

 Navigation

 	
 index

 	
 next |

 	ANVIL 2015-dev documentation

ANVIL Documentation

Everything about ANVIL, a set of python scripts and utilities
to forge raw openstack into a productive tool!

	Summary
	Features

	How anvil is architected
	History

	Structure

	Getting started
	Prerequisites

	Installation

	Issues

	Documentation
	For admins/users

	For developers

	Questions and Answers
	How do I cause the anvil dependencies to be reinstalled?

	How do I run a specific OpenStack milestone?

	Bugs & Hugs & Code
	IRC

	Source code

	Bugs

	Branches

	Hacking

	Links

	Examples
	Bootstrapping

	Preparing

	Building

	Packaging

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ANVIL 2015-dev documentation

Summary

Anvil is a forging tool to help build OpenStack components and their
dependencies into a complete package-oriented system.

It automates the git checkouts of the OpenStack components, analyzes & builds
their dependencies and the components themselves into packages.

It allows a developer to setup an environment using the automatically created
packages (and dependencies, ex. RPMs) with the help of anvil configuring
the components to work correctly for the developer’s needs.

The distinguishing part from devstack [http://docs.openstack.org/developer/devstack/] (besides being written in Python and not
shell), is that after building those packages (currently RPMs) the same
packages can be used later (or at the same time) to actually deploy at a
larger scale using tools such as chef [http://www.opscode.com/chef/], salt [http://saltstack.com/], or puppet [http://puppetlabs.com/] (to name a few).

Features

Configurations

A set of configuration files (in yaml [http://www.yaml.org/] format) that is used for
common, component, distribution, code origins configuration...

All the yaml [http://www.yaml.org/] configuration files could be found in:

	conf/templates/keystone/

	conf/components/

	conf/distros/

	conf/origins/

	subdirectories of conf/personas/

Packaging

	Automatically downloading source from git and performing tag/branch checkouts.

	Automatically verifying and translating requirement files to
known pypi [http://pypi.python.org/pypi]/rpm [http://www.rpm.org/] packages.

	Automatically installing and building missing dependencies (pypi [http://pypi.python.org/pypi]
and rpm [http://www.rpm.org/]) for you.

	Automatically configuring the needed files, symlinks, adjustments, and
any patches.

Pythonic

Written in python so it matches the style of other OpenStack [http://openstack.org/] components.

Code decoupling

	Components & actions are isolated as individual classes.

	Supports installation personas that define what is to be installed, thus
decoupling the ‘what’ from the ‘how’.

Note

This encouraging re-use by others...

Extensive logging

	All commands executed are logged in standard output, all configuration files
read/written (and so on).

Note

Debug mode can be activated with -v option...

Package tracking and building

	Creation of a single RPM set for your installation.
	This freezes what is needed for that release to a known set of
packages and dependencies.

	Automatically building and/or including all needed dependencies.

	Includes your distributions existing native/pre-built packages (when
and where applicable).
	For example uncommenting the following in the bootstrap [http://github.com/openstack/anvil/blob/master/tools/bootstrap/CommonRedHat#L7] file will allow
anvil to find dependencies in the epel [http://fedoraproject.org/wiki/EPEL] repository.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ANVIL 2015-dev documentation

How anvil is architected

This little HOWTO can be used by those who wish to understand how anvil
does things and why some of its architectural decisions were made.

History

Once upon a time there was a idea of replacing the then
existing devstack [http://devstack.org/] with a more robust, more
error-tolerant and more user/developer friendly OpenStack
setup toolkit. Since the existing devstack [http://devstack.org/] did (and
still does not support very well) complex intercomponent (and interpackage
management system) dependencies and
installing/packaging/starting/stopping/uninstalling of OpenStack components.

To solve this problem it was thought that there could be a toolkit that could
handle this better. It would also be in Python the language of choice for the
rest of the OpenStack components thus making it easier to understand for
programmers who are already working in OpenStack code. Thus devstack2 was
born which was later renamed devstack.py and after a little while once
again got renamed to anvil.

Structure

Anvil is designed to have the following set of software components:

	Actions: an action is a sequence of function calls on a set of
implementing classes which follows a logically flow from one step to the
next. At the end of each step an action may choose to negate a step of
another action.
	Preparing
	Downloading source code

	Post-download patching of the source code

	Deep dependency & requirement analysis

	Downloading and packaging of missing python dependencies

	Packaging downloaded source code into SRPMs (aka source RPMs) that
is placed into a SRPM repository.

	Building
	Creation of a binary RPM repository with all built packages and
dependencies (converting the prepared source RPMs into binary RPMs).

	Phases: a phase is a step of an action which can be tracked as an
individual unit and can be marked as being completed. In the above install
action for each component that installed when each step occurs for that
component it will be recorded into a file so that if ctrl-c aborts anvil
and later the install is restarted anvil can notice that the previous phases
have already been completed and those phases can be skipped.
	This is how anvil does action and step resuming.

	Components: a component is a class which implements the above
steps (which are literally methods on an instance) and is registered with
the persona and configuration to be activated. To aid in making it easier
to add in new components a set of generic base classes exist that provide
common functionality that should work in most simplistic installs. These can
be found in anvil/components/. All current components that exist
either use these base classes directly or inherit from them and override
functions to provide additional capabilities needed to perform the specified
action.

	Distributions: a distribution is a yaml file that is tied to a operating
system distribution and provides references for components to use in a
generic manner. Some of these references include how to map a
components pip-requires file dependencies to distribution specific
dependencies (possibly using yum or apt) or what non-specified
dependencies are useful in getting the component up and running (such as
guestfish for image mounting and manipulation). Other helpful references
include allowing for components to specify standard identifiers for
configuration such as pip. This allows the underlying yaml file to map
the pip command to a distribution-centric command (in RHEL it it’s
really named pip-python), see the commands key in the yaml files for
examples of these settings. Note that each distribution yaml file that exists
in conf/distros provides this set of references for each component and
gets selected based on the yaml key in that file named platform_pattern.

	Configuration: central to how anvil operates is the ability to be largely
configuration driven (code when you need it but avoid it if you can).
Distributions as seen by the conf/distros folder specify
distribution-specific configuration that can be referenced by standard keys
by a given component. Each component also receives additional
configuration (accessible via a components get_option function) via the
yaml files specified in conf/components which provides for a way to have
configuration that is not distribution specific but instead is component
specific (say for configuring nova to use kvm instead of qemu).
	This configuration drive approach (as much as can be possible) was a key
design goal that drives how anvil was and is developed. It has even seemed
to be ahead of its time due to how anvil has a distribution yaml file that
has specified component dependencies long before the OpenStack community
even recognized such a dependency list was useful.

	Personas: a persona is a way for anvil to know what components (and
possibly subsystems of those components) you wish to have the given action
applied to. Since not everyone can agree on what is an install of OpenStack
this concept allows for those who wish to have a different set to do so. It
is as all other configuration another yaml file and can be examined by
looking into the conf/personas folders.
	Each yaml file contains the list of components to be performed for the
given action, a simple set of options for those components (for options
that may not be applicable to be in the component configuration yaml) and
which subsystems a given component will have enabled (if the component
supports this concept) as well as which distribution the persona
supports (if there is a desire to restrict a given persona to a given
distribution this field can be used to accomplish that goal).

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ANVIL 2015-dev documentation

Getting started

Made to be as simple as possible, but not too simple...

Prerequisites

RTFM

Read the great documentation for developers/admins at

	http://docs.openstack.org/developer/

	http://docs.openstack.org/

This will vastly help you understand what the configurations and options do
when ANVIL configures them.

Linux

One of the tested distributions.

	RHEL 6.2+

	CentOS 6.2+

	Oracle Enteprise Linux 6.2+

You can get CentOS 6.2+ (64-bit is preferred) from https://www.centos.org/

Installation

Pre-setup

Since RHEL requires a tty [http://linux.die.net/man/4/tty] to perform sudo commands we need
to disable this so sudo can run without a tty [http://linux.die.net/man/4/tty]. This seems needed
since nova and other components attempt to do sudo commands. This
isn’t possible in RHEL unless you disable this (since those
instances won’t have a tty [http://linux.die.net/man/4/tty]).

$ sudo visudo

Then comment out line

Default requiretty

Also disable selinux:

$ sudo vi /etc/sysconfig/selinux

Change SELINUX=enforcing to SELINUX=disabled then reboot.

$ sudo reboot

Create specifc user to isolate all the Anvil processes from root user

$ sudo useradd <username>
$ sudo passwd <username>

Set user as sudoer

$ sudo visudo

Add <username> ALL=(ALL) ALL

Make all the rest of actions as <username> user

$ sudo su - <username>

Get git!

$ sudo yum install git -y

Download

We’ll grab the latest version of ANVIL via git:

$ git clone https://git.openstack.org/openstack/anvil.git
$ cd anvil

Configuration

Any configuration to be updated should now be done.

Please edit the corresponding yaml files in conf/components/ or
conf/components/personas to fit your desired configuration of nova/glance
and the other OpenStack components.

Note

You can use -p <conf/components/required_file.yaml> to specify a
different persona.

To specify which versions of OpenStack components you want to install select
or edit an origins configuration file from <conf/origins/>.

Note

You can use -o <conf/origins/origins_file.yaml> to specify this
different origins file.

Respository notes for those with RedHat subscriptions

To enable the needed repositories for various requirements please also run:

sudo subscription-manager repos --enable rhel-6-server-optional-rpms

You can also include the RDO [http://openstack.redhat.com/Main_Page] repositories (which has even more of the needed
requirements). This will ensure that anvil has to build less dependencies
overall.

	http://openstack.redhat.com/Repositories

Pre-installing

In order to ensure that anvil will have its correct dependencies you need to
first run the bootstrapping code that will setup said dependencies for your
operating system.

sudo ./smithy --bootstrap

Preparing

Now prepare OpenStacks components by running the following:

./smithy -a prepare

You should see a corresponding OpenStack repositories getting downloaded using
git, python setups occurring and configuration files being written as well as
source rpm packages being built and a repository setup from those
components [1].

Building

Now build OpenStacks components by running the following:

sudo ./smithy -a build

You should see a corresponding OpenStack components and dependencies at this
stage being packaged into rpm files and two repositories being setup for
you [1]. One repository will be the dependencies that the OpenStack
components need to run and th other will be the OpenStack components
themselves.

Issues

Please report issues/bugs to https://launchpad.net/anvil. Much appreciated!

	[1]	(1, 2) If you desire more informational output add a -v or a -vv to the command.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ANVIL 2015-dev documentation

Documentation

For great documentation on all things OpenStack check out the following
relevant links and webpages.

For admins/users

	http://docs.openstack.org/

For developers

	Adding your own distribution

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ANVIL 2015-dev documentation

 	Documentation

Adding your own distribution

This little HOWTO can be used by those who wish to
add-on to anvil to be able to support their own distribution
or unsupported operating system (so that it can be
supported).

Diving in!

First you have to have a little background on anvil and
how it operates. So let’s dive in and learn a little on how
we can add in your own distribution support.

	smithy

	The main shell script that bootstraps the needed dependencies
for anvil to be able to start (including items such as termcolor,
progressbar and netifaces). The code here is written in bash shell
script so that it can execute in an environment without the
needed prerequisites.

When to adjust: Adjust the bootstrapping functions in this file to install
any needed prerequisites for your operating system to run anvil. Look at how we
are bootstrapping rhel (and how we are detecting rhel) for an example.

	conf/distros

	This set of yaml files contains definitions for what packages,
what pip to package mappings and what code entrypoints are used
when setting up a given component. The critical key here is the
platform_pattern key which is used as a regular expression to
determine if the provided yaml file will work in the given running
distribution. Other keys are used to identify which packaging class
to use (ie packager_name) and how to map a component name to
its action classes (i.e. action_classes/install will be constructed
when an install action occurs). The commands section can be used to
house arbitrary commands which may vary between operating systems (such
as the pip executable name)

When to adjust the distro: If a suitable distribution already exists (which may be the case
for many rhel variants), just go ahead and add-on to the regular expression your pattern. Ensure
that your regular expression matches the output of the following command:
python -c "import platform; print(platform.platform())"
which is what anvil uses internally to match a given yaml file to a given distribution.

When to add a new file: If no suitable distribution exists (which may be the case
for ubuntu), you will need to go ahead and create a new file for that distribution and
include its dependencies and any variations in packaging and pip -> package mappings needed
to setup that distribution with the openstack component software.

	anvil/distros

	These are typically subclasses of components that may override generic functionality to correct
for a given distribution doing or requiring something different to occur before/after or during
an install or other action.

When to adjust: Feel free to add-on your own subclasses here as needed to handle any special actions
that your new distribution may require and make sure you reference those classes/entrypoints
in your conf/distros yaml file so that the correct subclass will be used. The rhel distro has a good set
of examples that overload various key points so that rhel can work correctly.

	anvil/packaging

	The modules in this folder will be referenced in your conf/distros yaml file and will control
how to install packages (i.e. using yum and pip) and how to uninstall those same packages. This code will also
get activated when a ‘package’ action occurs which currently will cause the necessary actions to occur to
create a RPM spec file which can be used with the rpmbuild command.

When to adjust: If needed it should be simple to look at the packaging interface and add your own.
After adding make sure you reference them in your conf/distros yaml file so that the correct subclass will be used. If you are going
to want to create package files from the installed code then you will need to hook-in to a file similar
to the RPM module that exists there.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ANVIL 2015-dev documentation

Questions and Answers

How do I cause the anvil dependencies to be reinstalled?

Anvil bootstraps itself via shell script (if you look at the code
in the file smithy you will see that it is actually a bash
script).

This bootstrapping occurs to ensure that anvils pypi/rpm/deb
dependencies are installed before anvil can actually be used.
To remove the files that are left behind to let the shell script
know when this happens delete files located at $HOME/.anvil_bootstrapped
and at $PWD/.anvil_bootstrapped to cause bootstrapping to occur again.

Another way to make this happen temporarily is to use the following:

sudo BOOT_FILES=/dev/null ./smithy

This will make anvil think those files are coming from /dev/null
which will always return nothing. Using the same variable
also allows you to retarget the locations where the smithy
shell script will look for the ‘marker’ files if
you so choose (say in a continuous integration environment).

How do I run a specific OpenStack milestone?

Anvil has the same tag names as OpenStack releases so to
run against a specific milestone of OpenStack just checkout the
same tag in anvil and run the same actions as
you would have ran previously.

An example of this, lets adjust nova to use the stable/essex branch.

	Open conf/origins/master.yaml file in your favorite editor

	Locate lines that describe the nova component

	Change branch parameter to the desired one

nova:
 repo: https://github.com/openstack/nova.git
 branch: stable/essex

	
	Component origin parameters are:

	
	repo: <repo_url> - required

	branch: <branch> - optional

	tag: <tag> - optional

If no branch nor tag parameters were specified then branch: master is used by default.

Note: tag overrides branch (so you can’t really include both)

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ANVIL 2015-dev documentation

Bugs & Hugs & Code

ANVIL is an open-source tool released under the apache version 2.0 license [http://www.apache.org/licenses/LICENSE-2.0.html].
It depends on its community to keep it alive.

IRC

You can also usually find us on #openstack-anvil on freenode [http://freenode.net/irc_servers.shtml].

Source code

The source code is on github located at:

http://git.openstack.org/cgit/openstack/anvil (mirrored @
http://github.com/openstack/anvil/).

Feel free to fork it and contribute [http://docs.openstack.org/infra/manual/developers.html] to it.

Bugs

http://bugs.launchpad.net/anvil

Branches

Anvil tries to work across different OpenStack releases as of the havana [http://wiki.openstack.org/wiki/Releases]
release...

If it does not work across the majority of OpenStack releases [http://wiki.openstack.org/wiki/Releases] please file
a bug [http://bugs.launchpad.net/anvil].

Hacking

Feel free to hack but please try to follow the hacking guidelines [http://github.com/openstack/anvil/blob/master/HACKING.md].

Links

Please visit as often as you want at the following urls:

	http://launchpad.net/anvil (blueprints for features, bugs, q/a...)

	http://launchpad.net/~anvil-dev (talk to the devs directly)

Help and developer work/time is always much appreciated!

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	ANVIL 2015-dev documentation

Examples

Bootstrapping

This is needed to get ready for the rest of anvils stages by installing anvils
python dependencies so that anvil can correctly run using said dependencies.

$ sudo ./smithy --bootstrap

Terminal recording: http://showterm.io/effa75ea631777a2e74a0/

Preparing

This stage does the download of the source repositories, analysis of dependencies,
download of missing dependencies and building of source repositories and missing
dependencies into source rpms.

$./smithy -a prepare

Terminal recording: http://showterm.io/12c29e87094f128d945fa/

Building

This is the stage responsible for translating the previously prepared source rpms
into installable rpms (of the non-source type). The output of this phase is two
repositories, one with the dependencies and one with the rpms for the openstack
components themselves.

$ sudo ./smithy -a build

Terminal recording: http://showterm.io/2fee38794dcf536ccd437/

Packaging

To see the packages built (after prepare has finished).

$ ls /home/harlowja/openstack/deps/rpmbuild/SPECS/ | cat

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	openstack-deps.spec
pylint.spec
pyparsing.spec
python-babel.spec
python-cheetah.spec
python-cinderclient.spec
python-cinder.spec
python-cliff.spec
python-cliff-tablib.spec
python-cmd2.spec
python-colorama.spec
python-coverage.spec
python-crypto.spec
python-decorator.spec
python-discover.spec
python-docutils.spec
python-extras.spec
python-fixtures.spec
python-glanceclient.spec
python-glance.spec
python-hp3parclient.spec
python-httplib2.spec
python-jinja2.spec
python-jsonpatch.spec
python-jsonpointer.spec
python-jsonschema.spec
python-keystoneclient.spec
python-keystone.spec
python-ldap.spec
python-logilab-astng.spec
python-logilab-common.spec
python-lxml.spec
python-markdown.spec
python-markupsafe.spec
python-mimeparse.spec
python-netaddr.spec
python-nose-exclude.spec
python-nosehtmloutput.spec
python-nose.spec
python-nosexcover.spec
python-novaclient.spec
python-nova.spec
python-openstack-nose-plugin.spec
python-oslo-config.spec
python-pam.spec
python-pastedeploy.spec
python-pep8.spec
python-prettytable.spec
python-pygments.spec
python-pysqlite.spec
python-neutronclient.spec
python-repoze-lru.spec
python-routes.spec
python-setuptools-git.spec
python-setuptools.spec
python-sphinx.spec
python-sqlalchemy-migrate.spec
python-sqlalchemy.spec
python-subunit.spec
python-tablib.spec
python-tempita.spec
python-termcolor.spec
python-testrepository.spec
python-testtools.spec
python-unittest2.spec
python-warlock.spec
python-webob.spec
python-wsgiref.spec
python-xattr.spec

$ cat openstack-deps.spec

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	Name: openstack-deps
Version: 2013.6.3
Release: 0
License: Apache 2.0
Summary: OpenStack dependencies
BuildArch: noarch

Requires: MySQL-python
Requires: avahi
Requires: coreutils
Requires: curl
Requires: dnsmasq
Requires: dnsmasq-utils
Requires: ebtables
Requires: fuse
Requires: gawk
Requires: git
Requires: guestfish
Requires: iptables
Requires: iputils
Requires: iscsi-initiator-utils
Requires: kpartx
Requires: libguestfs
Requires: libguestfs-mount
Requires: libguestfs-tools
Requires: libvirt
Requires: libvirt-client
Requires: libvirt-python
Requires: libxml2-devel
Requires: libxslt-devel
Requires: lsof
Requires: mlocate
Requires: mysql
Requires: mysql-server
Requires: openssh-server
Requires: parted
Requires: postgresql-devel
Requires: psmisc
Requires: python
Requires: python-devel
Requires: python-distutils-extra
Requires: python-setuptools
Requires: qemu-img
Requires: qemu-kvm
Requires: rabbitmq-server
Requires: sqlite
Requires: sqlite-devel
Requires: sudo
Requires: tcpdump
Requires: unzip
Requires: vconfig
Requires: wget

%description

%pre

rabbitmq-server
service qpidd stop 2>/dev/null || true
chkconfig qpidd off 2>/dev/null || true

%files

$ cat python-nova.spec

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	%define pkg_name nova
%define version 2013.1
%define unmangled_version 2013.1
%define unmangled_version 2013.1
%define release 1

Summary: cloud computing fabric controller
Name: python-nova
Epoch: 2
Version: %{version}
Release: %{release}
Source0: %{pkg_name}-%{unmangled_version}.tar.gz
License: UNKNOWN
Group: Development/Libraries
BuildRoot: %{_tmppath}/%{pkg_name}-%{version}-%{release}-buildroot
Prefix: %{_prefix}
BuildArch: noarch
Vendor: OpenStack <nova@lists.launchpad.net>
Requires: python-sqlalchemy >= 0.7.8 python-sqlalchemy < 0.7.99 python-cheetah >= 2.4.4 python-amqplib >= 0.6.1 python-anyjson >= 0.2.4 python-argparse python-boto python-eventlet >= 0.9.17 python-kombu >= 1.0.4 python-lxml >= 2.3 python-routes >= 1.12.3 python-webob = 1.2.3 python-greenlet >= 0.3.1 python-pastedeploy >= 1.5 python-paste python-sqlalchemy-migrate >= 0.7.2 python-netaddr >= 0.7.6 python-suds >= 0.4 python-paramiko python-pyasn1 python-babel >= 0.9.6 python-iso8601 >= 0.1.4 python-httplib2 python-setuptools-git >= 0.4 python-cinderclient >= 2:1.0.1 python-neutronclient >= 2:2.2 python-neutronclient < 2:3 python-glanceclient >= 2:0.5 python-glanceclient < 2:2 python-keystoneclient >= 2:0.2 python-stevedore >= 0.7 python-websockify < 0.4 python-oslo-config >= 2:1.1
Url: http://www.openstack.org/

%description
UNKNOWN

%prep
%setup -n %{pkg_name}-%{unmangled_version} -n %{pkg_name}-%{unmangled_version}

%build
python setup.py build

%install
python setup.py install --single-version-externally-managed -O1 --root=$RPM_BUILD_ROOT --record=INSTALLED_FILES
abspath_installed_files=$(readlink -f INSTALLED_FILES)
(
 cd $RPM_BUILD_ROOT
 for i in usr/*/python*/site-packages/* usr/bin/*; do
 if [-e "$i"]; then
 sed -i "s@/$i/@DELETE_ME@" "$abspath_installed_files"
 echo "/$i"
 fi
 done
 if [-d usr/man]; then
 rm -rf usr/share/man
 mkdir -p usr/share
 mv usr/man usr/share/
 sed -i "s@/usr/man/@DELETE_ME@" "$abspath_installed_files"
 for i in usr/share/man/*; do
 echo "/$i/*"
 done
 fi
) >> GATHERED_FILES
{ sed '/^DELETE_ME/d' INSTALLED_FILES; cat GATHERED_FILES; } | sort -u > INSTALLED_FILES.tmp
mv -f INSTALLED_FILES{.tmp,}

%clean
rm -rf $RPM_BUILD_ROOT

%files -f INSTALLED_FILES
%defattr(-,root,root)

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ANVIL 2015-dev documentation

Index

 Copyright .
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		ANVIL 2015-dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.5.

_static/anvil-tiny.png

_static/up.png

