

APNs Client 0.2 beta documentation.

Python client for Apple Push Notification service (APNs) [https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html].

Check the client with similar interface for Google Cloud Messaging [https://pypi.python.org/pypi/gcm-client/].

Requirements

	six [https://pypi.python.org/pypi/six/] - Python 2 and 3 compatibility library.

	pyOpenSSL [https://pypi.python.org/pypi/pyOpenSSL/] - OpenSSL wrapper.
Required by standard networking back-end.

Standard library has support for SSL transport [http://docs.python.org/2/library/ssl.html]. However, it is impossible to use
it with certificates provided as a string. We store certificates in database,
because we handle different apps on many Celery worker machines. A dirty
solution would be to create temporary files, but it is insecure and slow. So,
we have decided to use a better OpenSSL wrapper and pyOpenSSL was the
easiest to handle. pyOpenSSL is loaded on demand by standard networking
back-end. If you use your own back-end, based on some other SSL implementation,
then you don’t have to install pyOpenSSL.

Alternatives

There are many alternatives [https://pypi.python.org/pypi?%3Aaction=search&term=apns&submit=search]
available. We have started with pyapns [https://pypi.python.org/pypi/pyapns]
and APNSWrapper [https://pypi.python.org/pypi/APNSWrapper]. This library
differs in the following design decisions:

	Support certificates from strings. We do not distribute certificate files
on worker machines, they fetch it from the database when needed. This
approach simplifies deployment, upgrades and maintenance.

	Keep connections persistent. An SSL handshaking round is slow. Once
connection is established, it should remain open for at least few minutes,
waiting for the next batch.

	Support enhanced format. Apple developers have designed a notoriously bad
push protocol. They have upgraded it to enhanced version, which makes it
possible to detect which messages in the batch have failed.

	Clean pythonic API. No need for lots of classes, long lists of exceptions etc.

	Do not hard-code validation, let APNs fail. This decision makes library
a little bit more future proof.

Changelog

	v0.2

	Networking layer became pluggable, making gevent based implementations
possible. Everything is refactored, such that IO, multi-threading and SSL
are now loaded and used on demand, allowing you to cleanly override any
part of the client. The API is largely backward compatible. IO related
configuration is moved to transport layer and exception handling is a bit
more verbose. The client is using standard logging to send fine grained
debug messages.

	v0.1

	First simple implementation, hardwired with raw sockets and pyOpenSSL.
It does not work in gevent or any other green environment.

Support

APNs client was created by Sardar Yumatov,
contact me if you find any bugs or need help. Contact Getlogic [http://getlogic.nl] if you need a full-featured push notification service
for all popular platforms. You can view outstanding issues on the APNs
Bitbucket page [https://bitbucket.org/sardarnl/apns-client/].

Contents:

	Getting Started
	Usage

	Extending the client

	apnsclient Package
	apnsclient Package

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

You will need Apple’s developer account [https://developer.apple.com/support/registered/]. Then you have to obtain
your provider’s certificate. The certificate must be in PEM format. You may
keep the private key with your certificate or in a separate file. Read the
APNs manual [https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9]
to understand its architecture and all implications. This library hides most of
the complex mechanics behind APNs protocol, but some aspects, such as
constructing the payload or interpreting the error codes is left to you.

Usage

If you don’t mind to SSL handshake with APNs each time you send a batch of messages,
then use Session.new_connection(). Otherwise, create a new session and keep
reference to it to prevent it being garbage collected. Example:

from apnsclient import *

For feedback or non-intensive messaging
con = Session().new_connection("feedback_sandbox", cert_file="sandbox.pem")

Persistent connection for intensive messaging.
Keep reference to session instance in some class static/global variable,
otherwise it will be garbage collected and all connections will be closed.
session = Session()
con = session.get_connection("push_sandbox", cert_file="sandbox.pem")

The connections you obtain from Session are lazy and will be really
established once you actually use it. Example of sending a message:

New message to 3 devices. You app will show badge 10 over app's icon.
message = Message(["my", "device", "tokens"], alert="My message", badge=10)

Send the message.
srv = APNs(con)
try:
 res = srv.send(message)
except:
 print "Can't connect to APNs, looks like network is down"
else:
 # Check failures. Check codes in APNs reference docs.
 for token, reason in res.failed.items():
 code, errmsg = reason
 # according to APNs protocol the token reported here
 # is garbage (invalid or empty), stop using and remove it.
 print "Device failed: {0}, reason: {1}".format(token, errmsg)

 # Check failures not related to devices.
 for code, errmsg in res.errors:
 print "Error: {}".format(errmsg)

 # Check if there are tokens that can be retried
 if res.needs_retry():
 # repeat with retry_message or reschedule your task
 retry_message = res.retry()

APNs protocol is notoriously badly designed. It wasn’t possible to detect which
message has been failed in a batch. Since last update, APNs supports enhanced
message format with possibility to detect first failed message. On detected
failure the retry() method will build a message with the rest of device
tokens, that you can retry. Unlike GCM, you may retry it right away without any
delay.

If you don’t like to keep your cached connections open for too long, then close
them regularly. Example:

import datetime

For how long may connections stay open unused
delta = datetime.timedelta(minutes=5)

Close all connections that have not been used in the last delta time.
You may call this method at the end of your task or in a spearate periodic
task. If you use threads, you may call it in a spearate maintenance
thread.
session.outdate(delta)

Shutdown session if you want to close all unused cached connections.
This call is equivalent to Session.outdate() with zero delta time.
session.shutdown()

You have to regularly check feedback service for any invalid tokens. Schedule
it on some kind of periodic task. Any reported token should be removed from
your database, unless you know the token has been re-registered again.
Example:

feedback needs no persistent connections.
con = Session().new_connection("feedback_sandbox", cert_file="sandbox.pem")
srv = APNs(con)

try:
 # on any IO failure after successfull connection this generator
 # will simply stop iterating. you will pick the rest of the tokens
 # during next feedback session.
 for token, when in service.feedback():
 # every time a devices sends you a token, you should store
 # {token: given_token, last_update: datetime.datetime.now()}
 last_update = get_last_update_of_token(token)

 if last_update < when:
 # the token wasn't updated after the failure has
 # been reported, so the token is invalid and you should
 # stop sending messages to it.
 remove_token(token)
except:
 print "Can't connect to APNs, looks like network is down"

The APNs.feedback() may fail with IO errors, in this case the feedback
generator will simply end without any warning. Don’t worry, you will just fetch
the rest of the feedback later. We follow here let if fail principle for much
simpler API.

Extending the client

The client is designed to be as generic as possible. Everything related to
transport layer is put together in pluggable back-ends. The default back-end is
apnsclient.backends.stdio. It is using raw python sockets for networking,
select() for IO blocking and pyOpenSSL as SSL tunnel. The default
back-end will probably fail to work in gevent environment because
pyOpenSSL works with POSIX file descriptors directly.

You can write your own back-end that will work in your preferred, probably
green, environment. Therefore you have to write the following classes.

	your.module.Certificate

	SSL certificate instance using SSL library of your choice. Extends from
apnsclient.certificate.BaseCertificate. The class should implement the
following methods:

	load_context() - actual certificate loading from file or string.

	dump_certificate() - dump certificate for equality check.

	dump_digest() - dump certificate digest, such as sha1 or md5.

	your.module.Connection

	SSL tunnel using IO and SSL library of your choice. Extends from
apnsclient.backends.BaseConnection. The class should implement the
following methods:

	reset() - flush read and write buffers before new transmission.

	peek() - non-blocking read, returns bytes directly available in the read buffer.

	read() - blocking read.

	write() - blocking write.

	close() - close underlying connection.

	closed() - reports connection state.

	your.module.Backend

	Factory class for certificates, thread locking and networking connections.
Extends from apnsclient.backends.BaseBackend. The class should
implement the following methods:

	get_certificate() - load certificate and returns your custom wrapper.

	create_lock() - create theading.Lock like semaphore.

	get_new_connection() - open ready to use SSL connection.

The main logic behind each of these classes is easy. The certificate is used as
a key in the connection pool, so it should support __eq__ (equality)
operation. The equality check can be performed by comparing whole certificate
dump or just the digest if you don’t like the idea to hold sensitive data in
python’s memory for long. The connection implements basic IO operations. The
connection can be cached in the pool, so it is possible that some stale data
from a previous session will slip into the next session. The remedy is to flush
read an write buffers using Connection.reset() before sending a new
message. The back-end instance acts as a factory for your certificates, locks
and connections. The locking is dependent on your environment, you don’t have
to monkey patch threading module therefore.

It is a good idea to look at the source code of the standard back-end
apnsclient.backends.stdio and elaborate from that. Your back-end can be
supplied to the Session using fully qualified module name, as a class or as
an initialized instance. If you supply your back-end using module name, then
the name of your back-end class must be Backend.

If you hit any trouble or if you think your back-end is worth sharing with
the rest of the world, then contact me Sardar Yumatov
or make an issue/pull-request on APNs Bitbucket page [https://bitbucket.org/sardarnl/apns-client/].

apnsclient Package

Apple Push Notification service [https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9]
client. Only public API is documented here to limit visual clutter. Refer to
the sources [https://bitbucket.org/sardarnl/apns-client/] if you want to
extend this library. Check Getting Started for usage examples.

apnsclient Package

	
class apnsclient.transport.Session(pool='apnsclient.backends.stdio', connect_timeout=10, write_buffer_size=2048, write_timeout=20, read_buffer_size=2048, read_timeout=20, read_tail_timeout=3, **pool_options)

	The front-end to the underlying connection pool. The purpose of this
class is to hide the transport implementation that is being used for
networking. Default implementation uses built-in python sockets and
select for asynchronous IO.

	Arguments:	
	pool (str, type or object): networking layer implementation.

	connect_timeout (float): timeout for new connections.

	write_buffer_size (int): chunk size for sending the message.

	write_timeout (float): maximum time to send single chunk in seconds.

	read_buffer_size (int): feedback buffer size for reading.

	read_timeout (float): timeout for reading single feedback block.

	read_tail_timeout (float): timeout for reading status frame after message is sent.

	pool_options (kwargs): passed as-is to the pool class on instantiation.

	
get_connection(address='push_sanbox', certificate=None, **cert_params)

	Obtain cached connection to APNs.

Session caches connection descriptors, that remain open after use.
Caching saves SSL handshaking time. Handshaking is lazy, it will be
performed on first message send.

You can provide APNs address as (hostname, port) tuple or as
one of the strings:

	push_sanbox – ("gateway.sandbox.push.apple.com", 2195), the default.

	push_production – ("gateway.push.apple.com", 2195)

	feedback_sandbox – ("feedback.sandbox.push.apple.com", 2196)

	feedback_production – ("feedback.push.apple.com", 2196)

	Arguments:	
	address (str or tuple): target address.

	certificate (BaseCertificate): provider’s certificate instance.

	cert_params (kwargs): BaseCertificate arguments, used if certificate instance is not given.

	
new_connection(address='feedback_sandbox', certificate=None, **cert_params)

	Obtain new connection to APNs. This method will not re-use existing
connection from the pool. The connection will be closed after use.

Unlike get_connection() this method does not cache the
connection. Use it to fetch feedback from APNs and then close when
you are done.

	Arguments:	
	address (str or tuple): target address.

	certificate (BaseCertificate): provider’s certificate instance.

	cert_params (kwargs): BaseCertificate arguments, used if certificate instance is not given.

	
outdate(delta)

	Close open unused connections in the pool that are left untouched
for more than delta time.

You may call this method in a separate thread or run it in some
periodic task. If you don’t, then all connections will remain open
until session is shut down. It might be an issue if you care about
your open server connections.

	Arguments:	delta (timedelta): maximum age of unused connection.

	
shutdown()

	Shutdown all connections in the pool. This method does will not close
connections being use at the calling time.

	
class apnsclient.apns.APNs(connection)

	APNs client.

	Arguments:	
	connection (Connection): the connection to talk to.

	
feedback()

	Fetch feedback from APNs.

The method returns generator of (token, datetime) pairs,
denoting the timestamp when APNs has detected the device token is
not available anymore, probably because application was
uninstalled. You have to stop sending notifications to that device
token unless it has been re-registered since reported timestamp.

Unlike sending the message, you should fetch the feedback using
non-cached connection. Once whole feedback has been read, this
method will automatically close the connection.

Note

If the client fails to connect to APNs, probably because your
network is down, then this method will raise the related
exception. However, if connection is successfully established,
but later on the IO fails, then this method will simply stop
iterating. The rest of the failed tokens will be delivered
during the next feedback session.

Example:

session = Session()
get non-cached connection, free from possible garbage
con = session.new_connection("feedback_production", cert_string=db_certificate)
service = APNs(con)
try:
 # on any IO failure after successfull connection this generator
 # will simply stop iterating. you will pick the rest of the tokens
 # during next feedback session.
 for token, when in service.feedback():
 # every time a devices sends you a token, you should store
 # {token: given_token, last_update: datetime.datetime.now()}
 last_update = get_last_update_of_token(token)

 if last_update < when:
 # the token wasn't updated after the failure has
 # been reported, so the token is invalid and you should
 # stop sending messages to it.
 remove_token(token)
except:
 print "Check your network, I could not connect to APNs"

	Returns:	generator over (binary, datetime)

	
send(message)

	Send the message.

The method will block until the whole message is sent. The method
returns Result object, which you can examine for possible
errors and retry attempts.

Note

If the client fails to connect to APNs, probably because your
network is down, then this method will raise the related
exception. However, if connection is successfully established,
but later on the IO fails, then this method will prepare a
retry message with the rest of the failed tokens.

Example:

if you use cached connections, then store this session instance
somewhere global, such that it will not be garbage collected
after message is sent.
session = Session()
get a cached connection, avoiding unnecessary SSL handshake
con = session.get_connection("push_production", cert_string=db_certificate)
message = Message(["token 1", "token 2"], alert="Message")
service = APNs(con)
try:
 result = service.send(message)
except:
 print "Check your network, I could not connect to APNs"
else:
 for token, (reason, explanation) in result.failed.items():
 delete_token(token) # stop using that token

 for reason, explanation in result.errors:
 pass # handle generic errors

 if result.needs_retry():
 # extract failed tokens as new message
 message = message.retry()
 # re-schedule task with the new message after some delay

	Returns:	Result object with operation results.

	
class apnsclient.apns.Message(tokens, alert=None, badge=None, sound=None, content_available=None, expiry=None, payload=None, priority=10, extra=None, **extra_kwargs)

	The push notification to one or more device tokens.

Read more about the payload [https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW1].

Note

In order to stay future compatible this class doesn’t transform
provided arguments in any way. It is your responsibility to
provide correct values and ensure the payload does not exceed
the limit of 256 bytes. You can also generate whole payload
yourself and provide it via payload argument. The payload
will be parsed to init default fields like alert and badge.
However if parsing fails, then these standard fields will
become unavailable. If raw payload is provided, then other data
fields like alert or sound are not allowed.

	Arguments:	
	tokens (str or list): set of device tokens where to the message will be sent.

	alert (str or dict): the message; read APNs manual for recognized dict keys.

	badge (int or str): badge number over the application icon or special value such as “increment”.

	sound (str): sound file to play on arrival.

	content_available (int): set to 1 to indicate new content is available.

	expiry (int, datetime or timedelta): timestamp when message will expire.

	
	payload (dict or str): JSON-compatible dictionary with the

	complete message payload. If supplied, it is given instead
of all the other, more specific parameters.

	priority (int): priority of the message, defaults to 10

	extra (dict): extra payload key-value pairs.

	extra_kwargs (kwargs): extra payload key-value paris, will be merged with extra.

	
__getstate__()

	Returns dict with __init__ arguments.

If you use pickle, then simply pickle/unpickle the message object.
If you use something else, like JSON, then:

obtain state dict from message
state = message.__getstate__()
send/store the state
recover state and restore message
message_copy = Message(**state)

Note

The message keeps expiry internally as a timestamp
(integer). So, if values of all other arguments are JSON
serializable, then the returned state must be JSON
serializable. If you get TypeError when you instantiate
Message from JSON recovered state, then make sure the keys
are str, not unicode.

	Returns:	kwargs for Message constructor.

	
tokens

	List target device tokens.

	
class apnsclient.apns.Result(message, failure=None)

	Result of send operation.

	
errors

	Returns list of (reason, explanation) pairs denoting severe errors,
not related to failed tokens. The reason is an integer code as
described in APNs tutorial.

	The following codes are considered to be errors:

	
	(1, "Processing error")

	(3, "Missing topic")

	(4, "Missing payload")

	(6, "Invalid topic size")

	(7, "Invalid payload size")

	(None, "Unknown"), usually some kind of IO failure.

	
failed

	Reports failed tokens as {token : (reason, explanation)} mapping.

Current APNs protocols bails out on first failed device token, so
the returned dict will contain at most 1 entry. Future extensions
may upgrade to multiple failures in a batch. The reason is the
integer code as described in APNs tutorial.

	The following codes are considered to be token failures:

	
	(2, "Missing device token")

	(5, "Invalid token size")

	(8, "Invalid token")

	
needs_retry()

	Returns True if there are tokens that should be retried.

Note

In most cases if needs_retry is true, then the reason of
incomplete batch is to be found in errors and failed
properties. However, Apple added recently a special code 10
- Shutdown, which indicates server went into a maintenance
mode before the batch completed. This response is not really an
error, so the before mentioned properties will be empty, while
needs_retry will be true.

	
retry()

	Returns Message with device tokens that can be retried.

Current APNs protocol bails out on first failure, so any device
token after the failure should be retried. If failure was related
to the token, then it will appear in failed set and will be
in most cases skipped by the retry message.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 apnsclient	

 	
 	
 apnsclient.apns	

 	
 	
 apnsclient.transport	

Index

 _
 | A
 | E
 | F
 | G
 | M
 | N
 | O
 | R
 | S
 | T

_

 	
 	__getstate__() (apnsclient.apns.Message method)

A

 	
 	APNs (class in apnsclient.apns)

 	
 	apnsclient.apns (module)

 	apnsclient.transport (module)

E

 	
 	errors (apnsclient.apns.Result attribute)

F

 	
 	failed (apnsclient.apns.Result attribute)

 	
 	feedback() (apnsclient.apns.APNs method)

G

 	
 	get_connection() (apnsclient.transport.Session method)

M

 	
 	Message (class in apnsclient.apns)

N

 	
 	needs_retry() (apnsclient.apns.Result method)

 	
 	new_connection() (apnsclient.transport.Session method)

O

 	
 	outdate() (apnsclient.transport.Session method)

R

 	
 	Result (class in apnsclient.apns)

 	
 	retry() (apnsclient.apns.Result method)

S

 	
 	send() (apnsclient.apns.APNs method)

 	
 	Session (class in apnsclient.transport)

 	shutdown() (apnsclient.transport.Session method)

T

 	
 	tokens (apnsclient.apns.Message attribute)

 nav.xhtml

 Table of Contents

 		APNs Client 0.2 beta documentation.

 		Getting Started

 		Usage

 		Extending the client

 		apnsclient Package

 		apnsclient Package

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

