

Welcome to apicore’s documentation!

Set of core libraries for building REST API and Microservices based on Flask.

The code is open source, release under MIT and written in Python 3.

pip install apicore

Features

	Cross-origin resource sharing (CORS) ready

	Data caching with redis server or direct in-memory

	Configuration file loader

	A simple Logger

	Raise exception conform to HTTP status codes

	OpenAPI 3.0 specification embedded with Swagger UI

Example

#!/usr/bin/env python

from apicore import api, Logger, config, Http409Exception

Logger.info("Starting {} API Server...".format(config.app_name))

@api.route('/error/')
def error():
 """
 summary: Raise an execption
 responses:
 409:
 description: Conflict
 """
 raise Http409Exception()

if __name__ == "__main__":
 # api is an instance of API which inherit from Flask
 api.debug = config.debug
 api.run()

Configuration

Configuration is set in conf/config.yaml file (see apicore.config.Config).

	Name

	Default value

	Description

	app_name

	“My App”

	Application’s name.

	debug

	True

	Active debug mode.

	prefix

	“”

	Add a prefix to all URL paths (ie: “/api”).

	redis

	None

	Redis server used for caching data : redis://:password@localhost:6379/0. If not set use in-memory.

	swagger_ui

	“/”

	Relative URL path to embedded Swagger UI (prefix + swagger_ui).

	specs_login

	None

	Login to access API Specification (openapi.json), no Authentification by default.

	specs_pwd

	None

	Password to access API Specification.

OpenAPI 3.0

	See specification [https://github.com/OAI/OpenAPI-Specification] for syntax.

	Document route’s methods with Operation Object [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#operationObject] using yaml syntax.

	Document your API in conf/openapi.yaml file.

	Access your documentation through a python dictionary : api.oas.specs.

	Your spec is available at http[s]://<hostname>/openapi.json.

	Default path to http[s]://<hostname>/ to see your spec with Swagger UI (set swagger_ui in conf/config.yaml to change path)

	Full exemple :

@api.route('/sellers/<idseller>/', methods=['GET', 'PUT'])
def seller(idseller):
 """
 description: "Path Item Object" level here, only common_responses is added to OpenAPi specification. Next level are "Operation Object".
 parameters:
 - name: idseller
 in: path
 description: uuid of seller
 required: true
 type: string
 format: uuid
 common_responses:
 400:
 description: Invalid request
 401:
 description: Authentification required
 403:
 description: Ressource access denied
 500:
 description: Server internal error

 tags:
 - profile
 summary: Find a seller profile by ID
 responses:
 200:
 description: Success
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Seller'
 404:
 description: Ressource does not exist
 406:
 description: Nothing to send maching Access-* headers

 tags:
 - profile
 summary: Update seller profile
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Seller'
 required: true
 responses:
 200:
 description: Success
 """
 pass

 print(api.oas.spec)

APIs

	api

	cache

	config

	Exceptions

	Lang

	Logger

Todo

	i18n HTTP response messages.

	Add namespace for cache

	Configure using command line argument and environnement variables which override configuration file and making it optional.

	Use API Specification and json schemas to validate JSON data

	Access Control Policies engine

	MongoDB helpers

	Extensible notification system (using mail, Firebase, SMS, …)

api

api is the application, instance of apicore.api.API inherited from flask.Flask. It handle Cross-origin resource sharing (CORS) and JSON responde message (instead of HTML).

	
class apicore.api.API(import_name)

	
	
add_template_filter(f, name=None)

	Register a custom template filter. Works exactly like the
template_filter() decorator.

	Parameters

	name – the optional name of the filter, otherwise the
function name will be used.

	
add_template_global(f, name=None)

	Register a custom template global function. Works exactly like the
template_global() decorator.

New in version 0.10.

	Parameters

	name – the optional name of the global function, otherwise the
function name will be used.

	
add_template_test(f, name=None)

	Register a custom template test. Works exactly like the
template_test() decorator.

New in version 0.10.

	Parameters

	name – the optional name of the test, otherwise the
function name will be used.

	
add_url_rule(rule, endpoint=None, view_func=None, **options)

	Connects a URL rule. Works exactly like the route()
decorator. If a view_func is provided it will be registered with the
endpoint.

Basically this example:

@app.route('/')
def index():
 pass

Is equivalent to the following:

def index():
 pass
app.add_url_rule('/', 'index', index)

If the view_func is not provided you will need to connect the endpoint
to a view function like so:

app.view_functions['index'] = index

Internally route() invokes add_url_rule() so if you want
to customize the behavior via subclassing you only need to change
this method.

For more information refer to url-route-registrations.

Changed in version 0.2: view_func parameter added.

Changed in version 0.6: OPTIONS is added automatically as method.

	Parameters

	
	rule – the URL rule as string

	endpoint – the endpoint for the registered URL rule. Flask
itself assumes the name of the view function as
endpoint

	view_func – the function to call when serving a request to the
provided endpoint

	options – the options to be forwarded to the underlying
Rule object. A change
to Werkzeug is handling of method options. methods
is a list of methods this rule should be limited
to (GET, POST etc.). By default a rule
just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly
added and handled by the standard request handling.

	
after_request(f)

	Register a function to be run after each request.

Your function must take one parameter, an instance of
response_class and return a new response object or the
same (see process_response()).

As of Flask 0.7 this function might not be executed at the end of the
request in case an unhandled exception occurred.

	
app_context()

	Binds the application only. For as long as the application is bound
to the current context the flask.current_app points to that
application. An application context is automatically created when a
request context is pushed if necessary.

Example usage:

with app.app_context():
 ...

New in version 0.9.

	
app_ctx_globals_class

	alias of _AppCtxGlobals

	
authenticate()

	Sends a 401 response that enables basic auth

	
auto_find_instance_path()

	Tries to locate the instance path if it was not provided to the
constructor of the application class. It will basically calculate
the path to a folder named instance next to your main file or
the package.

New in version 0.8.

	
before_first_request(f)

	Registers a function to be run before the first request to this
instance of the application.

The function will be called without any arguments and its return
value is ignored.

New in version 0.8.

	
before_request(f)

	Registers a function to run before each request.

The function will be called without any arguments.
If the function returns a non-None value, it’s handled as
if it was the return value from the view and further
request handling is stopped.

	
config_class

	alias of Config

	
context_processor(f)

	Registers a template context processor function.

	
create_global_jinja_loader()

	Creates the loader for the Jinja2 environment. Can be used to
override just the loader and keeping the rest unchanged. It’s
discouraged to override this function. Instead one should override
the jinja_loader() function instead.

The global loader dispatches between the loaders of the application
and the individual blueprints.

New in version 0.7.

	
create_jinja_environment()

	Creates the Jinja2 environment based on jinja_options
and select_jinja_autoescape(). Since 0.7 this also adds
the Jinja2 globals and filters after initialization. Override
this function to customize the behavior.

New in version 0.5.

Changed in version 0.11: Environment.auto_reload set in accordance with
TEMPLATES_AUTO_RELOAD configuration option.

	
create_url_adapter(request)

	Creates a URL adapter for the given request. The URL adapter
is created at a point where the request context is not yet set up
so the request is passed explicitly.

New in version 0.6.

Changed in version 0.9: This can now also be called without a request object when the
URL adapter is created for the application context.

	
dispatch_request()

	Does the request dispatching. Matches the URL and returns the
return value of the view or error handler. This does not have to
be a response object. In order to convert the return value to a
proper response object, call make_response().

Changed in version 0.7: This no longer does the exception handling, this code was
moved to the new full_dispatch_request().

	
do_teardown_appcontext(exc=<object object>)

	Called when an application context is popped. This works pretty
much the same as do_teardown_request() but for the application
context.

New in version 0.9.

	
do_teardown_request(exc=<object object>)

	Called after the actual request dispatching and will
call every as teardown_request() decorated function. This is
not actually called by the Flask object itself but is always
triggered when the request context is popped. That way we have a
tighter control over certain resources under testing environments.

Changed in version 0.9: Added the exc argument. Previously this was always using the
current exception information.

	
endpoint(endpoint)

	A decorator to register a function as an endpoint.
Example:

@app.endpoint('example.endpoint')
def example():
 return "example"

	Parameters

	endpoint – the name of the endpoint

	
errorhandler(code_or_exception)

	A decorator that is used to register a function given an
error code. Example:

@app.errorhandler(404)
def page_not_found(error):
 return 'This page does not exist', 404

You can also register handlers for arbitrary exceptions:

@app.errorhandler(DatabaseError)
def special_exception_handler(error):
 return 'Database connection failed', 500

You can also register a function as error handler without using
the errorhandler() decorator. The following example is
equivalent to the one above:

def page_not_found(error):
 return 'This page does not exist', 404
app.error_handler_spec[None][404] = page_not_found

Setting error handlers via assignments to error_handler_spec
however is discouraged as it requires fiddling with nested dictionaries
and the special case for arbitrary exception types.

The first None refers to the active blueprint. If the error
handler should be application wide None shall be used.

New in version 0.7: Use register_error_handler() instead of modifying
error_handler_spec directly, for application wide error
handlers.

New in version 0.7: One can now additionally also register custom exception types
that do not necessarily have to be a subclass of the
HTTPException class.

	Parameters

	code_or_exception – the code as integer for the handler, or
an arbitrary exception

	
finalize_request(rv, from_error_handler=False)

	Given the return value from a view function this finalizes
the request by converting it into a response and invoking the
postprocessing functions. This is invoked for both normal
request dispatching as well as error handlers.

Because this means that it might be called as a result of a
failure a special safe mode is available which can be enabled
with the from_error_handler flag. If enabled, failures in
response processing will be logged and otherwise ignored.

	Internal

	

	
full_dispatch_request()

	Dispatches the request and on top of that performs request
pre and postprocessing as well as HTTP exception catching and
error handling.

New in version 0.7.

	
get_send_file_max_age(filename)

	Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from
the configuration of current_app.

Static file functions such as send_from_directory() use this
function, and send_file() calls this function on
current_app when the given cache_timeout is None. If a
cache_timeout is given in send_file(), that timeout is used;
otherwise, this method is called.

This allows subclasses to change the behavior when sending files based
on the filename. For example, to set the cache timeout for .js files
to 60 seconds:

class MyFlask(flask.Flask):
 def get_send_file_max_age(self, name):
 if name.lower().endswith('.js'):
 return 60
 return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

	
got_first_request

	This attribute is set to True if the application started
handling the first request.

New in version 0.8.

	
handle_exception(e)

	Default exception handling that kicks in when an exception
occurs that is not caught. In debug mode the exception will
be re-raised immediately, otherwise it is logged and the handler
for a 500 internal server error is used. If no such handler
exists, a default 500 internal server error message is displayed.

New in version 0.3.

	
handle_http_exception(e)

	Handles an HTTP exception. By default this will invoke the
registered error handlers and fall back to returning the
exception as response.

New in version 0.3.

	
handle_url_build_error(error, endpoint, values)

	Handle BuildError on url_for().

	
handle_user_exception(e)

	This method is called whenever an exception occurs that should be
handled. A special case are
HTTPExceptions which are forwarded by
this function to the handle_http_exception() method. This
function will either return a response value or reraise the
exception with the same traceback.

New in version 0.7.

	
has_static_folder

	This is True if the package bound object’s container has a
folder for static files.

New in version 0.5.

	
init_jinja_globals()

	Deprecated. Used to initialize the Jinja2 globals.

New in version 0.5.

Changed in version 0.7: This method is deprecated with 0.7. Override
create_jinja_environment() instead.

	
inject_url_defaults(endpoint, values)

	Injects the URL defaults for the given endpoint directly into
the values dictionary passed. This is used internally and
automatically called on URL building.

New in version 0.7.

	
iter_blueprints()

	Iterates over all blueprints by the order they were registered.

New in version 0.11.

	
jinja_env

	The Jinja2 environment used to load templates.

	
jinja_environment

	alias of Environment

	
jinja_loader

	The Jinja loader for this package bound object.

New in version 0.5.

	
json_decoder

	alias of JSONDecoder

	
json_encoder

	alias of JSONEncoder

	
log_exception(exc_info)

	Logs an exception. This is called by handle_exception()
if debugging is disabled and right before the handler is called.
The default implementation logs the exception as error on the
logger.

New in version 0.8.

	
logger

	A logging.Logger [https://docs.python.org/2/library/logging.html#logging.Logger] object for this application. The
default configuration is to log to stderr if the application is
in debug mode. This logger can be used to (surprise) log messages.
Here some examples:

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

New in version 0.3.

	
make_config(instance_relative=False)

	Used to create the config attribute by the Flask constructor.
The instance_relative parameter is passed in from the constructor
of Flask (there named instance_relative_config) and indicates if
the config should be relative to the instance path or the root path
of the application.

New in version 0.8.

	
make_default_options_response()

	This method is called to create the default OPTIONS response.
This can be changed through subclassing to change the default
behavior of OPTIONS responses.

New in version 0.7.

	
make_null_session()

	Creates a new instance of a missing session. Instead of overriding
this method we recommend replacing the session_interface.

New in version 0.7.

	
make_response(rv)

	Converts the return value from a view function to a real
response object that is an instance of response_class.

The following types are allowed for rv:

	response_class

	the object is returned unchanged

	str [https://docs.python.org/2/library/functions.html#str]

	a response object is created with the
string as body

	unicode

	a response object is created with the
string encoded to utf-8 as body

	a WSGI function

	the function is called as WSGI application
and buffered as response object

	tuple

	A tuple in the form (response, status,
headers) or (response, headers)
where response is any of the
types defined here, status is a string
or an integer and headers is a list or
a dictionary with header values.

	Parameters

	rv – the return value from the view function

Changed in version 0.9: Previously a tuple was interpreted as the arguments for the
response object.

	
make_shell_context()

	Returns the shell context for an interactive shell for this
application. This runs all the registered shell context
processors.

New in version 0.11.

	
name

	The name of the application. This is usually the import name
with the difference that it’s guessed from the run file if the
import name is main. This name is used as a display name when
Flask needs the name of the application. It can be set and overridden
to change the value.

New in version 0.8.

	
open_instance_resource(resource, mode='rb')

	Opens a resource from the application’s instance folder
(instance_path). Otherwise works like
open_resource(). Instance resources can also be opened for
writing.

	Parameters

	
	resource – the name of the resource. To access resources within
subfolders use forward slashes as separator.

	mode – resource file opening mode, default is ‘rb’.

	
open_resource(resource, mode='rb')

	Opens a resource from the application’s resource folder. To see
how this works, consider the following folder structure:

/myapplication.py
/schema.sql
/static
 /style.css
/templates
 /layout.html
 /index.html

If you want to open the schema.sql file you would do the
following:

with app.open_resource('schema.sql') as f:
 contents = f.read()
 do_something_with(contents)

	Parameters

	
	resource – the name of the resource. To access resources within
subfolders use forward slashes as separator.

	mode – resource file opening mode, default is ‘rb’.

	
open_session(request)

	Creates or opens a new session. Default implementation stores all
session data in a signed cookie. This requires that the
secret_key is set. Instead of overriding this method
we recommend replacing the session_interface.

	Parameters

	request – an instance of request_class.

	
preprocess_request()

	Called before the actual request dispatching and will
call each before_request() decorated function, passing no
arguments.
If any of these functions returns a value, it’s handled as
if it was the return value from the view and further
request handling is stopped.

This also triggers the url_value_preprocessor() functions before
the actual before_request() functions are called.

	
preserve_context_on_exception

	Returns the value of the PRESERVE_CONTEXT_ON_EXCEPTION
configuration value in case it’s set, otherwise a sensible default
is returned.

New in version 0.7.

	
process_response(response)

	Can be overridden in order to modify the response object
before it’s sent to the WSGI server. By default this will
call all the after_request() decorated functions.

Changed in version 0.5: As of Flask 0.5 the functions registered for after request
execution are called in reverse order of registration.

	Parameters

	response – a response_class object.

	Returns

	a new response object or the same, has to be an
instance of response_class.

	
propagate_exceptions

	Returns the value of the PROPAGATE_EXCEPTIONS configuration
value in case it’s set, otherwise a sensible default is returned.

New in version 0.7.

	
raise_routing_exception(request)

	Exceptions that are recording during routing are reraised with
this method. During debug we are not reraising redirect requests
for non GET, HEAD, or OPTIONS requests and we’re raising
a different error instead to help debug situations.

	Internal

	

	
register_blueprint(blueprint, **options)

	Registers a blueprint on the application.

New in version 0.7.

	
register_error_handler(code_or_exception, f)

	Alternative error attach function to the errorhandler()
decorator that is more straightforward to use for non decorator
usage.

New in version 0.7.

	
request_class

	alias of Request

	
request_context(environ)

	Creates a RequestContext from the given
environment and binds it to the current context. This must be used in
combination with the with statement because the request is only bound
to the current context for the duration of the with block.

Example usage:

with app.request_context(environ):
 do_something_with(request)

The object returned can also be used without the with statement
which is useful for working in the shell. The example above is
doing exactly the same as this code:

ctx = app.request_context(environ)
ctx.push()
try:
 do_something_with(request)
finally:
 ctx.pop()

Changed in version 0.3: Added support for non-with statement usage and with statement
is now passed the ctx object.

	Parameters

	environ – a WSGI environment

	
response_class

	alias of Response

	
run(host=None, port=None, debug=None, **options)

	Runs the application on a local development server.

Do not use run() in a production setting. It is not intended to
meet security and performance requirements for a production server.
Instead, see deployment for WSGI server recommendations.

If the debug flag is set the server will automatically reload
for code changes and show a debugger in case an exception happened.

If you want to run the application in debug mode, but disable the
code execution on the interactive debugger, you can pass
use_evalex=False as parameter. This will keep the debugger’s
traceback screen active, but disable code execution.

It is not recommended to use this function for development with
automatic reloading as this is badly supported. Instead you should
be using the flask command line script’s run support.

Keep in Mind

Flask will suppress any server error with a generic error page
unless it is in debug mode. As such to enable just the
interactive debugger without the code reloading, you have to
invoke run() with debug=True and use_reloader=False.
Setting use_debugger to True without being in debug mode
won’t catch any exceptions because there won’t be any to
catch.

Changed in version 0.10: The default port is now picked from the SERVER_NAME variable.

	Parameters

	
	host – the hostname to listen on. Set this to '0.0.0.0' to
have the server available externally as well. Defaults to
'127.0.0.1'.

	port – the port of the webserver. Defaults to 5000 or the
port defined in the SERVER_NAME config variable if
present.

	debug – if given, enable or disable debug mode.
See debug.

	options – the options to be forwarded to the underlying
Werkzeug server. See
werkzeug.serving.run_simple() for more
information.

	
save_session(session, response)

	Saves the session if it needs updates. For the default
implementation, check open_session(). Instead of overriding this
method we recommend replacing the session_interface.

	Parameters

	
	session – the session to be saved (a
SecureCookie
object)

	response – an instance of response_class

	
select_jinja_autoescape(filename)

	Returns True if autoescaping should be active for the given
template name. If no template name is given, returns True.

New in version 0.5.

	
send_static_file(filename)

	Function used internally to send static files from the static
folder to the browser.

New in version 0.5.

	
shell_context_processor(f)

	Registers a shell context processor function.

New in version 0.11.

	
should_ignore_error(error)

	This is called to figure out if an error should be ignored
or not as far as the teardown system is concerned. If this
function returns True then the teardown handlers will not be
passed the error.

New in version 0.10.

	
static_folder

	The absolute path to the configured static folder.

	
teardown_appcontext(f)

	Registers a function to be called when the application context
ends. These functions are typically also called when the request
context is popped.

Example:

ctx = app.app_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown
functions are called just before the app context moves from the
stack of active contexts. This becomes relevant if you are using
such constructs in tests.

Since a request context typically also manages an application
context it would also be called when you pop a request context.

When a teardown function was called because of an exception it will
be passed an error object.

The return values of teardown functions are ignored.

New in version 0.9.

	
teardown_request(f)

	Register a function to be run at the end of each request,
regardless of whether there was an exception or not. These functions
are executed when the request context is popped, even if not an
actual request was performed.

Example:

ctx = app.test_request_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown
functions are called just before the request context moves from the
stack of active contexts. This becomes relevant if you are using
such constructs in tests.

Generally teardown functions must take every necessary step to avoid
that they will fail. If they do execute code that might fail they
will have to surround the execution of these code by try/except
statements and log occurring errors.

When a teardown function was called because of a exception it will
be passed an error object.

The return values of teardown functions are ignored.

Debug Note

In debug mode Flask will not tear down a request on an exception
immediately. Instead it will keep it alive so that the interactive
debugger can still access it. This behavior can be controlled
by the PRESERVE_CONTEXT_ON_EXCEPTION configuration variable.

	
template_filter(name=None)

	A decorator that is used to register custom template filter.
You can specify a name for the filter, otherwise the function
name will be used. Example:

@app.template_filter()
def reverse(s):
 return s[::-1]

	Parameters

	name – the optional name of the filter, otherwise the
function name will be used.

	
template_global(name=None)

	A decorator that is used to register a custom template global function.
You can specify a name for the global function, otherwise the function
name will be used. Example:

@app.template_global()
def double(n):
 return 2 * n

New in version 0.10.

	Parameters

	name – the optional name of the global function, otherwise the
function name will be used.

	
template_test(name=None)

	A decorator that is used to register custom template test.
You can specify a name for the test, otherwise the function
name will be used. Example:

@app.template_test()
def is_prime(n):
 if n == 2:
 return True
 for i in range(2, int(math.ceil(math.sqrt(n))) + 1):
 if n % i == 0:
 return False
 return True

New in version 0.10.

	Parameters

	name – the optional name of the test, otherwise the
function name will be used.

	
test_client(use_cookies=True, **kwargs)

	Creates a test client for this application. For information
about unit testing head over to testing.

Note that if you are testing for assertions or exceptions in your
application code, you must set app.testing = True in order for the
exceptions to propagate to the test client. Otherwise, the exception
will be handled by the application (not visible to the test client) and
the only indication of an AssertionError or other exception will be a
500 status code response to the test client. See the testing
attribute. For example:

app.testing = True
client = app.test_client()

The test client can be used in a with block to defer the closing down
of the context until the end of the with block. This is useful if
you want to access the context locals for testing:

with app.test_client() as c:
 rv = c.get('/?vodka=42')
 assert request.args['vodka'] == '42'

Additionally, you may pass optional keyword arguments that will then
be passed to the application’s test_client_class constructor.
For example:

from flask.testing import FlaskClient

class CustomClient(FlaskClient):
 def __init__(self, *args, **kwargs):
 self._authentication = kwargs.pop("authentication")
 super(CustomClient,self).__init__(*args, **kwargs)

app.test_client_class = CustomClient
client = app.test_client(authentication='Basic')

See FlaskClient for more information.

Changed in version 0.4: added support for with block usage for the client.

New in version 0.7: The use_cookies parameter was added as well as the ability
to override the client to be used by setting the
test_client_class attribute.

Changed in version 0.11: Added **kwargs to support passing additional keyword arguments to
the constructor of test_client_class.

	
test_request_context(*args, **kwargs)

	Creates a WSGI environment from the given values (see
werkzeug.test.EnvironBuilder for more information, this
function accepts the same arguments).

	
trap_http_exception(e)

	Checks if an HTTP exception should be trapped or not. By default
this will return False for all exceptions except for a bad request
key error if TRAP_BAD_REQUEST_ERRORS is set to True. It
also returns True if TRAP_HTTP_EXCEPTIONS is set to True.

This is called for all HTTP exceptions raised by a view function.
If it returns True for any exception the error handler for this
exception is not called and it shows up as regular exception in the
traceback. This is helpful for debugging implicitly raised HTTP
exceptions.

New in version 0.8.

	
try_trigger_before_first_request_functions()

	Called before each request and will ensure that it triggers
the before_first_request_funcs and only exactly once per
application instance (which means process usually).

	Internal

	

	
update_template_context(context)

	Update the template context with some commonly used variables.
This injects request, session, config and g into the template
context as well as everything template context processors want
to inject. Note that the as of Flask 0.6, the original values
in the context will not be overridden if a context processor
decides to return a value with the same key.

	Parameters

	context – the context as a dictionary that is updated in place
to add extra variables.

	
url_defaults(f)

	Callback function for URL defaults for all view functions of the
application. It’s called with the endpoint and values and should
update the values passed in place.

	
url_rule_class

	alias of Rule

	
url_value_preprocessor(f)

	Registers a function as URL value preprocessor for all view
functions of the application. It’s called before the view functions
are called and can modify the url values provided.

	
wsgi_app(environ, start_response)

	The actual WSGI application. This is not implemented in
__call__ so that middlewares can be applied without losing a
reference to the class. So instead of doing this:

app = MyMiddleware(app)

It’s a better idea to do this instead:

app.wsgi_app = MyMiddleware(app.wsgi_app)

Then you still have the original application object around and
can continue to call methods on it.

Changed in version 0.7: The behavior of the before and after request callbacks was changed
under error conditions and a new callback was added that will
always execute at the end of the request, independent on if an
error occurred or not. See callbacks-and-errors.

	Parameters

	
	environ – a WSGI environment

	start_response – a callable accepting a status code,
a list of headers and an optional
exception context to start the response

cache

cache is an instance of apicore.cache.Cache

	
class apicore.cache.Cache

	Cache for the application.
To use by importing the instance :

	exemple:

	from apicore import cache

key = "my_data"
date = {"color": "orange", "flag": True}
cache.set(key, data)
print(cache.get(key))

Note

If redis URI is configured the cache is store in redis server, otherwise in-memory is used and all the cached data are lost after restarting the instance.

	
delete(key)

	
	Parameters

	key (str [https://docs.python.org/2/library/functions.html#str]) – the key referencing the data to remove

	
get(key)

	
	Parameters

	key (str [https://docs.python.org/2/library/functions.html#str]) – the key referencing the data

	
set(key, value, expire=None)

	
	Parameters

	
	key (str [https://docs.python.org/2/library/functions.html#str]) – the key referencing the data

	value – the data to store in cache

	expire (integer) – Expire at a given timestamp in seconde.

config

config is an instance of apicore.config.Config

	
class apicore.config.Config(configFile='conf/config.yaml')

	Manage configuration values.
To use by importing the instance :

	exemple:

	from apicore import config

print(config.server_name)

	
isDefined(name)

	Check whether configuration directive is defined or not

	Parameters

	string (str [https://docs.python.org/2/library/functions.html#str]) – Name of configuration directive

	Return boolean

	True is directive is defined

	
load(confFile='config.yaml')

	Load config file from filesystem.

	Parameters

	string (str [https://docs.python.org/2/library/functions.html#str]) – Path to config file.

Exceptions

	
class apicore.Http400Exception(description=None, verbose=False)

	Create a 400 Bad Request exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

	
class apicore.Http401Exception(description=None, verbose=False)

	Create a 401 Unauthorized exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

	
class apicore.Http402Exception(description=None, verbose=False)

	

	
class apicore.Http403Exception(description=None, verbose=False)

	Create a 403 Forbidden exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

	
class apicore.Http404Exception(description=None, verbose=False)

	Create a 404 Not Found exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

	
class apicore.Http406Exception(description=None, verbose=False)

	Create a 406 Not Acceptable exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

	
class apicore.Http409Exception(description=None, verbose=False)

	Create a 409 Conflict exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

	
class apicore.Http500Exception(description=None, verbose=False)

	Create a 500 Internal Server Error exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

	
class apicore.Http501Exception(description=None, verbose=False)

	Create a 501 Not Implemented exception.

	Parameters

	
	infos (str [https://docs.python.org/2/library/functions.html#str]) – A message describing the error.

	verbose (boolean) – True to send infos in HTTP response.

Lang

	
class apicore.Lang

	
	
static best_match(available_languages, default=None)

	Determine best language from list of available languages and from Accept-Language Header.

	Parameters

	
	available_languages (list) – List of available languages to match with.

	default (str [https://docs.python.org/2/library/functions.html#str]) – Language returned when no match found.

	Return str

	The best matching language or None if no matching.

Logger

	
class apicore.Logger

	
	
static error(string)

	Print error message to stderr.

	Parameters

	string (str [https://docs.python.org/2/library/functions.html#str]) – message to print.

	
static info(string)

	Print information message to stdout.

	Parameters

	string (str [https://docs.python.org/2/library/functions.html#str]) – message to print.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_template_filter() (apicore.api.API method)

 	add_template_global() (apicore.api.API method)

 	add_template_test() (apicore.api.API method)

 	add_url_rule() (apicore.api.API method)

 	after_request() (apicore.api.API method)

 	
 	API (class in apicore.api)

 	app_context() (apicore.api.API method)

 	app_ctx_globals_class (apicore.api.API attribute)

 	authenticate() (apicore.api.API method)

 	auto_find_instance_path() (apicore.api.API method)

B

 	
 	before_first_request() (apicore.api.API method)

 	
 	before_request() (apicore.api.API method)

 	best_match() (apicore.Lang static method)

C

 	
 	Cache (class in apicore.cache)

 	Config (class in apicore.config)

 	config_class (apicore.api.API attribute)

 	
 	context_processor() (apicore.api.API method)

 	create_global_jinja_loader() (apicore.api.API method)

 	create_jinja_environment() (apicore.api.API method)

 	create_url_adapter() (apicore.api.API method)

D

 	
 	delete() (apicore.cache.Cache method)

 	dispatch_request() (apicore.api.API method)

 	
 	do_teardown_appcontext() (apicore.api.API method)

 	do_teardown_request() (apicore.api.API method)

E

 	
 	endpoint() (apicore.api.API method)

 	
 	error() (apicore.Logger static method)

 	errorhandler() (apicore.api.API method)

F

 	
 	finalize_request() (apicore.api.API method)

 	
 	full_dispatch_request() (apicore.api.API method)

G

 	
 	get() (apicore.cache.Cache method)

 	
 	get_send_file_max_age() (apicore.api.API method)

 	got_first_request (apicore.api.API attribute)

H

 	
 	handle_exception() (apicore.api.API method)

 	handle_http_exception() (apicore.api.API method)

 	handle_url_build_error() (apicore.api.API method)

 	handle_user_exception() (apicore.api.API method)

 	has_static_folder (apicore.api.API attribute)

 	Http400Exception (class in apicore)

 	Http401Exception (class in apicore)

 	
 	Http402Exception (class in apicore)

 	Http403Exception (class in apicore)

 	Http404Exception (class in apicore)

 	Http406Exception (class in apicore)

 	Http409Exception (class in apicore)

 	Http500Exception (class in apicore)

 	Http501Exception (class in apicore)

I

 	
 	info() (apicore.Logger static method)

 	init_jinja_globals() (apicore.api.API method)

 	
 	inject_url_defaults() (apicore.api.API method)

 	isDefined() (apicore.config.Config method)

 	iter_blueprints() (apicore.api.API method)

J

 	
 	jinja_env (apicore.api.API attribute)

 	jinja_environment (apicore.api.API attribute)

 	
 	jinja_loader (apicore.api.API attribute)

 	json_decoder (apicore.api.API attribute)

 	json_encoder (apicore.api.API attribute)

L

 	
 	Lang (class in apicore)

 	load() (apicore.config.Config method)

 	
 	log_exception() (apicore.api.API method)

 	logger (apicore.api.API attribute)

 	Logger (class in apicore)

M

 	
 	make_config() (apicore.api.API method)

 	make_default_options_response() (apicore.api.API method)

 	
 	make_null_session() (apicore.api.API method)

 	make_response() (apicore.api.API method)

 	make_shell_context() (apicore.api.API method)

N

 	
 	name (apicore.api.API attribute)

O

 	
 	open_instance_resource() (apicore.api.API method)

 	
 	open_resource() (apicore.api.API method)

 	open_session() (apicore.api.API method)

P

 	
 	preprocess_request() (apicore.api.API method)

 	preserve_context_on_exception (apicore.api.API attribute)

 	
 	process_response() (apicore.api.API method)

 	propagate_exceptions (apicore.api.API attribute)

R

 	
 	raise_routing_exception() (apicore.api.API method)

 	register_blueprint() (apicore.api.API method)

 	register_error_handler() (apicore.api.API method)

 	
 	request_class (apicore.api.API attribute)

 	request_context() (apicore.api.API method)

 	response_class (apicore.api.API attribute)

 	run() (apicore.api.API method)

S

 	
 	save_session() (apicore.api.API method)

 	select_jinja_autoescape() (apicore.api.API method)

 	send_static_file() (apicore.api.API method)

 	
 	set() (apicore.cache.Cache method)

 	shell_context_processor() (apicore.api.API method)

 	should_ignore_error() (apicore.api.API method)

 	static_folder (apicore.api.API attribute)

T

 	
 	teardown_appcontext() (apicore.api.API method)

 	teardown_request() (apicore.api.API method)

 	template_filter() (apicore.api.API method)

 	template_global() (apicore.api.API method)

 	
 	template_test() (apicore.api.API method)

 	test_client() (apicore.api.API method)

 	test_request_context() (apicore.api.API method)

 	trap_http_exception() (apicore.api.API method)

 	try_trigger_before_first_request_functions() (apicore.api.API method)

U

 	
 	update_template_context() (apicore.api.API method)

 	url_defaults() (apicore.api.API method)

 	
 	url_rule_class (apicore.api.API attribute)

 	url_value_preprocessor() (apicore.api.API method)

W

 	
 	wsgi_app() (apicore.api.API method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to apicore’s documentation!

 		
 api

 		
 cache

 		
 config

 		
 Exceptions

 		
 Lang

 		
 Logger

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

