

 Navigation

 	
 index

 	ansible-eos 1.3.0 documentation

The Ansible EOS Role

The ansible-eos project provides modules for managing resources on Arista EOS
nodes. Please see Ansible Galaxy [https://galaxy.ansible.com/list#/roles/1359] for more details
This project is maintained by the Arista Networks [http://arista.com/] EOS+ Consulting Services organization.

Warning

Deprecation Notice

Ansible 2.1 ships with great new networking
modules [http://docs.ansible.com/ansible/list_of_network_modules.html#eos]
purpose-built for Arista EOS. Due to the easy-to-use nature of these modules,
and their great flexibility, it is no longer recommended to use the arista.eos
role.

Get started by checking out the latest Arista solution [https://eos.arista.com/arista-ansible-getting-started]

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ansible-eos 1.3.0 documentation

Index

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 _modules/eos_user_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_user

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.2.0

The eos_user module helps manage CLI users on your Arista nodes. You can create, delete and modify users along with their passwords.

Options

		parameter
		required
		default
		choices
		comments

		encryption
		no
		
 				md5

		sha512

 		
 Defines the encryption format of the password provided in the corresponding secret key. Note that cleartext passwords are allowed via manual CLI user creation but are not supported in this module due to security concerns and idempotency.
(added in 1.2.0)

		name
		yes
		
 		

 		
 The unique username. The username must adhere to certain format guidelines. Valid usernames begin with A-Z, a-z, or 0-9 and may also contain any of these characters: @#$%^&*-_= +;<>,.~|
(added in 1.2.0)

		nopassword
		no
		
 				True

		False

 		
 The nopassword key is used to create a user with no password assigned. This attribute is mutually exclusive with secret and encryption.
(added in 1.2.0)

		privilege
		no
		
 		

 		
 Configures the privilege level for the user. Permitted values are integers between 0 and 15. The EOS default privilege is 1.
(added in 1.2.0)

		role
		no
		
 		

 		
 Configures the role assigned to the user. The EOS default for this attribute is managed with aaa authorization policy local default-role; this is typically the network-operator role.
(added in 1.2.0)

		secret
		no
		
 		

 		
 This key is used in conjunction with encryption. The value should be a hashed password that was previously generated.
(added in 1.2.0)

		sshkey
		no
		
 		

 		
 Configures an sshkey for the CLI user. This sshkey will end up in /home/USER/.ssh/authorized_keys. Typically this is the public key from the client SSH node.
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.4.0 or later

Important

Requires Cleartext passwords are not accepted in playbooks

Examples

- name: Create simple user with no assigned password
 eos_user: name=simpletom nopassword=true

- name: Create user with MD5 password
 eos_user: name=securetom encryption=md5
 secret=1J0auuPhz$Pkr5NnHssW.Jqlk17Ylpk0

- name: Create user with SHA512 password (passwd truncated in eg)
 eos_user: name=securetom encryption=sha512
 secret=6somesalt$rkDq7Az4Efjo

- name: Remove user
 eos_user: name=securetom state=absent

- name: Create user with privilege level 10
 eos_user: name=securetom encryption=sha512
 secret=6somesalt$rkDq7Az4Efjo
 privilege=10

- name: Create user with role network-admin
 eos_user: name=securetom encryption=sha512
 secret=6somesalt$rkDq7Az4Efjo
 privilege=10 role=network-admin

- name: Add an SSH key with a user no password
 eos_user: name=sshkeytom nopassword=true
 sshkey='ssh-rsa somesshkey'

- name: Remove SSH key with a user no password
 eos_user: name=sshkeytom nopassword=true
 sshkey=''

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_mlag_config_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_mlag_config

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_mlag_interface module manages the MLAG interfaces on Arista EOS nodes. This module is fully stateful and all configuration of resources is idempotent unless otherwise specified.

Options

		parameter
		required
		default
		choices
		comments

		domain_id
		no
		
 		

 		
 Configures the global MLAG domain-id value on the EOS node. The domain-id specifies the name the for MLAG domain. Valid values for domain-id is any ASCII string.
(added in 1.0.0)

		local_interface
		no
		
 		

 		
 Configures the VLAN interface (SVI) for use as the MLAG endpoint for control traffic. Valid values for local-interface is any VLAN SVI identifier.
(added in 1.0.0)

		peer_address
		no
		
 		

 		
 Configures the global MLAG peer-address of the MLAG peer. This peer address must be reachable by the configured local-interface. Valid values are any IPv4 unicast IP address.
(added in 1.0.0)

		peer_link
		no
		
 		

 		
 Configures the physical link that connects the local MLAG to its remote peer node. The physical link value can be any valid Ethernet or Port-Channel interface
(added in 1.0.0)

		shutdown
		no
		
 				True

		False

 		
 Configures the global MLAG administratively state. If the value of shutdown is true, then MLAG is administratively disabled. If the value of shutdown is false, then MALG is administratively enabled. The EOS default value for shutdown is false.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensure the MLAG domain-id is mlagPeer
 eos_mlag_config: domain_id=mlagPeer

- name: Configure the peer address and local interface
 eos_mlag_config: peer_address=2.2.2.2 local_interface=Vlan4094

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Does not support stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_Route Policy_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Route Policy Modules

		eos_acl_entry

		eos_routemap

		eos_staticroute

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_BGP_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

BGP Modules

		eos_bgp_config

		eos_bgp_neighbor

		eos_bgp_network

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

support.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Support

Contact

The Ansible EOS role is developed by Arista EOS+ CS and supported by the Arista
EOS+ community. Support for the modules as well as using Ansible with Arista
EOS nodes is provided on a best effort basis by the Arista EOS+ CS team and the
community. You can contact the team that develops these modules by sending
an email to ansible-dev@arista.com.

For customers that are looking for a premium level of support, please contact
your local account team or email eosplus@arista.com for help.

Submitting Issues

The Arista EOS+ CS development team uses Github Issues to track discovered
bugs and enhancement request to the Ansible EOS role. The issues tracker can
be found at https://github.com/arista-eosplus/ansible-eos/issues.

For defect issues, please provide as much relevant data as possible as to what
is causing the issue, if and how it is reproducible, the version of EOS and
Ansible running.

For enhancement requests, please provide a brief description of the
enhancement request and the version of EOS to be supported.

The issue tracker is monitored by Arista EOS+ CS and issues submitted are
categorized and scheduled for inclusion in upcoming Ansible EOS role versions.

Debugging Module Output

All Ansible EOS role modules provide a consistent output and options for
troubleshooting the module operations. Each module provides logging and debug
information to help debugging the change the module is introducing. Modules
provide two arguments for debugging: logging (default=on) and debug
(default=off).

When a module executes, the module output can be registered as a variable and
then used to display the output. Below is an example task that configures a
logical Vxlan interface:

- name: Configure Vxlan logical interface
 eos_vxlan: name={{ vxlan.name }}
 description={{ vxlan.description|default(omit) }}
 source_interface={{ vxlan.source_interface }}
 multicast_group={{ vxlan.multicast_group }}
 debug=no
 connection={{ inventory_hostname }}
 when: vxlan is defined
 register: eos_vxlan_output

Once the variable is registered, for instance eos_vxlan_output in the above
example, the Ansible debug [http://docs.ansible.com/debug_module.html] module can be used to display the output.:

- name: Configure Vxlan logical interface
 eos_vxlan: name={{ vxlan.name }}
 description={{ vxlan.description|default(omit) }}
 source_interface={{ vxlan.source_interface }}
 multicast_group={{ vxlan.multicast_group }}
 debug=no
 connection={{ inventory_hostname }}
 when: vxlan is defined
 register: eos_vxlan_output

- debug: var=eos_vxlan_output

When the debug module is added to the playbook, the eos_vxlan module will
display the following output.:

TASK: [debug var=eos_vxlan_output] **
ok: [veos02] => {
 "var": {
 "eos_vxlan_output": {
 "changed": false,
 "changes": {},
 "instance": {
 "description": null,
 "enable": true,
 "multicast_group": "239.10.10.10",
 "name": "Vxlan1",
 "source_interface": "Loopback0",
 "state": "present",
 "udp_port": 4789
 },
 "invocation": {
 "module_args": "name=Vxlan1 source_interface=Loopback0 multicast_group=239.10.10.10 debug=no connection=veos02",
 "module_name": "eos_vxlan"
 }
 }
 }
}

In the module output are the standard responses from Ansible task runs
including invocation and changed. Invocation shows the name of the module that
was executed and the arguments passed to to module which should match the task
in the playbook.

The changed key displays true if any changes are made to the system or false if
no changes are required on the end system.

The Ansible EOS role adds the keys for changes and instance. The instance key
provides a view of the resource at the conclusion of the task execution. When
compared to the nodes running-configuration, the instance should be displaying
configuration values that are consistent with the nodes current configuration.

The changes key provides the set of key / value pairs that are changed during a
module execution. Since the changed key has a value of false, no changes where
made in this instance. The example below shows the output when changes are
made to the configuration.:

TASK: [debug var=eos_vxlan_output] **
ok: [veos02] => {
 "var": {
 "eos_vxlan_output": {
 "changed": true,
 "changes": {
 "multicast_group": "239.10.10.10",
 "source_interface": "Loopback0"
 },
 "instance": {
 "description": null,
 "enable": true,
 "multicast_group": "239.10.10.10",
 "name": "Vxlan1",
 "source_interface": "Loopback0",
 "state": "present",
 "udp_port": 4789
 },
 "invocation": {
 "module_args": "name=Vxlan1 source_interface=Loopback0 multicast_group=239.10.10.10 debug=no connection=veos02",
 "module_name": "eos_vxlan"
 }
 }
 }
}

The above example show the output from the same module; however, this time
changes are introduced as indicated by the changed key being set to true. In
addition, the changes key shows which arguments where changed and the value the
keys were set to. For all other arguments that are not included in the changes
key, no configuration updates were executed.

Thus far, the examples have shown the ouput for eos_* modules that is available
for every run without any changes. All modules also provide a debug argument
that, when enabled, provides additional information about the execution of the
module.

Below is an example of the same module execution, only this time with debug
enabled:

TASK: [debug var=eos_vxlan_output] **
ok: [veos02] => {
 "var": {
 "eos_vxlan_output": {
 "changed": true,
 "changes": {
 "multicast_group": "239.10.10.10",
 "source_interface": "Loopback0"
 },
 "debug": {
 "current_state": {
 "description": null,
 "enable": true,
 "multicast_group": "",
 "name": "Vxlan1",
 "source_interface": "",
 "state": "present",
 "udp_port": 4789
 },
 "desired_state": {
 "description": null,
 "enable": true,
 "multicast_group": "239.10.10.10",
 "name": "Vxlan1",
 "source_interface": "Loopback0",
 "state": "present",
 "udp_port": null
 },
 "node": "Node(connection=EapiConnection(transport=https://192.168.1.17:443//command-api))",
 "params": {
 "config": null,
 "connection": "veos02",
 "debug": true,
 "description": null,
 "enable": true,
 "logging": true,
 "multicast_group": "239.10.10.10",
 "name": "Vxlan1",
 "password": null,
 "source_interface": "Loopback0",
 "state": "present",
 "udp_port": null,
 "username": null
 },
 "pyeapi_version": "0.2.2",
 "stateful": true
 },
 "instance": {
 "description": null,
 "enable": true,
 "multicast_group": "239.10.10.10",
 "name": "Vxlan1",
 "source_interface": "Loopback0",
 "state": "present",
 "udp_port": 4789
 },
 "invocation": {
 "module_args": "name=Vxlan1 source_interface=Loopback0 multicast_group=239.10.10.10 debug=yes connection=veos02",
 "module_name": "eos_vxlan"
 }
 }
 }
}

With the debug key set to yes the the module output provides an additional
keyword debug that provides additional information. While the keys under
debug could vary from module to module, the following keys are in common
across all module implementations

		current_state - shows the resource instance values at the beginning of
the task run before any changes are attempted

		desired_state - shows the desired state of the resource based on the
input arguments from the task

		node - shows the eAPI connection information

		params - shows all parameters used to build the module including
arguments and metaparameters

		pyeapi_version - shows the current version of pyeapi library used

		stateful - shows whether or not the module is stateful

Using the debug argument provides a fair amount of detail about how the
module executes on the node. There is also logging information that also
provides some details about the changes the module is making to the end system.
Logging is enabled by default and can be disabled by configuring the
logging keyword argument to false.

All logging information is sent to the local syslog on the device executing the
module. When using the SSH transport, all logging information will be found in
the node’s syslog and in the case of using the eAPI transport, the logging
information will be found on the Ansible control hosts syslog.

From the same example as above, the eos_vxlan module provides logging
information in syslog as shown below:

Apr 16 00:36:34 veos02 ansible-eos_vxlan: Invoked with username=None enable=True logging=True name=Vxlan1 connection=veos02 udp_port=None multicast_group=239.10.10.10 state=present source_interface=Loopback0 debug=True password=NOT_LOGGING_PASSWORD config=None description=None
Apr 16 00:36:34 veos02 ansible-eos: DEBUG flag is True
Apr 16 00:36:34 veos02 ansible-eos: Connected to node Node(connection=EapiConnection(transport=https://127.0.0.1:443//command-api))
Apr 16 00:36:34 veos02 ansible-eos: called instance: {'multicast_group': '', 'state': 'present', 'enable': True, 'description': '', 'source_interface': '', 'udp_port': 4789, 'name': 'Vxlan1'}
Apr 16 00:36:34 veos02 ansible-eos: Invoked set_source_interface for eos_vxlan[Vxlan1] with value Loopback0
Apr 16 00:36:34 veos02 ansible-eos: Invoked set_multicast_group for eos_vxlan[Vxlan1] with value 239.10.10.10
Apr 16 00:36:35 veos02 ansible-eos: called instance: {'multicast_group': '239.10.10.10', 'state': 'present', 'enable': True, 'description': '', 'source_interface': 'Loopback0', 'udp_port': 4789, 'name': 'Vxlan1'}
Apr 16 00:36:35 veos02 ansible-eos: Module completed successfully

The log output displays the invocation of the module by Ansible and includes
information about the execution process.

Using both the debug and logging keywords provides a window into the
execution of the Ansible EOS role and should make troubleshooting undesired
results easier.

Debugging EOS Connectivity Issues

Sometimes it is difficult to quickly deduce what is causing a particular
playbook or task not to run without error. While Ansible provides some verbose
details during the task execution, sometimes the problem relates to connecting
from the Ansible control host to the EOS node.

This section provides some basic tips on troubleshooting connectivity issues
with Arista EOS nodes.

When starting to troubleshoot connectivity errors, the first place to start
is with some simple ping tests to ensure there is connectivity between the
Ansible control host and the EOS node.:

$ ping -c 5 192.168.1.16
PING 192.168.1.16 (192.168.1.16): 56 data bytes
64 bytes from 192.168.1.16: icmp_seq=0 ttl=64 time=1.202 ms
64 bytes from 192.168.1.16: icmp_seq=1 ttl=64 time=1.082 ms
64 bytes from 192.168.1.16: icmp_seq=2 ttl=64 time=0.829 ms
64 bytes from 192.168.1.16: icmp_seq=3 ttl=64 time=0.936 ms
64 bytes from 192.168.1.16: icmp_seq=4 ttl=64 time=1.021 ms
--- 192.168.1.16 ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.829/1.014/1.202/0.127 ms

The output above validates that the EOS node is reachable from the Ansible
control host.

If the configured playbook or task is not using connection: local, then we
can use SSH to validate that the SSH keyless login is working properly:

$ ssh ansible@192.168.1.16
Last login: Sun May 3 17:49:07 2015 from 192.168.1.130

Arista Networks EOS shell

[ansible@Arista ~]$

If the user (ansible in the above example) is unable to login to the node,
please review the Quick Start guide to ensure you have SSH configured correctly.

Lastly, check to make sure the dependency eAPI has been enabled on the target
Arista EOS node. To verify that eAPI is enabled and running, use the show
management api http-commands command in EOS:

Arista#show management api http-commands
Enabled: Yes
HTTPS server: shutdown, set to use port 443
HTTP server: running, set to use port 80
VRF: default
Hits: 4358
Last hit: 59729 seconds ago
Bytes in: 680505
Bytes out: 64473935
Requests: 4278
Commands: 10918
Duration: 833.907 seconds
User Hits Bytes in Bytes out Last hit
---------- ---------- -------------- --------------- -----------------
eapi 4278 680505 64473935 59729 seconds ago

URLs

Management1 : http://192.168.1.16:80

In the example command output above, check to be sure that Enabled: is Yes
and either HTTP server: or HTTPS server is in a running state.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_Bridging_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Bridging Modules

		eos_switchport

		eos_vlan

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

release-notes.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Release Notes

		v1.0.0

		v1.0.1

		v1.1.0

		v1.2.0

		v1.3.0

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_System_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

System Modules

		eos_command

		eos_config

		eos_facts

		eos_ping

		eos_purge

		eos_system

		eos_user

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

quickstart.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Quick Start

Contents

		Quick Start
		Introduction

		Getting Started

		Option A: Connect to Arista Node over SSH
		1. Enabling EOS Command API

		2. Preparing EOS for Ansible

		3. Install pyeapi

		4. A Simple Playbook

		Option B: Connect to Arista Node over eAPI
		1. Enabling EOS Command API

		2. Install pyeapi

		3. A Simple Playbook

		Now what?

Introduction

This quick-start guide provides the fastest method to get up and running with
the Ansible EOS role. It assumes that you already have an Ansible
environment running with the Ansible EOS role. If not, see Host (Control) System
and Install the Ansible EOS Role before following this guide.
This guide assumes very little experience with Ansible, therefore,
if the steps seem to leave you with questions and uncertainties please let us know
so that we can improve it.

Getting Started

Before jumping in head first, it’s important to understand how
The Ansible EOS Role is deployed. At the preceding link,
you’ll see two deployment options which correlate to two separate quick start
paths below. Have a quick read of The Ansible EOS Role and then come
follow your preferred path. It’s also recommended that you take a look at
pyeapi [http://pyeapi.readthedocs.org/en/latest] documentation since it plays
an essential part in the Ansible EOS role.

Option A: Connect to Arista Node over SSH

Tasklist

		1. Enabling EOS Command API

		2. Preparing EOS for Ansible

		3. Install pyeapi

		4. A Simple Playbook

1. Enabling EOS Command API

The modules provided in the Arista EOS role require command API (aka eAPI)
to be enabled on the switch. The modules use eAPI to communicate with EOS.
Since eAPI is not enabled by default, it must be initially enabled before the
EOS modules can be used.

The steps below provide the basic steps to enable eAPI. For more advanced
configurations, please consult the EOS User Guide.

As you may have learned in The Ansible EOS Role, when you connect
to your node over SSH, Ansible will copy the Python module code to the switch
and then execute it locally using Pyeapi APIs. Therefore, you have a few options
when it comes to which protocol is enabled for eAPI.

		Transport
		eapi.conf Required
		Pyeapi run from
		Authentication Required

		http
		Yes
		On/Off-switch
		Yes

		https
		Yes
		On/Off-switch
		Yes

		http_local
		Yes
		On-switch only
		No

		socket
		No
		On-switch only
		No

Note

http_local and socket are EOS transports only supported in EOS
version 4.14.5+

Therefore, it is recommended to use socket if you are running a recent
version of EOS. Otherwise, use HTTP or HTTPS depending upon your security model.

Step 1.1. Login to the destination node and enter configuration mode

switch> enable
switch# configure
switch(config)#

Step 1.2a. Enable eAPI for Unix Sockets and Disable HTTP/s

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown
switch(config-mgmt-api-http-cmds)# protocol unix-socket
switch(config-mgmt-api-http-cmds)# no protocol https

Step 1.2a. Enable eAPI for HTTP Local

This will only expose port 8080 at the loopback (localhost)

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown
switch(config-mgmt-api-http-cmds)# no protocol https
switch(config-mgmt-api-http-cmds)# protocol http localhost

Step 1.2a. Enable eAPI for Standard HTTP/S

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown

The configuration above enables eAPI with the default settings. This enables
eAPI to listen for connections on HTTPS port 443 by default.

Step 1.3. Create a local user
The user created in this step is different than the shell account to be
created in the Preparing EOS for Ansible section. Please see the section
Understanding the Security Model for more details.

switch(config)# username eapi secret icanttellyou

The username (eapi) and password (icanttellyou) can be any valid string
value.

2. Preparing EOS for Ansible

In order to successfully execute playbook tasks the EOS node must be
configured to allow the Ansible control node to directly attach to the
Linux shell. The following steps provide a walk through for setting up
password-less access to EOS nodes for use with Ansible.

Note

These steps will create a user that has root privileges to your EOS
node, so please handle credentials accordingly

Step 2.1. Login to the destination node and enter the Linux shell

veos> enable
veos# bash

Arista Networks EOS shell

Step 2.2. Create the user to use with Ansible, create the home directory
and prepare for uploading your SSH key. In the below example we will create
a user called ansible. The second command will create a temporary password
for the user but we will be switching to using SSH keys and the password
will be removed

create the user 'ansible' with temporary password 'password'
[admin@veos ~]$ sudo useradd -d /persist/local/ansible -G eosadmin ansible
[admin@veos ~]$ echo password | sudo passwd --stdin ansible
Changing password for user ansible.
passwd: all authentication tokens updated successfully.

prepare the home directory so we can upload an ssh key
[admin@veos ~]$ sudo mkdir /persist/local/ansible/.ssh
[admin@veos ~]$ sudo chmod 700 /persist/local/ansible/.ssh
[admin@veos ~]$ sudo chown ansible:eosadmin /persist/local/ansible/.ssh
[admin@veos ~]$ sudo ls -lah /persist/local/ansible

exit the Linux shell and disconnect
[admin@veos01 ~]$ logout
veos#logout
Connection to veos01 closed.

Step 2.3. Upload the SSH key to use from your Ansible control host and
verify access from remote host

ansible@hub:~$ scp ~/.ssh/id_rsa.pub ansible@veos01:.ssh/authorized_keys
Password:

ansible@hub:~$ ssh ansible@veos01

Arista Networks EOS shell

[ansible@veos ~]$

Step 2.4. Configure EOS to create user on reboot with no password assigned.
This will only allow the Ansible user to login with keys.

[ansible@veos ~]$ vi /mnt/flash/rc.eos

#!/bin/sh
useradd -d /persist/local/ansible -G eosadmin ansible

Step 2.5. Reboot the EOS node and start automating with Ansible

[ansible@veos ~]$ sudo reboot

3. Install pyeapi

As mentioned earlier, the Ansible EOS role uses pyeapi [https://github.com/arista-eosplus/pyeapi]
on the Arista node that will be configured. Follow the pyeapi [https://pyeapi.readthedocs.org/en/latest/install.html] installation
guide to install the package.

4. A Simple Playbook

If you are new to Ansible it might seem like a lot is going on, but this step will
show you how easy it is to manage your Arista device. The power of Ansible lies in
the Playbook [http://docs.ansible.com/playbooks.html]. We will just skim the
surface of what’s possible in a playbook, but this should serve as a good launching
point.

Step 4.1. Create an Ansible Inventory File

Each Ansible play references one or more nodes. You define these nodes in an
Ansible hosts file.

Hint

Learn more about Ansible Inventory [http://docs.ansible.com/intro_inventory.html].

ansible@hub:~$ mkdir ~/myfirstplaybook
ansible@hub:~$ cd ~/myfirstplaybook
ansible@hub:~$ vi hosts

and add the connection info for your node substituting the IP or FQDN of your
node as well as the name of the user created in Step 2.2 above:

[eos_switches]
<node>
Add more entries here for additional devices you want to
keep in the eos_switches group

[eos_switches:vars]
ansible_ssh_user=<user>
Information from step 1.2. Used for eapi connection once Ansible SSHes in.
transport=https
username=eapi
password=icanttellyou
port=<port-if-non-default>

Note

If socket is enabled for eAPI, there is no need to add the variables:
transport, username, password, port. If http_local
is being used, simply use transport=http_local.

Example

[eos_switches]
veos01
veos02
veos03
veos04

[eos_switches:vars]
ansible_ssh_user=ansible
transport=https
username=eapi
password=icanttellyou

Step 4.2. Create playbook

Let’s create Vlan150 using the eos_vlan module:

ansible@hub:~$ vi my-test-eos-playbook.yml

Then paste in the following

- hosts: eos_switches
 gather_facts: no

 roles:
 - arista.eos

 tasks:
 - name: configures vlan 150
 eos_vlan:
 vlanid=150
 name=newVlan150
 transport={{ transport }}
 username={{ username }}
 password={{ password }}
 debug=yes
 register: vlan_cfg_output

 - debug: var=vlan_cfg_output

Hint

Don’t be confused by the presence of transport, username and password. They aren’t used until
after Ansible SSHes into the EOS node. By including these parameters here
we remove the need to have an eapi.conf file on each EOS node.

Note

If your eAPI is configured to use Unix Socket there is no need to pass
the transport, username, or password attributes since the
default is to try and use transport=socket.

Step 4.3. Run playbook

Simply execute from your Ansible Host and review output:

ansible@hub:~$ ansible-playbook -i hosts my-test-eos-playbook.yml

Result:

You should see JSON output containing any changes, along with the current and desired state. So what really happened?

		We execute the command and Ansible goes to our inventory to find the specified nodes in group eos_switches.

		Ansible is told to connect via SSH with user ansible from ansible_ssh_user=ansible.

		Ansible creates a temp directory in the ansible user’s home directory

		Ansible copies eos_vlan.py to the temp directory created above.

		Ansible executes eos_vlan.py with the specified arguments

		eos_vlan.py uses pyeapi to configure the new Vlan.

		Ansible cleans up the temp folder and returns output to the control host.

You should notice that Ansible reports configuration has changed. If you ran
this command again it should report no changes due to idempotency.

Option B: Connect to Arista Node over eAPI

Tasklist

		1. Enabling EOS Command API

		2. Install pyeapi

		3. A Simple Playbook

1. Enabling EOS Command API

The modules provided in the Arista EOS role require command API (aka eAPI)
to be enabled on the switch. The modules use eAPI to communicate with EOS.
Since eAPI is not enabled by default, it must be initially enabled before the
EOS modules can be used.

The steps below provide the basic steps to enable eAPI. For more advanced
configurations, please consult the EOS User Guide.

Step 1.1. Login to the destination node and enter configuration mode

switch> enable
switch# configure
switch(config)#

Step 1.2. Enable eAPI

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown

The configuration above enables eAPI with the default settings. This enables
eAPI to listen for connections on HTTPS port 443 by default.

Step 1.3. Create a local user
The user created in this step is used by pyeapi to run configuration commands.

switch(config)# username eapi secret icanttellyou

The username (eapi) and password (icanttellyou) can be any string value. The
values are then used in either eapi.conf or passed in through the module
meta arguments to authenticate to eAPI.

2. Install pyeapi

As mentioned earlier, the Ansible EOS role uses pyeapi [https://github.com/arista-eosplus/pyeapi]
on the Arista node that will be configured. Follow the `pyeapi
http://pyeapi.readthedocs.org/en/latest/install.html>`_ installation
guide to install the package.

Create local pyeapi.conf file

[ansible@hub ~]$ vi ~/.eapi.conf

with credentials you created in Step 1.3. The connection:<NAME> should match
the entry in hosts, Step 3.1 below:

[connection:veos01]
host: <ip-or-fqdn>
transport: https
username: eapi
password: icanttellyou
port: <port-if-non-default>

3. A Simple Playbook

If you are new to Ansible it might seem like a lot is going on, but this step will
show you how easy it is to manage your Arista device. The power of Ansible lies in
the Playbook [http://docs.ansible.com/playbooks.html]. We will just skim the
surface of what’s possible in a playbook, but this should serve as a good launching
point.

Step 3.1. Create an Ansible Inventory File

Let’s add the details of our test node to an Ansible Inventory file.

Hint

Learn more about Ansible Inventory [http://docs.ansible.com/intro_inventory.html].

ansible@hub:~$ mkdir ~/myfirstplaybook
ansible@hub:~$ cd ~/myfirstplaybook
ansible@hub:~$ vi hosts

and add the connection info for your node substituting the IP or FQDN of your
node under our eos_switches group.
This should match the connection parameter in your ~/.eapi.conf:

[eos_switches]
<node>

Example

[eos_switches]
veos01

Step 4.2. Create playbook

Let’s create Vlan150 using the eos_vlan module:

ansible@hub:~$ vi my-test-eos-playbook.yml

Then paste in the following

- hosts: eos_switches
 gather_facts: no
 connection: local

 roles:
 - arista.eos

 tasks:
 - name: Add Vlan 150 to my switches
 eos_vlan:
 vlanid=150
 name=newVlan150
 connection={{ inventory_hostname }}
 debug=yes
 register: vlan_cfg_output

 - debug: var=vlan_cfg_output

Step 4.3. Run playbook

Simply execute from your Ansible Host:

ansible@hub:~$ ansible-playbook -i hosts my-test-eos-playbook.yml

Result:

You should see JSON output containing any changes, along with the current and desired state. So what really happened?

		We execute the command and Ansible goes to our inventory to find the specified nodes that match group eos_switches.

		Ansible is told to use connection:local so no SSH connection will be established to the node.

		Ansible substitutes the host name from hosts into the {{ inventory_hostname }} parameter. This creates the link to the [connection:veos01] in ~/.eapi.conf.

		Ansible creates a temp directory in the user’s home directory, eg $HOME/.ansible/tmp/.

		Ansible copies eos_vlan.py to the temp directory created above.

		Ansible executes eos_vlan.py with the specified arguments

		eos_vlan.py uses pyeapi to configure the Vlan.

		pyeapi consults ~/.eapi.conf to find connection named veos01

		Ansible cleans up the temp folder and returns output to the control host.

You should notice that Ansible reports configuration has changed. If you ran
this command again it should report no changes due to idempotency.

Now what?

This guide should have helped you install and configure all necessary
dependencies and given you a basic idea of how to use the Ansible EOS role.
Next, you can add to your Ansible playbooks using a combination of modules.
You can also check out the list of modules provided within the Ansible EOS Role
to see all of the ways to make configuration changes. There’s also an
examples [https://github.com/arista-eosplus/ansible-eos/tree/master/examples]
directory which has a full-featured set of tasks and roles to build an entire
leaf/spine network with MLAG and BGP.

Tip

Please send us some feedback on ways to improve this guide.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_command_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_command

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_command module provides a module for sending arbitray commands to the EOS node and returns the ouput. Only priviledged mode (enable) commands can be sent.

Options

		parameter
		required
		default
		choices
		comments

		commands
		yes
		
 		

 		
 Specifies the list of commands to send to the node and execute in the configured mode. Mutliple commands can be sent to the node as a comma delimited set of values.
(added in 1.0.0)

		encoding
		no
		json
 				json

		text

 		
 Specifies the requested encoding of the command output.
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: execute show version and show hostname
 eos_command: commands='show version, show hostname'

Note

This module does not support idempotent operations.

Note

Supports eos metaparameters for using the eAPI transport

Note

This module does not support stateful configuration

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

metaargs.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Meta Arguments

Most EOS modules support additional arguments (meta arguments) in addition to
the arguments available for configuring the resource. The meta arguments
provide additional connection and troubleshooting arguments for executing tasks
in Ansible.

Not all modules support all meta arguments. Please review the individual
module documentation for applicability.

Troubleshooting Arguments

This section provides an overview of the arguments available for troubleshooting
tasks with EOS modules.

		debug (booleans) - Enables additional output from the module

		logging (booleans) - Enables or disables logging details to syslog

Connection Arguments

The connection arguments provide a set of arguments that override the values
from eapi.conf or eliminate the need for eapi.conf all together.

		config (string) - overrides the default path to the eapi.conf file

		username (string) - specifies the eAPI username used to authenticate

		password (string) - specifies the eAPI password used to authenticate

		host (string) - specifies the host address or FQDN for the connection

		port (string or integer) - specifies the port to use when connecting

		connection (string) - specifies the name of the connection profile to use

		transport (string) - configures the transport to use. Valid transport
options include “http”, “https”, “socket”, “http_local”.

State Arguments

The state arguments provide state configuration for modules that are identified
as stateful.

		state (string) - configures the resource state. Valid values include
“present”, “absent”. Note that some modules can additional states

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_MLAG_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

MLAG Modules

		eos_mlag_config

		eos_mlag_interface

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

development.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Developer Information

Introduction

This section provides information for individuals that want to get started
developing EOS modules. Whether adding new modules, extending existing modules
or developing bug fixes, the details here explain how to get started working
with the Ansible EOS role form source.

This section assumes that an Ansible development environment has already been
created. For specific details on developing with Ansible please see the
Developer Information [http://docs.ansible.com/developing.html] found in the official Ansible documentation.

Running from Source

In order to get started running the Ansible EOS role from source, create a
clone of the develop branch (or any other branch that you are interested in)
on your local machine.:

$ git clone https://github.com/arista-eosplus/ansible-eos
Cloning into 'ansible-eos'...
remote: Counting objects: 486, done.
remote: Compressing objects: 100% (34/34), done.
remote: Total 486 (delta 6), reused 0 (delta 0), pack-reused 450
Receiving objects: 100% (486/486), 1.66 MiB | 1.51 MiB/s, done.
Resolving deltas: 100% (303/303), done.
Checking connectivity... done.

Once the ansible-eos Github repository is installed, using the modules is as
easy as passing the path to the ansible executable:

$ ansible -M /workspace/ansible-eos/library -m eos_vlan -a "vlanid=100"

Simply specify the module to be run (eos_vlan in the above example) and the
arguments to pass to the module using the -a option.

Write Test Cases

The EOS role includes a number of modules for configuring resources on
destination EOS nodes. All module test cases are defined in test/testcases.
Test cases are defined as a simple YAML file that describes the module to run
along with the arguments to be passed to the module. The test suite will then
build an ansible command run it against a switch (either a hardware based model
or vEOS).

In order to configure the test suite to run against switches in a given
environment, modify the test/fixtures/eapi.conf and test/fixtures/hosts file to
reflect the nodes to be tested.

Once the eapi.conf file and hosts file have been updated, use the following
command to execute the test suite:

$ make tests

Contributing

The modules developed as part of the Ansible EOS role are supported by the
Arista EOS+ community. We gladly accept and encourage contributions in the form
of new modules, updated modules, test cases and documentation updates. Simply
develop the changes and submit a pull request through Github.

For changes submitted by pull request, the Arista EOS+ community enforces some
basic rules for new contributions.

		New modules must be fully documented per Ansible module documentation
standards

		New or changed modules must include test cases that test the new module or
new arguments made available in the module.

If you have any questions regarding module development or running modules from
source, please feel free to contact Arista EOS+ at ansible-dev@arista.com

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

release-notes-1.0.1.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

v1.0.1

		adds additional parameters to eos_config

		adds vlan argument to eos_vxlan_vtep

		fixes issue with honoring enablepwd if specified

		fixes #37

New Modules

None

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_ipinterface_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_ipinterface

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_ipinterface module manages logical layer 3 interface configurations.

Options

		parameter
		required
		default
		choices
		comments

		address
		no
		
 		

 		
 Configures the IPv4 address for the interface. The value must be in the form of A.B.C.D/E. The EOS default value for address is None
(added in 1.0.0)

		mtu
		no
		
 		

 		
 Sets the IP interface MTU value. The MTU value defines the maximum transmission unit (or packet size) that can traverse the link. Valid values are in the range of 68 to 65535 bytes. The EOS default value for mtu is 1500
(added in 1.0.0)

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensure a logical IP interface is configured on Vlan100
 eos_ipinterface: name=Vlan100 state=present address=172.16.10.1/24

- name: Ensure a logical IP interface is not configured on Ethernet1
 eos_ipinterface: name=Ethernet1 state=absent

- name: Configure the MTU value on Port-Channel10
 eos_ipinterface: name=Port-Channel10 mtu=9000

Note

Currently this module only supports IPv4

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

install.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Installation

The installation of Ansible is straightforward and simple. This section
provides an overview of the installation of Ansible on a host system as well
as how to configure an Arista EOS node to work with the Ansible framework.

Important

Ansible 1.9 or later is required.

Host (Control) System

Installing Ansible on a host (or control) system is a relatively simple
process. Ansible supports all major Linux distributions running Python 2.6 or
later as a control system. Ansible is integrated with package managers for
each system type to ease the installation. Ansible can also be run directly
from a Git checkout.

A quick reference summary of the various installation method is found below.
For authoritative details regarding the installation of Ansible on a
control system, see Ansible’s installation documentation [http://docs.ansible.com/intro_installation.html].

Installing via YUM

Ansible is provided via standard RPM installations from EPEL 6 and Fedora repositories. Simply run Yum with appropriate permissions to install the latest version of Ansible.

$ sudo yum install ansible

Installing via Apt (Ubuntu)

In order to install directly from Apt, the Ansible PPA will need to be added
to Apt’s sources. Ansible binaries are installed from this PPA. Once the PPA
has been added to the Apt sources list execute the following commands to
install Ansible.

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install ansible

Installing via PIP

Ansible can be installed using Python PIP. To install Ansible with PIP,
simply enter the following command from a shell prompt.

sudo pip install ansible

Install the Ansible EOS Role

There are two methods that can be used to install the ansible-eos modules on
your system; (1) Ansible Galaxy, (2) Github - from source. The first method
is the easiest and makes using the modules a little easier, but the drawback
is that you are dependent upon releases being posted to Ansible Galaxy. The second
method is good if you plan on working with the actual module code from source
or wish to closely follow all changes in development.

Install Using Ansible Galaxy

From your Ansible Control Host, type:

sudo ansible-galaxy install arista.eos

Tip

To upgrade the role via Galaxy use sudo ansible-galaxy install --force arista.eos

Then you can use the role in your play as:

#my-playbook.yml

- hosts: eos_switches
 gather_facts: no

 roles:
 - arista.eos

 tasks:
 - name: configure Vlan150
 eos_vlan:
 vlanid=150

Installing from GitHub (for active development)

To get started, download the latest Arista EOS modules from Github using the
clone command. From a terminal on the Ansible control system issue the
following command:

git clone https://github.com/arista-eosplus/ansible-eos.git

The command above will create a new directory called ‘ansible-eos’ and clone the
entire repository. Currently, the ansible-eos folder contains the “develop”
branch which provides the latest code. Since the “develop” branch is still
a work in progress, it might be necessary to switch to a released version of
the EOS modules. In order to switch to a specific release version, change
directories to the ansible-eos directory and enter the following command.

git tag
git checkout tags/<tag name>

The first command above “git tag” provides a list of all available tags.
Each release has a corresponding tag that denotes the released code.
To switch to a specific release simply use the name of the tag in the
second command as the <tag name>.

For instance, to use the v1.0.0 release, enter the command

git checkout tags/v1.0.0

At any point in time switching to a different release is as easy as changing
to the ansible-eos directory and re-issuing the “git checkout” command.

You will need to make Ansible aware of this new role if you want to use the
included modules in your plays. You have a few options:

Option 1: Create Symlink (preferred)

We will create a symlink in /etc/ansible/roles/ to make Ansible aware of the
ansible-eos role. Notice that the symlink name is arista.eos. This is
because the Ansible Galaxy role is named arista.eos:

create soft symlink
cd /etc/ansible/roles
sudo ln -s /path/to/where/your/git/clone/is/ansible-eos arista.eos

Then you can use the role in your play as:

#my-playbook.yml

- hosts: eos_switches
 gather_facts: no

 roles:
 - arista.eos

 tasks:
 - name: configure Vlan150
 eos_vlan:
 vlanid=150

Option 2: Edit ansible.cfg roles_path

Here, you can edit /etc/ansible/ansible.cfg to make Ansible look for the
ansible-eos directory:

open the config file in an editor
sudo vi /etc/ansible/ansible.cfg

if roles_path exists add a colon and the new path
if the variable doesn't exist, create it under [defaults] section
[defaults]
roles_path=/path/to/where/your/git/clone/is/ansible-eos

Then you can use the role in your play as:

#my-playbook.yml

- hosts: eos_switches
 gather_facts: no

 roles:
 - ansible-eos

 tasks:
 - name: configures the hostname on tor1
 eos_vlan:
 vlanid=150

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_IP_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

IP Modules

		eos_ipinterface

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_cookbook-recipes/foo1.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

System

		Recipe Title

Recipe Title

Objective

(Objective Text)

Solution

(add code here - note the empty line above and below)

Explanation

(add explanation here)

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_images/ansible-deploy.jpg
Ansible Control Host Ansible Control Host

ansible-playbook eos.yaml

ansible-playbook eos.yaml

(connection: local)

SSH eAPI

_ ARISTA
| " Ansible Module ' S :
S R | |
: pyeapi : |
_________________ ' EOS config -

eAPI ! ;

release-notes-1.2.0.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

v1.2.0

2015-11-05

New Modules

		
		Add eos_vrrp (78 [https://github.com/arista-eosplus/ansible-eos/pull/78]) [grybak [https://github.com/grybak]]

		Add the eos_vrrp module. This module controls interface VRRP configuration.
(Requires pyeapi update)

		
		Feature staticroute (68 [https://github.com/arista-eosplus/ansible-eos/pull/68]) [grybak [https://github.com/grybak]]

		Adds the eos_staticroute module to perform configuration management of static ip routes.
(Requires pyeapi update)

		
		Add eos_varp and eos_varp_interface modules (67 [https://github.com/arista-eosplus/ansible-eos/pull/67]) [phil-arista [https://github.com/phil-arista]]

		Adds the eos_varp and eos_varp_interface modules. The eos_varp module provides management of the system’s virtual mac address. The eos_varp_interface manages virtual-router ip addresses within Vlans.
(Requires pyeapi update)

		
		Add eos_routemap module (66 [https://github.com/arista-eosplus/ansible-eos/pull/66]) [phil-arista [https://github.com/phil-arista]]

		The eos_routemap module provides configuration management of system route-maps.
(Requires pyeapi update)

		
		Add eos_user module (51 [https://github.com/arista-eosplus/ansible-eos/pull/51]) [phil-arista [https://github.com/phil-arista]]

		The eos_user module adds the ability to manage CLI users. All user attributes are configurable including SSH Key support.
(Requires pyeapi update)

Enhancements

		
		Added encoding option to command module. (65 [https://github.com/arista-eosplus/ansible-eos/pull/65]) [chepazzo [https://github.com/chepazzo]]

		The eos_command module now only supports enable commands. This enhancement allows you to pass an encoding option. The choices are json and text. The encoding option determines the format of the returned output.

		
		Add support for maximum-paths (64 [https://github.com/arista-eosplus/ansible-eos/pull/64]) [phil-arista [https://github.com/phil-arista]]

		This enhancement adds the ability to define BGP maximum paths and maximum ecmp paths.
(Requires pyeapi update)

		
		Add ip routing (61 [https://github.com/arista-eosplus/ansible-eos/pull/61]) [phil-arista [https://github.com/phil-arista]]

		This enhancement augments the eos_system module. It now provides the ability to enable ip routing.
(Requires pyeapi update)

Fixed

		
		eos_ping should analyze loss instead of errors (53 [https://github.com/arista-eosplus/ansible-eos/issues/53])

		Due to variations in EOS ping output, it became necessary to analyze loss instead of errors.

		
		eos_ping fails when network is unreachable (52 [https://github.com/arista-eosplus/ansible-eos/issues/52])

		The eos_ping module will now successfully exit even when the ping result is network unreachable

		
		eos_ping resuses ‘host’ argument (47 [https://github.com/arista-eosplus/ansible-eos/issues/47])

		The eos_ping module used the attribute host which caused a conflict with the meta argument host. The updated attribute is called dst.

		
		port-channel set to mode “on” not “active” on initial pass (36 [https://github.com/arista-eosplus/ansible-eos/issues/36])

		The eos_portchannel module runs set_lacp_mode before set_members. This means that when set_members is run, you end up with the default lacp mode instead of the mode you defined. Now, the set_members method includes a mode keyword.
(Required pyeapi update)

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

release-notes-1.3.0.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

v1.3.0

2016-02-17

New Modules

		None

Enhancements

		
		Enhance autorefresh (88 [https://github.com/arista-eosplus/ansible-eos/pull/88]) [phil-arista [https://github.com/phil-arista]]

		This knob is accessible in the module and is turned off by default. This reduces the number of ‘show run all’ that are executed during a module run.

		
		Workaround for Ansible 2.0 changes in AnsibleModule._log_invocation(). (85 [https://github.com/arista-eosplus/ansible-eos/pull/85]) [chepazzo [https://github.com/chepazzo]]

		Modify module logging to accommodate Ansible 2.0 core changes.

		
		Add disable key to existing modules for negation of properties (84 [https://github.com/arista-eosplus/ansible-eos/pull/84]) [grybak-arista [https://github.com/grybak-arista]]

		Implements a disable key in modules for negation of properties, when appropriate.

Fixed

		
		Enable/Disable logic incorrect in modules with command_builder (86 [https://github.com/arista-eosplus/ansible-eos/issues/86])

		The command builder in pyeapi was updated to make logic more uniform across all APIs. This required an update to the Ansible modules. This bug addresses some modules that did not get updated on the first go.

		
		[eos_vlan] Set_trunks doesn’t pass correct value to API (82 [https://github.com/arista-eosplus/ansible-eos/issues/82])

		The eos_vlan module did not properly separate the trunk groups when calling the set_trunks API method. This fixes that issue within the module. No change to pyeapi.

		
		eos_interface defaulting an interface (73 [https://github.com/arista-eosplus/ansible-eos/issues/73])

		The common/eos.py code was fixed to allow flexible support of state methods within the module. This issue was resolved with that addition to the common code along with an added ‘default’ method within the module to call the interfaces API default method. Note that state=default is not an idempotent operation. It will run every time since the resulting state will be state=present.

		
		eos_bgp_* modules take a long time to complete (59 [https://github.com/arista-eosplus/ansible-eos/issues/59])

		This has been improved. It’s still not lightning fast since ‘show run all’ is used to parse the config. In PR #88 we add a knob to control pyeapi’s autorefresh, so the running config will only get pulled down 1x (max 2x if router bgp is created) and then all other commands will get run to configure the attributes of the bgp config.

		
		Using “params[‘connection’]” in the modules means that the [DEFAULT] section configuration in pyeapi (eapi.conf) will not work (26 [https://github.com/arista-eosplus/ansible-eos/issues/26])

		This issue has been retested with the latest code and is no longer present. Note: It is unclear at what point this was resolved.

Known Caveats

		domain_id parameter of eos_mlag_config module doesn’t support ‘-‘ and dot (90 [https://github.com/arista-eosplus/ansible-eos/issues/90])

Notes

		This ansible-eos release should be partnered with min pyeapi version 0.5.0

		Ansible is releasing new networking modules into the core ansible code. These
new modules will allow you to easily work with Jinja templates to implement
your running-config. They are also releasing eos_facts and eos_commands modules
which will make it easier to get up and running. Please contact us at ansible-dev@arista.com
for more information.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

overview.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Overview

Introduction

Ansible is a configuration management framework that provides an automated
infrastructure for managing systems devices and applications. Ansible provides
this functionality using an agent-less approach that focuses on management of
the destination device and/or application over SSH. Ansible achieves its vision
through the implementation of playbooks and modules. Playbooks, which are in
turn comprised of a series of tasks to be executed on a host or group of
hosts, provide the fundamental workflow in Ansible. Modules are host and/or
application specific that perform the operations based on the directives of
the tasks and playbooks. Complete details about Ansible can be found in
their documentation [http://docs.ansible.com/index.html].

Connection Types

Ansible provides three distinctly different connection types each providing
a different method for connecting the Ansible runtime components
(playbooks, modules) with the destination device. A summary of the connection
types are below.

SSH Connection

When operating in this mode, Ansible will connect to the destination host
using an encrypted SSH session. The SSH connection is established using
either the hosts native SSH binary or using the
Paramiko [http://docs.ansible.com/intro_getting_started.html#remote-connection-information]
library. Since it uses SSH as the transport, the Ansible connection needs to
be able to authenticate to the remote system and expects to operate in a
Linux shell environment.

Local connections

When a host or task is operating with a local connection, tasks are executed
from the Ansible host where the job was initiated. Local connections allow
Ansible to make use of API transports and remove the need for establishing an
SSH connection to the target device.

Accelerated mode

Ansible supported (since v0.8) a mode of operation known as Fireball mode.
Fireball mode has since been depreciated in favor of accelerated mode (as of v1.3).
Accelerated mode connects to the destination node and starts a daemon that is
used for the remainder of the transaction.

Tip

More details about Accelerated Mode [https://docs.ansible.com/playbooks_acceleration.html] from Ansible’s documentation.

In addition to the connection types discussed above, Ansible also supports
a pull model. The pull model works in conjunction with SCM systems to perform
its duties locally on the node. The pull model executes a local utility that
retrieves the configuration data and proceeds to execute all of the activity
locally on the node.

The Ansible EOS Role

Integration with the Python Client for eAPI

The Ansible Role for EOS builds on the Python Client for eAPI [https://github.com/arista-eosplus/pyeapi] to provide
automation of the management plane. Using eAPI as the underlying tranport,
Ansible can be configured to interface with Arista EOS using either SSH based
connections or HTTP based connections.

Topologies

Above, we discussed how Ansible is typically used to control a node. These
principles remain true for Arista EOS nodes, however, there are some nuances
that are important to understand when using the Ansible EOS role. Next, we will discuss the two main
methods used to control an Arista EOS node using Ansible.

[image: _images/ansible-deploy.jpg]
The illustration above demonstrates a typical scenario. You, as the user, want
to execute an Ansible Playbook on one (or many) of your Arista nodes. From the
user’s perspective the interaction with the Ansible Control Host is the same,
from your shell you would type:

ansible-playbook eos.yaml

Notice in the diagram a few things remain constant:

		pyeapi is always required (whether on the control host or EOS node), and

		pyeapi is ultimately responsible for making the eAPI calls to modify the node’s configuration

While the overall flow is similar, the way in which the playbook is executed
will differ between Option A and Option B. Let’s discuss those differences below.

Option A

This method follows the traditional Ansible control procedure, namely:

		Execute ansible-playbook eos.yaml from the Ansible Control Host

		Collect Fact information from the node

		Download the module to the node

		Execute the module on the node

		pyeapi commands run locally to modify configuration

		Read stdout and parse it into JSON

		Return the result to the Ansible Control Host

Assumption 1
You’ll notice that this method uses SSH to communicate with the node. This
implies that you have already included the Ansible Control Host’s public SSH
key in the nodes authorized_keys file, or you are providing a password
when the playbook executes.

Assumption 2
Pyeapi is used by the Ansible EOS role modules to make configuration changes on the
node. This implies that pyeapi is already installed on the node. The pyeapi
module is NOT installed on Arista EOS nodes by default, so installation would
be required by the user.

Understanding the Security Model

The Ansible EOS role provides a two stage authentication model to
maximize the security and flexibility available for providing programatic
access to EOS nodes. The steps above walk through how to enable both eAPI
and create a shell account for use with Ansible. This section provides some
additional details about how the two stage authentication model works.

Note

The two stage authentication model only applies to Option A.

Implementing a two stage security model allows operators to secure the
Ansible shell account and prevent it from configuring EOS. Conversely, having
a separate eAPI authentication mechanism allows operators to separately
control the users that can run EOS modules without giving them root
access to EOS.

When Ansible connects to an EOS node, it must first authenticate to Linux
as it would for any other Linux platform. In order to create the shell
account, the steps in 2. Preparing EOS for Ansible should be followed. The
steps above will create a user called ‘ansible’. You are free to choose
any username you like with the following exception: you cannot create a
username the same as a local account in EOS (more on that in a moment).

By default, the EOS role assumes the user account is called ‘ansible’. If
the shell account is different, then the eos_username variable must be set
in your playbook to the name of the shell account you intend to use. This
ensures that the EOS node is bootstrapped properly for use with Ansible.

The second stage authentication model uses eAPI. eAPI provides its own
authentication mechanism for securing what users can perform which actions
in EOS. The eAPI user can be one that is authenticated by AAA; however,
that is outside the scope of this discussion. The section 1. Enabling EOS Command API
provides an example of how to create a local user to use when
authenticating with eAPI.

Note

The shell account and eAPI user must be different.

Ansible Host file and eapi.conf for Option A

It is important to understand that pyeapi is ultimately responsible for sending
the configuration commands to your node. This means that at some point your
adhoc command or playbook needs to indicate the credentials to create an eAPI
connection. There are a few different ways to do this as explained below.

Method 1: Using Meta Arguments

Meta arguments are used to pass the exact eAPI connection parameters during adhoc
command or play. If you provide all of the required eAPI connection information
you will not even need to use eapi.conf. This is the preferred method since you
do not need to create/maintain an eapi.conf file on the EOS node.

Tip

Read all about Meta Arguments

Example: In a playbook

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 username={{ username }}
 password={{ password }}
 transport={{ transport }}

/etc/ansible/hosts on Control Host

[eos_switches]
192.168.0.50
192.168.0.51
192.168.0.52
192.168.0.53

[eos_switches:vars]
ansible_ssh_user=ansible
Used for eapi connection once SSH'd in
username=eapi
password=password
transport=https

/mnt/flash/eapi.conf on EOS node

empty file. This file is not needed on the EOS device.

Explanation

This method utilizes the Ansible hosts file to feed information into the playbook.
We group our nodes under the eos_switches group name to avoid duplication of
variables, and use [eos_switches:vars] to create a set of variables that apply to all
switches in the group. These variables are available in the playbook.
We indicate in the play to execute our task against all nodes in this group. Then
We use {{ username }}, {{ password }} etc. to substitute the
eapi parameters into the play.
Since all of the necessary eAPI information is present, the module does not
need to consult an eapi.conf on the EOS node for connection parameters. In effect,
the simplified connection flow looks like:

		SSH to node in [eos_switches] (IPs 192.168.0.50-53)

		Copy module(s) to EOS node.

		Create eapi connection to http://localhost:80/command-api

		Modify node configuration.

Method 2: Using eapi.conf

In this method we will put all of the eAPI connection info into /mnt/flash/eapi.conf
on each EOS node that is being controlled. When we execute a play or adhoc
command, pyeapi will not be passed connection information
from Ansible, therefore it will consult eapi.conf on the EOS node to learn eapi
connection information. As you can imagine this causes creates additional administrative
overhead and is not the most efficient method (ie try to use Method 1).

Example

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 connection={{ connection }}

/etc/ansible/hosts on Control Host

[eos_switches]
spine-1
spine-2
tor-1
tor-2

[eos_switches:vars]
connection=localhost
ansible_ssh_user=ansible

/mnt/flash/eapi.conf on EOS node

[connection:localhost]
username: admin
password: password
transport: https

Explanation

Here we use the connection meta argument. This directly relates the
connection name in eapi.conf. As you can see there is no eAPI connection information
in /etc/ansible/hosts, rather we just have names of nodes. This changes the
connection flow in the following way:

		Control Host SSH into node listed in hosts file. EG ssh into spine-1 with user ansible

		Copy modules to EOS node.

		Execute module. The module is told to use connection=localhost.

		Module looks for localhost in /mnt/flash/eapi.conf.

		Learns which transport, username and password to use. Sets up eapi connection.

		Executes commands to modify node configuration.

Option B

This method uses the connection: local feature within the eos.yaml
playbook. This causes the transport method to be an eAPI connection (HTTP[S])
versus SSH. This changes how the playbook gets executed in the following way:

		Include connection: local in eos.yaml

		Execute ansible-playbook eos.yaml from the Ansible Control Host

		pyeapi consults the local ~/.eapi.conf file which provides node connection information

		Collect Fact information from the node

		Execute the module on the Ansible Control Host

		pyeapi commands run over the network to modify configuration

		Read stdout and parse it into JSON

		Present the result on the Ansible Control Host

Assumption 1
Here, the connection between the Ansible Control Host and the Arista node is
an eAPI connection. This implies that you have an eapi.conf file on your
Ansible Control Host that contains the connection parameters for this node, or
you pass the connection parameters as meta arguments.
The caveat when using eapi.conf is that the password for the eAPI
connection is stored as plaintext. See Is there any intention to encrypt passwords we put into eapi.conf? for more information.

Ansible Host file and eapi.conf for Option B

Regardless of the method you use to communicate with your node, one thing is constant:
pyeapi is ultimately responsible for sending the configuration commands to your node.
This means that at some point your adhoc command or playbook
needs to indicate the credentials to create an eAPI connection. There are a few
different ways to do this as explained below.

Method 1: Using Meta Arguments

Meta arguments are used to pass the exact eAPI connection parameters during adhoc
command or play. If you provide all of the required eAPI connection information
you will not even need to use eapi.conf. This is the most verbose and least flexible.

Tip

Read all about Meta Arguments

Example: In a playbook

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches
 connection: local

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 host={{ inventory_hostname }}
 username={{ username }}
 password={{ password }}
 transport={{ transport }}

/etc/ansible/hosts on Control Host

[eos_switches]
192.168.0.50
192.168.0.51
192.168.0.52
192.168.0.53

[eos_switches:vars]
username=eapi
password=password
transport=https

~/.eapi.conf on Control Host

empty file

Explanation

This method utilizes the Ansible hosts file to feed information into the playbook.
The key to success here is grouping our nodes under the eos_switches group name.
We then use [eos_switches:vars] to create a set of variables that apply to all
switches in the group. These variables are available in the playbook.
We indicate in the play to execute our task against all nodes in this group. Then
we use {{ inventory_hostname }}, {{ username }}, etc. to substitute the
host name (ip address in this case) and other connection parameters into the play.
Since all of the necessary eAPI information is present, the module does not
need to consult an eapi.conf file for connection parameters.

Method 2: Using eapi.conf

In this method we will put all of the eAPI connection info into eapi.conf. When
we execute a play or adhoc command, pyeapi will not be passed connection information
from Ansible, therefore it will consult eapi.conf to learn connection information.

Example

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches
 connection: local

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 connection={{ inventory_hostname }}

/etc/ansible/hosts on Control Host

[eos_switches]
spine-1
spine-2
tor-1
tor-2

~/.eapi.conf on Control Host

[connection:spine-1]
host: 192.168.0.50
username: admin
password: password
transport: https

[connection:spine-2]
host: 192.168.0.51
username: admin
password: password
transport: https

[connection:tor-1]
host: 192.168.0.52
username: admin
password: password
transport: https

[connection:tor-2]
host: 192.168.0.53
username: admin
password: password
transport: https

Explanation

Here we use a new meta argument connection. This directly relates the
connection name in eapi.conf. As you can see there is no eAPI connection information
in /etc/ansible/hosts, rather we just have names of nodes. When the particular
ansible-eos module executes it will reference ~/.eapi.conf to determine
how to connect to the EOS node over eAPI.

Ansible Tower

Ansible provides a product that implements a web based interface and REST API
known as Tower [http://www.ansible.com/tower]. The web interface provides
some additional capabilities to the base Ansible framework around role based
access and programmatic interface to the Ansible environment.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_bgp_network_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_bgp_network

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.1.0

This eos_bgp_network module provides stateful management of the network statements for the BGP routing process for Arista EOS nodes

Options

		parameter
		required
		default
		choices
		comments

		masklen
		yes
		
 		

 		
 The IPv4 subnet mask length in bits. The value for the masklen must be in the valid range of 1 to 32.
(added in 1.1.0)

		prefix
		yes
		
 		

 		
 The IPv4 prefix to configure as part of the network statement. The value must be a valid IPv4 prefix
(added in 1.1.0)

		route_map
		no
		
 		

 		
 Configures the BGP route-map name to apply to the network statement when configured. Note this module does not create the route-map
(added in 1.1.0)

Important

Requires Arista EOS 4.13.7M or later with command API enable

Important

Requires Python Client for eAPI 0.3.1 or later

Examples

- name: add network 172.16.10.0/26 with route-map test
 eos_bgp_network: prefix=172.16.10.0 masklen=26 route_map=test

- name: remove network 172.16.0.0/8
 eos_bgp_network: prefix=172.16.0.0 masklen=8 state=absent

Note

All configuraiton is idempontent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports tateful resource configuration

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

release-notes-1.0.0.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

v1.0.0

		adds support for pyeapi

		adds system test harness for testing modules against eos nodes

		adds stateful common module

New Modules

		eos_command.py

		eos_config.py

		eos_ethernet.py

		eos_facts.py

		eos_interface.py

		eos_ipinterface.py

		eos_mlag_config.py

		eos_mlag_interface.py

		eos_portchannel.py

		eos_purge.py

		eos_stp_interface.py

		eos_switchport.py

		eos_system.py

		eos_vlan.py

		eos_vxlan.py

		eos_vxlan_vlan.py

		eos_vxlan_vtep.py

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/minus.png

_modules/eos_vxlan_vtep_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_vxlan_vtep

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_vxlan_vtep module manages the Vxlan global VTEP flood list configure on Arista EOS nodes that are operating as VTEPs

Options

		parameter
		required
		default
		choices
		comments

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
Note: The name parameter only accepts Vxlan1 as the identifier
(added in 1.0.0)

		vlan
		no
		
 		

 		
 Specifies the VLAN ID to associate the VTEP with. If the VLAN argument is not used, the the VTEP is confgured on the global flood list.
(added in 1.0.1)

		vtep
		yes
		
 		

 		
 Specifes the remote endpoing IP address to add to the global VTEP flood list. Valid values for the vtep parameter are unicast IPv4 addresses
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensures that 1.1.1.1 is in the global flood list
 eos_vxlan_vtep: name=Vxlan1 state=present vtep=1.1.1.1

- name: Ensures that 2.2.2.2 is not in the global flood list
 eos_vxlan_vtep: name=Vxlan1 state=absent vtep=2.2.2.2

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_facts_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_facts

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_facts module collects facts from the EOS for use in Ansible playbooks. It can be used independently as well to discover what facts are availble from the node. This facts module does not cache any facts. If no configuration options are specified, then all facts are returned.

Options

		parameter
		required
		default
		choices
		comments

		exclude
		no
		
 		

 		
 Specifies the list of facts to exclude when the fact module runs. The exclude list is comma delimited and, when configured, will not return the facts named in the exclude list. All other facts will be returned.
(added in 1.0.0)

		include
		no
		
 		

 		
 Specifies the list of facts to include when the fact module runs. The include list is comma delimited and, when included, will only return the facts named in the include list. All other facts will not be returned.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: collect all facts from node
 eos_facts:

- name: include only a filtered set of facts returned
 eos_facts: include=interfaces

- name: exclude a specific set of facts
 eos_facts: exclude=vlans

Note

Supports eos metaparameters for using the eAPI transport

Note

The include and exclude options are mutually exclusive

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_VRRP_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

VRRP Modules

		eos_vrrp

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

release-notes-1.1.0.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

v1.1.0

		adds trunk_groups argument to eos_switchport

		changes trunk_allowed_vlans to allow a range of vlans

		changes arguments used by eos_config (see documentation)

		fixes an issue with out of order vlans in eos_switchport

New Modules

None

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/file.png

_modules/eos_interface_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_interface

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_interface module manages the interface configuration for any valid interface on EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		description
		no
		
 		

 		
 Configures a one lne ASCII description for the interface. The EOS default value for description is None
(added in 1.0.0)

		enable
		no
		True
 				True

		False

 		
 Configures the administrative state for the interface. Setting the value to true will adminstrative enable the interface and setting the value to false will administratively disable the interface. The EOS default value for enable is true
(added in 1.0.0)

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: ensures the interface is configured
 eos_interface: name=Loopback0 state=present enable=yes

- name: ensures the interface is not configured
 eos_interface: name=Loopback1 state=absent

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration. This method also supports the ‘default’ state. This will default the specified interface. Note however that the default state operation is NOT idempotent.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

faq.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

FAQ

Introduction

The below list provides some answers to commonly asked questions about the
Ansible EOS role.

What are the basic requirements for using the EOS role for Ansible?

This varies a little bit based upon how you communicate with your node.
The two options are explained in Topologies.

Regardless of connection method you need the following:

		Ansible 1.9 or later

		Arista EOS 4.13.7M or later running on your node

		EOS Command API enabled (see 1. Enabling EOS Command API for more information)

In addition to the above, there are other connection-specific requirements:

If you connect to your node via SSH:

		You need the Python Client for eAPI [https://github.com/arista-eosplus/pyeapi] 0.3.0 or later installed on your EOS node (see 3. Install pyeapi for more information)

		Linux shell account on your EOS node (see 2. Preparing EOS for Ansible for more information)

If you connect to your node via eAPI:

		You need the Python Client for eAPI [https://github.com/arista-eosplus/pyeapi] 0.3.0 or later installed on your Ansible server (see 2. Install pyeapi for more information)

Is there any intention to encrypt passwords we put into eapi.conf?

No, we are working on support for certificates but we cannot encrypt the
password in eapi.conf. The best alternative is to use Ansible vault or prompt
for password at runtime of the playbook.

Is pyeapi required on both the Ansible control host and the EOS node?

It depends on if using (or want to use) connection local. The Python client
for eAPI (pyeapi) must be installed where ever the Ansible module is executed
from. The pyeapi client is a dependency of the common module code for all of
the modules.

Do I have to use the pyeapi eapi.conf file?

No, it is not a absolute requirement. All EOS modules will accept connection
parameters for configuring the eAPI transport properties. Using eapi.conf is
convenient but not necessary.

Does the EOS role work with Ansible Tower?

Yes, the Ansible EOS role works fine with implementations that utilize Ansible
Tower for management.

Does the Ansible EOS role work with all version of Arista EOS?

The Ansible EOS role is tested to work with EOS 4.13.7M or later releases. Any
EOS release prior to 4.13.7M is not guaranteed to work with the EOS role.

Is there any requirement to put changes into ansible.cfg?

No, it works with all the Ansible defaults.

Is there something like a rollback function available in ansible?

Yes, it’s all in the implementation. When working with a tool like Ansible,
the node configuration should be kept under version control. As such, rolling
back a nodes configuration is a matter of reverting the config. It’s an
implementation detail, not necessarily a module or feature. We have
successfully demonstrated rollback many times using Ansible.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_modules/eos_routemap_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_routemap

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.2.0

This module will manage routemap entries on EOS nodes

Options

		parameter
		required
		default
		choices
		comments

		action
		yes
		permit
 				permit

		deny

 		
 The action associated with the routemap name.
(added in 1.2.0)

		continue
		no
		
 		

 		
 The statement defines the next routemap clause to evaluate.
(added in 1.2.0)

		description
		no
		
 		

 		
 The description for this routemap entry.
(added in 1.2.0)

		match
		no
		
 		

 		
 The list of match statements that define the routemap entry. The match statements should be a comma separated list of match statements without the word match at the beginning of the string. See the example below for more information.
(added in 1.2.0)

		name
		yes
		
 		

 		
 The name of the routemap to manage.
(added in 1.2.0)

		seqno
		yes
		
 		

 		
 The sequence number of the rule that this entry corresponds to.
(added in 1.2.0)

		set
		no
		
 		

 		
 The list of set statements that define the routemap entry. The set statements should be a comma separated list of set statements without the word set at the beginning of the string. See the example below for more information.
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.4.0 or later

Examples

- eos_routemap: name=rm1 action=permit seqno=10
 description='this is a great routemap'
 match='as 50,interface Ethernet2'
 set='tag 100,weight 1000'
 continue=20

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

license.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

License

Copyright (c) 2015, Arista Networks EOS+
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

		Neither the name of the {organization} nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/eos_system_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_system

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_system module manages global system configuration options on Arista EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		hostname
		no
		
 		

 		
 The ASCII string to use to configure the hostname value in the nodes current running-configuration. The EOS default value for hostname is 'localhost'
(added in 1.0.0)

		ip_routing
		no
		
 				true

		false

 		
 Configures the state of IPv4 'ip routing' on the switch. By default EOS switches come up with 'no ip routing'. This attribute requires pyeapi version 0.4.0.
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: configures the hostname to spine01
 eos_system: hostname=spine01

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

cookbook.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Cookbook

The following recipes provide you with real-world examples that use the
Ansible EOS role. Please provide feedback to improve these recipes and feel
free to request specific cases.

Recipes

		System
		Recipe Title

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/eos_acl_entry_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_acl_entry

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.1.0

This module will manage standard ACL entries on EOS nodes

Options

		parameter
		required
		default
		choices
		comments

		acltype
		yes
		
 		

 		
 The type of ACL to manage. Currently the only supported value for acltype is 'standard'
(added in 1.1.0)

		action
		yes
		
 		

 		
 (added in 1.1.0)

		log
		no
		
 		

 		
 Enables or disables the log keyword
(added in 1.1.0)

		name
		yes
		
 		

 		
 The name of the ACL to manage. This name must correspond to the ACL name in the running-configuration of the node
(added in 1.1.0)

		seqno
		yes
		
 		

 		
 The sequence number of the rule that this entry corresponds to.
(added in 1.1.0)

		srcaddr
		yes
		
 		

 		
 The source address corresponding to this rule
(added in 1.1.0)

		srcprefixlen
		yes
		
 		

 		
 The source address prefix mask length. Valid valids are in the range of 1 to 32
(added in 1.1.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.2 or later

Examples

- eos_acl_entry: seqno=10 name=foo action=permit srcaddr=0.0.0.0
 srcprefixlen=32

- eos_acl_entry: seqno=20 name=foo action=deny srcaddr=172.16.10.0
 srcprefixlen=16

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

_modules/list_of_All_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

All Modules

		eos_acl_entry

		eos_bgp_config

		eos_bgp_neighbor

		eos_bgp_network

		eos_command

		eos_config

		eos_ethernet

		eos_facts

		eos_interface

		eos_ipinterface

		eos_mlag_config

		eos_mlag_interface

		eos_ping

		eos_portchannel

		eos_purge

		eos_routemap

		eos_staticroute

		eos_stp_interface

		eos_switchport

		eos_system

		eos_user

		eos_varp

		eos_varp_interface

		eos_vlan

		eos_vrrp

		eos_vxlan

		eos_vxlan_vlan

		eos_vxlan_vtep

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_modules/list_of_VARP_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

VARP Modules

		eos_varp

		eos_varp_interface

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_modules/eos_vxlan_vlan_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_vxlan_vlan

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_vxlan_vlan module manages the Vxlan VLAN to VNI mappings for an Arista EOS node that is operating as a VTEP

Options

		parameter
		required
		default
		choices
		comments

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
Note: The name parameter only accepts Vxlan1 as the identifier
(added in 1.0.0)

		vlan
		yes
		
 		

 		
 Specifies the VLAN ID that is assocated with the Vxlan interface for managing the VLAN to VNI mapping. Valid values for the vlan parameter are in the range of 1 to 4094.
(added in 1.0.0)

		vni
		no
		
 		

 		
 Specifies the VNI value to assoicate with the Vxlan interface for managing the VLAN to VNI mapping. This value is only necessary when configuring the mapping with a state of present (default). Valie values for the vni parameter are in the range of 1 to 16777215.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: create a new vlan to vni mapping
 eos_vxlan_vlan: name=Vxlan1 state=present vlan=100 vni=1000

- name: remove an existing mapping if present in the config
 eos_vxlan_vlan: name=Vxlan1 state=absent vlan=200

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/comment.png

_modules/eos_bgp_neighbor_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_bgp_neighbor

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.1.0

This eos_bgp_neighbor module provides stateful management of the neighbor statements for the BGP routing process for Arista EOS nodes

Options

		parameter
		required
		default
		choices
		comments

		description
		no
		
 		

 		
 Configures the BGP neighbors description value. The value specifies an arbitrary description to add to the neighbor statement in the nodes running-configuration.
(added in 1.1.0)

		enable
		no
		True
 				True

		False

 		
 Configures the administrative state for the BGP neighbor process. If enable is True then the BGP neighbor process is administartively enabled and if enable is False then the BGP neighbor process is administratively disabled.
(added in 1.1.0)

		name
		yes
		
 		

 		
 The name of the BGP neighbor to manage. This value can be either an IPv4 address or string (in the case of managing a peer group)
(added in 1.1.0)

		next_hop_self
		no
		
 		

 		
 Configures the BGP neighbors next-hop-self value. If enabled then the BGP next-hop-self value is enabled. If disabled, then the BGP next-hop-self community value is disabled.
(added in 1.1.0)

		peer_group
		no
		
 		

 		
 The name of the peer-group value to associate with the neighbor. This argument is only valid if the neighbor is an IPv4 address
(added in 1.1.0)

		remote_as
		no
		
 		

 		
 Configures the BGP neighbors remote-as value. Valid AS values are in the range of 1 to 65535.
(added in 1.1.0)

		route_map_in
		no
		
 		

 		
 Configures the BGP neigbhors route-map in value. The value specifies the name of the route-map.
(added in 1.1.0)

		route_map_out
		no
		
 		

 		
 Configures the BGP neigbhors route-map out value. The value specifies the name of the route-map.
(added in 1.1.0)

		send_community
		no
		
 		

 		
 Configures the BGP neighbors send-community value. If enabled then the BGP send-community value is enable. If disabled, then the BGP send-community value is disabled.
(added in 1.1.0)

Important

Requires Arista EOS 4.13.7M or later with command API enable

Important

Requires Python Client for eAPI 0.3.1 or later

Examples

- name: add neighbor 172.16.10.1 to BGP
 eos_bgp_neighbor: name=172.16.10.1 enable=yes remote_as=65000

- name: remove neighbor 172.16.10.1 to BGP
 eos_bgp_neighbor name=172.16.10.1 enable=yes remote_as=65000 state=absent

Note

All configuraiton is idempontent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports tateful resource configuration

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_portchannel_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_portchannel

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_portchannel module manages the interface configuration for logical Port-Channel interfaces on EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		description
		no
		
 		

 		
 Configures a one lne ASCII description for the interface. The EOS default value for description is None
(added in 1.0.0)

		enable
		no
		True
 				True

		False

 		
 Configures the administrative state for the interface. Setting the value to true will adminstrative enable the interface and setting the value to false will administratively disable the interface. The EOS default value for enable is true
(added in 1.0.0)

		lacp_mode
		no
		
 				active

		passive

		disabled

 		
 Configures the LACP mode configured on the named interface. The LACP mode identifies the negotiation protocol used between peers.
(added in 1.0.0)

		members
		no
		
 		

 		
 Configures the set of physical Ethernet interfaces that are bundled together to create the logical Port-Channel interface. Member interface names should be a comma separated list of physical Ethernet interface names to be included in the named interface.
(added in 1.0.0)

		minimum_links
		no
		
 		

 		
 Conifugres the minimum links value which specifies the miniumum number of physical Ethernet interfaces that must be operationally up for the entire Port-Channel interface to be considered operationally up. Valid values for minimum links are in the range of 0 to 16. The EOS default value for min-links is 0
(added in 1.0.0)

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensure Port-Channel1 has members Ethernet1 and 2
 eos_portchannel: name=Port-Channel1 members=Ethernet1,Ethernet2

- name: Ensure Port-Channel10 uses lacp mode active
 eos_portchannel: name=Port-Channel10 members=Ethernet1,Ethernet3
 lacp_mode=active

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_config_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_config

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_config module evalues the current configuration for specific commands. If the commands are either present or absent (depending on the function argument, the eos_config module will configure the node using the command argument.

Options

		parameter
		required
		default
		choices
		comments

		command
		yes
		
 		

 		
 Specifies the configuration command to send to the node if the expression does not evalute to true.
(added in 1.0.0)

		regexp
		no
		
 		

 		
 Specifies the expression to evalute the current node's running configuration. The value can be any valid regular expression. This optional argument will default to use the command argument if none is provided.
(added in 1.1.0)

		section
		no
		
 		

 		
 Restricts the configuration evaluation to a single configuration section. If the configuration section argument is not provided, then the global configuration is used.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: idempotent operation for removing a SVI
 eos_config:
 command='no interface Vlan100'
 regexp='interface Vlan100'
 state=absent

- name: non-idempotent operation for removing a SVI
 eos_config:
 command='no interface Vlan100'

- name: ensure default route is present
 eos_config:
 command='ip route 0.0.0.0/0 192.168.1.254'

- name: configure interface range to be shutdown if it isn't already
 eos_config:
 command='shutdown'
 regexp='(?<=[^no])shutdown'
 section='interface {{ item }}'
 with_items:
 - Ethernet1
 - Ethernet2
 - Ethernet3

Note

This module does not support idempotent operations.

Note

Supports eos metaparameters for using the eAPI transport

Note

This module does not support stateful configuration

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_STP_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

STP Modules

		eos_stp_interface

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_static/plus.png

_modules/eos_varp_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_varp

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.2.0

This module will manage global Varp configuration on EOS nodes

Options

		parameter
		required
		default
		choices
		comments

		mac_address
		yes
		
 		

 		
 The MAC address to assign as the virtual-router mac address. This value must be formatted like aa:bb:cc:dd:ee:ff
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.4.0 or later

Examples

- eos_varp: mac_address='00:11:22:33:44:55'

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Does not support stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_VXLAN_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

VXLAN Modules

		eos_vxlan

		eos_vxlan_vlan

		eos_vxlan_vtep

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/modules_by_category.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Modules

		All Modules

		BGP Modules

		Bridging Modules

		IP Modules

		Interfaces Modules

		MLAG Modules

		Route Policy Modules

		STP Modules

		System Modules

		VARP Modules

		VRRP Modules

		VXLAN Modules

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_ethernet_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_ethernet

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_ethernet module manages the interface configuration for physical Ethernet interfaces on EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		description
		no
		
 		

 		
 Configures a one lne ASCII description for the interface. The EOS default value for description is None
(added in 1.0.0)

		enable
		no
		True
 				True

		False

 		
 Configures the administrative state for the interface. Setting the value to true will adminstrative enable the interface and setting the value to false will administratively disable the interface. The EOS default value for enable is true
(added in 1.0.0)

		flowcontrol_receive
		no
		
 				True

		False

 		
 Configures the flowcontrol receive value for the named Ethernet interface in EOS. If the value is configured true, then control receive is enabled (on). If the value is configured false then flowcontrol receive is disabled (off).
(added in 1.0.0)

		flowcontrol_send
		no
		
 				True

		False

 		
 Configures the flowcontrol send value for the named Ethernet interface in EOS. If the value is configured true, then control send is enabled (on). If the value is configured false then flowcontrol send is disabled (off).
(added in 1.0.0)

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
(added in 1.0.0)

		sflow
		no
		
 		

 		
 Configures the adminstrative state of running sflow on the named Ethernet interface. If this value is true, then sflow is enabled on the interface and if this value is false, then sflow is disabled on this interface. The EOS default value for sflow is true
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensure that Ethernet1/1 is administratively enabled
 eos_ethernet: name=Ethernet1/1 enable=yes

- name: Enable flowcontrol send and receive on Ethernet10
 eos_ethernet: name=Ethernet10 flowcontrol_send=yes flowcontrol_receive=yes

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Does not support stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_vrrp_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_vrrp

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.2.0

This module will manage VRRP configurations on EOS nodes

Options

		parameter
		required
		default
		choices
		comments

		delay_reload
		no
		
 		

 		
 Delay between switch reload and VRRP initialization
(added in 1.2.0)

		description
		no
		
 		

 		
 Text description of the virtual router
(added in 1.2.0)

		enable
		no
		True
 				True

		False

 		
 The state of the VRRP
(added in 1.2.0)

		interface
		yes
		
 		

 		
 The interface on which the VRRP is configured
(added in 1.2.0)

		ip_version
		no
		2
 				2

		3

 		
 VRRP version in place on the virtual router
(added in 1.2.0)

		mac_addr_adv_interval
		no
		30
 		

 		
 Interval between advertisement messages to virtual router group
(added in 1.2.0)

		preempt
		no
		True
 				True

		False

 		
 Preempt mode setting for the virtual router
(added in 1.2.0)

		preempt_delay_min
		no
		
 		

 		
 Interval between a preempt event and takeover
(added in 1.2.0)

		preempt_delay_reload
		no
		
 		

 		
 Interval between a preempt event and takeover after reload
(added in 1.2.0)

		primary_ip
		no
		0.0.0.0
 		

 		
 The ip address of the virtual router
(added in 1.2.0)

		priority
		no
		100
 		

 		
 The priority setting for the virtual router
(added in 1.2.0)

		secondary_ip
		no
		
 		

 		
 Array of secondary ip addresses assigned to the VRRP
(added in 1.2.0)

		timers_advertise
		no
		1
 		

 		
 Interval between advertisement messages to virtual router group
(added in 1.2.0)

		track
		no
		
 		

 		
 Array of track definitions to be assigned to the vrrp
(added in 1.2.0)

		vrid
		yes
		
 		

 		
 The unique identifying ID of the VRRP on its interface
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.4.0 or later

Examples

Configure the set of tracked objects for the VRRP
Create a list of dictionaries, where name is the object to be
tracked, action is shutdown or decrement, and amount is the
decrement amount. Amount is not specified when action is shutdown.

vars:
 tracks:
 - name: Ethernet1
 action: shutdown
 - name: Ethernet2
 action: decrement
 amount: 5

Setup the VRRP

 - eos_vrrp:
 interface=Vlan70
 vrid=10
 enable=True
 primary_ip=10.10.10.1
 priority=50
 description='vrrp 10 on Vlan70'
 ip_version=2
 secondary_ip=['10.10.10.70','10.10.10.80']
 timers_advertise=15
 preempt=True
 preempt_delay_min=30
 preempt_delay_reload=30
 delay_reload=30
 track="{{ tracks }}"

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_purge_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_purge

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_purge module will scan the current nodes running-configuration and purge resources of a specified type if the resource is not explicitly configured in the playbook. This module will allow a playbook task to dynamically determine which resources should be removed from the nodes running-configuration based on the playbook.
Note Purge is not supported for all EOS modules

Options

		parameter
		required
		default
		choices
		comments

		resource
		yes
		
 		

 		
 The name of the resource module to purge from the configuration. If the provided resource name does not support purge, the module will simply exit with an error message.
(added in 1.0.0)

		results
		yes
		
 		

 		
 The results argument is used to store the output from a previous module run. Using the output from the module run allows the purge function to filter which resources should be removed. See the Examples for more
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

configure the set of vlans for the node

- name: configure vlans
 eos_vlan: vlanid={{ item }}
 with_items: ['1', '10', '11', '12', '13', '14', '15']
 register: required_vlans

note the value for results is the registered vlan variable. Also of
importance is the to_nice_json filter which is required

- name: purge vlans not on the list
 eos_purge: resource=eos_vlan results='{{ required_vlans|to_nice_json }}'

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Does not support stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_vlan_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_vlan

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_vlan module manages VLAN configurations on Arista EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		enable
		no
		True
 				True

		False

 		
 Configures the administrative state for the VLAN. If enable is True then the VLAN is administratively enabled. If enable is False then the VLAN is administratively disabled.
(added in 1.0.0)

		name
		no
		
 		

 		
 An ASCII string identifer for this VLAN. The default value for the VLAN name is VLANxxxx where xxxx is the four digit VLAN ID.
(added in 1.0.0)

		trunk_groups
		no
		
 		

 		
 Configures the list of trunk groups associated with the VLAN in the node configuration. The list of trunk groups is a comma separated list. The default value for trunk_groups is an empty list.
Note: The list of comma delimited values must not include spaces.
(added in 1.0.0)

		vlanid
		yes
		
 		

 		
 The unique VLAN identifier associated with this resource. The value for this identiifer must be in the range of 1 to 4094.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: ensures vlan 100 is configured
 eos_vlan: vlanid=100 state=present

- name: ensures vlan 200 is not configured
 eos_vlan: vlanid=200 state=absent

- name: configures the vlan name
 eos_vlan: vlanid=1 name=TEST_VLAN_1

- name: configure trunk groups for vlan 10
 eos_vlan: vlanid=10 trunk_groups=tg1,tg2,tg3

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_vxlan_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_vxlan

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_vxlan module manages the logical VxLAN interface configuration on Arista EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		description
		no
		
 		

 		
 Configures a one lne ASCII description for the interface. The EOS default value for description is None
(added in 1.0.0)

		enable
		no
		True
 				True

		False

 		
 Configures the administrative state for the interface. Setting the value to true will adminstrative enable the interface and setting the value to false will administratively disable the interface. The EOS default value for enable is true
(added in 1.0.0)

		multicast_group
		no
		
 		

 		
 Configures the vxlan multicast-group address used for flooding traffic between VTEPs. This value must be a valid multicast address in the range of 224/8. The EOS default value for vxlan multicast-group is None.
(added in 1.0.0)

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
Note: The name parameter only accepts Vxlan1 as the identifier
(added in 1.0.0)

		source_interface
		no
		
 		

 		
 Configures the vxlan source-interface value which directs the interface to use the specified source interface address to source messages from. The configured value must be a Loopback interface. The EOS default value for source interface is None.
(added in 1.0.0)

		udp_port
		no
		
 		

 		
 Configures the vxlan udp-port value used to terminate mutlicast messages between VTEPs. This value must be an integer in the range of 1024 to 65535. The EOS default value for vxlan udp-port is 4789.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: ensures the vxlan interface is configured
 eos_vxlan: name=Vxlan1 state=present enable=yes

- name: ensures the vxlan interface is not configured
 eos_vxlan: name=Vxlan1 state=absent

- name: configures the vxlan source interface
 eos_vxlan: name=Vxlan1 source_interface=Loopback0

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_mlag_interface_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_mlag_interface

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_mlag_interface module manages the MLAG interfaces on Arista EOS nodes. This module is fully stateful and all configuration of resources is idempotent unless otherwise specified.

Options

		parameter
		required
		default
		choices
		comments

		mlag_id
		no
		
 		

 		
 Configures the interface mlag setting to the specified value. The mlag setting is any valid number from 1 to 2000. A MLAG identifier cannot be used on more than one interface.
(added in 1.0.0)

		name
		yes
		
 		

 		
 The interface name assocated with this resource. The interface name must be the full interface identifier. Valid interfaces match Po*
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensure Ethernet1 is configured with mlag id 10
 eos_mlag_interface: name=Ethernet1 state=present mlag_id=10

- name: Ensure Ethernet10 is not configured as mlag
 eos_mlag_interface: name=Ethernet10 state=absent

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_bgp_config_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_bgp_config

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.1.0

The eos_bgp_config module provides resource management of the global BGP routing process for Arista EOS nodes

Options

		parameter
		required
		default
		choices
		comments

		bgp_as
		yes
		
 		

 		
 The BGP autonomous system number to be configured for the local BGP routing instance. The value must be in the valid BGP AS range of 1 to 65535.
(added in 1.1.0)

		enable
		no
		True
 				True

		False

 		
 Configures the administrative state for the global BGP routing process. If enable is True then the BGP routing process is administartively enabled and if enable is False then the BGP routing process is administratively disabled.
(added in 1.1.0)

		maximum_ecmp_paths
		no
		
 		

 		
 Configures the maximum number of ecmp paths for each route. The EOS default for this attribute is the maximum value, which varies by hardware platform. Check your Arista documentation for more information. This value should be greater than or equal to maximum_paths.
(added in 1.2.0)

		maximum_paths
		no
		
 		

 		
 Configures the maximum number of parallel routes. The EOS default for this attribute is 1. This value should be less than or equal to maximum_ecmp_paths.
(added in 1.2.0)

		router_id
		no
		
 		

 		
 Configures the BGP routing process router-id value. The router id must be in the form of A.B.C.D
(added in 1.1.0)

Important

Requires Arista EOS 4.13.7M or later with command API enable

Important

Requires Python Client for eAPI 0.4.0 or later

Examples

- name: enable BGP routing with AS 65535
 eos_bgp_config: bgp_as=65535 state=present enable=yes

- name: disable the BGP routing process
 eos_bgp_config: bgp_as=65535 enable=no

- name: configure the BGP router-id
 eos_bgp_config: bgp_as=65535 router_id=1.1.1.1

- name: configure the BGP with just max paths
 eos_bgp_config: bgp_as=65535 router_id=1.1.1.1 maximum_paths=20

- name: configure the BGP with maximum_paths and maximum_ecmp_paths
 eos_bgp_config: bgp_as=65535 router_id=1.1.1.1 maximum_paths=20
 maximum_ecmp_paths=20

Note

All configuraiton is idempontent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports tateful resource configuration

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_varp_interface_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_varp_interface

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.2.0

This module will manage interface Varp configuration on EOS nodes. Typically this includes Vlan interfaces only by using the ip virtual-router address command.

Options

		parameter
		required
		default
		choices
		comments

		name
		yes
		
 		

 		
 The Varp interface which will have the following shared_ip's configured. These are typically Vlan interfaces. The interface name must match the way it is written in the configuration. For example, use Vlan100, not vlan100 or vlan 100.
(added in 1.2.0)

		shared_ip
		yes
		
 		

 		
 The list of IP addresses that will be shared in the Varp configuration. The list of IPs should be a string of comma-separated addresses. Please provide a list of sorted IPs.
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.4.0 or later

Examples

- eos_varp_interface: name=Vlan1000 shared_ip='1.1.1.2,1.1.1.3,1.1.1.4'

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Does not support stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_ping_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_ping

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

The eos_ping module will execute a network ping from the node and return the results. If the destination can be successfully pinged, then the module returns successfully. If any of the sent pings are not returned the module fails. By default, the error threshold is set to the same value as the number of pings sent

Options

		parameter
		required
		default
		choices
		comments

		count
		no
		5
 		

 		
 Configures the number of packets to send from the node to the remote dst. The default value is 5.
(added in 1.1.0)

		dst
		yes
		
 		

 		
 Specifies the destination IP address or FQDN for the network ping packet.
(added in 1.1.0)

		error_threshold
		no
		
 		

 		
 Configures the error threshold (in packet loss percentage) for the ping test to be considered failed. By default the value of the error_threshold is set to 0. Valid values between 0 and 100.
(added in 1.1.0)

		source
		no
		
 		

 		
 Configures the source interface for the network ping packet
(added in 1.1.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.4.0 or later

Examples

- eos_ping: dst=192.168.1.254 count=10

Set the error_threshold to 50% packet loss
- eos_ping: dst=192.168.1.254 count=10 error_threshold=50

Note

Important fixes to this module were made in pyeapi 0.4.0. Be sure to update to at least that version.

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Does not support stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_staticroute_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_staticroute

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.2.0

The eos_staticroute module manages static route configuration options on Arista EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		distance
		no
		1
 		

 		
 Distance designated for this route
(added in 1.2.0)

		ip_dest
		yes
		
 		

 		
 Destination IP address
(added in 1.2.0)

		next_hop
		yes
		
 		

 		
 Next hop IP address or egress interface
(added in 1.2.0)

		next_hop_ip
		no
		
 		

 		
 IP address of the next router. Only valid when next_hop is an egress interface
(added in 1.2.0)

		route_name
		no
		
 		

 		
 Descriptive name for the route
(added in 1.2.0)

		tag
		no
		
 		

 		
 Tag assigned for the route
(added in 1.2.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.4.0 or later

Examples

- eos_staticroute: ip_dest=1.1.1.0/24 next_hop=Ethernet1
 next_hop_ip=1.1.1.1 distance=1
 tag=15 name=route1

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_stp_interface_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_stp_interface

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

Provides active state management of STP interface configuration on Arista EOS nodes.

Options

		parameter
		required
		default
		choices
		comments

		bpduguard
		no
		
 				True

		False

 		
 Specifies whether or not bpduguard should be enabled on the named interface. If this value is configured true, then bpduguard is enabled on the interface. If this value is configured false, then bpduguard is disabled on the interface. The EOS default value for bpduguard is false
(added in 1.0.0)

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
(added in 1.0.0)

		portfast
		no
		
 				True

		False

 		
 Specifies whether or not portfast should be enabled on the named interface. If this value is configured true, then portfast is enabled on the interface. If this value is configured false, then portfast is disabled on the interface. The EOS default value for portfast is false
(added in 1.0.0)

		portfast_type
		no
		
 				edge

		network

 		
 Configures the portfast port type value for the named interface in EOS. Valid port types include edge or network.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensure portfast is enabled on Ethernet3
 eos_stp_interface: name=Ethernet3 portfast=yes

- name: Ensure bpduguard is enabled on Ethernet49
 eos_stp_interface: name=Ethernet49 bpduguard=yes

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Does not support stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/eos_switchport_module.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

eos_switchport

		Synopsis

		Options

		Examples

Synopsis

Added in version 1.0.0

Provides active state management of switchport (layer 2) interface configuration in Arista EOS. Logical switchports are mutually exclusive with eos_ipinterface.

Options

		parameter
		required
		default
		choices
		comments

		access_vlan
		no
		
 		

 		
 Configures the VLAN associated with a switchport that is configured to use 'access' mode. This parameter only takes effect if mode is equal to 'access'. Valid values for access vlan are in the range of 1 to 4094. The EOS default value for access vlan is 1
(added in 1.0.0)

		mode
		no
		
 				trunk

		access

 		
 Identifies the mode of operation for the interface. Switchport interfaces can act as trunk interfaces (carrying multiple VLANs) or as access interfaces (attached to a single VLAN). The EOS default value is 'access'
(added in 1.0.0)

		name
		yes
		
 		

 		
 The unique interface identifier name. The interface name must use the full interface name (no abbreviated names). For example, interfaces should be specified as Ethernet1 not Et1
(added in 1.0.0)

		trunk_allowed_vlans
		no
		
 		

 		
 Configures the set of VLANs that are allowed to traverse this switchport interface. This parameter only takes effect if the mode is configured to 'trunk'. This parameter accepts a comma delimited list of VLAN IDs to configure on the trunk port. Each VLAN ID must be in the valid range of 1 to 4094. The EOS default value for trunk allowed vlans is 1-4094.
(added in 1.0.0)

		trunk_groups
		no
		
 		

 		
 Configures the list of trunk groups on the switchport. The parameter accepts a comma separated list of values to be provisioned on the interface.
(added in 1.1.0)

		trunk_native_vlan
		no
		
 		

 		
 Configures the native VLAN on a trunk interface for untagged packets entering the switchport. This parameter only takes effect if mode is equal to 'trunk'. Valid values for trunk native vlan are in the range of 1 to 4094. The EOS default value for trunk native value is 1.
(added in 1.0.0)

Important

Requires Arista EOS 4.13.7M or later with command API enabled

Important

Requires Python Client for eAPI 0.3.0 or later

Examples

- name: Ensure Ethernet1 is an access port
 eos_switchport: name=Ethernet1 mode=access access_vlan=10

- name: Ensure Ethernet12 is a trunk port
 eos_switchport: name=Ethernet12 mode=trunk trunk_native_vlan=100

- name: Add the set of allowed vlans to Ethernet2/1
 eos_switchport: name=Ethernet2/1 mode=trunk trunk_allowed_vlans=1,10,100

- name: Add trunk group values to an interface
 eos_switchport: name=Ethernet5 trunk_groups=foo,bar,baz

Note

All configuration is idempotent unless otherwise specified

Note

Supports eos metaparameters for using the eAPI transport

Note

Supports stateful resource configuration.

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

_modules/list_of_Interfaces_modules.html

 Navigation

 		
 index

 		ansible-eos 1.3.0 documentation »

Interfaces Modules

		eos_ethernet

		eos_interface

		eos_portchannel

 © Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

