
Ansible EVPN/VXLAN Documentation
Release 0.2.0

Damien Garros

Oct 27, 2017

Contents

1 Sample Ansible project to generate EVPN/VXLAN configuration 3
1.1 Regenerate configurations . 4
1.2 Scale configurations . 4

2 Templates and Roles used to generate configuration 5
2.1 Roles to create the underlay configuration . 5
2.2 Roles to create the overlay configuration (EVPN) . 6
2.3 Roles to generate variables (IPs, vlan) . 6
2.4 Other Roles . 6

3 Playbooks 7
3.1 Configure . 7
3.2 Test . 7
3.3 Generate Variables . 8
3.4 Misc . 8

4 How to create an Ansible project abstracted from the physical devices 9
4.1 1/ Use alias for device in the inventory file . 9
4.2 2/ Centralize all physical information related to a given physical topology in a central topology file . 10
4.3 3/ Define remaining variables specific to a given topology in the inventory file 11

5 How to use this project on my own topology 13
5.1 1/ Create your inventory file . 14
5.2 2/ Create your own topology file . 14
5.3 3/ Define your IP address plan . 14

6 Indices and tables 15

i

ii

Ansible EVPN/VXLAN Documentation, Release 0.2.0

Sample project using Ansible and Jinja2 template to generate configurations and manage Juniper devices deployed in
EVPN/VXLAN Fabric mode.

In this project you’ll find:

• Sample project for ansible with Playbooks and variables to generate EVPN/VXLAN configuration for
multi-pod EVPN/Fabric in a multi-tenants environment.

• Examples of configuration EVPN/VXLAN for QFX5k, QFX10k & MX.

• Severals Jinja2 templates, packaged and documented into Ansible roles that can be reuse in other Ansi-
ble projects to easily generate Overlay & Underlay configuration.

• Playbook to check the health of an EVPN/VXLAN Fabric.

Contents:

Contents 1

https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/config
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles

Ansible EVPN/VXLAN Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Sample Ansible project to generate EVPN/VXLAN configuration

This project is simulating the creation of a 2 pods EVPN/VXLAN Fabric, POD1 & POD2:

• Each POD is composed of 2 spine and 2 leaf

• PODs are interconnected with 2 qfx5100 acting as Fabric, these are not running EVPN

On POD1

• Spine are QFX10K and leaf are QFX5000

• Leaf are configured with Vlan normalization on their access ports facing servers

On POD2

• Spine are MX480 and leaf are QFX5000

• Leaf are configured with standard trunk interface facing servers,

• 1 server is dual-attached to both leaf using EVPN/ESI and LACP

All devices names, Ip addresses loopback addresses etc .. are defined in the inventory file named hosts.
ini. All physical connections are defined in the topology file under group_vars/all.

3

Ansible EVPN/VXLAN Documentation, Release 0.2.0

Regenerate configurations

Even without real devices, it’s possible to regenerate configurations for all devices using ansible playbooks provided
with the project

To verify that Ansible & Ansible Junos module for Ansible are properly installed, you can try to regenerate all configs
with this command:

ansible-playbook pb.conf.all.yaml

Note: By default, all configurations generated will be stored under the directory config/ and will replace existing
configuration store there

Scale configurations

The project come with some a solution to easily change the scale of the setup, it’s possible to :

• Change the number of tenants

• Change the number of VNI per tenants

To scale the configuration, you need to change some input parameters in the file group_vars/all/tenant_vni.yaml
*Please refer to instructions in generate-tenant-vni role

Once the input file is modified, you need to regenerate variables first and them regenerate configurations.

ansible-playbook pb.generate.variables.yaml
ansible-playbook pb.conf.all.yaml

4 Chapter 1. Sample Ansible project to generate EVPN/VXLAN configuration

https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/generate-tenant-vni

CHAPTER 2

Templates and Roles used to generate configuration

All configurations are generated using Jinja2 templates and variables. To simplificy the management of these templates
and make them reusable in other projects, these templates have been pacakges into several roles, each one is generating
a part of the final configuration.

All roles are located under the directory roles and are organized as follow

underlay-ebgp # Name of the role
- README.md # Documentation and Instructions to reuse
- meta
| - main.yaml # Indicate author of the project and dependancies
- defaults
| - main.yaml # Default variables, can be overwritten for each device
- tasks
| - main.yaml # Action to execute when calling this Roles
- templates

- main.conf.j2 # Jinja2 Templates, in most cases, used to generate
→˓configuration

Below the list of roles available, classified per function, with a short description and a link to their respective docu-
mentation.

Roles to create the underlay configuration

There are 3 different roles to create an underlay network, only one is needed and all devices must have the same.

Role Description
underlay-ebgp Create an Underlay with eBGP with p2p /31 network and 1 ASN per device
underlay-ospf Create an Underlay with OSPF with p2p /31 network and 1 Area
underlay-ospf-unnumbered Create an Underlay with OSPF with p2p unnumbered interface and 1 Area

5

https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/underlay-ebgp
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/underlay-ospf
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/underlay-ospf-unnumbered

Ansible EVPN/VXLAN Documentation, Release 0.2.0

Roles to create the overlay configuration (EVPN)

These roles are complementary and are designed to work together. Each one is specific to a role in the architecture
and is specific to device capabilities:

Role Description
overlay-evpn-
qfx-l3

Create iBGP & EVPN configuration for QFX devices that support both L2 & L3 VTEP
(QFX10000 today)

overlay-evpn-
qfx-l2

Create iBGP & EVPN configuration for QFX devices that only support L2 VTEP
(QFX5100/QFX5200)

overlay-evpn-
mx-l3

Create iBGP & EVPN configuration for MX devices that only support L2 & L3 VTEP (MX)

overlay-evpn-
access

Create access ports configuration to maps existing resources into the overlay
(Trunk/LAG/ESI/Vlan mapping)

Roles to generate variables (IPs, vlan)

Role Description
generate-tenant-vni Generate variables files to scale Tenant and VNI
generate-p2p-ips Generate network and ip addresses for P2P links
generate-underlay-bgp Generate ebgp underlay input variables

Other Roles

Role Description
common Generate base configuration
build-config Assemble all configuration snippet from other roles

6 Chapter 2. Templates and Roles used to generate configuration

https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-qfx-l3
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-qfx-l3
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-qfx-l2
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-qfx-l2
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-mx-l3
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-mx-l3
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-access
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/overlay-evpn-access
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/generate-tenant-vni
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/generate-p2p-ips
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/generate-underlay-bgp
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/common/
https://github.com/JNPRAutomate/ansible-junos-evpn-vxlan/tree/master/roles/build-config

CHAPTER 3

Playbooks

All playbooks are stored at the root of the project and are named pb.*.yaml

Configure

pb.save.config.yaml # Download configuration for all devices and save
→˓them locally

pb.conf.all.yaml # Generate and assemble configuration for all
→˓devices
pb.conf.all.commit.yaml # Generate, assemble, push and commit configuration
→˓to all devices

This project has been updated to use the new Junos modules available in Ansible 2.1
Some playbooks are also provided with the Junipe.junos modules available in Ansible
→˓Galaxy.
pb.conf.all.commit.galaxy.yaml # Generate, assemble, push and commit configuration
→˓to all devices

using the Junos modules provided in Ansible Galaxy

Test

pb.check.connectivity.yaml # Check if all devices are reachable via Netconf
pb.check.underlay.yaml # Check the heath of the underlay
pb.check.overlay.yaml # Check the health of the overlay

7

Ansible EVPN/VXLAN Documentation, Release 0.2.0

Generate Variables

pb.generate.variables.yaml # Regenerate variables files for p2p links, Tenants
→˓and VNI

Misc

pb.init.make_clean.yaml # Create temp directory for all devices

8 Chapter 3. Playbooks

CHAPTER 4

How to create an Ansible project abstracted from the physical devices

Automation projects for networks devices are often very specific to a particular set of physical devices because of the
physical topologies of these devices and how they are connected to each other. There are multiple situations where
it’s important and very useful to be able to reuse the same automation projects across multiple “network” or group of
devices, to name a few:

• Production network with multiple sites

• Configuration validation between production and pre-production networks

• Dynamic/multiple lab environments

Even if you are able to share configuration templates across different projects, there are many information that are
difficult to share or reuse. When you want to reuse one project between multiple topology you have to change many
information: devices name, interfaces name, IPs etc . . .

With Ansible, this challenge is solved using dynamic inventory to dynamically load inventory information and device
specific variables. Dynamic inventory is working great for deployment in production but require a back-end system
that will store all information. For smaller deployment and for lab most people usually keep their inventory and
variables in files stored on the local file system. (TODO, Add link to dynamic inventory) Using static inventory and
variables defined in local yaml files, it’s possible to make a project easy to reuse across multiple physical topologies.

By using the 3 following steps you’ll be able to create to abstract your project from your physical topology:

• Use alias for device in the inventory file

• Centralize all physical information related to a given physical topology in a central topology file

• Define remaining variables specific to a given topology in the inventory file

1/ Use alias for device in the inventory file

The inventory file is one of the main components of Ansible, it contains a lot of information including devices names
and groups. The name you use to define your device is very important because it is used in many other places inside
ansible. For example, variables are classified per devices using the name defined in the inventory, also available with
the variable “inventory_hostname”.

9

Ansible EVPN/VXLAN Documentation, Release 0.2.0

It’s seam natural to use the real name of your devices in the inventory file but by doing so you’ll make it difficult to
reuse your project across multiple devices. It’s possible to keep your project portable by using an alias in the inventory
and create a new variable that contain the real name or IP of the device

2/ Centralize all physical information related to a given physical topol-
ogy in a central topology file

To prevent very specific information like interfaces name to be duplicated and dispersed everywhere in the project. It
possible to centralize them and give them an alias as well.

In this example, I put all information related to my physical layer (interface name, peer etcc ..) in a central file.
(sample-topology.yaml) Each interfaces get assigned an alias here: port1, port2 port3. It could be something more
meaning full like: to_spine1, to_spine2 All information are stored under a variable named topo and each device has
it’s own section identified with the device name used in the inventory.

Everywhere else, when you need to access the name of an interface you can access it by its variable {{
topo[inventory_hostname].port1.name }}

Note: Inventory_hostname is a variable itself and will be automatically replaced with the name of the device used in
the inventory, for example: fabric-01

The topology file itself is defined in the inventory file and is loaded at the beginning at each playbook.

10 Chapter 4. How to create an Ansible project abstracted from the physical devices

Ansible EVPN/VXLAN Documentation, Release 0.2.0

Note: The creation of a variable in the inventory file allow to keep the playbook independent of the topology as well

3/ Define remaining variables specific to a given topology in the in-
ventory file

Remaining information that are device specific like management IP, loopback address etc .. can be defined in the
inventory file directory. It’s possible to define any type of variable in the inventory file, either per device or per group

4.3. 3/ Define remaining variables specific to a given topology in the inventory file 11

Ansible EVPN/VXLAN Documentation, Release 0.2.0

12 Chapter 4. How to create an Ansible project abstracted from the physical devices

CHAPTER 5

How to use this project on my own topology

This project has been designed to be easily deploy on multiple topologies, physical or virtual. As much as possible,
all information related to a given topology (interface names, device names etc ..) are centralized in 2 files:

The topology file [sample-topology.yaml], this file contains:

• Information required to construct the base configuration (login, dns, ntp etc ..)

• All physical interface names

• Directories to use to generate the configuration

The inventory file [hosts.ini], this file contains:

• Device names

• Device roles in the architecture (using ansible groups)

• Management IP addresses and loopback

• Login, password, management gateway etc ..

• The name of the topology file

When you call an Ansible playbook, you can specify explicitly the inventory file by using the option -i

Note: To align, the name of the topology file needs to be define inside the inventory file

Generate configurations for the sample-topology
ansible-playbook -i hosts.ini pb.conf.all.yaml

Generate configurations for your own topology
ansible-playbook -i mytopology.ini pb.conf.all.yaml

It’s easy to create your own inventory and topology files to adapt device IP, type and interface names to your environ-
ment assuming you have the same base design.

13

Ansible EVPN/VXLAN Documentation, Release 0.2.0

1/ Create your inventory file

The inventory file contains a lot of information and variables but most importantely it define the parsonnality of each
device depending on which groups a device belong to.

Different playbooks will be executed for each groups, and each playbook will generate a different part of the configu-
ration.

All devices in the group spine-mxwill get their configuration from these group - common - underlay-ebgp - overlay-
evpn-mx-l3 - build-config

All devices in the group leaf-qfx-l3 will get their configuration from these group - common - underlay-ebgp -
overlay-evpn-qfx-l3 - overlay-evpn-access - build-config

The complete list of role per group is available in the playbook pb.conf.all.yaml

Unique ID Each device in the inventory file needs to have a unique ID define inside the variable id. This ID is used
to automatically generate: - Loopback address - ASN number

2/ Create your own topology file

To properly generate the configuration, it’s important to define all information related to your topology in this file:
Interface names, dns, login, static route etc ...

Please refer to the documentation of role generated-underlay-ebgp to understand how to define in the topol-
ogy file the information that will be used to generate the underlay

Note: if you define vqfx: true in the inventory file, DHCP will be automatically configured on the management
interface.

3/ Define your IP address plan

You can define your own IP address plan and automatically regenerate all variables by using the playbook pb.
generate.variables.yaml.

All information can be defined inside the playbook itself in the vars: section.

14 Chapter 5. How to use this project on my own topology

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	Sample Ansible project to generate EVPN/VXLAN configuration
	Regenerate configurations
	Scale configurations

	Templates and Roles used to generate configuration
	Roles to create the underlay configuration
	Roles to create the overlay configuration (EVPN)
	Roles to generate variables (IPs, vlan)
	Other Roles

	Playbooks
	Configure
	Test
	Generate Variables
	Misc

	How to create an Ansible project abstracted from the physical devices
	1/ Use alias for device in the inventory file
	2/ Centralize all physical information related to a given physical topology in a central topology file
	3/ Define remaining variables specific to a given topology in the inventory file

	How to use this project on my own topology
	1/ Create your inventory file
	2/ Create your own topology file
	3/ Define your IP address plan

	Indices and tables

