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CHAPTER 1

Getting started with Annotator

1.1 The Annotator libraries

To get the Annotator up and running on your website you’ll need to either link to a hosted version or deploy the
Annotator source files yourself. Details of both are provided below.

Note: If you are using Wordpress there is also a Annotator Wordpress plugin which will take care of installing and
integrating Annotator for you.

1.1.1 Hosted Annotator Library

For each Annotator release, we make available the following assets:

http://assets.annotateit.org/annotator/{version}/annotator-full.min.js
http://assets.annotateit.org/annotator/{version}/annotator.min.js
http://assets.annotateit.org/annotator/{version}/annotator.{pluginname}.min.js
http://assets.annotateit.org/annotator/{version}/annotator.min.css

Use annotator-full.min.js if you want to include both the core and all plugins in a single file. Use
annotator.min.js if you need only the core. You can add individual plugins by including the relevant
annotator.pluginname.min.js files.

For example, a full version of the Annotator can be loaded with the following code:

<script src="http://assets.annotateit.org/annotator/v1.2.5/annotator-full.min.js"></script>
<link rel="stylesheet" href="http://assets.annotateit.org/annotator/v1.2.5/annotator.min.css">

1.1.2 Deploy the Annotator Locally

To do this visit the download area and grab the latest version. This contains the Annotator source code as well as the
plugins developed as part of the Annotator project.

1.1.3 Including Annotator on your webpage

You need to link the Annotator Javascript and CSS into the page.

Note: Annotator requires jQuery 1.6 or greater.
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<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script>
<script src="http://assets.annotateit.org/annotator/v1.1.0/annotator-full.min.js"></script>
<link rel="stylesheet" href="http://assets.annotateit.org/annotator/v1.1.0/annotator.min.css">

1.2 Setting up Annotator

Setting up Annotator requires only a single line of code. Use jQuery to select the element that you would like to
annotate eg. <div id="content">...</div> and call the .annotator() method on it:

jQuery(function ($) {
$('#content').annotator();

});

Annotator will now be loaded on the #content element. Select some text to see it in action.

1.3 Options

You can optionally specify options:

readOnly True to allow viewing annotations, but not creating or editing them. Defaults to false.

jQuery(function ($) {
$('#content').annotator({

readOnly: true
});

});

1.4 Setting up the default plugins

We include a special setup function in the annotator-full.min.js file that installs all the default plugins for
you automatically. To run it just add a call to .annotator("setupPlugins").

jQuery(function ($) {
$('#content').annotator()

.annotator('setupPlugins');
});

This will set up the following:

1. The Tags, Filter & Unsupported plugins.

2. The Auth, Permissions and Store plugins, for interaction with the AnnotateIt store. NOTE: The Permissions
plugin needs to be referred to as AnnotateItPermissions when configuring it with setupPlugins.

3. If the Showdown library has been included on the page the Markdown Plugin will also be loaded.

You can further customise the plugins by providing an object containing options for individual plugins. Or to disable
a plugin set it’s attribute to false.

jQuery(function ($) {
// Customise the default plugin options with the third argument.
$('#content').annotator()

.annotator('setupPlugins', {}, {
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// Disable the tags plugin
Tags: false,
// Filter plugin options
Filter: {
addAnnotationFilter: false, // Turn off default annotation filter
filters: [{label: 'Quote', property: 'quote'}] // Add a quote filter

}
});

});

1.5 Adding more plugins

To add a plugin first make sure that you’re loading the script into the page. Then call .annotator(’addPlugin’,
’PluginName’) to load the plugin. Options can also be passed to the plugin as additional parameters after the
plugin name.

Here we add the tags plugin to the page:

jQuery(function ($) {
$('#content').annotator()

.annotator('addPlugin', 'Tags');
});

For more information on available plugins check the navigation to the right of this article. Or to create your own check
the creating a plugin section.

1.6 Saving annotations

In order to keep your annotations around longer than a single page view you’ll need to set up a store on your server or
use an external service like AnnotateIt. For more information on storing annotations check out the Store Plugin on the
wiki.

1.5. Adding more plugins 5
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CHAPTER 2

Annotation format

An annotation is a JSON document that contains a number of fields describing the position and content of an annotation
within a specified document:

{
"id": "39fc339cf058bd22176771b3e3187329", # unique id (added by backend)
"annotator_schema_version": "v1.0", # schema version: default v1.0
"created": "2011-05-24T18:52:08.036814", # created datetime in iso8601 format (added by backend)
"updated": "2011-05-26T12:17:05.012544", # updated datetime in iso8601 format (added by backend)
"text": "A note I wrote", # content of annotation
"quote": "the text that was annotated", # the annotated text (added by frontend)
"uri": "http://example.com", # URI of annotated document (added by frontend)
"ranges": [ # list of ranges covered by annotation (usually only one entry)
{

"start": "/p[69]/span/span", # (relative) XPath to start element
"end": "/p[70]/span/span", # (relative) XPath to end element
"startOffset": 0, # character offset within start element
"endOffset": 120 # character offset within end element

}
],
"user": "alice", # user id of annotation owner (can also be an object with an 'id' property)
"consumer": "annotateit", # consumer key of backend
"tags": [ "review", "error" ], # list of tags (from Tags plugin)
"permissions": { # annotation permissions (from Permissions/AnnotateItPermissions plugin)
"read": ["group:__world__"],
"admin": [],
"update": [],
"delete": []

}
}

Note that this annotation includes some info stored by plugins (notably the Permissions plugin and Tags plugin).

This basic schema is completely extensible. It can be added to by plugins, and any fields added by the frontend should
be preserved by backend implementations. For example, the Store plugin (which adds persistence of annotations) allow
you to specify arbitrary additional fields using the annotationData attribute.

7
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CHAPTER 3

Authentication

3.1 What’s the authentication system for?

The simplest way to explain the role of the authentication system is by example. Consider the following:

1. Alice builds a website with documents which need annotating, DocLand.

2. Alice registers DocLand with AnnotateIt, and receives a “consumer key/secret” pair.

3. Alice’s users (Bob is one of them) login to her DocLand, and receive an authentication token, which is a cryp-
tographic combination of (among other things) their unique user ID at DocLand, and DocLand’s “consumer
secret”.

4. Bob’s browser sends requests to AnnotateIt to save annotations, and these include the authentication token as
part of the payload.

5. AnnotateIt can verify the Bob is a real user from DocLand, and thus stores his annotation.

So why go to all this trouble? Well, the point is really to save you trouble. By implementing this authentication system
(which shares key ideas with the industry standard OAuth) you can provide your users with the ability to annotate
documents on your website without needing to worry about implementing your own Annotator backend. You can
use AnnotateIt to provide the backend: all you have to do is implement a token generator on your website (described
below).

This is the simple explanation, but if you’re in need of more technical details, keep reading.

3.2 Technical overview

How do we authorise users’ browsers to create annotations on a Consumer’s behalf? There are three (and a half)
entities involved:

1. The Service Provider (SP; AnnotateIt in the above example)

2. The Consumer (C; DocLand)

3. The User (U; Bob), and the User Agent (UA; Bob’s browser)

Annotations are stored by the SP, which provides an API that the Annotator’s “Store” plugin understands.

Text to be annotated, and configuration of the clientside Annotator, is provided by the Consumer.

Users will typically register with the Consumer – we make no assumptions about your user registration/authentication
process other than that it exists – and the UA will, when visiting appropriate sections of C’s site, request an
authToken from C. Typically, an authToken will only be provided if U is currently logged into C’s site.

9
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3.3 Technical specification

It’s unlikely you’ll need to understand all of the following to get up and running using AnnotateIt – you can probably
just copy and paste the Python example given below – but it’s worth reading what follows if you’re doing anything
unusual (such as giving out tokens to unauthenticated users).

The Annotator authToken is a type of JSON Web Token. This document won’t describe the details of the JWT spec-
ification, other than to say that the token payload is signed by the consumer secret with the HMAC-SHA256 algorithm,
allowing the backend to verify that the contents of the token haven’t been interfered with while travelling from the
consumer. Numerous language implementations exist already (PyJWT, jwt for Ruby, php-jwt, JWT-CodeIgniter...).

The required contents of the token payload are:

key description example
consumerKeythe consumer key issued by the backend store "602368a0e905492fae87697edad14c3a"
userId the consumer’s unique identifier for the user to whom

the token was issued
"alice"

issuedAt the ISO8601 time at which the token was issued "2012-03-23T10:51:18Z"
ttl the number of seconds after issuedAt for which the

token is valid
86400

You may wish the payload to contain other information (e.g. userRole or userGroups) and arbitrary additional
keys may be added to the token. This will only be useful if the Annotator client and the SP pay attention to these keys.

Lastly, note that the Annotator frontend does not verify the authenticity of the tokens it receives. Only the SP is
required to verify authenticity of auth tokens before authorizing a request from the Annotator frontend.

For reference, here’s a Python implementation of a token generator, suitable for dropping straight into your Flask or
Django project:

import datetime
import jwt

# Replace these with your details
CONSUMER_KEY = 'yourconsumerkey'
CONSUMER_SECRET = 'yourconsumersecret'

# Only change this if you're sure you know what you're doing
CONSUMER_TTL = 86400

def generate_token(user_id):
return jwt.encode({
'consumerKey': CONSUMER_KEY,
'userId': user_id,
'issuedAt': _now().isoformat() + 'Z',
'ttl': CONSUMER_TTL

}, CONSUMER_SECRET)

def _now():
return datetime.datetime.utcnow().replace(microsecond=0)

Now all you need to do is expose an endpoint in your web application that returns the token to logged-in users (say,
http://example.com/api/token), and you can set up the Annotator like so:

$(body).annotator()
.annotator('setupPlugins', {tokenUrl: 'http://example.com/api/token'});

10 Chapter 3. Authentication

http://openid.net/specs/draft-jones-json-web-token-07.html
http://pypi.python.org/pypi/PyJWT
https://rubygems.org/gems/jwt
https://github.com/progrium/php-jwt
https://github.com/b3457m0d3/JWT-CodeIgniter
http://flask.pocoo.org
https://www.djangoproject.com/
http://example.com/api/token


Annotator Documentation, Release 1.2.10

3.4 Colophon

Original planning documents at:

• http://lists.okfn.org/pipermail/okfn-help/2010-December/000977.html

Rehashed in Feb 2012:

• http://lists.okfn.org/pipermail/annotator-dev/2012-January/000188.html

3.4. Colophon 11
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CHAPTER 4

Storage

Some kind of storage is needed to save your annotations after you leave a web page.

To do this you can use the Store plugin and a remote JSON API. This page describes the API expected by the Store
plugin, and implemented by the reference backend. It is this backend that runs the AnnotateIt web service.

4.1 Core storage API

The storage API is defined in terms of a prefix and a number of endpoints. It attempts to follow
the principles of REST, and emits JSON documents to be parsed by the Annotator. Each of the fol-
lowing endpoints for the storage API is expected to be found on the web at prefix + path. For
example, if the prefix were http://example.com/api, then the index endpoint would be found at
http://example.com/api/annotations.

General rules are those common to most REST APIs. If a resource cannot be found, return 404 NOT FOUND. If an
action is not permitted for the current user, return 401 NOT AUTHORIZED, otherwise return 200 OK. Send JSON
text with the header Content-Type: application/json.

Below you can find details of the six core endpoints, root, index, create, read, update, delete, as well as an optional
search API.

WARNING:

The spec below requires you return 303 SEE OTHER from the create and update endpoints. Ideally this is what
you’d do, but unfortunately most modern browsers (Firefox and Webkit) still make a hash of CORS requests when
they include redirects. A simple workaround for the time being is to return 200 OK and the JSON annotation that
would be returned by the read endpoint in the body of the create and update responses. See bugs in Chromium and
Webkit.

4.1.1 root

• method: GET

• path: /

• returns: object containing store metadata, including API version

Example:

$ curl http://example.com/api/
{

"name": "Annotator Store API",
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"version": "2.0.0"
}

4.1.2 index

• method: GET

• path: /annotations

• returns: a list of all annotation objects

Example (see Annotation format for details of the format of individual annotations):

$ curl http://example.com/api/annotations
[

{
"text": "Example annotation text",
"ranges": [ ... ],
...

},
{
"text": "Another annotation",
"ranges": [ ... ],
...

},
...

]

4.1.3 create

• method: POST

• path: /annotations

• receives: an annotation object, sent with Content-Type: application/json

• returns: 303 SEE OTHER redirect to the appropriate read endpoint

Example:

$ curl -i -X POST \
-H 'Content-Type: application/json' \
-d '{"text": "Annotation text"}' \
http://example.com/api/annotations

HTTP/1.0 303 SEE OTHER
Location: http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
...

4.1.4 read

• method: GET

• path: /annotations/<id>

• returns: an annotation object

Example:
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$ curl http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
{

"id": "d41d8cd98f00b204e9800998ecf8427e",
"text": "Annotation text",
...

}

4.1.5 update

• method: PUT

• path: /annotations/<id>

• receives: a (partial) annotation object, sent with Content-Type: application/json

• returns: 303 SEE OTHER redirect to the appropriate read endpoint

Example:

$ curl -i -X PUT \
-H 'Content-Type: application/json' \
-d '{"text": "Updated annotation text"}' \
http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e

HTTP/1.0 303 SEE OTHER
Location: http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
...

4.1.6 delete

• method: DELETE

• path: /annotations/<id>

• returns: 204 NO CONTENT, and – obviously – no content

$ curl -i -X DELETE http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
HTTP/1.0 204 NO CONTENT
Content-Length: 0

4.2 Search API

You may also choose to implement a search API, which can be used by the Store plugin’s loadFromSearch
configuration option.

4.2.1 search

• method: GET

• path: /search?text=foobar

• returns: an object with total and rows fields. total is an integer denoting the total number of annotations
matched by the search, while rows is a list containing what might be a subset of these annotations.

• If implemented, this method should also support the limit and offset query parameters for paging through
results.

4.2. Search API 15
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$ curl http://example.com/api/search?text=annotation
{

"total": 43127,
"rows": [
{

"id": "d41d8cd98f00b204e9800998ecf8427e",
"text": "Updated annotation text",
...

},
...

]
}

4.3 Storage Implementations

• Reference backend, a Python Flask app: https://github.com/okfn/annotator-store (in particular, see store.py,
although be aware that this file also deals with authentication and authorization, making the code a good deal
more complex than would be required to implement what is described above).

• PHP (Silex) and MongoDB-based basic implementation: https://github.com/julien-c/annotator-php (in particu-
lar, see index.php).
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CHAPTER 5

Internationalisation and localisation (I18N, L10N)

Annotator now has rudimentary support for localisation of its interface.

5.1 For users

If you wish to use a provided translation, you need to add a link tag pointing to the .po file, as well as include
gettext.js before you load the Annotator. For example, for a French translation:

<link rel="gettext" type="application/x-po" href="locale/fr/annotator.po">
<script src="lib/vendor/gettext.js"></script>

This should be all you need to do to get the Annotator interface displayed in French.

5.2 For translators

We now use Transifex to manage localisation efforts on Annotator. If you wish to contribute a translation you’ll first
need to sign up for a free account at

https://www.transifex.net/plans/signup/free/

Once you’re signed up, you can go to

https://www.transifex.net/projects/p/annotator/

and get translating!

5.3 For developers

Any localisable string in the core of Annotator should be wrapped with a call to the gettext function, _t, e.g.

console.log(_t("Hello, world!"))

Any localisable string in an Annotator plugin should be wrapped with a call to the gettext function, Annotator._t,
e.g.

console.log(Annotator._t("Hello from a plugin!"))

To update the localisation template (locale/annotator.pot), you should run the i18n:update Cake task:

17
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cake i18n:update

You should leave it up to individual translators to update their individual .po files with the locale/l10n-update
tool.

18 Chapter 5. Internationalisation and localisation (I18N, L10N)



CHAPTER 6

Plugins

Annotator has a highly modular architecture, and a great deal of functionality is provided by plugins. These pages
document these plugins and how they work together.

6.1 Auth plugin

The Auth plugin complements the Store plugin by providing authentication for requests. This may be necessary if you
are running the Store on a separate domain or using a third party service like annotateit.org.

The plugin works by requesting an authentication token from the local server and then provides this in all requests to
the store. For more details see the specification.

6.1.1 Usage

Adding the Auth plugin to the annotator is very simple. Simply add the annotator to the page using the
.annotator() jQuery plugin. Then call the .addPlugin() method eg. .annotator(’addPlugin’,
’Auth’).

var content = $('#content'));
content.annotator('addPlugin', 'Auth', {

tokenUrl: '/auth/token'
});

6.1.2 Options

The following options are available to the Auth plugin.

• tokenUrl: The URL to request the token from. Defaults to /auth/token.

• token: An auth token. If this is present it will not be requested from the server. Defaults to null.

• autoFetch: Whether to fetch the token when the plugin is loaded. Defaults to true

Token format

For details of the token format, see the page on Annotator’s Authentication system.

19
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6.2 Filter plugin

This plugin allows the user to navigate and filter the displayed annotations.

6.2.1 Interface Overview

The plugin adds a toolbar to the top of the window. This contains the available filters that can be applied to the current
annotations.

6.2.2 Usage

Adding the Filter plugin to the annotator is very simple. Add the annotator to the page using the .annotator()
jQuery plugin. Then call the .addPlugin() method by calling .annotator(’addPlugin’, ’Filter’).

var content = $('#content').annotator().annotator('addPlugin', 'Filter');

Options

There are several options available to customise the plugin.

• filters: This is an array of filter objects. These will be added to the toolbar on load.

• addAnnotationFilter: If true this will display the default filter that searches the annotation text.

Filters

Filters are very easy to create. The options require two properties a label and an annotation property to search
for. For example if we wanted to filter on an annotations quoted text we can create the following filter.

content.annotator('addPlugin', 'Filter', {
filters: [
{

label: 'Quote',
property: 'quote'

}
]

});

You can also customise the filter logic that determines if an annotation should be filtered by providing an
isFiltered function. This function receives the contents of the filter input as well as the annotation property.
It should return true if the annotation should remain highlighted.

Heres an example that uses the annotation.tags property, which is an array of tags:

content.annotator('addPlugin', 'Filter', {
filters: [
{

label: 'Tag',
property: 'tags',
isFiltered: function (input, tags) {

if (input && tags && tags.length) {
var keywords = input.split(/\s+/g);
for (var i = 0; i < keywords.length; i += 1) {

for (var j = 0; j < tags.length; j += 1) {
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if (tags[j].indexOf(keywords[i]) !== -1) {
return true;

}
}

}
}
return false;

}}
]

});

6.3 Markdown Plugin

The Markdown plugin allows you to use Markdown in your annotation comments. It will then render them in the
Viewer.

6.3.1 Requirements

This plugin requires that the Showdown Markdown library be loaded in the page before the plugin is added to the
annotator. To do this simply download the showdown.js and include it on your page before the annotator.

<script src="javascript/jquery.js"></script>
<script src="javascript/showdown.js"></script>
<script src="javascript/annotator.min.js"></script>
<script src="javascript/annotator.markdown.min.js"></script>

6.3.2 Usage

Adding the Markdown plugin to the annotator is very simple. Simply add the annotator to the page using the
.annotator() jQuery plugin and retrieve the annotator object using .data(’annotator’). Then add the
Markdown plugin.

var content = $('#content').annotator();
content.annotator('addPlugin', 'Markdown');

Options

There are no options available for this plugin

6.4 Permissions plugin

This plugin handles setting the user and permissions properties on annotations as well as providing some enhancements
to the interface.

6.4.1 Interface Overview

The following elements are added to the Annotator interface by this plugin.
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Viewer

The plugin adds a section to a viewed annotation displaying the name of the user who created it. It also checks
the annotation’s permissions to see if the current user can edit/delete the current annotation and displays controls
appropriately.

Editor

The plugin adds two fields with checkboxes to the annotation editor (these are only displayed if the current user has
admin permissions on the annotation). One to allow anyone to view the annotation and one to allow anyone to edit
the annotation.

6.4.2 Usage

Adding the permissions plugin to the annotator is very simple. Simply add the annotator to the page using the
.annotator() jQuery plugin and retrieve the annotator object using .data(’annotator’). We now add
the plugin and pass an options object to set the current user.

var annotator = $('#content').annotator().data('annotator');
annotator.addPlugin('Permissions', {

user: 'Alice'
});

By default all annotations are publicly viewable/editable/deleteable. We can set our own permissions using the options
object.

var annotator = $('#content').annotator().data('annotator');
annotator.addPlugin('Permissions', {

user: 'Alice',
permissions: {
'read': [],
'update': ['Alice'],
'delete': ['Alice'],
'admin': ['Alice']

}
});

Now only our current user can edit the annotations but anyone can view them.

The options object allows you to completely define the way permissions are handled for your site.

• user: The current user (required).

• permissions: An object defining annotation permissions.

• userId: A callback that returns the user id.

• userString: A callback that returns the users name.

• userAuthorize: A callback that allows custom authorisation.

• showViewPermissionsCheckbox: If false hides the “Anyone can view. . . ” checkbox.

• showEditPermissionsCheckbox: If false hides the “Anyone can edit. . . ” checkbox.
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user (required)

This value sets the current user and will be attached to all newly created annotations. It can be as simple as a username
string or if your users objects are more complex an object literal.

// Simple example.
annotator.addPlugin('Permissions', {

user: 'Alice'
});

// Complex example.
annotator.addPlugin('Permissions', {

user: {
id: 6,
username: 'Alice',
location: 'Brighton, UK'

}
});

If you do decide to use an object for your user as well as permissions you’ll need to also provide userId and
userString callbacks. See below for more information.

permissions

Permissions set who is allowed to do what to your annotations. There are four actions:

• read: Who can view the annotation

• update: Who can edit the annotation

• delete: Who can delete the annotation

• admin: Who can change these permissions on the annotation

Each action should be an array of tokens. An empty array means that anyone can perform that action. Generally the
token will just be the users id. If you need something more complex (like groups) you can use your own syntax and
provide a userAuthorize callback with your options.

Here’s a simple example of setting the permissions so that only the current user can perform all actions:

annotator.addPlugin('Permissions', {
user: 'Alice',
permissions: {
'read': ['Alice'],
'update': ['Alice'],
'delete': ['Alice'],
'admin': ['Alice']

}
});

Or here is an example using numerical user ids:

annotator.addPlugin('Permissions', {
user: {id: 6, name:'Alice'},
permissions: {
'read': [6],
'update': [6],
'delete': [6],
'admin': [6]
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}
});

userId(user)

This is a callback that accepts a user parameter and returns the identifier. By default this assumes you will be using
strings for your ids and simply returns the parameter. However if you are using a user object you’ll need to implement
this:

annotator.addPlugin('Permissions', {
user: {id: 6, name:'Alice'},
userId: function (user) {
if (user && user.id) {

return user.id;
}
return user;

}
});
// When called.
userId({id: 6, name:'Alice'}) // => Returns 6

NOTE: This function should handle null being passed as a parameter. This is done when checking a globally editable
annotation.

userString(user)

This is a callback that accepts a user parameter and returns the human readable name for display. By default this
assumes you will be using a string to represent your users name and id so simply returns the parameter. However if
you are using a user object you’ll need to implement this:

annotator.addPlugin('Permissions', {
user: {id: 6, name:'Alice'},
userString: function (user) {
if (user && user.name) {

return user.name;
}
return user;

}
});
// When called.
userString({id: 6, name:'Alice'}) // => Returns 'Alice'

userAuthorize(action, annotation, user)

This is another callback that allows you to implement your own authorization logic. It receives three arguments:

• action: Action that is being checked, ‘update’, ‘delete’ or ‘admin’. ‘create’ does not call this callback

• annotation: The entire annotation object; note that the permissions subobject is at
annotation.permissions

• user: current user, as passed in to the permissions plugin

Your function will check to see if the user can perform an action based on these values.
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The default implementation assumes that the user is a simple string and the tokens used (within
annotation.permissions) are also strings so simply checks that the user is one of the tokens for the current
action.

// This is the default implementation as an example.
annotator.addPlugin('Permissions', {

user: 'Alice',
userAuthorize: function(action, annotation, user) {

var token, tokens, _i, _len;
if (annotation.permissions) {

tokens = annotation.permissions[action] || [];
if (tokens.length === 0) {
return true;

}
for (_i = 0, _len = tokens.length; _i < _len; _i++) {
token = tokens[_i];
if (this.userId(user) === token) {

return true;
}

}
return false;

} else if (annotation.user) {
if (user) {
return this.userId(user) === this.userId(annotation.user);

} else {
return false;

}
}
return true;

},
});
// When called.
userAuthorize('update', aliceAnnotation, 'Alice') // => Returns true
userAuthorize('Alice', bobAnnotation, 'Bob') // => Returns false

A more complex example might involve you wanting to have a groups property on your user object. If the user is a
member of the ‘Admin’ group they can perform any action on the annotation.

// When called by a normal user. userAuthorize(‘update’, adminAnnotation, { id: 1, group: ‘user’ }) // => Returns
false

// When called by an admin. userAuthorize(‘update’, adminAnnotation, { id: 2, group: ‘Admin’ }) // => Returns true

// When called by the owner. userAuthorize(‘update’, regularAnnotation, ownerOfRegularAnnotation) // => Returns
true ‘‘‘

6.5 Store plugin

This plugin sends annotations (serialised as JSON) to the server at key events broadcast by the annotator.

6.5.1 Actions

The following actions are performed by the annotator.

• create: POSTs an annotation (serialised as JSON) to the server. Called when the annotator publishes the
“annotationCreated” event. The annotation is updated with any data (such as a newly created id) returned from
the server.
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• update: PUTs an annotation (serialised as JSON) on the server under its id. Called when the annotator
publishes the “annotationUpdated” event. The annotation is updated with any data (such as a newly created id)
returned from the server.

• destroy: Issues a DELETE request to server for the annotation.

• search: GETs all annotations relevant to the query. Should return a JSON object with a rows property
containing an array of annotations.

6.5.2 Stores

For an example store check out our annotator-store project on GitHub which you can use or examine as the basis
for your own store. If you’re looking to get up and running quickly then annotateit.org will store your annotations
remotely under your account.

6.5.3 Interface Overview

This plugin adds no additional UI to the Annotator but will display error notifications if a request to the store fails.

6.5.4 Usage

Adding the store plugin to the annotator is very simple. Simply add the annotator to the page using the
.annotator() jQuery plugin and retrieve the annotator object using .data(’annotator’). Then add the
Store plugin.

var content = $('#content').annotator();
content.annotator('addPlugin', 'Store', {

// The endpoint of the store on your server.
prefix: '/store/endpoint',

// Attach the uri of the current page to all annotations to allow search.
annotationData: {

'uri': 'http://this/document/only'
},

// This will perform a "search" action when the plugin loads. Will
// request the last 20 annotations for the current url.
// eg. /store/endpoint/search?limit=20&uri=http://this/document/only
loadFromSearch: {

'limit': 20,
'uri': 'http://this/document/only'

}
});

Options

The following options are made available for customisation of the store.

• prefix: The store endpoint.

• annotationData: An object literal containing any data to attach to the annotation on submission.

• loadFromSearch: Search options for using the “search” action.

• urls: Custom URL paths.
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• showViewPermissionsCheckbox: If true will display the “anyone can view this annotation” checkbox.

• showEditPermissionsCheckbox: If true will display the “anyone can edit this annotation” checkbox.

prefix

This is the API endpoint. If the server supports Cross Origin Resource Sharing (CORS) a full URL can be used here.
Defaults to /store.

NOTE: The trailing slash should be omitted.

Example:

$('#content').annotator('addPlugin', 'Store', {
prefix: '/store/endpoint'

});

annotationData

Custom meta data that will be attached to every annotation that is sent to the server. This will override previous values.

Example:

$('#content').annotator('addPlugin', 'Store', {
// Attach a uri property to every annotation sent to the server.
annotationData: {
'uri': 'http://this/document/only'

}
});

loadFromSearch

An object literal containing query string parameters to query the store. If loadFromSearch is set, then we load the
first batch of annotations from the ‘search’ URL as set in options.urls instead of the registry path ‘prefix/read’.
Defaults to false.

Example:

$('#content').annotator('addPlugin', 'Store', {
loadFromSearch: {
'limit': 0,
'all_fields': 1,
'uri': 'http://this/document/only'

}
});

urls

The server URLs for each available action (excluding prefix). These URLs can point anywhere but must respond
to the appropriate HTTP method. The :id token can be used anywhere in the URL and will be replaced with the
annotation id.

Methods for actions are as follows:
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create: POST
update: PUT
destroy: DELETE
search: GET

Example:

$('#content').annotator('addPlugin', 'Store', {
urls: {
// These are the default URLs.
create: '/annotations',
update: '/annotations/:id',
destroy: '/annotations/:id',
search: '/search'

}
}):

6.6 Tags plugin

This plugin allows the user to tag their annotations with keywords.

6.6.1 Interface Overview

The following elements are added to the Annotator interface by this plugin.

Viewer

The plugin adds a section to a viewed annotation displaying any tags that have been added.

Editor

The plugin adds an input field to the editor allowing the user to enter a space separated list of tags.

6.6.2 Usage

Adding the tags plugin to the annotator is very simple. Simply add the annotator to the page
using the .annotator() jQuery plugin. Then call the .addPlugin() method by calling
.annotator(’addPlugin’, ’Tags’).

var content = $('#content').annotator().annotator('addPlugin', 'Tags');

There are no options available for this plugin

See this example using jQueryUI autocomplete.

6.7 Unsupported plugin

The Annotator only supports browsers that have the window.getSelection() method (for a table of support
please see this Quirksmode article). This plugin provides a notification to users of these unsupported browsers letting
them know that the plugin has not loaded.

28 Chapter 6. Plugins

https://github.com/okfn/annotator/issues/92#issuecomment-3985124
http://www.quirksmode.org/dom/range_intro.html#link2


Annotator Documentation, Release 1.2.10

6.7.1 Usage

Adding the unsupported plugin to the annotator is very simple. Simply add the annotator to the page using the
.annotator() jQuery plugin. Then call the .addPlugin() method eg. .annotator(’addPlugin’,
’Unsupported’).

var content = $('#content').annotator();
content.annotator('addPlugin', 'Unsupported');

Options

You can provide options

• message: A customised message that you wish to display to users.

message

The message that you wish to display to users.

var annotator = $('#content').annotator().data('annotator');

annotator.addPlugin('Unsupported', {
message: "We're sorry the Annotator is not supported by this browser"

});
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CHAPTER 7

Plugin development

7.1 Getting Started

Building a plugin is very simple. Simply attach a function that creates your plugin to the Annotator.Plugin
namespace. The function will receive the following arguments.

element The DOM element that is currently being annotated.

Additional arguments (such as options) can be passed in by the user when the plugin is added to the Annotator. These
will be passed in after the element.

Annotator.Plugin.HelloWorld = function (element) {
var myPlugin = {};
// Create your plugin here. Then return it.
return myPlugin;

};

7.1.1 Using Your Plugin

Adding your plugin to the annotator is the same as for all supported plugins. Simply call “addPlugin” on the annotator
and pass in the name of the plugin and any options. For example:

// Setup the annotator on the page.
var content = $('#content').annotator();

// Add your plugin.
content.annotator('addPlugin', 'HelloWorld' /*, any other options */);

7.1.2 Setup

When the annotator creates your plugin it will take the following steps.

1. Call your Plugin function passing in the annotated element plus any additional arguments. (The Annotator calls
the function with new allowing you to use a constructor function if you wish).

2. Attaches the current instance of the Annotator to the .annotator property of the plugin.

3. Calls .pluginInit() if the method exists on your plugin.
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7.1.3 pluginInit()

If your plugin has a pluginInit() method it will be called after the annotator has been attached to your plugin.
You can use it to set up the plugin.

In this example we add a field to the viewer that contains the text provided when the plugin was added.

Annotator.Plugin.Message = function (element, message) {
var plugin = {};

plugin.pluginInit = function () {
this.annotator.viewer.addField({

load: function (field, annotation) {
field.innerHTML = message;

}
})

};

return plugin;
}

Usage:

// Setup the annotator on the page.
var content = $('#content').annotator();

// Add your plugin to the annotator and display the message "Hello World"
// in the viewer.
content.annotator('addPlugin', 'Message', 'Hello World');

7.2 Extending Annotator.Plugin

All supported Annotator plugins use a base “class” that has some useful features such as event handling. To use this
you simply need to extend the Annotator.Plugin function.

// This is now a constructor and needs to be called with `new`.
Annotator.Plugin.MyPlugin = function (element, options) {

// Call the Annotator.Plugin constructor this sets up the .element and
// .options properties.
Annotator.Plugin.apply(this, arguments);

// Set up the rest of your plugin.
};

// Set the plugin prototype. This gives us all of the Annotator.Plugin methods.
Annotator.Plugin.MyPlugin.prototype = new Annotator.Plugin();

// Now add your own custom methods.
Annotator.Plugin.MyPlugin.prototype.pluginInit = function () {

// Do something here.
};

If you’re using jQuery you can make this process a lot neater.

Annotator.Plugin.MyPlugin = function (element, options) {
// Same as before.
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};

jQuery.extend(Annotator.Plugin.MyPlugin.prototype, new Annotator.Plugin(), {
events: {},
options: {
// Any default options.

}
pluginInit: function () {

},
myCustomMethod: function () {

}
});

7.3 Annotator.Plugin API

The Annotator.Plugin provides the following methods and properties.

7.3.1 element

This is the DOM element currently being annotated wrapped in a jQuery wrapper.

7.3.2 options

This is the options object, you can set default options when you create the object and they will be overridden by those
provided when the plugin is created.

7.3.3 events

These can be either DOM events to be listened for within the .element or custom events defined by you. Custom
events will not receive the event property that is passed to DOM event listeners. These are bound when the plugin is
instantiated.

7.3.4 publish(name, parameters)

Publish a custom event to all subscribers.

• name: The event name.

• parameters: An array of parameters to pass to the subscriber.

7.3.5 subscribe(name, callback)

Subscribe to a custom event. This can be used to subscribe to your own events or those broadcast by the annotator and
other plugins.

• name: The event name.

• callback: A callback to be fired when the event is published. The callback will receive any arguments sent
when the event is published.
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7.3.6 unsubscribe(name, callback)

Unsubscribe from an event.

• name: The event name.

• callback: The callback to be unsubscribed.

7.4 Annotator Events

The annotator fires the following events at key points in its operation. You can subscribe to them using
the .subscribe() method. This can be called on either the .annotator object or if you’re extending
Annotator.Plugin the plugin instance itself. The events are as follows:

beforeAnnotationCreated(annotation) called immediately before an annotation is created. If you need
to modify the annotation before it is saved use this event.

annotationCreated(annotation) called when the annotation is created use this to store the annotations.

beforeAnnotationUpdated(annotation) as above, but just before an existing annotation is saved.

annotationUpdated(annotation) as above, but for an existing annotation which has just been edited.

annotationDeleted(annotation) called when the user deletes an annotation.

annotationEditorShown(editor, annotation) called when the annotation editor is presented to the
user.

annotationEditorHidden(editor) called when the annotation editor is hidden, both when submitted and
when editing is cancelled.

annotationEditorSubmit(editor, annotation) called when the annotation editor is submitted.

annotationViewerShown(viewer, annotations) called when the annotation viewer is shown and pro-
vides the annotations being displayed.

annotationViewerTextField(field, annotation) called when the text field displaying the annotation
comment in the viewer is created.

7.4.1 Example

A plugin that logs annotation activity to the console.

Annotator.Plugin.StoreLogger = function (element) {
return {
pluginInit: function () {

this.annotator
.subscribe("annotationCreated", function (annotation) {
console.info("The annotation: %o has just been created!", annotation)

})
.subscribe("annotationUpdated", function (annotation) {

console.info("The annotation: %o has just been updated!", annotation)
})
.subscribe("annotationDeleted", function (annotation) {

console.info("The annotation: %o has just been deleted!", annotation)
});

}
}

};
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Indices and tables

• genindex

• modindex

• search
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