

 Navigation

 	
 index

 	
 next |

 	ansible-eos develop documentation

The Ansible EOS Role

The ansible-eos project provides modules for managing resources on Arista EOS
nodes. Please see Ansible Galaxy [https://galaxy.ansible.com/list#/roles/1359] for more details
This project is maintained by the Arista Networks [http://arista.com/] EOS+ Consulting Services organization.

Warning

Deprecation Notice

Ansible 2.1 ships with great new networking
modules [http://docs.ansible.com/ansible/list_of_network_modules.html#eos]
purpose-built for Arista EOS. Due to the easy-to-use nature of these modules,
and their great flexibility, it is no longer recommended to use the arista.eos
role.

Get started by checking out the Arista solution [https://www.ansible.com/ansible-arista-networks]
at Ansible.com

	Overview
	Introduction

	Connection Types

	The Ansible EOS Role

	Ansible Tower

	Quick Start
	Introduction

	Getting Started

	Option A: Connect to Arista Node over SSH

	Option B: Connect to Arista Node over eAPI

	Now what?

	Installation
	Host (Control) System

	Install the Ansible EOS Role

	Modules
	All Modules

	BGP Modules

	Bridging Modules

	IP Modules

	Interfaces Modules

	MLAG Modules

	Route Policy Modules

	STP Modules

	System Modules

	VARP Modules

	VRRP Modules

	VXLAN Modules

	Meta Arguments
	Troubleshooting Arguments

	Connection Arguments

	State Arguments

	Support
	Contact

	Submitting Issues

	Debugging Module Output

	Debugging EOS Connectivity Issues

	Developer Information
	Introduction

	Running from Source

	Write Test Cases

	Contributing

	FAQ
	Introduction

	Release Notes
	v1.0.0

	v1.0.1

	v1.1.0

	v1.2.0

	v1.3.0

	License

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

Overview

Introduction

Ansible is a configuration management framework that provides an automated
infrastructure for managing systems devices and applications. Ansible provides
this functionality using an agent-less approach that focuses on management of
the destination device and/or application over SSH. Ansible achieves its vision
through the implementation of playbooks and modules. Playbooks, which are in
turn comprised of a series of tasks to be executed on a host or group of
hosts, provide the fundamental workflow in Ansible. Modules are host and/or
application specific that perform the operations based on the directives of
the tasks and playbooks. Complete details about Ansible can be found in
their documentation [http://docs.ansible.com/index.html].

Connection Types

Ansible provides three distinctly different connection types each providing
a different method for connecting the Ansible runtime components
(playbooks, modules) with the destination device. A summary of the connection
types are below.

SSH Connection

When operating in this mode, Ansible will connect to the destination host
using an encrypted SSH session. The SSH connection is established using
either the hosts native SSH binary or using the
Paramiko [http://docs.ansible.com/intro_getting_started.html#remote-connection-information]
library. Since it uses SSH as the transport, the Ansible connection needs to
be able to authenticate to the remote system and expects to operate in a
Linux shell environment.

Local connections

When a host or task is operating with a local connection, tasks are executed
from the Ansible host where the job was initiated. Local connections allow
Ansible to make use of API transports and remove the need for establishing an
SSH connection to the target device.

Accelerated mode

Ansible supported (since v0.8) a mode of operation known as Fireball mode.
Fireball mode has since been depreciated in favor of accelerated mode (as of v1.3).
Accelerated mode connects to the destination node and starts a daemon that is
used for the remainder of the transaction.

Tip

More details about Accelerated Mode [https://docs.ansible.com/playbooks_acceleration.html] from Ansible’s documentation.

In addition to the connection types discussed above, Ansible also supports
a pull model. The pull model works in conjunction with SCM systems to perform
its duties locally on the node. The pull model executes a local utility that
retrieves the configuration data and proceeds to execute all of the activity
locally on the node.

The Ansible EOS Role

Integration with the Python Client for eAPI

The Ansible Role for EOS builds on the Python Client for eAPI [https://github.com/arista-eosplus/pyeapi] to provide
automation of the management plane. Using eAPI as the underlying tranport,
Ansible can be configured to interface with Arista EOS using either SSH based
connections or HTTP based connections.

Topologies

Above, we discussed how Ansible is typically used to control a node. These
principles remain true for Arista EOS nodes, however, there are some nuances
that are important to understand when using the Ansible EOS role. Next, we will discuss the two main
methods used to control an Arista EOS node using Ansible.

[image: _images/ansible-deploy.jpg]
The illustration above demonstrates a typical scenario. You, as the user, want
to execute an Ansible Playbook on one (or many) of your Arista nodes. From the
user’s perspective the interaction with the Ansible Control Host is the same,
from your shell you would type:

ansible-playbook eos.yaml

Notice in the diagram a few things remain constant:

	pyeapi is always required (whether on the control host or EOS node), and

	pyeapi is ultimately responsible for making the eAPI calls to modify the node’s configuration

While the overall flow is similar, the way in which the playbook is executed
will differ between Option A and Option B. Let’s discuss those differences below.

Option A

This method follows the traditional Ansible control procedure, namely:

	Execute ansible-playbook eos.yaml from the Ansible Control Host

	Collect Fact information from the node

	Download the module to the node

	Execute the module on the node

	pyeapi commands run locally to modify configuration

	Read stdout and parse it into JSON

	Return the result to the Ansible Control Host

Assumption 1
You’ll notice that this method uses SSH to communicate with the node. This
implies that you have already included the Ansible Control Host’s public SSH
key in the nodes authorized_keys file, or you are providing a password
when the playbook executes.

Assumption 2
Pyeapi is used by the Ansible EOS role modules to make configuration changes on the
node. This implies that pyeapi is already installed on the node. The pyeapi
module is NOT installed on Arista EOS nodes by default, so installation would
be required by the user.

Understanding the Security Model

The Ansible EOS role provides a two stage authentication model to
maximize the security and flexibility available for providing programatic
access to EOS nodes. The steps above walk through how to enable both eAPI
and create a shell account for use with Ansible. This section provides some
additional details about how the two stage authentication model works.

Note

The two stage authentication model only applies to Option A.

Implementing a two stage security model allows operators to secure the
Ansible shell account and prevent it from configuring EOS. Conversely, having
a separate eAPI authentication mechanism allows operators to separately
control the users that can run EOS modules without giving them root
access to EOS.

When Ansible connects to an EOS node, it must first authenticate to Linux
as it would for any other Linux platform. In order to create the shell
account, the steps in 2. Preparing EOS for Ansible should be followed. The
steps above will create a user called ‘ansible’. You are free to choose
any username you like with the following exception: you cannot create a
username the same as a local account in EOS (more on that in a moment).

By default, the EOS role assumes the user account is called ‘ansible’. If
the shell account is different, then the eos_username variable must be set
in your playbook to the name of the shell account you intend to use. This
ensures that the EOS node is bootstrapped properly for use with Ansible.

The second stage authentication model uses eAPI. eAPI provides its own
authentication mechanism for securing what users can perform which actions
in EOS. The eAPI user can be one that is authenticated by AAA; however,
that is outside the scope of this discussion. The section 1. Enabling EOS Command API
provides an example of how to create a local user to use when
authenticating with eAPI.

Note

The shell account and eAPI user must be different.

Ansible Host file and eapi.conf for Option A

It is important to understand that pyeapi is ultimately responsible for sending
the configuration commands to your node. This means that at some point your
adhoc command or playbook needs to indicate the credentials to create an eAPI
connection. There are a few different ways to do this as explained below.

Method 1: Using Meta Arguments

Meta arguments are used to pass the exact eAPI connection parameters during adhoc
command or play. If you provide all of the required eAPI connection information
you will not even need to use eapi.conf. This is the preferred method since you
do not need to create/maintain an eapi.conf file on the EOS node.

Tip

Read all about Meta Arguments

Example: In a playbook

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 username={{ username }}
 password={{ password }}
 transport={{ transport }}

/etc/ansible/hosts on Control Host

[eos_switches]
192.168.0.50
192.168.0.51
192.168.0.52
192.168.0.53

[eos_switches:vars]
ansible_ssh_user=ansible
Used for eapi connection once SSH'd in
username=eapi
password=password
transport=https

/mnt/flash/eapi.conf on EOS node

empty file. This file is not needed on the EOS device.

Explanation

This method utilizes the Ansible hosts file to feed information into the playbook.
We group our nodes under the eos_switches group name to avoid duplication of
variables, and use [eos_switches:vars] to create a set of variables that apply to all
switches in the group. These variables are available in the playbook.
We indicate in the play to execute our task against all nodes in this group. Then
We use {{ username }}, {{ password }} etc. to substitute the
eapi parameters into the play.
Since all of the necessary eAPI information is present, the module does not
need to consult an eapi.conf on the EOS node for connection parameters. In effect,
the simplified connection flow looks like:

	SSH to node in [eos_switches] (IPs 192.168.0.50-53)

	Copy module(s) to EOS node.

	Create eapi connection to http://localhost:80/command-api

	Modify node configuration.

Method 2: Using eapi.conf

In this method we will put all of the eAPI connection info into /mnt/flash/eapi.conf
on each EOS node that is being controlled. When we execute a play or adhoc
command, pyeapi will not be passed connection information
from Ansible, therefore it will consult eapi.conf on the EOS node to learn eapi
connection information. As you can imagine this causes creates additional administrative
overhead and is not the most efficient method (ie try to use Method 1).

Example

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 connection={{ connection }}

/etc/ansible/hosts on Control Host

[eos_switches]
spine-1
spine-2
tor-1
tor-2

[eos_switches:vars]
connection=localhost
ansible_ssh_user=ansible

/mnt/flash/eapi.conf on EOS node

[connection:localhost]
username: admin
password: password
transport: https

Explanation

Here we use the connection meta argument. This directly relates the
connection name in eapi.conf. As you can see there is no eAPI connection information
in /etc/ansible/hosts, rather we just have names of nodes. This changes the
connection flow in the following way:

	Control Host SSH into node listed in hosts file. EG ssh into spine-1 with user ansible

	Copy modules to EOS node.

	Execute module. The module is told to use connection=localhost.

	Module looks for localhost in /mnt/flash/eapi.conf.

	Learns which transport, username and password to use. Sets up eapi connection.

	Executes commands to modify node configuration.

Option B

This method uses the connection: local feature within the eos.yaml
playbook. This causes the transport method to be an eAPI connection (HTTP[S])
versus SSH. This changes how the playbook gets executed in the following way:

	Include connection: local in eos.yaml

	Execute ansible-playbook eos.yaml from the Ansible Control Host

	pyeapi consults the local ~/.eapi.conf file which provides node connection information

	Collect Fact information from the node

	Execute the module on the Ansible Control Host

	pyeapi commands run over the network to modify configuration

	Read stdout and parse it into JSON

	Present the result on the Ansible Control Host

Assumption 1
Here, the connection between the Ansible Control Host and the Arista node is
an eAPI connection. This implies that you have an eapi.conf file on your
Ansible Control Host that contains the connection parameters for this node, or
you pass the connection parameters as meta arguments.
The caveat when using eapi.conf is that the password for the eAPI
connection is stored as plaintext. See Is there any intention to encrypt passwords we put into eapi.conf? for more information.

Ansible Host file and eapi.conf for Option B

Regardless of the method you use to communicate with your node, one thing is constant:
pyeapi is ultimately responsible for sending the configuration commands to your node.
This means that at some point your adhoc command or playbook
needs to indicate the credentials to create an eAPI connection. There are a few
different ways to do this as explained below.

Method 1: Using Meta Arguments

Meta arguments are used to pass the exact eAPI connection parameters during adhoc
command or play. If you provide all of the required eAPI connection information
you will not even need to use eapi.conf. This is the most verbose and least flexible.

Tip

Read all about Meta Arguments

Example: In a playbook

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches
 connection: local

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 host={{ inventory_hostname }}
 username={{ username }}
 password={{ password }}
 transport={{ transport }}

/etc/ansible/hosts on Control Host

[eos_switches]
192.168.0.50
192.168.0.51
192.168.0.52
192.168.0.53

[eos_switches:vars]
username=eapi
password=password
transport=https

~/.eapi.conf on Control Host

empty file

Explanation

This method utilizes the Ansible hosts file to feed information into the playbook.
The key to success here is grouping our nodes under the eos_switches group name.
We then use [eos_switches:vars] to create a set of variables that apply to all
switches in the group. These variables are available in the playbook.
We indicate in the play to execute our task against all nodes in this group. Then
we use {{ inventory_hostname }}, {{ username }}, etc. to substitute the
host name (ip address in this case) and other connection parameters into the play.
Since all of the necessary eAPI information is present, the module does not
need to consult an eapi.conf file for connection parameters.

Method 2: Using eapi.conf

In this method we will put all of the eAPI connection info into eapi.conf. When
we execute a play or adhoc command, pyeapi will not be passed connection information
from Ansible, therefore it will consult eapi.conf to learn connection information.

Example

eos-playbook.yml on Control Host

- name: eos nodes
 hosts: eos_switches
 connection: local

 tasks:
 - name: Configure EOS VLAN resources
 eos_vlan: vlanid=100
 name=mynewamazingvlan100
 connection={{ inventory_hostname }}

/etc/ansible/hosts on Control Host

[eos_switches]
spine-1
spine-2
tor-1
tor-2

~/.eapi.conf on Control Host

[connection:spine-1]
host: 192.168.0.50
username: admin
password: password
transport: https

[connection:spine-2]
host: 192.168.0.51
username: admin
password: password
transport: https

[connection:tor-1]
host: 192.168.0.52
username: admin
password: password
transport: https

[connection:tor-2]
host: 192.168.0.53
username: admin
password: password
transport: https

Explanation

Here we use a new meta argument connection. This directly relates the
connection name in eapi.conf. As you can see there is no eAPI connection information
in /etc/ansible/hosts, rather we just have names of nodes. When the particular
ansible-eos module executes it will reference ~/.eapi.conf to determine
how to connect to the EOS node over eAPI.

Ansible Tower

Ansible provides a product that implements a web based interface and REST API
known as Tower [http://www.ansible.com/tower]. The web interface provides
some additional capabilities to the base Ansible framework around role based
access and programmatic interface to the Ansible environment.

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

Quick Start

Contents

	Quick Start
	Introduction

	Getting Started

	Option A: Connect to Arista Node over SSH
	1. Enabling EOS Command API

	2. Preparing EOS for Ansible

	3. Install pyeapi

	4. A Simple Playbook

	Option B: Connect to Arista Node over eAPI
	1. Enabling EOS Command API

	2. Install pyeapi

	3. A Simple Playbook

	Now what?

Introduction

This quick-start guide provides the fastest method to get up and running with
the Ansible EOS role. It assumes that you already have an Ansible
environment running with the Ansible EOS role. If not, see Host (Control) System
and Install the Ansible EOS Role before following this guide.
This guide assumes very little experience with Ansible, therefore,
if the steps seem to leave you with questions and uncertainties please let us know
so that we can improve it.

Getting Started

Before jumping in head first, it’s important to understand how
The Ansible EOS Role is deployed. At the preceding link,
you’ll see two deployment options which correlate to two separate quick start
paths below. Have a quick read of The Ansible EOS Role and then come
follow your preferred path. It’s also recommended that you take a look at
pyeapi [http://pyeapi.readthedocs.org/en/latest] documentation since it plays
an essential part in the Ansible EOS role.

Option A: Connect to Arista Node over SSH

Tasklist

	1. Enabling EOS Command API

	2. Preparing EOS for Ansible

	3. Install pyeapi

	4. A Simple Playbook

1. Enabling EOS Command API

The modules provided in the Arista EOS role require command API (aka eAPI)
to be enabled on the switch. The modules use eAPI to communicate with EOS.
Since eAPI is not enabled by default, it must be initially enabled before the
EOS modules can be used.

The steps below provide the basic steps to enable eAPI. For more advanced
configurations, please consult the EOS User Guide.

As you may have learned in The Ansible EOS Role, when you connect
to your node over SSH, Ansible will copy the Python module code to the switch
and then execute it locally using Pyeapi APIs. Therefore, you have a few options
when it comes to which protocol is enabled for eAPI.

	Transport
	eapi.conf Required
	Pyeapi run from
	Authentication Required

	http
	Yes
	On/Off-switch
	Yes

	https
	Yes
	On/Off-switch
	Yes

	http_local
	Yes
	On-switch only
	No

	socket
	No
	On-switch only
	No

Note

http_local and socket are EOS transports only supported in EOS
version 4.14.5+

Therefore, it is recommended to use socket if you are running a recent
version of EOS. Otherwise, use HTTP or HTTPS depending upon your security model.

Step 1.1. Login to the destination node and enter configuration mode

switch> enable
switch# configure
switch(config)#

Step 1.2a. Enable eAPI for Unix Sockets and Disable HTTP/s

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown
switch(config-mgmt-api-http-cmds)# protocol unix-socket
switch(config-mgmt-api-http-cmds)# no protocol https

Step 1.2a. Enable eAPI for HTTP Local

This will only expose port 8080 at the loopback (localhost)

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown
switch(config-mgmt-api-http-cmds)# no protocol https
switch(config-mgmt-api-http-cmds)# protocol http localhost

Step 1.2a. Enable eAPI for Standard HTTP/S

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown

The configuration above enables eAPI with the default settings. This enables
eAPI to listen for connections on HTTPS port 443 by default.

Step 1.3. Create a local user
The user created in this step is different than the shell account to be
created in the Preparing EOS for Ansible section. Please see the section
Understanding the Security Model for more details.

switch(config)# username eapi secret icanttellyou

The username (eapi) and password (icanttellyou) can be any valid string
value.

2. Preparing EOS for Ansible

In order to successfully execute playbook tasks the EOS node must be
configured to allow the Ansible control node to directly attach to the
Linux shell. The following steps provide a walk through for setting up
password-less access to EOS nodes for use with Ansible.

Note

These steps will create a user that has root privileges to your EOS
node, so please handle credentials accordingly

Step 2.1. Login to the destination node and enter the Linux shell

veos> enable
veos# bash

Arista Networks EOS shell

Step 2.2. Create the user to use with Ansible, create the home directory
and prepare for uploading your SSH key. In the below example we will create
a user called ansible. The second command will create a temporary password
for the user but we will be switching to using SSH keys and the password
will be removed

create the user 'ansible' with temporary password 'password'
[admin@veos ~]$ sudo useradd -d /persist/local/ansible -G eosadmin ansible
[admin@veos ~]$ echo password | sudo passwd --stdin ansible
Changing password for user ansible.
passwd: all authentication tokens updated successfully.

prepare the home directory so we can upload an ssh key
[admin@veos ~]$ sudo mkdir /persist/local/ansible/.ssh
[admin@veos ~]$ sudo chmod 700 /persist/local/ansible/.ssh
[admin@veos ~]$ sudo chown ansible:eosadmin /persist/local/ansible/.ssh
[admin@veos ~]$ sudo ls -lah /persist/local/ansible

exit the Linux shell and disconnect
[admin@veos01 ~]$ logout
veos#logout
Connection to veos01 closed.

Step 2.3. Upload the SSH key to use from your Ansible control host and
verify access from remote host

ansible@hub:~$ scp ~/.ssh/id_rsa.pub ansible@veos01:.ssh/authorized_keys
Password:

ansible@hub:~$ ssh ansible@veos01

Arista Networks EOS shell

[ansible@veos ~]$

Step 2.4. Configure EOS to create user on reboot with no password assigned.
This will only allow the Ansible user to login with keys.

[ansible@veos ~]$ vi /mnt/flash/rc.eos

#!/bin/sh
useradd -d /persist/local/ansible -G eosadmin ansible

Step 2.5. Reboot the EOS node and start automating with Ansible

[ansible@veos ~]$ sudo reboot

3. Install pyeapi

As mentioned earlier, the Ansible EOS role uses pyeapi [https://github.com/arista-eosplus/pyeapi]
on the Arista node that will be configured. Follow the pyeapi [https://pyeapi.readthedocs.org/en/latest/install.html] installation
guide to install the package.

4. A Simple Playbook

If you are new to Ansible it might seem like a lot is going on, but this step will
show you how easy it is to manage your Arista device. The power of Ansible lies in
the Playbook [http://docs.ansible.com/playbooks.html]. We will just skim the
surface of what’s possible in a playbook, but this should serve as a good launching
point.

Step 4.1. Create an Ansible Inventory File

Each Ansible play references one or more nodes. You define these nodes in an
Ansible hosts file.

Hint

Learn more about Ansible Inventory [http://docs.ansible.com/intro_inventory.html].

ansible@hub:~$ mkdir ~/myfirstplaybook
ansible@hub:~$ cd ~/myfirstplaybook
ansible@hub:~$ vi hosts

and add the connection info for your node substituting the IP or FQDN of your
node as well as the name of the user created in Step 2.2 above:

[eos_switches]
<node>
Add more entries here for additional devices you want to
keep in the eos_switches group

[eos_switches:vars]
ansible_ssh_user=<user>
Information from step 1.2. Used for eapi connection once Ansible SSHes in.
transport=https
username=eapi
password=icanttellyou
port=<port-if-non-default>

Note

If socket is enabled for eAPI, there is no need to add the variables:
transport, username, password, port. If http_local
is being used, simply use transport=http_local.

Example

[eos_switches]
veos01
veos02
veos03
veos04

[eos_switches:vars]
ansible_ssh_user=ansible
transport=https
username=eapi
password=icanttellyou

Step 4.2. Create playbook

Let’s create Vlan150 using the eos_vlan module:

ansible@hub:~$ vi my-test-eos-playbook.yml

Then paste in the following

- hosts: eos_switches
 gather_facts: no

 roles:
 - arista.eos

 tasks:
 - name: configures vlan 150
 eos_vlan:
 vlanid=150
 name=newVlan150
 transport={{ transport }}
 username={{ username }}
 password={{ password }}
 debug=yes
 register: vlan_cfg_output

 - debug: var=vlan_cfg_output

Hint

Don’t be confused by the presence of transport, username and password. They aren’t used until
after Ansible SSHes into the EOS node. By including these parameters here
we remove the need to have an eapi.conf file on each EOS node.

Note

If your eAPI is configured to use Unix Socket there is no need to pass
the transport, username, or password attributes since the
default is to try and use transport=socket.

Step 4.3. Run playbook

Simply execute from your Ansible Host and review output:

ansible@hub:~$ ansible-playbook -i hosts my-test-eos-playbook.yml

Result:

You should see JSON output containing any changes, along with the current and desired state. So what really happened?

	We execute the command and Ansible goes to our inventory to find the specified nodes in group eos_switches.

	Ansible is told to connect via SSH with user ansible from ansible_ssh_user=ansible.

	Ansible creates a temp directory in the ansible user’s home directory

	Ansible copies eos_vlan.py to the temp directory created above.

	Ansible executes eos_vlan.py with the specified arguments

	eos_vlan.py uses pyeapi to configure the new Vlan.

	Ansible cleans up the temp folder and returns output to the control host.

You should notice that Ansible reports configuration has changed. If you ran
this command again it should report no changes due to idempotency.

Option B: Connect to Arista Node over eAPI

Tasklist

	1. Enabling EOS Command API

	2. Install pyeapi

	3. A Simple Playbook

1. Enabling EOS Command API

The modules provided in the Arista EOS role require command API (aka eAPI)
to be enabled on the switch. The modules use eAPI to communicate with EOS.
Since eAPI is not enabled by default, it must be initially enabled before the
EOS modules can be used.

The steps below provide the basic steps to enable eAPI. For more advanced
configurations, please consult the EOS User Guide.

Step 1.1. Login to the destination node and enter configuration mode

switch> enable
switch# configure
switch(config)#

Step 1.2. Enable eAPI

switch(config)# management api http-commands
switch(config-mgmt-api-http-cmds)# no shutdown

The configuration above enables eAPI with the default settings. This enables
eAPI to listen for connections on HTTPS port 443 by default.

Step 1.3. Create a local user
The user created in this step is used by pyeapi to run configuration commands.

switch(config)# username eapi secret icanttellyou

The username (eapi) and password (icanttellyou) can be any string value. The
values are then used in either eapi.conf or passed in through the module
meta arguments to authenticate to eAPI.

2. Install pyeapi

As mentioned earlier, the Ansible EOS role uses pyeapi [https://github.com/arista-eosplus/pyeapi]
on the Arista node that will be configured. Follow the `pyeapi
http://pyeapi.readthedocs.org/en/latest/install.html>`_ installation
guide to install the package.

Create local pyeapi.conf file

[ansible@hub ~]$ vi ~/.eapi.conf

with credentials you created in Step 1.3. The connection:<NAME> should match
the entry in hosts, Step 3.1 below:

[connection:veos01]
host: <ip-or-fqdn>
transport: https
username: eapi
password: icanttellyou
port: <port-if-non-default>

3. A Simple Playbook

If you are new to Ansible it might seem like a lot is going on, but this step will
show you how easy it is to manage your Arista device. The power of Ansible lies in
the Playbook [http://docs.ansible.com/playbooks.html]. We will just skim the
surface of what’s possible in a playbook, but this should serve as a good launching
point.

Step 3.1. Create an Ansible Inventory File

Let’s add the details of our test node to an Ansible Inventory file.

Hint

Learn more about Ansible Inventory [http://docs.ansible.com/intro_inventory.html].

ansible@hub:~$ mkdir ~/myfirstplaybook
ansible@hub:~$ cd ~/myfirstplaybook
ansible@hub:~$ vi hosts

and add the connection info for your node substituting the IP or FQDN of your
node under our eos_switches group.
This should match the connection parameter in your ~/.eapi.conf:

[eos_switches]
<node>

Example

[eos_switches]
veos01

Step 4.2. Create playbook

Let’s create Vlan150 using the eos_vlan module:

ansible@hub:~$ vi my-test-eos-playbook.yml

Then paste in the following

- hosts: eos_switches
 gather_facts: no
 connection: local

 roles:
 - arista.eos

 tasks:
 - name: Add Vlan 150 to my switches
 eos_vlan:
 vlanid=150
 name=newVlan150
 connection={{ inventory_hostname }}
 debug=yes
 register: vlan_cfg_output

 - debug: var=vlan_cfg_output

Step 4.3. Run playbook

Simply execute from your Ansible Host:

ansible@hub:~$ ansible-playbook -i hosts my-test-eos-playbook.yml

Result:

You should see JSON output containing any changes, along with the current and desired state. So what really happened?

	We execute the command and Ansible goes to our inventory to find the specified nodes that match group eos_switches.

	Ansible is told to use connection:local so no SSH connection will be established to the node.

	Ansible substitutes the host name from hosts into the {{ inventory_hostname }} parameter. This creates the link to the [connection:veos01] in ~/.eapi.conf.

	Ansible creates a temp directory in the user’s home directory, eg $HOME/.ansible/tmp/.

	Ansible copies eos_vlan.py to the temp directory created above.

	Ansible executes eos_vlan.py with the specified arguments

	eos_vlan.py uses pyeapi to configure the Vlan.

	pyeapi consults ~/.eapi.conf to find connection named veos01

	Ansible cleans up the temp folder and returns output to the control host.

You should notice that Ansible reports configuration has changed. If you ran
this command again it should report no changes due to idempotency.

Now what?

This guide should have helped you install and configure all necessary
dependencies and given you a basic idea of how to use the Ansible EOS role.
Next, you can add to your Ansible playbooks using a combination of modules.
You can also check out the list of modules provided within the Ansible EOS Role
to see all of the ways to make configuration changes. There’s also an
examples [https://github.com/arista-eosplus/ansible-eos/tree/master/examples]
directory which has a full-featured set of tasks and roles to build an entire
leaf/spine network with MLAG and BGP.

Tip

Please send us some feedback on ways to improve this guide.

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

Installation

The installation of Ansible is straightforward and simple. This section
provides an overview of the installation of Ansible on a host system as well
as how to configure an Arista EOS node to work with the Ansible framework.

Important

Ansible 1.9 or later is required.

Host (Control) System

Installing Ansible on a host (or control) system is a relatively simple
process. Ansible supports all major Linux distributions running Python 2.6 or
later as a control system. Ansible is integrated with package managers for
each system type to ease the installation. Ansible can also be run directly
from a Git checkout.

A quick reference summary of the various installation method is found below.
For authoritative details regarding the installation of Ansible on a
control system, see Ansible’s installation documentation [http://docs.ansible.com/intro_installation.html].

Installing via YUM

Ansible is provided via standard RPM installations from EPEL 6 and Fedora repositories. Simply run Yum with appropriate permissions to install the latest version of Ansible.

$ sudo yum install ansible

Installing via Apt (Ubuntu)

In order to install directly from Apt, the Ansible PPA will need to be added
to Apt’s sources. Ansible binaries are installed from this PPA. Once the PPA
has been added to the Apt sources list execute the following commands to
install Ansible.

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install ansible

Installing via PIP

Ansible can be installed using Python PIP. To install Ansible with PIP,
simply enter the following command from a shell prompt.

sudo pip install ansible

Install the Ansible EOS Role

There are two methods that can be used to install the ansible-eos modules on
your system; (1) Ansible Galaxy, (2) Github - from source. The first method
is the easiest and makes using the modules a little easier, but the drawback
is that you are dependent upon releases being posted to Ansible Galaxy. The second
method is good if you plan on working with the actual module code from source
or wish to closely follow all changes in development.

Install Using Ansible Galaxy

From your Ansible Control Host, type:

sudo ansible-galaxy install arista.eos

Tip

To upgrade the role via Galaxy use sudo ansible-galaxy install --force arista.eos

Then you can use the role in your play as:

#my-playbook.yml

- hosts: eos_switches
 gather_facts: no

 roles:
 - arista.eos

 tasks:
 - name: configure Vlan150
 eos_vlan:
 vlanid=150

Installing from GitHub (for active development)

To get started, download the latest Arista EOS modules from Github using the
clone command. From a terminal on the Ansible control system issue the
following command:

git clone https://github.com/arista-eosplus/ansible-eos.git

The command above will create a new directory called ‘ansible-eos’ and clone the
entire repository. Currently, the ansible-eos folder contains the “develop”
branch which provides the latest code. Since the “develop” branch is still
a work in progress, it might be necessary to switch to a released version of
the EOS modules. In order to switch to a specific release version, change
directories to the ansible-eos directory and enter the following command.

git tag
git checkout tags/<tag name>

The first command above “git tag” provides a list of all available tags.
Each release has a corresponding tag that denotes the released code.
To switch to a specific release simply use the name of the tag in the
second command as the <tag name>.

For instance, to use the v1.0.0 release, enter the command

git checkout tags/v1.0.0

At any point in time switching to a different release is as easy as changing
to the ansible-eos directory and re-issuing the “git checkout” command.

You will need to make Ansible aware of this new role if you want to use the
included modules in your plays. You have a few options:

Option 1: Create Symlink (preferred)

We will create a symlink in /etc/ansible/roles/ to make Ansible aware of the
ansible-eos role. Notice that the symlink name is arista.eos. This is
because the Ansible Galaxy role is named arista.eos:

create soft symlink
cd /etc/ansible/roles
sudo ln -s /path/to/where/your/git/clone/is/ansible-eos arista.eos

Then you can use the role in your play as:

#my-playbook.yml

- hosts: eos_switches
 gather_facts: no

 roles:
 - arista.eos

 tasks:
 - name: configure Vlan150
 eos_vlan:
 vlanid=150

Option 2: Edit ansible.cfg roles_path

Here, you can edit /etc/ansible/ansible.cfg to make Ansible look for the
ansible-eos directory:

open the config file in an editor
sudo vi /etc/ansible/ansible.cfg

if roles_path exists add a colon and the new path
if the variable doesn't exist, create it under [defaults] section
[defaults]
roles_path=/path/to/where/your/git/clone/is/ansible-eos

Then you can use the role in your play as:

#my-playbook.yml

- hosts: eos_switches
 gather_facts: no

 roles:
 - ansible-eos

 tasks:
 - name: configures the hostname on tor1
 eos_vlan:
 vlanid=150

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

Modules

	All Modules

	BGP Modules

	Bridging Modules

	IP Modules

	Interfaces Modules

	MLAG Modules

	Route Policy Modules

	STP Modules

	System Modules

	VARP Modules

	VRRP Modules

	VXLAN Modules

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

All Modules

	eos_acl_entry

	eos_bgp_config

	eos_bgp_neighbor

	eos_bgp_network

	eos_command

	eos_config

	eos_ethernet

	eos_facts

	eos_interface

	eos_ipinterface

	eos_mlag_config

	eos_mlag_interface

	eos_ping

	eos_portchannel

	eos_purge

	eos_routemap

	eos_staticroute

	eos_stp_interface

	eos_switchport

	eos_system

	eos_user

	eos_varp

	eos_varp_interface

	eos_vlan

	eos_vrrp

	eos_vxlan

	eos_vxlan_vlan

	eos_vxlan_vtep

 Copyright 2015, Arista EOS+.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_acl_entry

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.1.0

This module will manage standard ACL entries on EOS nodes

Options

 eos_bgp_config

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_bgp_config

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.1.0

The eos_bgp_config module provides resource management of the global BGP routing process for Arista EOS nodes

Options

 eos_bgp_neighbor

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_bgp_neighbor

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.1.0

This eos_bgp_neighbor module provides stateful management of the neighbor statements for the BGP routing process for Arista EOS nodes

Options

 eos_bgp_network

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_bgp_network

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.1.0

This eos_bgp_network module provides stateful management of the network statements for the BGP routing process for Arista EOS nodes

Options

 eos_command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_command

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_command module provides a module for sending arbitray commands to the EOS node and returns the ouput. Only priviledged mode (enable) commands can be sent.

Options

 eos_config

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_config

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_config module evalues the current configuration for specific commands. If the commands are either present or absent (depending on the function argument, the eos_config module will configure the node using the command argument.

Options

 eos_ethernet

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_ethernet

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_ethernet module manages the interface configuration for physical Ethernet interfaces on EOS nodes.

Options

 eos_facts

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_facts

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_facts module collects facts from the EOS for use in Ansible playbooks. It can be used independently as well to discover what facts are availble from the node. This facts module does not cache any facts. If no configuration options are specified, then all facts are returned.

Options

 eos_interface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_interface

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_interface module manages the interface configuration for any valid interface on EOS nodes.

Options

 eos_ipinterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_ipinterface

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_ipinterface module manages logical layer 3 interface configurations.

Options

 eos_mlag_config

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_mlag_config

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_mlag_interface module manages the MLAG interfaces on Arista EOS nodes. This module is fully stateful and all configuration of resources is idempotent unless otherwise specified.

Options

 eos_mlag_interface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_mlag_interface

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

The eos_mlag_interface module manages the MLAG interfaces on Arista EOS nodes. This module is fully stateful and all configuration of resources is idempotent unless otherwise specified.

Options

 eos_ping

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ansible-eos develop documentation

 	Modules

 	All Modules

eos_ping

	Synopsis

	Options

	Examples

Synopsis

Added in version 1.0.0

