

Welcome to AP_ItemSampler Docs

Developer Guide

	Application Overview

	Project Setup

	Application Settings and Configurations

	Build

	Dependencies

	Docker

	Accessibility Resources

	Rubric and Rationale

Indices and tables

	Index

	Module Index

	Search Page

Application Overview

The Sample Items Website is a Microsoft ASP.NET Core MVC web application
that displays sample test question items.

License

Mozilla Public License Version 2.0

Installation

	Clone the project

	Don’t forget to initialize the project submodules
(instructions [https://git-scm.com/book/en/v2/Git-Tools-Submodules#_cloning_submodules])

	Install the latest version of Microsoft .NET Core for your operating
system (link [https://www.microsoft.com/net/download/core#/current])

	Install the latest TypeScript compiler
(link [https://www.typescriptlang.org/index.html#download-links])

	Download the latest sample item [ftp://ftps.smarterbalanced.org/~sbacpublic/Public/PracticeAndTrainingTests/](content package).

	Place this in the location specified in src/Web/appsettings.json
(ContentRootDirectory)

Project Architecture

The Sample Items Website project is composed of three layers: Web, Core,
and Dal.

Web is the startup project and contains controllers, views, style,
and other web dependencies. See the Dependencies section for more
information.

Core provides business logic to Web via repositories. It also houses
the business logic for the diagnosticAPI and model translations.

Dal provides data to the Core layer. All data is supplied by a
“content package” which is a set of XML files that represent test
question items. This XML is parsed into the immutable ItemDigest and
ItemCard models, which are used throughout the application.

Other XML data is used, such as
AccessibilityAccommodationConfigurations, ClaimConfigurations,
and InteractionTypeConfigurations. These configure information such
as order and labels for accessibility and interaction types.

Test is the test project for Sample Items Website. It contains unit
tests and integration tests for each of the three aforementioned layers.

Project Setup

General Steps

	Clone the project

	Don’t forget to initialize the project submodules
(instructions [https://git-scm.com/book/en/v2/Git-Tools-Submodules#_cloning_submodules])

	Install the latest version of Microsoft .NET Core for your operating
system (link [https://www.microsoft.com/net/download/core#/current])

	Install the latest TypeScript compiler
(link [https://www.typescriptlang.org/index.html#download-links])

	Download the latest sample item [ftp://ftps.smarterbalanced.org/~sbacpublic/Public/PracticeAndTrainingTests/](content package)

	Place this in the location specified in src/Web/appsettings.json
(ContentRootDirectory)

Running

Using Visual Studio

	Open the project in Visual Studio 2015-17

	Click the run button

Using Command Line

	Set environment variable ASPNETCORE_ENVIRONMENT to
Development

	in Windows: setx ASPNETCORE_ENVIRONMENT "Development", then
close and reopen the command prompt

	cd SampleItemsWebsite\SmarterBalanced.SampleItems

	dotnet restore

	cd src\SmarterBalanced.SampleItems.Web

	dotnet run

	Navigate to http://localhost:<port> in your browser to view the
running site

Application Settings and Configurations

Within the SmarterBalanced.SampleItems.Web project, configurations
are set in the file appsettings.json. This file contains all of the
configurations and settings that are used throughout the application.

Within appsettings.json, the SettingsConfig object contains
configurations necessary to start the application, as well as runtime
configuration settings.

Note: Following is a description of important configurations within this object:

ContentItemDirectory: Location of the Items directory within the
content package. Dependent on deployment environment setting
(development, staging, production).

ContentRootDirectory: Location of the content package. Dependent on
deployment environment setting (development, staging, production).

AwsS3Bucket: AWS S3 bucket that contains the content package.
Required for the diagnostic status feature.

AwsRegion: AWS region. Required for the diagnostic status feature.

ItemViewerServiceURL: Base URL for itemviewerservice, which renders
the test question items. URL is used to display an iframe of each item.

AwsClusterName: Name of AWS cluster. Required for the diagnostic
status feature.

StatusUrl: Diagnostic status URL for local diagnostic status.
Required for the diagnostic status feature.

AccommodationsXMLPath: Location of the accessibility configurations
XML document.

InteractionTypesXMLPath: Location of the interaction types
configuration XML document.

ClaimsXMLPath: Location of the claims configuration XML document.

Additionally, the RubricPlaceHolderText object contains strings that
are filtered out of item

Build

Sampleitems Website requires content before running.

There is a two-step process using docker. The base app without content
needs to be created as a docker image called code. Then we combine the
code image with the content package using another dockerfile.

Before starting build

Locate the dockerfile.stage and dockerfile.prod files from github repo,
navigate to deployScripts

Using a previous docker code image

To build a docker image for sample items website code base (without
content) see Building from scratch

Docker

	Navigate to directory containing dockerfiles

	Get docker code repo for stage/prod, run
docker pull reponame:{tag}

	Example stage: run
docker pull xxx.dkr.ecr.us-west-2.amazonaws.com/sampleitemscode:stage

	Example producation: run
docker pull xxx.dkr.ecr.us-west-2.amazonaws.com/sampleitemscode:prod

	Docker tag code, run
docker tag reponame:{tag} sampleitemscode:{tag}

	Example stage: run
docker tag xxx.dkr.ecr.us-west-2.amazonaws.com/sampleitemscode:stage sampleitemscode:stage

	Example production: run
docker tag xxx.dkr.ecr.us-west-2.amazonaws.com/sampleitemscode:prod sampleitemscode:prod

	place content within deployScripts directory

	Content needs to be unzipped

	content directory root level needs Items directory

	Docker build, run
docker build -t sampleitemsapp:{tag} -f Dockerfile.{tag} .

	Example stage: run
docker build -t sampleitemsapp:stage -f Dockerfile.stage .

	Example production: run
docker build -t sampleitemsapp:prod -f Dockerfile.prod .

	Docker Run app , run
docker run -it -p 8012:80 sampleitemsapp:{tag}

	Example stage: run
docker run -it -p 8012:80 sampleitemsapp:stage

	Example production: run
docker run -it -p 8012:80 sampleitemsapp:prod

	Go to localhost:8012 [http://localhost:8012]

	point to docker

Building from scratch

Dependencies

	See Project Dependencies

	Install Nodejs and npm

Dotnet build and Publish

	cd SampleItemsWebsite\SmarterBalanced.SampleItems

	dotnet restore

	cd src\SmarterBalanced.SampleItems.Web

	npm install

	grunt all

	dotnet publish -o ../../publish

	cd ../../publish

Docker build

	Go to the publish directory containing the dockerfile

	Build app, run docker build -t sampleitemscode:{tag}

	Example stage: run docker build -t sampleitemscode:stage

	Example producation: run docker build -t sampleitemscode:prod

Deploy Sample Items app

	see Publish Docker

Dependencies

NPM

NPM is required to install Grunt, Grunt packages, Less, and TypeScript.
See package.json in the Web project for configurations.

Bower

Bower is required to add Bootstrap, JQuery, and React. See
bower.json in the Web project for configurations.

Grunt

Grunt is used to perform tasks with Visual Studio events as well as with
build events. Grunt:

	Compiles TypeScript files into JavaScript on save and build

	Compiles Less CSS into CSS on save and build

	Minifies CSS on build

	Removes temp files

For Grunt configurations, see Gruntfile.js in the Web project.

External Dependencies

Docker

Docker is used to simplify and unify the build and runtime environment
for the application.

See Dockerfile in the Web project for Docker configurations. The
Web project also contains a .dockerignore.

TravisCI

TravisCI is used to verify the state of the application every time a
developer pushes to a branch in the GitHub repository. It first installs
project dependencies, pulls and builds the project, and then runs tests.

After the previous steps succeed, Travis builds a Docker image with the
application and pushes it to AWS.

On the dev, stage, and master branches, Travis triggers a
build process in AWS that combines the content package, hosted in an S3
bucket, with the application Docker image and performs a rolling update
to the running versions of these branches.

See the travis.yml file in the root directory project for
configurations.

Content package

The content for the site is provided by a content package supplied by
the Smarter Balanced Assessment Consortium. It consists of XML files
that describe the test question items (the “content package”).

Currently, content packages can be accessed at
ftp://ftps.smarterbalanced.org/~sbacpublic/Public/PracticeAndTrainingTests/.

Docker

Publish Docker to AWS

	Go to Amazon ECS

	Select Repositories

	Select a repository or create

	Select push Commands

	Follow the push Commands or follow:

	Go to the root directory containing Dockerfile

	Run aws ecr get-login --region us-west-2

	Run the docker login command

	Run docker build -t {repo-name}:{latest/dev/stage/prod} .

	Run
docker tag {repo-name}:{latest/dev/stage/prod} {amazon-repo}:{latest/dev/stage/prod}

	Run docker push {amazon-repo}:{latest/dev/stage/prod}

Publish Docker to DockerHub

	Go to the root directory containing Dockerfile

	Run docker login

	Run docker build -t {repo-name}:{latest/dev/stage/prod} .

	Run docker push {repo-name}:{latest/dev/stage/prod}

Docker Commands

To update a docker image, please follow publish to Aws or DockerHub

Accessibility Resources

	See ISAAP docs [http://www.smarterapp.org/documents/ISAAP-AccessibilityFeatureCodes.pdf]

Terms

	Accessibility Family: Default accessibility Resources available to the item based on the item’s grade and subject

	Accessibility Resource: The group of accessibility options.

	Example: Dictionary, Calculator

	Accessibility Option: Accessibility feature code. An ISAAP code to enable/disable accessibility.

	Example: Calculator has Off and On options

	ISAAP: A unique code for accessibility. Each code has a TDS prefix.

	See docs [http://www.smarterapp.org/documents/ISAAP-AccessibilityFeatureCodes.pdf]

AP_ItemViewerService

Usage

Please see github repo AP_ItemViewerService [https://github.com/SmarterApp/AP_ItemViewerService/blob/master/docs/Loading-Items]

Dictionary and Thesaurus

This is an external api for merriam-webster and depends on a running instance of TDS_Dictionary. AP_ItemSampler does not have any overrides or connection settings for this instance.

AP_ItemSampler usage

Client (Web)

Item Page and About Test Items use the AP_ItemViewerService as an iframe. Item Sampler passes a list of items, need to be related, with isaap codes. These codes are generated within the accessibility modal using the local item’s accessibility options. Items and Item’s family accessibility can be loaded from the Item Sampler’s api. The api accepts requests in the following format:

	“https://siw-ivs.smarterbalanced.org/item/{bankKey}-{itemKey}”

Access the api https://siw-ivs.smarterbalanced.org/item/

DAL

Accessibility is loaded from xml sources from a git submodule Github [https://github.com/osu-cass/AccessibilityAccommodationConfigurations]. Item Sampler loads them as is then applies business logic to create a complete list of accessibility resources for each family.

XML

Provides a global list of all accessibility resources, options, groups, and families. Families are a list of rules to apply to the global list for the subject and grade range.

Accessibility Resource Groups

This is the label for the group. Labels are loaded from the AppSettings.json and matched on the xml group key.

Merged Accessibility Family

This contains a list of accessibility resources for a range of grades and a subject. This contains the default options supported for a subject (ELA) and a grade range (3-5). Accessibility resource families from the xml contain rules to enable and disable options but not the options themselves. To simplify this process, merged accessibility families were created to execute the rules on the global list and contain the final result.

Item Accessibility

Local item accessibility is calculated from the accessibility family resource, based on subject and grade, and the item metadata attributes.

Item’s that can have different accessibility than the family:

	Metadata attribute AllowCalculator

	Item types

	Performance Task

	Thesaurus and Dictionary

	Braille (based on the ftp server resources)

	Metadata attachements (ASL)

	Claim

Calculator

Metadata can enable and disable calculator based on AllowCalculator. Calculator only shows Off and On for all math items. On refers to the item’s specific calculator option based on grade.

Thesaurus

Can be disabled if calculator is not allowed/available and if the item type is not WER.

Braille

Can be enabled if the ftp server has a listing for the item

American Sign Language

Can be enabled if the item’s contents has a ASL video attachment

Closed Captioning

Can be enabled if item is subject ELA and claim 3

Global Notes

Can be enabled if item is a performance task

Options

Universal Tools

Digital Notepad

Displays a notepad in the item’s hamburger menu. This will open a dialog for a user to enter text and save.

English Glossary

Provides glossary definition for an item’s word list. This will show a dashed top and bottom border for words that have a glossary definition.

Highlighter

Allows highlighting the item and/or passage’s text. To highlight, select text and right click or use the hamburger menu then select highlight text. To remove, select highlighted text and from the menu, select remove highlight.

English Dictionary

Provides a dialog to search the merriam-webster api for definitions. When enabled, a toolbar icon will display with text Dictionary.

Expandable Passages

Allows the passage to expand over the item. To enable, an icon will appear to the left of the hamburger menu for the passage, select the expand icon.

Global Notes

Provides a dialog to enter global notes for the user’s session. When enabled, a toolbar icon will display.

Strikethrough

Allows strike-through text for the item and/or passage’s text. To enable, select text and right click or use the hamburger menu and then select strikethrough. To remove, select the striked-through text and from the menu select remove strikethrough. (TODO: Verify name in menu.)

Thesaurus

Provides a dialog to search the merriam-webster api thesaurus. When enabled, a toolbar icon will display with text Dictionary. Dictionary enabled accessibility option is required for thesaurus.

Zoom

Increases/decreases text size for both passage and item. This should always be enabled. Two toolbar icons will appear.

Designated Supports

Color Choices

Changes the background color and text color for the item and passage.

Masking

Creates a overlay on top of the item and/or passage. A toolbar icon will display with text Masking. To enable, select the masking icon. To dismiss, select the x icon in the upper right of the masked overlay.

Translations (Glossaries)

Provides glossary definition for an item’s word list. This will show a dashed top and bottom border for words that have a glossary definition for the selected language.

Translations (Stacked)

Provides translated item and passage text.

Accommodations

American Sign Language

Displays a dialog with an ASL video to describe item and passage. To enable, select the option from the hamburger menu.

Braille Type

Provides braille files for the item and/or passage to be printed. Above the item viewer, a new link will be displayed.

Closed Captioning

Displays a dialog on the bottom of the item viewer. TODO: add more info

Streamlined Interface

Changes the layout of the item and passage. When enabled, the passage will be above the item.

Rubric and Rationale

Content Package

Applies to item-{bankKey}-itemKey.xml files within the content directory that are items. There are two types of “scoring” information. Rubric and Rationale list. Rationale list seems to be multiple choice explanations of the correct/incorrect answer. Rubric list has two parts, samples and rubrics. Rationale list also has rationale and option lists. There can be many sets based on the language.

Other Scoring Attributes

	MachineRubric: Specifies the machine rubric qrx file for automated scoring.

	itm_att_Answer Key

Rubric List

Rubric contains rubric entries and sample entries. Rubric entries are listed for each possible point value.
There is usually many sample lists within a rubric list even though most sample lists contains one entry. Sample are example responses to get a certain point value. Rubrics are the requirements to achieve a specific point value.

	content > rubriclist > rubric

	Score Point - entries point value

	Name - specifies rubric name with point

	Val - html of response

	content > rubriclist > samplelist > sample

	Purpose

	Name - specifies sample name with point value

	Annotation * not mapped

	Sample Content - html of explanation

Rationale List

Multiple choice and rationale for each possible answer. Note: Not mapped Explanation of Correct Answer and rationaloptlist

	Not Mapped - content > rationaleoptlist > rationale

	Name - each option value (a,b, …)

	Val - html of choice option (usually blank)

	content > optionlist > option

	Name - each option value (a,b, …)

	Val - html of choice option

	Feedback - html explanation of chosen answer

Item Sampler Translation

ItemDigest is made up of two files, ItemContents and ItemMetadata. Item Digest is the merged result of the two files in the content package. ItemContents has ItemXmlFieldRepresentation of the Item. This has the list of Content which holds all Rubric and Rationale List. SampleItem is the final version of the translated content package.

ItemDigest - ItemContents and ItemMetadata

	rubriclist from content is mapped to RubricList

	rubric from content is mapped to RubricEntry

	samplelist is mapped to RubricSample

	optionlist > option is mapped to SmarterAppOption

SampleItem from ItemDigest

ItemDigest is translated to SampleItemScore. Please see code documentation for more information.
SampleItemScore combines rubric and rationale for easier consumption in the API. It also filters out placeholder text and identifies correct/incorrect options.

Index

	Accessibility Resources

	Rubric and Rationale

	Application Overview

	Project Setup

	Application Settings and Configurations

	Build

	Dependencies

	Docker

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to AP_ItemSampler Docs

 		
 Application Overview

 		
 License

 		
 Installation

 		
 Project Architecture

 		
 Project Setup

 		
 General Steps

 		
 Running

 		
 Using Visual Studio

 		
 Using Command Line

 		
 Application Settings and Configurations

 		
 Build

 		
 Before starting build

 		
 Using a previous docker code image

 		
 Docker

 		
 Building from scratch

 		
 Dependencies

 		
 Dotnet build and Publish

 		
 Docker build

 		
 Deploy Sample Items app

 		
 Dependencies

 		
 NPM

 		
 Bower

 		
 Grunt

 		
 External Dependencies

 		
 Docker

 		
 TravisCI

 		
 Content package

 		
 Docker

 		
 Publish Docker to AWS

 		
 Publish Docker to DockerHub

 		
 Docker Commands

 		
 Accessibility Resources

 		
 Terms

 		
 AP_ItemViewerService

 		
 Usage

 		
 Dictionary and Thesaurus

 		
 AP_ItemSampler usage

 		
 Client (Web)

 		
 DAL

 		
 Item Accessibility

 		
 Options

 		
 Universal Tools

 		
 Designated Supports

 		
 Accommodations

 		
 Rubric and Rationale

 		
 Content Package

 		
 Other Scoring Attributes

 		
 Rubric List

 		
 Rationale List

 		
 Item Sampler Translation

 		
 ItemDigest - ItemContents and ItemMetadata

 		
 SampleItem from ItemDigest

_static/comment-bright.png

_static/ajax-loader.gif

