports customization through skinning. It ships with a number of skins courtesy of @rpitera,
and we encourage users to create new skins and contribute them back to the project.

To create a custom skin you will need to know a little bit of CSS. Start off by creating a directory called custom_css
in the configuration directory, at the same level as your dashboards directory. Next, create a subdirectory in
custom_css named for your skin.

The skin itself consists of 2 separate files:

• dashboard.css - This is the base dashboard CSS that sets widget styles, background look and feel etc.

• variables.yaml - This is a list of variables that describe how different elements of the widgets will look.
Using the correct variables you can skin pretty much every element of every widget type.

1.7. Dashboard Creation 139

AppDaemon Documentation, Release 3.0.1

Dashboard.css is a regular css file, and knowledge of CSS is required to make changes to it.

Variables.yaml is really a set of overrise styles, so you can use fragments of CSS here, basically anything that you
could normally put in an HTML style tag. Variables .yaml also supports variable expansion to make structuring the
file easier. Anything that starts with a $ is treated as a variable that refers back to one of the other yaml fields in the
file.

Here is an example of a piece of a variables.yaml file:

##
Styles
##

white: "#fff"
red: "#ff0055"
green: "#aaff00"
blue: "#00aaff"
purple: "#aa00ff"
yellow: "#ffff00"
orange: "#ffaa00"

gray_dark: "#444"
gray_medium: "#666"
gray_light: "#888"

##Page and widget defaults
background_style: ""
text_style: ""

##These are used for icons and indicators
style_inactive: "color: $gray_light"
style_active: "color: gold"
style_active_warn: "color: gold"
style_info: "color: gold; font-weight: 500; font-size: 250%"
style_title: "color: gold; font-weight: 900"
style_title2: "color: $white"

Here we are setting up some general variables that we can reuse for styling the actual widgets.

Below, we are setting styles for a specific widget, the light widget. All entries are required but can be left blank by
using double quotes.

light_icon_on: fa-circle
light_icon_off: fa-circle-thin
light_icon_up: fa-plus
light_icon_down: fa-minus
light_title_style: $style_title
light_title2_style: $style_title2
light_icon_style_active: $style_active
light_icon_style_inactive: $style_inactive
light_state_text_style: $white
light_level_style: "color: $gray_light"
light_level_up_style: "color: $gray_light"
light_level_down_style: "color: $gray_light"
light_widget_style: ""

Images can be included - create a sub directory in your skin directory, call it img or whatever you like, then refer to it
in the css as:

/custom_css/<skin name>/<image directory>/<image filename>

140 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

One final feature is the ability to include additional files in the header and body of the page if required. This can be
useful to allow additional CSS from 3rd parties or include JavaScript.

Custom head includes - should be a YAML List inside variables.yaml, e.g.:

head_includes:
- some include
- some other include

Text will be included verbatim in the head section of the doc, use for styles, javascript or 3rd party css etc. etc. It is
your responsibility to ensure the HTML is correct

Similarly for body includes:

body_includes:
- some include
- some other include

To learn more about complete styles, take a look at the supplied styles to see how they are put together. Start off with
the dashboard.css and variables.yaml from an existing file and edit to suit your needs.

1.7.11 Example Dashboards

Some example dashboards are available in the AppDaemon repository:

Dashboards

1.8 HADashboard Widget Development

HADashboard supports a full Widget API intended to simplify the creation of 3rd party widgets. In this guide, we
will describe the APIs and requirements for a widget, the workflow for widget creation, and suggestions on how to
contribute widgets back to HADashboard.

1.8.1 What is a Widget?

A widget is a contained piece of functionality that can be placed on a Dashboard. In many cases, widgets refer to types
of devices that can be controlled via Home Assistant, but also, widgets can be unrelated, for instance an RSS widget.

There are two main types of widgets, Base Widgets and Derived Widgets. Base Widgets contain all of the
HTML, CSS and JavaScript code to render and run the widget, whereas Derived Widgets are just a structured list of
variables that are passed down to Base Widgets. Base Widgets live in subdirectories, Derived Widgets are simply yaml
files.

The reason for the 2 types of widget is one of design philosophy. The goal is to have relatively few Base Widgets, and
multiple derived widgets that map to them with minor parameter changes. For example, in Home Assistant, a light and
a group are fairly similar, and require identical controls and status displays. This makes it possible to create a single
Base Widget, and map to it with two separate Derived Widgets. When creating a new Widget type, attempt to do one
of the following in order of preference:

1. Create a new Derived Widget that works with an existing Base Widget

2. Create a new Derived Widget that works with modifications to an existing Base Widget

3. Create a new Derived and Base Widget

1.8. HADashboard Widget Development 141

https://github.com/home-assistant/appdaemon/tree/dev/conf/example_dashboards

AppDaemon Documentation, Release 3.0.1

We also talk abour a third type of widgets, an Instantiated Widget - this refers to an actual widget in a
dashboard configuration file which will have a widget type and a number of specific variables.

1.8.2 Creating Custom Widgets

When creating new widgets, in a similar way to custom skins, HADashboard allows the creation of a directory called
custom_widgets in the configuration directory. Any yaml files placed in here will be treated as new Derived
Widgets. Any directories here will be treated as new Base Widgets. If you are creating a new widget you will need
to use a new name for the widget. Base Widgets by convention are stored in directories that are named starting with
base e.g. baselight, or basesuperwidget.

If either a Derived Widget or Base Widget have the same name as an existing widget, the custom widget will be used
in preference to allow existing widgets to be easily modified.

When a widget has been created and tested, and the author desires to contribute the widget back to the community, all
that is required is that the Derived and Base Widgets are placed in the Git Repository in the standard widget directory
(appdaemon/widgets) then a Pull Request may be issued in the ususal way.

1.8.3 Derived Widgets

A derived widget is simply a yaml file with a number of known fields to describe the widget. A secondary function
of derived widgets is to map in CSS variables for skinning.

Lets start with an example - here is the derived widget code for the light widget:

widget_type: baselight
entity: {{entity}}
post_service_active:

service: homeassistant/turn_on
entity_id: {{entity}}

post_service_inactive:
service: homeassistant/turn_off
entity_id: {{entity}}

fields:
title: {{title}}
title2: {{title2}}
icon: ""
units: "%"
level: ""
state_text: ""
icon_style: ""

icons:
icon_on: $light_icon_on
icon_off: $light_icon_off

static_icons:
icon_up: $light_icon_up
icon_down: $light_icon_down

css:
icon_style_active: $light_icon_style_active
icon_style_inactive: $light_icon_style_inactive

static_css:
title_style: $light_title_style
title2_style: $light_title2_style
state_text_style: $light_state_text_style
level_style: $light_level_style
unit_style: $light_unit_style

142 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

level_up_style: $light_level_up_style
level_down_style: $light_level_down_style
widget_style: $light_widget_style

Lets break it down line by line.

Top Level Variables

widget_type: baselight
entity: {{entity}}

Any entries at the top level are simply variables to be passed to the Base Widget. Some of them have special meanings
(listed in the following sections) but any values are allowed, and are all passed to the Base Widget. The exception to
this is the widget_type entry, which is required and refers to the Base Widget that this Derived Widget works with.

In the example above, entity is an argument that will be made available to the base widget. The value,
{{entity}} is a simple passthrough from the Instantiated Widget in the Dashboard. The significance of this is
that a Derived Widget may want to hard code specific parameters while passing others through. For example, a Base
Widget may require a service parameter for which service to call to turn a device on. A switch Derived Widget
may hard code this as switch.turn_on while a light derived widget may hard code it as light.turn_on.
Both however require the entity name from the Instantiated widget. In practice, this example is somewhat artificial
as you could use home_assistant.turn_on for both service calls, and in fact lights and switches have different
Base Widgets, but the concept remains valid.

An example of the above can be seen in action here:

post_service_active:
service: homeassistant/turn_on
entity_id: {{entity}}

post_service_inactive:
service: homeassistant/turn_off
entity_id: {{entity}}

post_service_active and post_service_inactive are both parameters specific to the baselight Base
Widget.

The remaining parameters have special significance and provide required information for the Base Widget.

Fields

fields:
title: {{title}}
title2: {{title2}}
icon: ""
units: "%"
level: ""
state_text: ""
icon_style: ""

Entries in the fields arguments map directly to the HTML fields declared in the Base Widget and must all be present.
Any field that has a defined value will be used to automatically initialize the corresponding value in the widget. This
is useful for static fields such as titles and simplifies the widget code significantly. Fields that are not required to be
initialized must still be present and set to "". Again, it is possible to map values directly from the Instantiated Widget
straight through to the Base Widget.

1.8. HADashboard Widget Development 143

AppDaemon Documentation, Release 3.0.1

Icons

icons:
icon_on: $light_icon_on
icon_off: $light_icon_off

The icons parameter refers to icons that may be in use in the Base Widget. The names must match what the Base
Widget is expecting. These Icons are expected to be manipulated by the Base Widget and are provided as specific
arguments to it. Whilst it is possible to hard code these, the intended use here is to use variables as above. These
variables map back to variables in the skin in use and are duplicated, possibly with different values in different skins.

The corresponding skin entries for these in the default skin are:

light_icon_on: fa-circle
light_icon_off: fa-circle-thin

These could be different in another skin.

In the base widget, there is code to change the icon from the on icon to the off icon in response to a touch or a state
change triggered elsewhere. The Base Widget has access to theses icon names when executing that code.

Static Icons

static_icons:
icon_up: $light_icon_up
icon_down: $light_icon_down

Static icons are similar in concept to fields in that they map directly to fields in the widget and will be prepopulated
automatically under the assumption that they don’t need to change. As with the icons, the actual values are mapped in
the skin.

An example of a static icon might be the plus and minus icons on the climate widget - they may be different in other
skins but don’t need to change once the widget is initialized.

CSS

css:
icon_style_active: $light_icon_style_active
icon_style_inactive: $light_icon_style_inactive

The css parameters are analogous to the icons - they are styles that are expected to be maipulated as part of the
Widget’s operation. They will be made available to the widget at initialization time, and are mapped through the skin.

In the case of the light Base Widget they remain the same, but inb a scene for instance, the touch pad is grey except
when it is activated when it changes to green - these styles are made available to the Base Widget to use for changing
th style when the button is pressed.

Static CSS

css:
static_css:

title_style: $light_title_style
title2_style: $light_title2_style
state_text_style: $light_state_text_style

144 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

level_style: $light_level_style
unit_style: $light_unit_style
level_up_style: $light_level_up_style
level_down_style: $light_level_down_style
widget_style: $light_widget_style

The statis_css entry is used for styles that are automatically applied to various fields. As with static_icons,
these are expected to be static and are automatically applied when the widget initializes. Again, the variables are
derived from the skin, and refer top things like titles that remain static for the lifetime of the widget.

Empty Values

None of the special sections icons, static_icons, css, static_css can be empty. If no values are required,
simply use the yaml syntax for an empty list - []. e.g.:

static_icons: []

Summary

In summary, a Derived Widget has 2 main functions:

1. Map values from the Instantiated Widget to the Base Widget, supplying hard coded parameters where necessary

2. Interact with the skin in use to provide the correct styles and icons to the Base Widget

It is technically possible to load a Base Widget into a dashboard directly but this is discouraged as it bypasses the
skinning. For this reason, even if a Base Widget is used for a single type of widget, a Derived Widget is also required.

1.8.4 Base Widgets

Base Widgets are where all the work actually gets done. To build a Base Widget you will need an understanding of
HTML and CSS as well as proficiency in JavaScript programming. Base Widgets are really just small snippets of
HTML code, with associated CSS to control their appearance, and JavaScript to react to touches, and update values
based on state changes.

To build a new Base Widget, first create a directory in the appropriate place, named for the widget. By convention, the
name of the widget should start with base - this is to avoid confusion in the dashboard creation logic between derived
and base widgets. The directory will contain 3 files, also named for the widget:

hass@Pegasus:/export/hass/src/appdaemon/appdaemon/widgets/baselight$ ls -l
total 16
-rw-rw-r-- 1 hass hass 1312 Mar 19 13:55 baselight.css
-rw-rw-r-- 1 hass hass 809 Mar 19 13:55 baselight.html
-rw-rw-r-- 1 hass hass 6056 Apr 16 10:07 baselight.js
hass@Pegasus:/export/hass/src/appdaemon/appdaemon/widgets/baselight$

The files are:

1. An HTML file that describes the various elements that the widget has, such as titles, value fields etc. The HTML
file also defines data bindings that the JavaScript piece uses.

2. A CSS File - this describes the basic styles for the widget and is used for placement of elements too

3. A JavaScript file - this file uses the Widget API and contains all of the logic for the widget.

For the pusposes of this document we will provide examples from the baselight Base Widget.

1.8. HADashboard Widget Development 145

AppDaemon Documentation, Release 3.0.1

Widget HTML Files

The HTML files exist to provide a basic layout for the widget and insert the styles. They are usually fairly simple.

By convention, the variaous tag types have styling suitable for some common elements although that can be overriden
in the css file or the skin:

• <h1> is styled for small text such as titles or state text

• <h2> is styled for large icons or text values

• <p> is styled for small unit labels, e.g. %

To assist with programatically changing values and styles in the HTML, HADashboard uses Knockout From their web
page:

Knockout is a JavaScript library that helps you to create rich, responsive display and editor user interfaces
with a clean underlying data model. Any time you have sections of UI that update dynamically (e.g.,
changing depending on the user’s actions or when an external data source changes), KO can help you
implement it more simply and maintainably.

Knockout bindings are used to set various attributes and the binding types in use are as follows:

• data bind - used for setting text values

• attr, type style - used for setting styles

• attr, type class - used for displaying icons

It is suggested that you familiarize yourself with the bindings in use.

Here is an example of an HTML file.

<h1 class="title" data-bind="text: title, attr:{style: title_style}"></h1>
<h1 class="title2" data-bind="text: title2, attr:{style: title2_style}"></h1>
<h2 class="icon" data-bind="attr:{style: icon_style}"><i data-bind="attr: {class:
→˓icon}"></i></h2>

<p class="state_text" data-bind="text: state_text, attr:{style: state_text_style}"></
→˓p>
<div class="levelunit">
<p class="level" data-bind="text: level, attr:{style: level_style}"></p>
<p class="unit" data-bind="html: units, attr:{style: unit_style}"></p>
</div>
<p class="secondary-icon minus"><i data-bind="attr: {class: icon_down, style: level_
→˓down_style}" id="level-down"></i></p>
<p class="secondary-icon plus"><i data-bind="attr: {class: icon_up, style: level_up_
→˓style}" id="level-up"></i></p>

• The first 2 <h1> tags set up title1 and title2 using a data bind for the values and style attributes to allow
the styles to be set. These styles map back to the various css and static_css supplied as arguments to the
widget and their names must match

• The <h2> tag introduces a large icon, presumably of a lightbulb or something similar. Here, because of the way
that icons work, we are using a class attribute in Knockout to directly set the class of the element which has the
effect of forcing an icon to be displayed

• The is set up to allow the user to toggle the widget on and off and is reffered to later in the JavaScript

• The <div> here is used for grouping the level and unit labels for the light, along with the included <p> tags
which introduce the actual elements

• The last 2 <p> elements are for the up and down icons.

146 Chapter 1. Upgrading from 2.x

http://knockoutjs.com/index.html

AppDaemon Documentation, Release 3.0.1

Widget CSS Files

CSS files in widgets are used primarily for positioning of elements since most of the styling occurs in the skins.
Since each widget must have a unique id, the {id}} piece of each selector name will be substituted with a unique id
ewnsuring that even if there are multiple instances of the same widget they will all behave correctly.

Other than that, this is standard CSS used for laying out the various HTML elements appropriately.

Here is an example that works with the HTML above.

.widget-baselight-{{id}} {
position: relative;

}

.widget-baselight-{{id}} .state_text {
font-size: 85%;

}

.widget-baselight-{{id}} .title {
position: absolute;
top: 5px;
width: 100%;

}

.widget-baselight-{{id}} .title2 {
position: absolute;
top: 23px;
width: 100%;

}

.widget-baselight-{{id}} .state_text {
position: absolute;
top: 38px;
width: 100%;

}

.widget-baselight-{{id}} .icon {
position: absolute;
top: 43px;
width: 100%;

}

.widget-baselight-{{id}} .toggle-area {
z-index: 10;
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 75%;

}

.widget-baselight-{{id}} .level {
display: inline-block;

}

.widget-baselight-{{id}} .unit {
display: inline-block;

}

1.8. HADashboard Widget Development 147

AppDaemon Documentation, Release 3.0.1

.widget-baselight-{{id}} .levelunit {
position: absolute;
bottom: 5px;
width: 100%;

}

.widget-baselight-{{id}} .secondary-icon {
position: absolute;
bottom: 0px;
font-size: 20px;
width: 32px;
color: white;

}

.widget-baselight-{{id}} .secondary-icon.plus {
right: 24px;

}

.widget-baselight-{{id}} .secondary-icon.plus i {
padding-top: 10px;
padding-left: 30px;

}

.widget-baselight-{{id}} .secondary-icon.minus {
left: 8px;

}

.widget-baselight-{{id}} .secondary-icon.minus i {
padding-top: 10px;
padding-right: 30px;

}

Widget JavaScript Files

The JavaScript file is responsible fore glueing all the pieces together:

• Registering callbacks for events

• Registering callbacks for touches

• Updating the fields, icons, styles as necessary

Lets take a look at a typical JavaScript Widget - the Baselight Widget.

function baselight(widget_id, url, skin, parameters)
{

All widgets are declared with an initial function named for the widget functions within the .js file although they are
technically objects.

This fucntion is in fact the constructor and is initially called when the widget is first loaded. It is handed a number of
parameters:

• widget_id - Unique identifier of the widget

• url - the url used to invoke the widget

• the name of the skin in use

• the parameters supplied by the dashboard for this particular widget

148 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Next we need to set up our self variable:

// Will be using "self" throughout for the various flavors of "this"
// so for consistency ...

self = this

For the uninitiated, JavaScript has a somewhat confused notion of scopes when using objects, as scopes can be inherited
from different places depebding on the mechanism for calling intto the code. In Widgets, various tricks have been used
to present a consistent view to the user which requires an initial declaration of the self variable. From then on, all calls
pass this variable between calls to ensure consistency. It is recomended that the convention of declaring self =
this at the top of the function then rigidly sticking to the use of self is adhered to, to avoid confusion.

// Initialization

self.widget_id = widget_id

// Parameters may come in useful later on

self.parameters = parameters

Here we are storing the parameters in case we need them later.

// Parameter handling

if ("monitored_entity" in self.parameters)
{

entity = self.parameters.monitored_entity
}
else
{

entity = self.parameters.entity
}

if ("on_brightness" in self.parameters)
{

self.on_brightness = self.parameters.on_brightness
}
else
{

self.on_brightness = 127
}

Here we process the parameters and set up any variables we may need to refer to later on.

The next step is to set up the widget to respond to various events such as button clicks and state changes.

// Define callbacks for on click events
// They are defined as functions below and can be any name as long as the
// 'self'variables match the callbacks array below
// We need to add them into the object for later reference

self.OnButtonClick = OnButtonClick
self.OnRaiseLevelClick = OnRaiseLevelClick
self.OnLowerLevelClick = OnLowerLevelClick

var callbacks =
[

{"selector": '#' + widget_id + ' > span', "action": "click", "callback": self.
→˓OnButtonClick},

1.8. HADashboard Widget Development 149

AppDaemon Documentation, Release 3.0.1

{"selector": '#' + widget_id + ' #level-up', "action": "click", "callback":
→˓self.OnRaiseLevelClick},

{"selector": '#' + widget_id + ' #level-down', "action": "click", "callback":
→˓self.OnLowerLevelClick},

]

Each widget has the opportunity to register itself for button clicks or touches, or any other event type such as change.
This is done by filling out the callbacks array (which is later used to initialize them). Here we are registering 3
callbacks.

Looking at OnButtonClick as an example:

• OnButtonClick is the name of a function we will be declaring later

• self.OnButtonClick is being used to add it to the object

• In Callbacks, we have an entry that connects a jQuery selector to that particular callback, such that when the
element identified by the selector is clicked, the callback in the list will be called.

• action defines the jQuery action type the callback will respond to, e.g. click or change

Once the widget is running, the OnButtonClick function will be called whenever the span in the HTML file is touched.
You may have noticed that in the CSS file we placed the span on top of everything else and made it cover the entire
widget.

Note that there is nothing special about the naming of OnButtonClick - it can be called anything as long as the
correct references are present in the callbacks list.

When subscribing to events that relate to value changes in a widget, such as for instance an input select being changed
by a user, which we must propagate back to Home Assistant, there is an issue with race conditions if we subscribe to
the normal change event. The change event will fire, and our onChange function may be called before the knockout
binding has an opportunity to update itself, and we will see the old value. To handle this situation, a second type of
event subscription is provided - we will subscribe to the knockout binding changing rather than the control itself. This
is done in a similar way to the previous mechanism, the only differentce is that instead of a selector parameter, we use
an observable parameter whcih is the name of the binding you want to subscribe to. For instance:

{"observable": "selectedoption", "action": "change", "callback": self.onChange}

Both styles of callback may be used together.

Next we will setup the state callbacks:

// Define callbacks for entities - this model allows a widget to monitor multiple
→˓entities if needed
// Initial will be called when the dashboard loads and state has been gathered for
→˓the entity
// Update will be called every time an update occurs for that entity

self.OnStateAvailable = OnStateAvailable
self.OnStateUpdate = OnStateUpdate

var monitored_entities =
[

{"entity": entity, "initial": self.OnStateAvailable, "update": self.
→˓OnStateUpdate}

]

This is a similar concept to tracking state changes and displaying them. For the purposes of a widget, we care about 2
separate things:

150 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

1. Getting an initial value for the state when the widget is first loaded

2. Tracking changes to the state over time

The first is accomplished by a callback when the widget is first loaded. We add a callback for the entity we are
interested in and identify which routine will be called initially whrn the widget is loaded, and which callback will be
called whenever we see a state update. These functions will be responsible for updating the fields necessary to show
initial state and changes over time. How that happens is a function of the widget design, but for instance a change to a
sensor will usually result in that value being displayed in one of the HTML fields.

Here we are tracking just one entity, but it is possible to register callbacks on as many entities as you need for your
widget.

When that is in place we finalize the initialization:

// Finally, call the parent constructor to get things moving

WidgetBase.call(self, widget_id, url, skin, parameters, monitored_entities, callbacks)

After all the setup is complete, we need to make a call to the object’s parent constructor to start processing, passing
in various parameters, some of which we got from the function call itself, and other like the callbacks that we set up
ourselves. The callback parameters must exist but can be empty, e.g. callbacks = [] - not every widget needs to
respond to touches, not every widget needs to respond to state changes.

After this call completes, the initializer is complete and from now on, activity in the widget is governed by callbacks
either from initial state, state changes or button clicks,

Next we will define our state callbacks:

// Function Definitions

// The StateAvailable function will be called when
// self.state[<entity>] has valid information for the requested entity
// state is the initial state

function OnStateAvailable(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}
set_view(self, self.state, self.level)

}

This function was one of the ones that we referred to earlier in the monitored_entities list. Since we identified
this as the initial callback, it will be called with an initial value for the entities state when the widget is first loaded,
but after the constructor function has completed. It is handed a self reference, and the state for the entity it subscribed
to. What happens when this code is called is up to the widget. In the case of Base Light it will set the icon type
depending on whether the light is on or off, and also update the level. Since this is done elsewhere in the widget, I
added a function called set_view to set these things up. There is also some logic here to account for the fact that in
Home Assistant a light has no brightness level if it is off, so 0 is assumed. Here, we also make a note of the current
state for later reference - self.state = state.state

• self.state is an object attribute

1.8. HADashboard Widget Development 151

AppDaemon Documentation, Release 3.0.1

• state.state is the actual state of the entity. Like othe Home Assistant state descriptions it can also have a
set of sub-attributes under state.attributes for values like brightness or color etc.

OnStateUpdate at least for this widget is very similar to OnStateAvailable, in fact it could probably be a
single function for both initial and update but I separated it out for clarity.

// The OnStateUpdate function will be called when the specific entity
// receives a state update - its new values will be available
// in self.state[<entity>] and returned in the state parameter

function OnStateUpdate(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}

set_view(self, self.state, self.level)
}

Next we define the functions that we referenced in the callback list for the various click actions. First,
OnButtonClick is responding to someone touching the widget to toggle the state from off to on or vice-versa.

function OnButtonClick(self)
{

if (self.state == "off")
{

args = self.parameters.post_service_active
if ("on_attributes" in self.parameters)
{

for (var attr in self.parameters.on_attributes)
{

args[attr] = self.parameters.on_attributes[attr]
}

}
}
else
{

args = self.parameters.post_service_inactive
}
self.call_service(self, args)
toggle(self)

}

This is less complicated than it looks. What is happening here is that based on the current state of the entity, we are
selecting which service to call to change that state. We are looking it up in our parameters that we saved earlier.

So, if the light is off we consult our parameters for post_service_active whcih should be set to a service that
will turn ther light on (e.g. light/turn_on). Similarly if it is on, we look for post_service_inactive to
find out how to turn it off. Once we have made that choice we make the service call to effect the change: self.
call_service()

The additional logic and loop when state is off is to construct the necessary dictionary of additional parameters in the
format the turn_on service expects to set brightness, color etc, that may be passed in to the widget.

152 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Raise level is fairly explanatory - this is clicked to make the light brighter:

function OnRaiseLevelClick(self)
{

self.level = self.level + 255/10;
self.level = parseInt(self.level)
if (self.level > 255)
{

self.level = 255
}
args = self.parameters.post_service_active
args["brightness"] = self.level
self.call_service(self, args)

}

Here we are using post_service_active and setting the brightness attribute. Each click will jump 10 units.
Lower level is very similar:

function OnLowerLevelClick(self)
{

self.level = self.level - 255/10;
if (self.level < 0)
{

self.level = 0;
}
self.level = parseInt(self.level)
if (self.level == 0)
{

args = self.parameters.post_service_inactive
}
else
{

args = self.parameters.post_service_active
args["brightness"] = self.level

}
self.call_service(self, args)

}

It is slightly more complex in that rather than setting the level to 0, when it gets there it turns the light off.

Finally, the toggle function is called by both of the above functions to change the stored state of the entity and update
the display (using set_view() again)

function toggle(self)
{

if (self.state == "on")
{

self.state = "off";
self.level = 0

}
else
{

self.state = "on";
}
set_view(self, self.state, self.level)

}

Set_view() is where we attend to updating the widgets actual display based on the current state that may have just
changed.

1.8. HADashboard Widget Development 153

AppDaemon Documentation, Release 3.0.1

// Set view is a helper function to set all aspects of the widget to its
// current state - it is called by widget code when an update occurs
// or some other event that requires a an update of the view

function set_view(self, state, level)
{

if (state == "on")
{

// Set Icon will set the style correctly for an icon
self.set_icon(self, "icon", self.icons.icon_on)
// Set view will set the view for the appropriate field
self.set_field(self, "icon_style", self.css.icon_style_active)

}
else
{

self.set_icon(self, "icon", self.icons.icon_off)
self.set_field(self, "icon_style", self.css.icon_style_inactive)

}
if (typeof level == 'undefined')
{

self.set_field(self, "level", 0)
}
else
{

self.set_field(self, "level", Math.ceil((level*100/255) / 10) * 10)
}

}
}

The most important concept here are the 2 calls to update fields:

• set_icon() - update an icon to a different one, usually used to switch from an on representation to an off repre-
sentation and vice-versa

• set_field() - update a field to show a new value. In this case the brightness field is being update to show the latest
value

That is the anatomy of a typical widget - here it is in full:

function baselight(widget_id, url, skin, parameters)
{

// Will be using "self" throughout for the various flavors of "this"
// so for consistency ...

self = this

// Initialization

self.widget_id = widget_id

// Parameters may come in useful later on

self.parameters = parameters

// Parameter handling

if ("monitored_entity" in self.parameters)
{

154 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

entity = self.parameters.monitored_entity
}
else
{

entity = self.parameters.entity
}

if ("on_brightness" in self.parameters)
{

self.on_brightness = self.parameters.on_brightness
}
else
{

self.on_brightness = 127
}

// Define callbacks for on click events
// They are defined as functions below and can be any name as long as the
// 'self'variables match the callbacks array below
// We need to add them into the object for later reference

self.OnButtonClick = OnButtonClick
self.OnRaiseLevelClick = OnRaiseLevelClick
self.OnLowerLevelClick = OnLowerLevelClick

var callbacks =
[

{"selector": '#' + widget_id + ' > span', "callback": self.OnButtonClick},
{"selector": '#' + widget_id + ' #level-up', "callback": self.

→˓OnRaiseLevelClick},
{"selector": '#' + widget_id + ' #level-down', "callback": self.

→˓OnLowerLevelClick},
]

// Define callbacks for entities - this model allows a widget to monitor multiple
→˓entities if needed

// Initial will be called when the dashboard loads and state has been gathered
→˓for the entity

// Update will be called every time an update occurs for that entity

self.OnStateAvailable = OnStateAvailable
self.OnStateUpdate = OnStateUpdate

var monitored_entities =
[

{"entity": entity, "initial": self.OnStateAvailable, "update": self.
→˓OnStateUpdate}

]

// Finally, call the parent constructor to get things moving

WidgetBase.call(self, widget_id, url, skin, parameters, monitored_entities,
→˓callbacks)

// Function Definitions

// The StateAvailable function will be called when
// self.state[<entity>] has valid information for the requested entity

1.8. HADashboard Widget Development 155

AppDaemon Documentation, Release 3.0.1

// state is the initial state

function OnStateAvailable(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}
set_view(self, self.state, self.level)

}

// The OnStateUpdate function will be called when the specific entity
// receives a state update - its new values will be available
// in self.state[<entity>] and returned in the state parameter

function OnStateUpdate(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}

set_view(self, self.state, self.level)
}

function OnButtonClick(self)
{

if (self.state == "off")
{

args = self.parameters.post_service_active
if ("on_attributes" in self.parameters)
{

for (var attr in self.parameters.on_attributes)
{

args[attr] = self.parameters.on_attributes[attr]
}

}
}
else
{

args = self.parameters.post_service_inactive
}
console.log(args)
self.call_service(self, args)
toggle(self)

}

function OnRaiseLevelClick(self)

156 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

{
self.level = self.level + 255/10;
self.level = parseInt(self.level)
if (self.level > 255)
{

self.level = 255
}
args = self.parameters.post_service_active
args["brightness"] = self.level
self.call_service(self, args)

}

function OnLowerLevelClick(self)
{

self.level = self.level - 255/10;
if (self.level < 0)
{

self.level = 0;
}
self.level = parseInt(self.level)
if (self.level == 0)
{

args = self.parameters.post_service_inactive
}
else
{

args = self.parameters.post_service_active
args["brightness"] = self.level

}
self.call_service(self, args)

}

function toggle(self)
{

if (self.state == "on")
{

self.state = "off";
self.level = 0

}
else
{

self.state = "on";
}
set_view(self, self.state, self.level)

}

// Set view is a helper function to set all aspects of the widget to its
// current state - it is called by widget code when an update occurs
// or some other event that requires a an update of the view

function set_view(self, state, level)
{

if (state == "on")
{

// Set Icon will set the style correctly for an icon
self.set_icon(self, "icon", self.icons.icon_on)
// Set view will set the view for the appropriate field

1.8. HADashboard Widget Development 157

AppDaemon Documentation, Release 3.0.1

self.set_field(self, "icon_style", self.css.icon_style_active)
}
else
{

self.set_icon(self, "icon", self.icons.icon_off)
self.set_field(self, "icon_style", self.css.icon_style_inactive)

}
if (typeof level == 'undefined')
{

self.set_field(self, "level", 0)
}
else
{

self.set_field(self, "level", Math.ceil((level*100/255) / 10) * 10)
}

}
}

1.8.5 A Note on Skinning

As you have seen, when creating a new wiget, it is also necessary to add entries for the skinning variables. When con-
tributing widgets back, please ensure that you have provided entries for all of the included skins that are sympathetic
to the original look and feel, or the PR will not be accepted.

1.9 Change Log

1.9.1 3.0.1

Features

• Added Production Mode to disable checking of App config or code changes

• RSS Feed can now optionally show a description for each story

• Disabling of zooming and double tap zooming on iOs devices is now optional via the scaling dashboard
argument

• Exiting from the commandline with ctrl-c will now cleanly terminate apps

• Sending SIGTERM to an appdaemon process will cause a clean shutdown, including orderly termination of all
apps in dependency order

• Added extra checking for HASS Initialization to prevent a race condition in which metadata could not be read

• Weather widget facelift allowing ability to change sensors, more dynamic usnits, forecast option, icon options,
option to show Rain/Snow depending on precip_type sensor (and change icons), wind icon rotates acording to
wind bearing - contributed by Marcin Domański

Fixes

• Fixed a problem in the Docker initialization script

• Fixed an parameter collision for events with a parameter name in listen_event()

Breaking Changes

• iOS Scaling and tap zooming is no longer disabled by default

158 Chapter 1. Upgrading from 2.x

https://github.com/kabturek

AppDaemon Documentation, Release 3.0.1

1.9.2 3.0.0 (2018-03-18)

Features

• API 200 responses are now logged to the access file

• Add meta tags to prevent double tap zoom on iOS

Fixes

• Re-added set_app_state() to the API

Breaking Changes

None

1.9.3 3.0.0b5 (2018-03-05)

Features

• Added additional error checking for badly formed RSS feeds

Fixes

• Fixed a bug that broke binary_sensor widget.

• Fixed a bug that broke retries when connecting to Home Assistant

• Fixed a bug that could cause lockups during app initialization

• Fixed a bug for Docker that prevented the initial config from working correctly - contributed by mradziwo

Breaking Changes

None

1.9.4 3.0.0b4 (2018-03-03)

Features

• Single App dependencies can now be specified on the dependency line itself and don’t have to be a list of size 1

• Added get_ad_version(), and ad_version to the config dictionary

• Added filters for Apps

• Added global module dependency tracking

• Added plugin reload app control

• Added icon widget

Fixes

• Apps now correctly reload when HASS comes back up after a restart

• get_error() now properly returns the error log logger object

• get_hass_config() is now correctly named

• app_args now correctly returns args for all apps

• get_state() now returns fields from the attributes dictionary in preference to the top level dictionary if there
is a clash. In particular, this now means it is easier to iterate through group members

• Fixed a bug preventing an objects terminate() from being called when deleted from apps.yaml

1.9. Change Log 159

https://github.com/mradziwo

AppDaemon Documentation, Release 3.0.1

• Fixed a bug in which object info was not being cleaned out at object termination

• Fixed an issue preventing dashboard updates on python 3.6

Breaking Changes

None

1.9.5 3.0.0b3 (2018-02-11)

Features

• Added javascript widget

• Upgraded MDI Icons to 2.1.19

• Add separate log for diagnostic info

• Per-widget type global parameters

• App level dependencies

• listen_state() now returns the handle to the callback

• added oneshot option to listen_state()

• Add step parameter to climate widget - contributed by Adrian Popa

• Add internationalization options to clock widget - contributed by Adrian Popa

• Doc improvements - contributed by Marco

Fixes

• Fixed image path for android devices

• Fix a bug with the time parameter for images

• Fixed disable_apps

• Fixed a bug in get_state() with attributes=all returning just the attributes dictionary instead of the
entire entity.

Breaking Changes

• In apps.yaml, dependencies should now be a proper yaml list rather than a comma separated string

• Dependencies now refer to individual apps rather than modules

1.9.6 3.0.0b2 (2018-01-27)

Features

• Make int args in appdaemon.yaml a little more robust

• Improve handling for missing app files

• Module loading enhancements

• Moved from requests to aiohttp client for better async behavior

• Added thread monitoring for worker threads

• Give more informative error message if AppDaemon can’t locate a valid config dir

Fixes

160 Chapter 1. Upgrading from 2.x

https://github.com/mad-ady
https://github.com/mad-ady
https://github.com/marconett

AppDaemon Documentation, Release 3.0.1

• Fixed a bug that could cause multiple apps.yaml changes or additions to be ignored

• Fixed a bug causing listen_state() callbacks with duration set to fire immediately

• Pinned yarl library to fix an issue with Docker build

• Fixed a couple of potential event loop hold ups

• Fixed a bug in password security for HADashboard service and state calls

• Changes to apps.yaml now also force a reload of dependent modules

• exclude_dirs now applies to yaml files as well as python files

• Fixed broken icon on HADashboard logon screen

• Fixed a bug preventing the media title from showing in the media player

Breaking Changes

• App modules not listed in an apps.yaml file will no longer be loaded. Python modules may still be imported
directly if they are in a directory in which other apps reside.

• cert_path is deprecated. With the replacement of requests with aiohttp, it is now sufficient to set
cert_verify to False to use a self signed certificate.

• Initial dashboard loads may be slower on less powerful hardware when using password authentication. Updating
after the initial load is unaffected.

1.9.7 3.0.0b1 (2018-01-12)

Features

• Refactored pluggable architecture

• Support for multiple HASS instances

• Custom constraints

• Namespaces

• Path of Secret file can now be specified

• apps.yaml can now be split across multiple files and directories

• Apps can now establish loading priorities to influence their loading order

• IFRAME Refreshes should now be more reliable

• Added calls to access the underlying logger objects for the main and error logs

• Add the ability to ignore specific subdirectories under appdir

• Added error handling for apps that can’t be read or have broken links

• Added london Underground Widget - contributed by mmmmmmtasty

• Added ability to display sensor attributes - contributed by mmmmmmtasty

• Added Weather Summary Widget - contributed by mmmmmmtasty

• Added Sticky navigation - contributed by Lars Englund

• Added Input Select widget - contributed by Rene Tode

• Redesigned Input Number widget (old is still available as input_slider) - contributed by Rene Tode

• Added Radial widget - contributed by Rene Tode

1.9. Change Log 161

https://github.com/mmmmmtasty
https://github.com/mmmmmtasty
https://github.com/mmmmmtasty
https://github.com/larsenglund
https://github.com/ReneTode
https://github.com/ReneTode
https://github.com/ReneTode

AppDaemon Documentation, Release 3.0.1

• Added Temperature widget - contributed by Rene Tode

• Added container style to sensor widget - contributed by Rene Tode

Fixes

• Fixed an issue with the compiled directory not being created early enough

Breaking Changes

• Apps need to change the import and super class

• info_listen_state() now returns the namespace in addition to the previous parameters

• AppDaemon no longer supports python 3.4

• –commtype command line argument has been moved to the appdaemon.cfg file

• The “ha_started” event has been renamed to “plugin_started”

• RSS Feed parameters have been moved to the hadashboard section

• Log directives now have their own section

• AppDaemon section renamed to appdaemon, HADashboard section renamed to hadashboard

• Accessing other Apps arguments is now via the app_config attribute, config retains just the AppDaemon
configuration parameters

• Plugins (such as the HASS plugin now have their own parameters under the plugin section of the config file

• The !secret directive has been moved to the top level of appdaemon.yaml

• the self.ha_config attribute has been replaced by the self.get_hass_config() api call and now supports
namespaces.

• apps.yaml in the config directory has now been deprecated

• select_value() has been renamed to set_value() to harmonize with HASS

• It is no longer possible to automatically migrate from the legacy cfg style of config, and support for cfg files has
been dropped.

1.9.8 2.1.12 (2017-11-07)

Features

None

Fixes

• Fixed passwords causing 500 error on HADashboard - contributed by wchan.ranelagh

Breaking Changes

None

1.9.9 2.1.11 (2017-10-25)

Features

None

Fixes

• Fixed an issue with run_at_sunset() firing multiple times

162 Chapter 1. Upgrading from 2.x

https://github.com/ReneTode
https://github.com/ReneTode
https://community.home-assistant.io/u/wchan.ranelagh/summary

AppDaemon Documentation, Release 3.0.1

Breaking Changes

None

1.9.10 2.1.10 (2017-10-11)

Features

• Renamed the HADashboard input_slider to input_number to support HASS’ change

• Fixed select_value() to work with input_number entities

Fixes

None

Breaking Changes

The input_select widget has been renamed to input_number to support the change in HASS

1.9.11 2.1.9 (2017-09-08)

Features

None

Fixes

• broken disable_apps temporary workaround

Breaking Changes

None

1.9.12 2.1.8 (2017-09-08)

Features

• Refactor of dashboard code in preparation for HASS integration

• Addition of check to highlight excessive time in scheduler loop

• Split app configuration out into a separate file in preparation for HASS integration

• Enhance widget API to handle all event types instead of just click

• Add example HADashboard focussed Apps for Oslo City Bikes, Caching of local AppDaemon events, Moni-
toring events and logging, Google Calendar Feed, Oslo Public Transport, YR Weather - contributed by Torkild
Retvedt

Fixes

• Fixed a bug that gave a spurious “text widget not found” error

Breaking Changes

• App configuration is now separate from AppDaemon, HASS and HADashboard configuration

• The Widget API has changed to accommodate different event types and now needs an action parameter to
specify what the event type to be listened for is

1.9. Change Log 163

https://github.com/torkildr
https://github.com/torkildr

AppDaemon Documentation, Release 3.0.1

1.9.13 2.1.7 (2017-08-20)

Features

• Converted docs to rst for better readthedocs support

• Added custom widget development

• Enhanced API support to handle multiple endpoints per App

• Added helper functions for Google Home’s APP.AI - contributed by engrbm87

• Added immediate parameter to listen state to trigger immediate evaluation of the delay parameter

Fixes

None

Breaking Changes

• Existing API Apps need to register their endpoint with register_endpoint()

1.9.14 2.1.6 (2017-08-11)

Features

• API now runs on a separate port to the dashboard

Fixes

None

Breaking Changes

• API requires the api_port configuration value to be set and now runs on a different port from the dashboard

• SSL Setup for API now requires api_ssl_certificate and api_ssl_key to be set

• ad_key has been renamed to api_key

1.9.15 2.1.5 (2017-08-10)

Features

None

Fixes

None

Breaking Changes

• get_alexa_slot_value() now requires a keyword argument for slotname

1.9.16 2.1.4 (2017-08-10)

Features

None

Fixes

• .cfg file fixes

164 Chapter 1. Upgrading from 2.x

https://github.com/engrbm87

AppDaemon Documentation, Release 3.0.1

Breaking Changes

None

1.9.17 2.1.3 (2017-08-11)

Features

• Restructure docs for readthedocs.io

None

Fixes

None

Breaking Changes

None

1.9.18 2.1.2 (2017-08-11)

Features

• Add ‘get_alexa_slot_value()

• Add log_size and log_generations config parameters

• Add additional debugging to help Docker users

Fixes

None

Breaking Changes

None

1.9.19 2.1.0 (2017-08-11)

Features

• Add a reference to official vkorn repository for hass.io

• Add the ability to access hass state as App attributes

• Add RESTFul API Support for Apps

• Add disable_dash directive to enable API access without Dashboards

• Add Alexa Helper functions

• Update Material Design Icons to 1.9.32 - contributed by minchick

• Use relative URLs for better remote behavior - contributed by Daniel Trnka

• Add SSL Support

• Add Password security for screens and HASS proxying functions

• Add support for secrets in the AppDaemon configuration file

• Add support for secrets in HADashboard configuration files

1.9. Change Log 165

https://github.com/minchik
https://github.com/trnila

AppDaemon Documentation, Release 3.0.1

• dash_navigate() now takes an optional screen to return to

Fixes

• Toggle area fixes submitted by azeroth12 and minchick

• Typo fixes submitted by Aaron Linville, vrs01, Gabor SZOLLOSI, Ken Davidson, Christian Lasaczyk, Klaus,
Johan Haals

• Fixed missing skin variables for media player and sensor widgets

Breaking Changes

• Compiled dashboards may need to be deleted after this upgrade

1.9.20 2.0.8 (2017-07-23)

Features

• Add step parameter to media player

• Add row parameter to dashboard

• Add ability to set timeout and return on dash navigation

• Add ability to force dashboard page changes from Apps, Alexa and HASS Automations

Fixes

• Add quotes to times in examples.yaml - contributed by Cecron

• Fix python 3.6 issue with datetime.datetime.fromtimestamp() - contributed by motir

Breaking Changes

None

1.9.21 2.0.7 (2017-07-20)

Features

None

Fixes

• Fixed a bug in label and text_sensor widgets

Breaking Changes

None

1.9.22 2.0.6 (2017-07-20)

Features

None

Fixes

• Fix a bug causing an apps terminate() to not be called

Breaking Changes

None

166 Chapter 1. Upgrading from 2.x

https://github.com/azeroth12
https://github.com/minchik
https://github.com/linville
https://github.com/vrs01
https://github.com/szogi
https://github.com/kwdavidson
https://github.com/ChrisLasar
https://github.com/k-laus
https://github.com/jhaals
https://github.com/Cecron
https://github.com/motir

AppDaemon Documentation, Release 3.0.1

1.9.23 2.0.5 (2017-07-16)

Features

None

Fixes

• Change convert_utc() to use iso8601 library

Breaking Changes

None

1.9.24 2.0.4 (2017-07-16)

Features

• AppDaemon is now on PyPi - no more need to use git for installs

• Allow time_zone directive in appdaemon.cfg to override hass supplied time zone

• Add API calls to return info on schedule table and callbacks (get_scheduler_entries(), get_callback_entries())

• Add get_tracker_details()

• Add sub entity to sensor

• Add hass_disconnected event and allow Apps to run while HASS is disconnected

Fixes

• Fix startup examples to match new -c semantics and add in docs

• Fix Time Travel

• Fix for crashes on HASS restart if apps weren’t in use - contributed by shprota

• Attempted a fix for NaN showing for Nest & Ecobee thermostats when in auto mode

Breaking Changes

None

1.9.25 2.0.3 (2017-07-09)

Features

• Add error display field to weather widget

Fixes

• Fix issue with device trackers and use_hass_icon

Breaking Changes

None

1.9. Change Log 167

https://github.com/shprota

AppDaemon Documentation, Release 3.0.1

1.9.26 2.0.2 (2017-07-08)

Features

• Move docker image to python 3.6

Fixes

None

Breaking Changes

None

1.9.27 2.0.1 (2017-07-08)

Features

• Much Improved Docker support including tutorial - many thanks to quadportnick

Fixes

• Version Change

• Respect cert_path setting when connecting to WebSocket over SSL - contributed by yawor

Breaking Changes

None

1.9.28 2.0.0beta4 (2017-06-18)

Features

• Migrate timer thread to async

• Add option to turn off verification for self signed certs (contributed by janwh)

• AppDaemon configuration now uses YAML, among other things this allows arbitarily complex nested data
structures in App parameters

• Added ability to convert from old cfg file to YAML

• AppDaemon Apps can now publish arbitary state to other Apps and the dashboard

• Added Gauge Widget

• Added RSS Widget

• Add next and previous track to media player

Fixes

• Slider now works correctly after changes outside of HADashboard

• Climate now works correctly after changes outside of HADashboard

• Media player now works correctly after changes outside of HADashboard

• ha.log now correctly dumps data structures

• on_attributes for lights now correctly supports RGB and XY_COLOR

• Fixed a bug in the scheduler to reduce clock skew messages

Breaking Changes

168 Chapter 1. Upgrading from 2.x

https://community.home-assistant.io/u/quadportnick/summary
https://github.com/yawor
https://github.com/janwh

AppDaemon Documentation, Release 3.0.1

• The cfg file style of configuration is now deprecated although it still works for now for most features

• Argument names passed to Apps are now case sensitive

1.9.29 2.0.0beta3.5 (2017-04-09)

Features

• Label now accepts HTML for the value

• IFRAME widget now allows vimeo and youtube videos to go fullscreen when clicked

• IFRAME and Camera widgets now have optional title overlay

• Widgets that display icons can now pick up icons defined in HASS

• aiohttp version 2 support

Fixes

•

Breaking Changes

•

1.9.30 2.0.0beta3 (2017-03-27)

Features

• Added alarm widget

• Added camera widget

• Dimmers and groups now allow you to specify a list of on parameters to control brightness, color etc.

• Edited code for PEP8 Compliance

• Widgets can now have a default size other than (1x1)

• Added empty to layouts for multiple blank lines

• Numeric values can now have a comma as the decimal separator

• Add Global Parameters

• Rewrote media widget

Fixes

• IFrames now follow widget borders better

• IFrame now allows user input

• Fixed a race condition on dashboard reload

Breaking Changes

• Media Widget now needs to be 2 cells high

1.9. Change Log 169

AppDaemon Documentation, Release 3.0.1

1.9.31 2.0.0beta2 (2017-03-12)

Features

• Widget level styles now correctly override just the styles they are replacing in the skin, not the whole style

• Device tracker toggling of state is optional and defaults to off

• Add climate widget

• Add script widget

• Add lock widget

• Add cover widget

• Added optional monitored_state argument to group to pick a representative entity to track dimming in-
stead of guessing

• Introduce new widget definition model in preparation for custom widgets

• Rewrite several widgets using the new model

• Add state map and state text functions to sensor, scene, binary_sensor, switch, device_tracker, script, lock, cover,
input_boolean

• Allow dashboard accesses to be logged in a separate file

• Flag to force recompilation after startup

• Additional error checks in many places

• Dashboard determines the stream URL dynamically rather than by having it hard coded

• Add IFRAME widget

• Sensor widget now automatically detects units

• Sensor widget has separate styles for text and numeric

• Style fixes

• Active Map for device trackers

Fixes

• Various minor skin fixes

Breaking Changes

• Widget level styles that relied on overriding the whole skin style may no longer work as expected

• Device trackers must now be explicitly configured to allow the user to toggle state, by setting the enable
parameter

• Groups of lights must have the monitored_entity argument to work properly if they contain any dimmable
lights

• text_sensor is deprecated and will be removed at some stage. It is now an alias for sensor

1.9.32 2.0.0beta1 (2017-03-04)

Features

• Initial release of HADashboard v2

170 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Fixes

None

Breaking Changes

• appdaemon’s -c option now identifies a directory not a file. The previously identified file must exist in that
directory and be named appdaemon.cfg

1.9.33 1.5.2 (2017-02-04)

Features

• Code formatted to PEP8, various code optimizations - contributed by yawor

• Version check for WebSockets now understands dev versions - contributed by yawor

• turn_off() will now call turn_on() for scenes since turning a scene off makes no sense, to allow extra
flexibility

• Restored the ability to use line, module and function in log messages. Recoded to prevent errors in non-
compatible Python versions if the templates are not used.

Fixes

None

Breaking Changes

None

1.9.34 1.5.1 (2017-01-30)

Features

None

Fixes

• Functionality to substitute line numbers and module names in log statements temporarily removed

Breaking Changes

• Functionality to substitute line numbers and module names in log statements temporarily removed

1.9.35 1.5.0 (2017-01-21)

Features

• Swap from EventStream to Websockets (Requires Home Assistant 0.34 or later). For earlier versions of HA,
AppDaemon will fallback to EventStream.

• Restored less verbose messages on HA restart, but verbose messages can be enabled by setting -D DEBUG
when starting AppDaemon

• From the command line ctrl-c now results in a clean shutdown.

• Home Assistant config e.g. Latitude, Longitude are now available in Apps in the self.ha_config dictio-
nary.

• Logging can now take placeholder strings for line number, function and module which will be appropriately
expanded in the actual message

1.9. Change Log 171

https://github.com/yawor
https://github.com/yawor

AppDaemon Documentation, Release 3.0.1

• Add example apps: battery, grandfather, sensor_notification, sound

• Updates to various example apps

Fixes

• get_app() will now return None if the app is not found rather than throwing an exception.

Breaking Changes

• get_app() will now return None if the app is not found rather than throwing an exception.

None

1.9.36 1.4.2 (2017-01-21)

Features

None

Fixes

• Remove timeout parameter from SSEClient call unless timeout is explicitly specified in the config file

Breaking Changes

None

1.9.37 1.4.1 (2017-01-21)

Features

• turn_off() now allows passing of parameters to the underlying service call

• Better handling of scheduler and worker thread errors. More diagnostics, plus scheduler errors now delete the
entry where possible to avoid spamming log entries

• More verbose error handling with HA communication errors

Fixes

None

Breaking Changes

None

1.9.38 1.4.0 (2017-01-20)

Features

• notify() now supports names

• It is now possible to set a timeout value for underlying calls to the HA EventStream

• It is no longer neccesary to specify latitude, longitude and timezone in the config file, the info is pulled from
HA

• When being reloaded, Apps are now able to clean up if desired by creating an optional terminate() function.

• Added support for module dependencies

172 Chapter 1. Upgrading from 2.x

AppDaemon Documentation, Release 3.0.1

Fixes

Breaking Changes

• To include a title when using the notify() call, you must now use the keyword title instead of the optional
positional parameter

1.9.39 1.3.7 (2017-01-17)

Features

• Add entity_exists() call

• List Apps holding up initialization

Fixes

• Add documentation for the days constraint

• Various other contributed documentation fixes

Breaking Changes

None

1.9.40 1.3.6 (2016-10-01)

Features

• Add device trackers to switch_reset example

Fixes

• Fixed a bug in which AppDaemon exited on startup if HA was not listening causing AppDaemon failure to start
on reboots

• Fixed some scheduler behavior for appd and ha restart events

• Fix presence example to only notify when state changes (e.g. not just for position updates)

• Change door notify example to explicitly say “open” or “closed” instead of passing through state

• Fix a bug in device_trackers example

Breaking Changes

None

1.9.41 1.3.4 (2016-09-20)

Features

• Add Minimote Example

• Add device trackers to switch_reset example

Fixes

• Fixed a minor scheduler bug that didn’t honor the delay for callbacks fired from appd and ha restart events

Breaking Changes

None

1.9. Change Log 173

AppDaemon Documentation, Release 3.0.1

1.9.42 1.3.4 (2016-09-18)

Features

• Add Momentary Switch example

• Add Switch Reset Example

Fixes

• Fix a race condition in App Initialization

• Fix a bug that overwrote state attributes

• Fix to smart heat example app

• Fix day constraints while using time travel

Breaking Changes

None

1.9.43 1.3.3 (2016-09-16)

Features

• Add ability to specify a cert dirctory for self-signed certs

• Add ability for listen_event() to listen to any event

• Add filter options to listen_event()

Fixes

• Fix several potential race conditions in the scheduler

Breaking Changes

None

1.9.44 1.3.2 (2016-09-08)

Features

• Document “Time Travel” functionality

• Add convenience function to set input_select called select_option() - contributed by jbardi

• Add global access to configuration and global configuration variables - suggested by ReneTode

Fixes

• Tidy up examples for listen state - suggested by ReneTode

• Warning when setting state for a non-existent entity is now only given the first time

• Allow operation with no ha_key specified

• AppDaemon will now use the supplied timezone for all operations rather than just for calculating sunrise and
sunset

• Reduce the chance of a spurious Clock Skew error at startup

Breaking Changes

None

174 Chapter 1. Upgrading from 2.x

https://community.home-assistant.io/users/jbardi/activity
https://community.home-assistant.io/users/renetode/activity
https://community.home-assistant.io/users/renetode/activity

AppDaemon Documentation, Release 3.0.1

1.9.45 1.3.1 (2016-09-04)

Features

• Add convenience function to set input_selector called select_value() - contributed by Dave Banks

Fixes

None

Breaking Changes

None

1.9.46 1.3.0 (2016-09-04)

Features

• Add ability to randomize times in scheduler

• Add duration to listen_state() to fire event when a state condition has been met for a period of time

• Rewrite scheduler to allow time travel (for testing purposes only, no effect on regular usage!)

• Allow input_boolean constraints to have reversed logic

• Add info_listen_state(), info_listen_event() and info_schedule() calls

Fixes

• Thorough proofreading correcting typos and formatting of API.md - contributed by Robin Lauren

• Fixed a bug that was causing scheduled events to fire a second late

• Fixed a bug in get_app() that caused it to return a dict instead of an object

• Fixed an error when missing state right after HA restart

Breaking Changes

• run_at_sunrise() and run_at_sunset() no longer take a fixed offset parameter, it is now a keyword,
e.g. offset = 60

1.9.47 1.2.2 (2016-31-09)

Features

None

Fixes

• Fixed a bug preventing get_state() calls for device types

• Fixed a bug that would cause an error in the last minute of an hour or last hour of a day in run_minutely() and
run)hourly() respectively

Breaking Changes

None

1.9. Change Log 175

https://github.com/djbanks
https://github.com/llauren

AppDaemon Documentation, Release 3.0.1

1.9.48 1.2.1 (2016-26-09)

Features

• Add support for windows

Fixes

None

Breaking Changes

None

1.9.49 1.2.0 (2016-24-09)

Features

• Add support for recursive directories - suggested by jbardi

Fixes

None

Breaking Changes

None

1.9.50 1.1.1 (2016-23-09)

Fixes

• Fix init scripts

1.9.51 1.1.0 (2016-21-09)

Features

• Installation via pip3 - contributed by Martin Hjelmare

• Docker support (non Raspbian only) - contributed by Jesse Newland

• Allow use of STDERR and SDTOUT as logfile paths to redirect to stdout and stderr respectively - contributed
by Jason Hite

• Deprecated “timezone” directive on cfg file in favor of “time_zone” for consistency with Home Assistant config

• Added default paths for config file and apps directory

• Log and error files default to STDOUT and STDERR respectively if not specified

• Added systemd service file - contributed by Jason Hite

Fixes

• Fix to give more information if initial connect to HA fails (but still avoid spamming logs too badly if it restarts)

• Rename ‘init’ directory to ‘scripts’

• Tidy up docs

Breaking Changes

176 Chapter 1. Upgrading from 2.x

https://github.com/jbardi
https://github.com/MartinHjelmare
https://github.com/jnewland
https://github.com/jasonmhite
https://github.com/jasonmhite

AppDaemon Documentation, Release 3.0.1

• As a result of the repackaging for PIP3 installation, all apps must be edited to change the import statement of
the api to import appdaemon.appapi as appapi

• Config must now be explicitly specfied with the -c option if you don’t want it to pick a default file location

• Logfile will no longer implicitly redirect to STDOUT if running without the -d flag, instead specify STDOUT
in the config file or remove the logfile directive entirely

• timezone is deprecated in favor of time_zone but still works for now

1.9.52 1.0.0 (2016-08-09)

Initial Release

1.9. Change Log 177

	Upgrading from 2.x

