

Index

Apollo Documentation v1

Apollo has a set of major endpoints with the given functionality

/Agent

	Used by wallets to communicate ssi/agent-wire messages

/Challenge

	“getnewchallenge” : Returns a URL with the connection invite base64 encoded

/Connection

	“getnewinvite” : Returns a new connection invite in base64 URL

	“getconnectioninfo”: Returns basic information about connection (name, email)

	“issuecred” : Issues a credential to the user

/Credential

	“createnewcred” : Creates a new credential to be issued

	“getcredbycreddefid” : Returns the schema for a given Cred ID

	“getallcredentials” : Returns a list of all Spaceman Credentials

All requests to Apollo follow this format:

All POST requests to apollo MUST have a body formatted in this manner of content-type: “application/json”. body.body should be formatted based on the requested TYPE

{
 client_id:string,
 type: string,
 body: { ? }
}

with x-api-key in the header related to that client ID.
The body object depends on the type submitted

While each Reply from Apollo will take this format

{
sucess: true | false,
errorMessage?: string,
body?: { ? }
}

errorMessage will only be included if success is false and something went wrong

Connections

Types: “getnewinvite”, “getconnectioninfo”, “issuecred”

getnewinvite

Get new invite payload requires only an email to be able to

{
 client_id: "xxx"
 type: "getnewinvite"
 body: {
 name: string,
 email: string
 }
}

Name: the name of the user you want to connect with
Email: the email for the person you want to connect with

Return Object

{
 connection_id: string,
 invitation_url: string
}

Connection_ID is a string that refers to the unique connection between the client and the user.
Invitation_URL is a base64 encoded invite for the user’s wallet

Example

{
 "success": "true",
 "body": {
 "connection_id": "2c86c960-fd91-441c-9669-7c47e21d1c13",
 "invitation_url": "https://o9iux56e78.execute-api.us-east-1.amazonaws.com/dev/v1/agent?c_i=eyJAdHlwZSI6ICJkaWQ6c292OkJ6Q2JzTlloTXJqSGlxWkRUVUFTSGc7c3BlYy9jb25uZWN0aW9ucy8xLjAvaW52aXRhdGlvbiIsICJAaWQiOiAiZGU0YzE4YWItMGM3Zi00MGVkLWE2ZTctODg4ZWIyMWJlNDhmIiwgInJlY2lwaWVudEtleXMiOiBbIjJ4OXNXWEU1ZUthUnBrdFpqcnd1bkpBRXBiUXJ0eTlIN1E3Zms4NjUydndGIiwgIkRzRDJ4eDhxUG53YVNrTWFoZDdxYnZ6MnFHOUo3MzN2ekVpMUZEWFVUQTEyIl0sICJzZXJ2aWNlRW5kcG9pbnQiOiAiaHR0cHM6Ly9vOWl1eDU2ZTc4LmV4ZWN1dGUtYXBpLnVzLWVhc3QtMS5hbWF6b25hd3MuY29tL2Rldi92MS9hZ2VudD9jbGllbnRfaWQ9c3BjaWR3ZWJhcHAxMDEwJmNvbm5lY3Rpb25faWQ9MmM4NmM5NjAtZmQ5MS00NDFjLTk2NjktN2M0N2UyMWQxYzEzIiwgImxhYmVsIjogIlNwYWNlbWFuLUlEIn0="
 }
}

getconnectioninfo

The input for getconnectioninfo:

{
 client_id: string,
 type: "getconnectioninfo"
 body: {
 email: string
 }
}

Email refers to the email of the connection you want to get
The lookup will only be for users connectioned to the specified wallet.

Return Object:

{
 email: string,
 connection_id: string,
 name: string,
 conn_status: "sent" | "active"
 credentials_issued: string[]
 credentials_revoked: string[]
}

conn_status refers to if the user has accepted the invite or not
credentials_issed and revoked is a list of credential_defintion_ids which point to a given schema and issuer of the credential

Example

issuecred

Issue cred is used to issue a credential to a user.

The input model:

{
 client_id: string,
 type: "issuecred",
 body: {
 email: string,
 cred_def_id: string,
 vales: {}
 }
}

The cred_def_id is the id for the credential you want to issue
The values object takes the form of:

{
“attribute_name”:”value”,
“attribute_name”:”value”,
…
}
For a given issuing cred_def_id

Return Object
TODO

Credentials

The credentials endpoint is used to create new schemas, and fetch schemas for the credentials

createnewcred

The input for createnewcred:

{
 credential_name: string,
 attributes: []
}

This will create a new schema, then build a credential definition based off your client id. Schema is the blueprint of the credential, the credential_definition is the specific signed version issued by a given organization.

For example, there might be a single drivers license schema, but 50 credential definitions as each state would issue it uniquely signed by their own keys.

The Return Object

{
 cred_def_id:string
}

The ID of the credential definition

getcredbycreddefid

getallcredentials

This will fetch all the credentials in the Spaceman Database by network

TODO

Challenges

The challenges endpoint takes in a callback url and returns a connectionless challenge. Right now you can you only request challenges for a given credential, but in the future this will be signficantly added to in the terms of functionality

getnewchallenge

Input Object

{
 client_id: string,
 type: "issuecred",
 body: {
 cred_def_id: string,
 callbackUrl:string,
 }
}

Output Object:
{
challenge_id: string,
url: string
}

Challenge_ID refers to an internal designation for the challenge that you’ve generated

URL is the challenge in base64 url form to be shown to wallet via QR code or similar

Agent

This endpoint is not for use by services. This endpoint is for wallet apps to make ssi/agent-wire message requests to our wallets

Apollo Documentation v2

Apollo v2 has the following endpoints:

/Credential

	Used to create schemas & credential definitions & get a list of them

/Challenge

	Used to generate new connectionless challenges

/Wallet

	Used to register a new wallet, connect with other users, issue and claim credentials, fulfil challenges and otherwise interact with your custody wallet

All requets to Apollo v2 follow this format:

{
 request: {
 wallet_name:string,
 type?: string,
 body?: object
 },
 signature: string
}

The signature payload must be signed by the key associated with the wallet_name passed in the request.

wallet_name is the name of the wallet you’re interacting with
type is dependant on the endpoint & body is dependant on type. Read on for the breakdown of valid types and bodies.

/Wallet

For /wallet, the following types may be used:

“new_wallet”

New wallet is used to register a new cloud wallet. A wallet may be created for any number of users and only requires that the wallet_name is passed in. The body maybe an empty object.

The return response will either be a {success:true} or an {errorMessage:string}
errorMessages:

	User already exists

TODO: In the future, new_wallet will also take in a public key that you would like to sign requests with. All future wallet requests would need to be signed by this key.

“create_connection_invite”

Create connection invite generates a base64 encoded invite URL. You can pass in any name for the connection_name parameter, think of this like setting the name in your contacts list.

{
 "request": {
 "wallet_name": string,
 "type": "create_connection_invite",
 "body": {
 "connection_name": string
 }
 },
 "signature": string
}

set connection_name to anything you want to name them

“send_invite”

TODO: will send an invite to them via email/phone number

“send_credential_offer”

Send cred offer endpoint is only valid for wallets with issuing capabilities

{
 "request": {
 "wallet_name": string,
 "type": "send_credential_offer",
 "body":{
 "schema_name": string,
 "connection_name": string,
 "credential_values": {attribute_name:attribute_value, attribute_name:attribute_value}
 }
 },
 "signature": string
}

“complete_invite”

{
 "request": {
 "wallet_name":string,
 "type": "complete_invite",
 "body": {
 "connection_name": string,
 "invite_url": string
 }
 },
 "signature": string
}

“complete_offer”

{
 "request": {
 "wallet_name": string,
 "type":"complete_offer",
 "body": {
 "offerName": string
 }
 },
 "signature": string
}

“complete_challenge”

{
 "request": {
 "wallet_name": string,
 "type": "complete_challenge",
 "body": {
 "challenge_url": string
 }
 },
 "signature": string
}

“get_user”

TODO: waiting to be written
will return the User object associated with the user account

/Credential

create_schema

{
 "request": {
 "wallet_name":string,
 "type": "create_schema",
 "body":{
 "schema_name": string,
 "attributes": [attribute,attribute]
 }
 },
 "signature": string
}

create_credential_definition

{
 "request": {
 "wallet_name": string,
 "type": "create_credential_definition",
 "body":{
 "schema_name": string
 }
 },
 "signature": string
}

/Challenge

new_challenge

{
 "request": {
 "wallet_name":string,
 "type": "new_challenge",
 "body": {
 "callback_url":string,
 "requested_attributes": [{"name":"attribute_name", restrictions?:[]}
 }
 },
 "signature": string
}

Welcome to Spaceman ID Apollo’s documentation!

Contents:

	Apollo Documentation v2
	/Wallet

	/Credential

	/Challenge

Indices and tables

	Index

	Module Index

	Search Page

 *How to update the docs

-you need sphinx installed

-pull the repository to get current version

-make changes to the relevant .md file

-if the .md file needs to be displayed but its name is not under the toctree ‘contents’ in the index.rst file, then add it

-run the following command at the root of the project directory:

sphinx-build . _build

-if build was successfull push the repo and read the docs will update automatically

 nav.xhtml

 Table of Contents

 		
 <no title>

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

